]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kvm/hyp/switch.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 234
[thirdparty/linux.git] / arch / arm64 / kvm / hyp / switch.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/arm-smccc.h>
8 #include <linux/kvm_host.h>
9 #include <linux/types.h>
10 #include <linux/jump_label.h>
11 #include <uapi/linux/psci.h>
12
13 #include <kvm/arm_psci.h>
14
15 #include <asm/arch_gicv3.h>
16 #include <asm/cpufeature.h>
17 #include <asm/kprobes.h>
18 #include <asm/kvm_asm.h>
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_host.h>
21 #include <asm/kvm_hyp.h>
22 #include <asm/kvm_mmu.h>
23 #include <asm/fpsimd.h>
24 #include <asm/debug-monitors.h>
25 #include <asm/processor.h>
26 #include <asm/thread_info.h>
27
28 /* Check whether the FP regs were dirtied while in the host-side run loop: */
29 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
30 {
31 if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
32 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
33 KVM_ARM64_FP_HOST);
34
35 return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
36 }
37
38 /* Save the 32-bit only FPSIMD system register state */
39 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
40 {
41 if (!vcpu_el1_is_32bit(vcpu))
42 return;
43
44 vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
45 }
46
47 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
48 {
49 /*
50 * We are about to set CPTR_EL2.TFP to trap all floating point
51 * register accesses to EL2, however, the ARM ARM clearly states that
52 * traps are only taken to EL2 if the operation would not otherwise
53 * trap to EL1. Therefore, always make sure that for 32-bit guests,
54 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
55 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
56 * it will cause an exception.
57 */
58 if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
59 write_sysreg(1 << 30, fpexc32_el2);
60 isb();
61 }
62 }
63
64 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
65 {
66 /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
67 write_sysreg(1 << 15, hstr_el2);
68
69 /*
70 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
71 * PMSELR_EL0 to make sure it never contains the cycle
72 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
73 * EL1 instead of being trapped to EL2.
74 */
75 write_sysreg(0, pmselr_el0);
76 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
77 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
78 }
79
80 static void __hyp_text __deactivate_traps_common(void)
81 {
82 write_sysreg(0, hstr_el2);
83 write_sysreg(0, pmuserenr_el0);
84 }
85
86 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
87 {
88 u64 val;
89
90 val = read_sysreg(cpacr_el1);
91 val |= CPACR_EL1_TTA;
92 val &= ~CPACR_EL1_ZEN;
93 if (update_fp_enabled(vcpu)) {
94 if (vcpu_has_sve(vcpu))
95 val |= CPACR_EL1_ZEN;
96 } else {
97 val &= ~CPACR_EL1_FPEN;
98 __activate_traps_fpsimd32(vcpu);
99 }
100
101 write_sysreg(val, cpacr_el1);
102
103 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
104 }
105 NOKPROBE_SYMBOL(activate_traps_vhe);
106
107 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
108 {
109 u64 val;
110
111 __activate_traps_common(vcpu);
112
113 val = CPTR_EL2_DEFAULT;
114 val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
115 if (!update_fp_enabled(vcpu)) {
116 val |= CPTR_EL2_TFP;
117 __activate_traps_fpsimd32(vcpu);
118 }
119
120 write_sysreg(val, cptr_el2);
121 }
122
123 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
124 {
125 u64 hcr = vcpu->arch.hcr_el2;
126
127 write_sysreg(hcr, hcr_el2);
128
129 if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
130 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
131
132 if (has_vhe())
133 activate_traps_vhe(vcpu);
134 else
135 __activate_traps_nvhe(vcpu);
136 }
137
138 static void deactivate_traps_vhe(void)
139 {
140 extern char vectors[]; /* kernel exception vectors */
141 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
142
143 /*
144 * ARM erratum 1165522 requires the actual execution of the above
145 * before we can switch to the EL2/EL0 translation regime used by
146 * the host.
147 */
148 asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_1165522));
149
150 write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
151 write_sysreg(vectors, vbar_el1);
152 }
153 NOKPROBE_SYMBOL(deactivate_traps_vhe);
154
155 static void __hyp_text __deactivate_traps_nvhe(void)
156 {
157 u64 mdcr_el2 = read_sysreg(mdcr_el2);
158
159 __deactivate_traps_common();
160
161 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
162 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
163
164 write_sysreg(mdcr_el2, mdcr_el2);
165 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
166 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
167 }
168
169 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
170 {
171 /*
172 * If we pended a virtual abort, preserve it until it gets
173 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
174 * the crucial bit is "On taking a vSError interrupt,
175 * HCR_EL2.VSE is cleared to 0."
