]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kvm/hyp/switch.c
Merge branches 'clk-optional', 'clk-devm-clkdev-register', 'clk-allwinner', 'clk...
[thirdparty/kernel/stable.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/kprobes.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_host.h>
30 #include <asm/kvm_hyp.h>
31 #include <asm/kvm_mmu.h>
32 #include <asm/fpsimd.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/processor.h>
35 #include <asm/thread_info.h>
36
37 /* Check whether the FP regs were dirtied while in the host-side run loop: */
38 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
39 {
40 if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
41 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
42 KVM_ARM64_FP_HOST);
43
44 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
45 }
46
47 /* Save the 32-bit only FPSIMD system register state */
48 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
49 {
50 if (!vcpu_el1_is_32bit(vcpu))
51 return;
52
53 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
54 }
55
56 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
57 {
58 /*
59 * We are about to set CPTR_EL2.TFP to trap all floating point
60 * register accesses to EL2, however, the ARM ARM clearly states that
61 * traps are only taken to EL2 if the operation would not otherwise
62 * trap to EL1. Therefore, always make sure that for 32-bit guests,
63 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
64 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
65 * it will cause an exception.
66 */
67 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
68 write_sysreg(1 << 30, fpexc32_el2);
69 isb();
70 }
71 }
72
73 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
74 {
75 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
76 write_sysreg(1 << 15, hstr_el2);
77
78 /*
79 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
80 * PMSELR_EL0 to make sure it never contains the cycle
81 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
82 * EL1 instead of being trapped to EL2.
83 */
84 write_sysreg(0, pmselr_el0);
85 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
86 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
87 }
88
89 static void __hyp_text __deactivate_traps_common(void)
90 {
91 write_sysreg(0, hstr_el2);
92 write_sysreg(0, pmuserenr_el0);
93 }
94
95 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
96 {
97 u64 val;
98
99 val = read_sysreg(cpacr_el1);
100 val |= CPACR_EL1_TTA;
101 val &= ~CPACR_EL1_ZEN;
102 if (!update_fp_enabled(vcpu)) {
103 val &= ~CPACR_EL1_FPEN;
104 __activate_traps_fpsimd32(vcpu);
105 }
106
107 write_sysreg(val, cpacr_el1);
108
109 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
110 }
111 NOKPROBE_SYMBOL(activate_traps_vhe);
112
113 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
114 {
115 u64 val;
116
117 __activate_traps_common(vcpu);
118
119 val = CPTR_EL2_DEFAULT;
120 val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
121 if (!update_fp_enabled(vcpu)) {
122 val |= CPTR_EL2_TFP;
123 __activate_traps_fpsimd32(vcpu);
124 }
125
126 write_sysreg(val, cptr_el2);
127 }
128
129 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
130 {
131 u64 hcr = vcpu->arch.hcr_el2;
132
133 write_sysreg(hcr, hcr_el2);
134
135 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
136 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
137
138 if (has_vhe())
139 activate_traps_vhe(vcpu);
140 else
141 __activate_traps_nvhe(vcpu);
142 }
143
144 static void deactivate_traps_vhe(void)
145 {
146 extern char vectors[]; /* kernel exception vectors */
147 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
148
149 /*
150 * ARM erratum 1165522 requires the actual execution of the above
151 * before we can switch to the EL2/EL0 translation regime used by
152 * the host.
153 */
154 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));
155
156 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
157 write_sysreg(vectors, vbar_el1);
158 }
159 NOKPROBE_SYMBOL(deactivate_traps_vhe);
160
161 static void __hyp_text __deactivate_traps_nvhe(void)
162 {
163 u64 mdcr_el2 = read_sysreg(mdcr_el2);
164
165 __deactivate_traps_common();
166
167 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
168 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
169
170 write_sysreg(mdcr_el2, mdcr_el2);
171 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
172 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
173 }
174
175 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
176 {
177 /*
178 * If we pended a virtual abort, preserve it until it gets
179 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
180 * the crucial bit is "On taking a vSError interrupt,
181 * HCR_EL2.VSE is cleared to 0."