176 */
177 if (vcpu->arch.hcr_el2 & HCR_VSE)
178 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
179
180 if (has_vhe())
181 deactivate_traps_vhe();
182 else
183 __deactivate_traps_nvhe();
184 }
185
186 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
187 {
188 __activate_traps_common(vcpu);
189 }
190
191 void deactivate_traps_vhe_put(void)
192 {
193 u64 mdcr_el2 = read_sysreg(mdcr_el2);
194
195 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
196 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
197 MDCR_EL2_TPMS;
198
199 write_sysreg(mdcr_el2, mdcr_el2);
200
201 __deactivate_traps_common();
202 }
203
204 static void __hyp_text __activate_vm(struct kvm *kvm)
205 {
206 __load_guest_stage2(kvm);
207 }
208
209 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
210 {
211 write_sysreg(0, vttbr_el2);
212 }
213
214 /* Save VGICv3 state on non-VHE systems */
215 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
216 {
217 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
218 __vgic_v3_save_state(vcpu);
219 __vgic_v3_deactivate_traps(vcpu);
220 }
221 }
222
223 /* Restore VGICv3 state on non_VEH systems */
224 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
225 {
226 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
227 __vgic_v3_activate_traps(vcpu);
228 __vgic_v3_restore_state(vcpu);
229 }
230 }
231
232 static bool __hyp_text __true_value(void)
233 {
234 return true;
235 }
236
237 static bool __hyp_text __false_value(void)
238 {
239 return false;
240 }
241
242 static hyp_alternate_select(__check_arm_834220,
243 __false_value, __true_value,
244 ARM64_WORKAROUND_834220);
245
246 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
247 {
248 u64 par, tmp;
249
250 /*
251 * Resolve the IPA the hard way using the guest VA.
252 *
253 * Stage-1 translation already validated the memory access
254 * rights. As such, we can use the EL1 translation regime, and
255 * don't have to distinguish between EL0 and EL1 access.
256 *
257 * We do need to save/restore PAR_EL1 though, as we haven't
258 * saved the guest context yet, and we may return early...
259 */
260 par = read_sysreg(par_el1);
261 asm volatile("at s1e1r, %0" : : "r" (far));
262 isb();
263
264 tmp = read_sysreg(par_el1);
265 write_sysreg(par, par_el1);
266
267 if (unlikely(tmp & 1))
268 return false; /* Translation failed, back to guest */
269
270 /* Convert PAR to HPFAR format */
271 *hpfar = PAR_TO_HPFAR(tmp);
272 return true;
273 }
274
275 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
276 {
277 u8 ec;
278 u64 esr;
279 u64 hpfar, far;
280
281 esr = vcpu->arch.fault.esr_el2;
282 ec = ESR_ELx_EC(esr);
283
284 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
285 return true;
286
287 far = read_sysreg_el2(far);
288
289 /*
290 * The HPFAR can be invalid if the stage 2 fault did not
291 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
292 * bit is clear) and one of the two following cases are true:
293 * 1. The fault was due to a permission fault
294 * 2. The processor carries errata 834220
295 *
296 * Therefore, for all non S1PTW faults where we either have a
297 * permission fault or the errata workaround is enabled, we
298 * resolve the IPA using the AT instruction.
299 */
300 if (!(esr & ESR_ELx_S1PTW) &&
301 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
302 if (!__translate_far_to_hpfar(far, &hpfar))
303 return false;
304 } else {
305 hpfar = read_sysreg(hpfar_el2);
306 }
307
308 vcpu->arch.fault.far_el2 = far;
309 vcpu->arch.fault.hpfar_el2 = hpfar;
310 return true;
311 }
312
313 /* Check for an FPSIMD/SVE trap and handle as appropriate */
314 static bool __hyp_text __hyp_handle_fpsimd(struct kvm_vcpu *vcpu)
315 {
316 bool vhe, sve_guest, sve_host;
317 u8 hsr_ec;
318
319 if (!system_supports_fpsimd())
320 return false;
321
322 if (system_supports_sve()) {
323 sve_guest = vcpu_has_sve(vcpu);
324 sve_host = vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE;
325 vhe = true;
326 } else {
327 sve_guest = false;
328 sve_host = false;
329 vhe = has_vhe();
330 }
331
332 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
333 if (hsr_ec != ESR_ELx_EC_FP_ASIMD &&
334 hsr_ec != ESR_ELx_EC_SVE)
335 return false;
336
337 /* Don't handle SVE traps for non-SVE vcpus here: */
338 if (!sve_guest)
339 if (hsr_ec != ESR_ELx_EC_FP_ASIMD)
340 return false;
341
342 /* Valid trap. Switch the context: */
343
344 if (vhe) {
345 u64 reg = read_sysreg(cpacr_el1) | CPACR_EL1_FPEN;
346
347 if (sve_guest)
348 reg |= CPACR_EL1_ZEN;
349
350 write_sysreg(reg, cpacr_el1);
351 } else {
352 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
353 cptr_el2);
354 }
355
356 isb();
357
358 if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
359 /*
360 * In the SVE case, VHE is assumed: it is enforced by
361 * Kconfig and kvm_arch_init().
362 */
363 if (sve_host) {
364 struct thread_struct *thread = container_of(
365 vcpu->arch.host_fpsimd_state,
366 struct thread_struct, uw.fpsimd_state);
367
368 sve_save_state(sve_pffr(thread),
369 &vcpu->arch.host_fpsimd_state->fpsr);
370 } else {
371 __fpsimd_save_state(vcpu->arch.host_fpsimd_state);
372 }
373
374 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
375 }
376
377 if (sve_guest) {
378 sve_load_state(vcpu_sve_pffr(vcpu),
379 &vcpu->arch.ctxt.gp_regs.fp_regs.fpsr,
380 sve_vq_from_vl(vcpu->arch.sve_max_vl) - 1);
381 write_sysreg_s(vcpu->arch.ctxt.sys_regs[ZCR_EL1], SYS_ZCR_EL12);
382 } else {
383 __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
384 }
385
386 /* Skip restoring fpexc32 for AArch64 guests */
387 if (!(read_sysreg(hcr_el2) & HCR_RW))
388 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
389 fpexc32_el2);
390
391 vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
392
393 return true;
394 }
395
396 /*
397 * Return true when we were able to fixup the guest exit and should return to
398 * the guest, false when we should restore the host state and return to the
399 * main run loop.
400 */
401 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
402 {
403 if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
404 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
405
406 /*
407 * We're using the raw exception code in order to only process
408 * the trap if no SError is pending. We will come back to the
409 * same PC once the SError has been injected, and replay the
410 * trapping instruction.
411 */
412 if (*exit_code != ARM_EXCEPTION_TRAP)
413 goto exit;
414
415 /*
416 * We trap the first access to the FP/SIMD to save the host context
417 * and restore the guest context lazily.
418 * If FP/SIMD is not implemented, handle the trap and inject an
419 * undefined instruction exception to the guest.
420 * Similarly for trapped SVE accesses.
421 */
422 if (__hyp_handle_fpsimd(vcpu))
423 return true;
424
425 if (!__populate_fault_info(vcpu))
426 return true;
427
428 if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
429 bool valid;
430
431 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
432 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
433 kvm_vcpu_dabt_isvalid(vcpu) &&
434 !kvm_vcpu_dabt_isextabt(vcpu) &&
435 !kvm_vcpu_dabt_iss1tw(vcpu);
436
437 if (valid) {
438 int ret = __vgic_v2_perform_cpuif_access(vcpu);
439
440 if (ret == 1)
441 return true;
442
443 /* Promote an illegal access to an SError.*/
444 if (ret == -1)
445 *exit_code = ARM_EXCEPTION_EL1_SERROR;
446
447 goto exit;
448 }
449 }
450
451 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
452 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
453 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
454 int ret = __vgic_v3_perform_cpuif_access(vcpu);
455
456 if (ret == 1)
457 return true;
458 }
459
460 exit:
461 /* Return to the host kernel and handle the exit */
462 return false;
463 }
464
465 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
466 {
467 if (!cpus_have_const_cap(ARM64_SSBD))
468 return false;
469
470 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
471 }
472
473 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
474 {
475 #ifdef CONFIG_ARM64_SSBD
476 /*
477 * The host runs with the workaround always present. If the
478 * guest wants it disabled, so be it...