182 */
183 if (vcpu->arch.hcr_el2 & HCR_VSE)
184 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
185
186 if (has_vhe())
187 deactivate_traps_vhe();
188 else
189 __deactivate_traps_nvhe();
190 }
191
192 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
193 {
194 __activate_traps_common(vcpu);
195 }
196
197 void deactivate_traps_vhe_put(void)
198 {
199 u64 mdcr_el2 = read_sysreg(mdcr_el2);
200
201 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
202 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
203 MDCR_EL2_TPMS;
204
205 write_sysreg(mdcr_el2, mdcr_el2);
206
207 __deactivate_traps_common();
208 }
209
210 static void __hyp_text __activate_vm(struct kvm *kvm)
211 {
212 __load_guest_stage2(kvm);
213 }
214
215 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
216 {
217 write_sysreg(0, vttbr_el2);
218 }
219
220 /* Save VGICv3 state on non-VHE systems */
221 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
222 {
223 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
224 __vgic_v3_save_state(vcpu);
225 __vgic_v3_deactivate_traps(vcpu);
226 }
227 }
228
229 /* Restore VGICv3 state on non_VEH systems */
230 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
231 {
232 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
233 __vgic_v3_activate_traps(vcpu);
234 __vgic_v3_restore_state(vcpu);
235 }
236 }
237
238 static bool __hyp_text __true_value(void)
239 {
240 return true;
241 }
242
243 static bool __hyp_text __false_value(void)
244 {
245 return false;
246 }
247
248 static hyp_alternate_select(__check_arm_834220,
249 __false_value, __true_value,
250 ARM64_WORKAROUND_834220);
251
252 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
253 {
254 u64 par, tmp;
255
256 /*
257 * Resolve the IPA the hard way using the guest VA.
258 *
259 * Stage-1 translation already validated the memory access
260 * rights. As such, we can use the EL1 translation regime, and
261 * don't have to distinguish between EL0 and EL1 access.
262 *
263 * We do need to save/restore PAR_EL1 though, as we haven't
264 * saved the guest context yet, and we may return early...
265 */
266 par = read_sysreg(par_el1);
267 asm volatile("at s1e1r, %0" : : "r" (far));
268 isb();
269
270 tmp = read_sysreg(par_el1);
271 write_sysreg(par, par_el1);
272
273 if (unlikely(tmp & 1))
274 return false; /* Translation failed, back to guest */
275
276 /* Convert PAR to HPFAR format */
277 *hpfar = PAR_TO_HPFAR(tmp);
278 return true;
279 }
280
281 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
282 {
283 u8 ec;
284 u64 esr;
285 u64 hpfar, far;
286
287 esr = vcpu->arch.fault.esr_el2;
288 ec = ESR_ELx_EC(esr);
289
290 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
291 return true;
292
293 far = read_sysreg_el2(far);
294
295 /*
296 * The HPFAR can be invalid if the stage 2 fault did not
297 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
298 * bit is clear) and one of the two following cases are true:
299 * 1. The fault was due to a permission fault
300 * 2. The processor carries errata 834220
301 *
302 * Therefore, for all non S1PTW faults where we either have a
303 * permission fault or the errata workaround is enabled, we
304 * resolve the IPA using the AT instruction.
305 */
306 if (!(esr & ESR_ELx_S1PTW) &&
307 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
308 if (!__translate_far_to_hpfar(far, &hpfar))
309 return false;
310 } else {
311 hpfar = read_sysreg(hpfar_el2);
312 }
313
314 vcpu->arch.fault.far_el2 = far;
315 vcpu->arch.fault.hpfar_el2 = hpfar;
316 return true;
317 }
318
319 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
320 {
321 struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
322
323 if (has_vhe())
324 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
325 cpacr_el1);
326 else
327 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
328 cptr_el2);
329
330 isb();
331
332 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
333 /*
334 * In the SVE case, VHE is assumed: it is enforced by
335 * Kconfig and kvm_arch_init().
336 */
337 if (system_supports_sve() &&
338 (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
339 struct thread_struct *thread = container_of(
340 host_fpsimd,
341 struct thread_struct, uw.fpsimd_state);
342
343 sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
344 } else {
345 __fpsimd_save_state(host_fpsimd);
346 }
347
348 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
349 }
350
351 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
352
353 /* Skip restoring fpexc32 for AArch64 guests */
354 if (!(read_sysreg(hcr_el2) & HCR_RW))
355 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
356 fpexc32_el2);
357
358 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
359
360 return true;
361 }
362
363 /*
364 * Return true when we were able to fixup the guest exit and should return to
365 * the guest, false when we should restore the host state and return to the
366 * main run loop.