479 */
480 if (__needs_ssbd_off(vcpu) &&
481 __hyp_this_cpu_read(arm64_ssbd_callback_required))
482 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
483 #endif
484 }
485
486 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
487 {
488 #ifdef CONFIG_ARM64_SSBD
489 /*
490 * If the guest has disabled the workaround, bring it back on.
491 */
492 if (__needs_ssbd_off(vcpu) &&
493 __hyp_this_cpu_read(arm64_ssbd_callback_required))
494 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
495 #endif
496 }
497
498 /**
499 * Disable host events, enable guest events
500 */
501 static bool __hyp_text __pmu_switch_to_guest(struct kvm_cpu_context *host_ctxt)
502 {
503 struct kvm_host_data *host;
504 struct kvm_pmu_events *pmu;
505
506 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
507 pmu = &host->pmu_events;
508
509 if (pmu->events_host)
510 write_sysreg(pmu->events_host, pmcntenclr_el0);
511
512 if (pmu->events_guest)
513 write_sysreg(pmu->events_guest, pmcntenset_el0);
514
515 return (pmu->events_host || pmu->events_guest);
516 }
517
518 /**
519 * Disable guest events, enable host events
520 */
521 static void __hyp_text __pmu_switch_to_host(struct kvm_cpu_context *host_ctxt)
522 {
523 struct kvm_host_data *host;
524 struct kvm_pmu_events *pmu;
525
526 host = container_of(host_ctxt, struct kvm_host_data, host_ctxt);
527 pmu = &host->pmu_events;
528
529 if (pmu->events_guest)
530 write_sysreg(pmu->events_guest, pmcntenclr_el0);
531
532 if (pmu->events_host)
533 write_sysreg(pmu->events_host, pmcntenset_el0);
534 }
535
536 /* Switch to the guest for VHE systems running in EL2 */
537 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
538 {
539 struct kvm_cpu_context *host_ctxt;
540 struct kvm_cpu_context *guest_ctxt;
541 u64 exit_code;
542
543 host_ctxt = vcpu->arch.host_cpu_context;
544 host_ctxt->__hyp_running_vcpu = vcpu;
545 guest_ctxt = &vcpu->arch.ctxt;
546
547 sysreg_save_host_state_vhe(host_ctxt);
548
549 /*
550 * ARM erratum 1165522 requires us to configure both stage 1 and
551 * stage 2 translation for the guest context before we clear
552 * HCR_EL2.TGE.
553 *
554 * We have already configured the guest's stage 1 translation in
555 * kvm_vcpu_load_sysregs above. We must now call __activate_vm
556 * before __activate_traps, because __activate_vm configures
557 * stage 2 translation, and __activate_traps clear HCR_EL2.TGE
558 * (among other things).
559 */
560 __activate_vm(vcpu->kvm);
561 __activate_traps(vcpu);
562
563 sysreg_restore_guest_state_vhe(guest_ctxt);
564 __debug_switch_to_guest(vcpu);
565
566 __set_guest_arch_workaround_state(vcpu);
567
568 do {
569 /* Jump in the fire! */
570 exit_code = __guest_enter(vcpu, host_ctxt);
571
572 /* And we're baaack! */
573 } while (fixup_guest_exit(vcpu, &exit_code));
574
575 __set_host_arch_workaround_state(vcpu);
576
577 sysreg_save_guest_state_vhe(guest_ctxt);
578
579 __deactivate_traps(vcpu);
580
581 sysreg_restore_host_state_vhe(host_ctxt);
582
583 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
584 __fpsimd_save_fpexc32(vcpu);
585
586 __debug_switch_to_host(vcpu);
587
588 return exit_code;
589 }
590 NOKPROBE_SYMBOL(kvm_vcpu_run_vhe);
591
592 /* Switch to the guest for legacy non-VHE systems */
593 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
594 {
595 struct kvm_cpu_context *host_ctxt;
596 struct kvm_cpu_context *guest_ctxt;
597 bool pmu_switch_needed;
598 u64 exit_code;
599
600 /*
601 * Having IRQs masked via PMR when entering the guest means the GIC
602 * will not signal the CPU of interrupts of lower priority, and the
603 * only way to get out will be via guest exceptions.
604 * Naturally, we want to avoid this.
605 */
606 if (system_uses_irq_prio_masking()) {
607 gic_write_pmr(GIC_PRIO_IRQON);
608 dsb(sy);
609 }
610
611 vcpu = kern_hyp_va(vcpu);
612
613 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
614 host_ctxt->__hyp_running_vcpu = vcpu;
615 guest_ctxt = &vcpu->arch.ctxt;
616
617 pmu_switch_needed = __pmu_switch_to_guest(host_ctxt);
618
619 __sysreg_save_state_nvhe(host_ctxt);
620
621 __activate_vm(kern_hyp_va(vcpu->kvm));
622 __activate_traps(vcpu);
623
624 __hyp_vgic_restore_state(vcpu);
625 __timer_enable_traps(vcpu);
626
627 /*
628 * We must restore the 32-bit state before the sysregs, thanks
629 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
630 */
631 __sysreg32_restore_state(vcpu);
632 __sysreg_restore_state_nvhe(guest_ctxt);
633 __debug_switch_to_guest(vcpu);
634
635 __set_guest_arch_workaround_state(vcpu);
636
637 do {
638 /* Jump in the fire! */
639 exit_code = __guest_enter(vcpu, host_ctxt);
640
641 /* And we're baaack! */
642 } while (fixup_guest_exit(vcpu, &exit_code));
643
644 __set_host_arch_workaround_state(vcpu);
645
646 __sysreg_save_state_nvhe(guest_ctxt);
647 __sysreg32_save_state(vcpu);
648 __timer_disable_traps(vcpu);
649 __hyp_vgic_save_state(vcpu);
650
651 __deactivate_traps(vcpu);
652 __deactivate_vm(vcpu);
653
654 __sysreg_restore_state_nvhe(host_ctxt);
655
656 if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
657 __fpsimd_save_fpexc32(vcpu);
658
659 /*
660 * This must come after restoring the host sysregs, since a non-VHE
661 * system may enable SPE here and make use of the TTBRs.
662 */
663 __debug_switch_to_host(vcpu);
664
665 if (pmu_switch_needed)
666 __pmu_switch_to_host(host_ctxt);
667
668 /* Returning to host will clear PSR.I, remask PMR if needed */
669 if (system_uses_irq_prio_masking())
670 gic_write_pmr(GIC_PRIO_IRQOFF);
671
672 return exit_code;
673 }
674
675 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
676
677 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
678 struct kvm_cpu_context *__host_ctxt)
679 {
680 struct kvm_vcpu *vcpu;
681 unsigned long str_va;
682
683 vcpu = __host_ctxt->__hyp_running_vcpu;
684
685 if (read_sysreg(vttbr_el2)) {
686 __timer_disable_traps(vcpu);
687 __deactivate_traps(vcpu);
688 __deactivate_vm(vcpu);
689 __sysreg_restore_state_nvhe(__host_ctxt);
690 }
691
692 /*
693 * Force the panic string to be loaded from the literal pool,
694 * making sure it is a kernel address and not a PC-relative
695 * reference.
696 */
697 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
698
699 __hyp_do_panic(str_va,
700 spsr, elr,
701 read_sysreg(esr_el2), read_sysreg_el2(far),
702 read_sysreg(hpfar_el2), par, vcpu);
703 }
704
705 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
706 struct kvm_cpu_context *host_ctxt)
707 {
708 struct kvm_vcpu *vcpu;
709 vcpu = host_ctxt->__hyp_running_vcpu;
710
711 __deactivate_traps(vcpu);
712 sysreg_restore_host_state_vhe(host_ctxt);
713
714 panic(__hyp_panic_string,
715 spsr, elr,
716 read_sysreg_el2(esr), read_sysreg_el2(far),
717 read_sysreg(hpfar_el2), par, vcpu);
718 }
719 NOKPROBE_SYMBOL(__hyp_call_panic_vhe);
720
721 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
722 {
723 u64 spsr = read_sysreg_el2(spsr);
724 u64 elr = read_sysreg_el2(elr);
725 u64 par = read_sysreg(par_el1);
726
727 if (!has_vhe())
728 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
729 else
730 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
731
732 unreachable();
733 }