367 */
368 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
369 {
370 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
371 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
372
373 /*
374 * We're using the raw exception code in order to only process
375 * the trap if no SError is pending. We will come back to the
376 * same PC once the SError has been injected, and replay the
377 * trapping instruction.
378 */
379 if (*exit_code != ARM_EXCEPTION_TRAP)
380 goto exit;
381
382 /*
383 * We trap the first access to the FP/SIMD to save the host context
384 * and restore the guest context lazily.
385 * If FP/SIMD is not implemented, handle the trap and inject an
386 * undefined instruction exception to the guest.
387 */
388 if (system_supports_fpsimd() &&
389 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
390 return __hyp_switch_fpsimd(vcpu);
391
392 if (!__populate_fault_info(vcpu))
393 return true;
394
395 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
396 bool valid;
397
398 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
399 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
400 kvm_vcpu_dabt_isvalid(vcpu) &&
401 !kvm_vcpu_dabt_isextabt(vcpu) &&
402 !kvm_vcpu_dabt_iss1tw(vcpu);
403
404 if (valid) {
405 int ret = __vgic_v2_perform_cpuif_access(vcpu);
406
407 if (ret == 1)
408 return true;
409
410 /* Promote an illegal access to an SError.*/
411 if (ret == -1)
412 *exit_code = ARM_EXCEPTION_EL1_SERROR;
413
414 goto exit;
415 }
416 }
417
418 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
419 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
420 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
421 int ret = __vgic_v3_perform_cpuif_access(vcpu);
422
423 if (ret == 1)
424 return true;
425 }
426
427 exit:
428 /* Return to the host kernel and handle the exit */
429 return false;
430 }
431
432 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
433 {
434 if (!cpus_have_const_cap(ARM64_SSBD))
435 return false;
436
437 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
438 }
439
440 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
441 {
442 #ifdef CONFIG_ARM64_SSBD
443 /*
444 * The host runs with the workaround always present. If the
445 * guest wants it disabled, so be it...
446 */
447 if (__needs_ssbd_off(vcpu) &&
448 __hyp_this_cpu_read(arm64_ssbd_callback_required))
449 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
450 #endif
451 }
452
453 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
454 {
455 #ifdef CONFIG_ARM64_SSBD
456 /*
457 * If the guest has disabled the workaround, bring it back on.
458 */
459 if (__needs_ssbd_off(vcpu) &&
460 __hyp_this_cpu_read(arm64_ssbd_callback_required))
461 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
462 #endif
463 }
464
465 /* Switch to the guest for VHE systems running in EL2 */
466 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
467 {
468 struct kvm_cpu_context *host_ctxt;
469 struct kvm_cpu_context *guest_ctxt;
470 u64 exit_code;
471
472 host_ctxt = vcpu->arch.host_cpu_context;
473 host_ctxt->__hyp_running_vcpu = vcpu;
474 guest_ctxt = &vcpu->arch.ctxt;
475
476 sysreg_save_host_state_vhe(host_ctxt);
477
478 /*
479 * ARM erratum 1165522 requires us to configure both stage 1 and
480 * stage 2 translation for the guest context before we clear
481 * HCR_EL2.TGE.
482 *
483 * We have already configured the guest's stage 1 translation in
484 * kvm_vcpu_load_sysregs above. We must now call __activate_vm
485 * before __activate_traps, because __activate_vm configures
486 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
487 * (among other things).
488 */
489 __activate_vm(vcpu->kvm);
490 __activate_traps(vcpu);
491
492 sysreg_restore_guest_state_vhe(guest_ctxt);
493 __debug_switch_to_guest(vcpu);
494
495 __set_guest_arch_workaround_state(vcpu);
496
497 do {
498 /* Jump in the fire! */
499 exit_code = __guest_enter(vcpu, host_ctxt);
500
501 /* And we're baaack! */
502 } while (fixup_guest_exit(vcpu, &exit_code));
503
504 __set_host_arch_workaround_state(vcpu);
505
506 sysreg_save_guest_state_vhe(guest_ctxt);
507
508 __deactivate_traps(vcpu);
509
510 sysreg_restore_host_state_vhe(host_ctxt);
511
512 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
513 __fpsimd_save_fpexc32(vcpu);
514
515 __debug_switch_to_host(vcpu);
516
517 return exit_code;
518 }
519 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
520
521 /* Switch to the guest for legacy non-VHE systems */
522 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
523 {
524 struct kvm_cpu_context *host_ctxt;
525 struct kvm_cpu_context *guest_ctxt;
526 u64 exit_code;
527
528 vcpu = kern_hyp_va(vcpu);
529
530 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
531 host_ctxt->__hyp_running_vcpu = vcpu;
532 guest_ctxt = &vcpu->arch.ctxt;
533
534 __sysreg_save_state_nvhe(host_ctxt);
535
536 __activate_vm(kern_hyp_va(vcpu->kvm));
537 __activate_traps(vcpu);
538
539 __hyp_vgic_restore_state(vcpu);
540 __timer_enable_traps(vcpu);
541
542 /*
543 * We must restore the 32-bit state before the sysregs, thanks
544 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
545 */
546 __sysreg32_restore_state(vcpu);
547 __sysreg_restore_state_nvhe(guest_ctxt);
548 __debug_switch_to_guest(vcpu);
549
550 __set_guest_arch_workaround_state(vcpu);
551
552 do {
553 /* Jump in the fire! */
554 exit_code = __guest_enter(vcpu, host_ctxt);
555
556 /* And we're baaack! */
557 } while (fixup_guest_exit(vcpu, &exit_code));
558
559 __set_host_arch_workaround_state(vcpu);
560
561 __sysreg_save_state_nvhe(guest_ctxt);
562 __sysreg32_save_state(vcpu);
563 __timer_disable_traps(vcpu);
564 __hyp_vgic_save_state(vcpu);
565
566 __deactivate_traps(vcpu);
567 __deactivate_vm(vcpu);
568
569 __sysreg_restore_state_nvhe(host_ctxt);
570
571 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
572 __fpsimd_save_fpexc32(vcpu);
573
574 /*
575 * This must come after restoring the host sysregs, since a non-VHE
576 * system may enable SPE here and make use of the TTBRs.
577 */
578 __debug_switch_to_host(vcpu);
579
580 return exit_code;
581 }
582
583 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
584
585 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
586 struct kvm_cpu_context *__host_ctxt)
587 {
588 struct kvm_vcpu *vcpu;
589 unsigned long str_va;
590
591 vcpu = __host_ctxt->__hyp_running_vcpu;
592
593 if (read_sysreg(vttbr_el2)) {
594 __timer_disable_traps(vcpu);
595 __deactivate_traps(vcpu);
596 __deactivate_vm(vcpu);
597 __sysreg_restore_state_nvhe(__host_ctxt);
598 }
599
600 /*
601 * Force the panic string to be loaded from the literal pool,
602 * making sure it is a kernel address and not a PC-relative
603 * reference.
604 */
605 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
606
607 __hyp_do_panic(str_va,
608 spsr, elr,
609 read_sysreg(esr_el2), read_sysreg_el2(far),
610 read_sysreg(hpfar_el2), par, vcpu);
611 }
612
613 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
614 struct kvm_cpu_context *host_ctxt)
615 {
616 struct kvm_vcpu *vcpu;
617 vcpu = host_ctxt->__hyp_running_vcpu;
618
619 __deactivate_traps(vcpu);
620 sysreg_restore_host_state_vhe(host_ctxt);
621
622 panic(__hyp_panic_string,
623 spsr, elr,
624 read_sysreg_el2(esr), read_sysreg_el2(far),
625 read_sysreg(hpfar_el2), par, vcpu);
626 }
627 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
628
629 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
630 {
631 u64 spsr = read_sysreg_el2(spsr);
632 u64 elr = read_sysreg_el2(elr);
633 u64 par = read_sysreg(par_el1);
634
635 if (!has_vhe())
636 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
637 else
638 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
639
640 unreachable();
641 }