]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kvm/hyp/sysreg-sr.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / arch / arm64 / kvm / hyp / sysreg-sr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012-2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/compiler.h>
8 #include <linux/kvm_host.h>
9
10 #include <asm/kprobes.h>
11 #include <asm/kvm_asm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_hyp.h>
14
15 /*
16 * Non-VHE: Both host and guest must save everything.
17 *
18 * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and
19 * pstate, which are handled as part of the el2 return state) on every
20 * switch (sp_el0 is being dealt with in the assembly code).
21 * tpidr_el0 and tpidrro_el0 only need to be switched when going
22 * to host userspace or a different VCPU. EL1 registers only need to be
23 * switched when potentially going to run a different VCPU. The latter two
24 * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
25 */
26
27 static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
28 {
29 ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
30 }
31
32 static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
33 {
34 ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
35 ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
36 }
37
38 static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
39 {
40 ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
41 ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
42 ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
43 ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
44 ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
45 ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
46 ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
47 ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
48 ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
49 ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
50 ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
51 ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
52 ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
53 ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
54 ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
55 ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
56 ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
57 ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
58
59 ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
60 ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
61 ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
62 }
63
64 static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
65 {
66 ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
67 ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
68
69 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
70 ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
71 }
72
73 void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
74 {
75 __sysreg_save_el1_state(ctxt);
76 __sysreg_save_common_state(ctxt);
77 __sysreg_save_user_state(ctxt);
78 __sysreg_save_el2_return_state(ctxt);
79 }
80
81 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
82 {
83 __sysreg_save_common_state(ctxt);
84 }
85 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
86
87 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
88 {
89 __sysreg_save_common_state(ctxt);
90 __sysreg_save_el2_return_state(ctxt);
91 }
92 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
93
94 static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
95 {
96 write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
97 }
98
99 static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
100 {
101 write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
102 write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
103 }
104
105 static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
106 {
107 write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
108 write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
109
110 if (!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
111 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
112 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
113 } else if (!ctxt->__hyp_running_vcpu) {
114 /*
115 * Must only be done for guest registers, hence the context
116 * test. We're coming from the host, so SCTLR.M is already
117 * set. Pairs with __activate_traps_nvhe().
118 */
119 write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
120 TCR_EPD1_MASK | TCR_EPD0_MASK),
121 SYS_TCR);
122 isb();
123 }
124
125 write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
126 write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
127 write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
128 write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
129 write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
130 write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
131 write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
132 write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
133 write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
134 write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
135 write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
136 write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
137 write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
138 write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
139 write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
140
141 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE) &&
142 ctxt->__hyp_running_vcpu) {
143 /*
144 * Must only be done for host registers, hence the context
145 * test. Pairs with __deactivate_traps_nvhe().
146 */
147 isb();
148 /*
149 * At this stage, and thanks to the above isb(), S2 is
150 * deconfigured and disabled. We can now restore the host's
151 * S1 configuration: SCTLR, and only then TCR.
152 */
153 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
154 isb();
155 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
156 }
157
158 write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
159 write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
160 write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
161 }
162
163 static void __hyp_text
164 __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
165 {
166 u64 pstate = ctxt->gp_regs.regs.pstate;
167 u64 mode = pstate & PSR_AA32_MODE_MASK;
168
169 /*
170 * Safety check to ensure we're setting the CPU up to enter the guest
171 * in a less privileged mode.
172 *
173 * If we are attempting a return to EL2 or higher in AArch64 state,
174 * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
175 * we'll take an illegal exception state exception immediately after
176 * the ERET to the guest. Attempts to return to AArch32 Hyp will
177 * result in an illegal exception return because EL2's execution state
178 * is determined by SCR_EL3.RW.
179 */
180 if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
181 pstate = PSR_MODE_EL2h | PSR_IL_BIT;
182
183 write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
184 write_sysreg_el2(pstate, SYS_SPSR);
185
186 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
187 write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
188 }
189
190 void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
191 {
192 __sysreg_restore_el1_state(ctxt);
193 __sysreg_restore_common_state(ctxt);
194 __sysreg_restore_user_state(ctxt);
195 __sysreg_restore_el2_return_state(ctxt);
196 }
197
198 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
199 {
200 __sysreg_restore_common_state(ctxt);
201 }
202 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
203
204 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
205 {
206 __sysreg_restore_common_state(ctxt);
207 __sysreg_restore_el2_return_state(ctxt);
208 }
209 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
210
211 void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
212 {
213 u64 *spsr, *sysreg;
214
215 if (!vcpu_el1_is_32bit(vcpu))
216 return;
217
218 spsr = vcpu->arch.ctxt.gp_regs.spsr;
219 sysreg = vcpu->arch.ctxt.sys_regs;
220
221 spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
222 spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
223 spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
224 spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
225
226 sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
227 sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
228
229 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
230 sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
231 }
232
233 void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
234 {
235 u64 *spsr, *sysreg;
236
237 if (!vcpu_el1_is_32bit(vcpu))
238 return;
239
240 spsr = vcpu->arch.ctxt.gp_regs.spsr;
241 sysreg = vcpu->arch.ctxt.sys_regs;
242
243 write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
244 write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
245 write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
246 write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
247
248 write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
249 write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
250
251 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
252 write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
253 }
254
255 /**
256 * kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
257 *
258 * @vcpu: The VCPU pointer
259 *
260 * Load system registers that do not affect the host's execution, for
261 * example EL1 system registers on a VHE system where the host kernel
262 * runs at EL2. This function is called from KVM's vcpu_load() function
263 * and loading system register state early avoids having to load them on
264 * every entry to the VM.
265 */
266 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
267 {
268 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
269 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
270
271 if (!has_vhe())
272 return;
273
274 __sysreg_save_user_state(host_ctxt);
275
276 /*
277 * Load guest EL1 and user state
278 *
279 * We must restore the 32-bit state before the sysregs, thanks
280 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
281 */
282 __sysreg32_restore_state(vcpu);
283 __sysreg_restore_user_state(guest_ctxt);
284 __sysreg_restore_el1_state(guest_ctxt);
285
286 vcpu->arch.sysregs_loaded_on_cpu = true;
287
288 activate_traps_vhe_load(vcpu);
289 }
290
291 /**
292 * kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
293 *
294 * @vcpu: The VCPU pointer
295 *
296 * Save guest system registers that do not affect the host's execution, for
297 * example EL1 system registers on a VHE system where the host kernel
298 * runs at EL2. This function is called from KVM's vcpu_put() function
299 * and deferring saving system register state until we're no longer running the
300 * VCPU avoids having to save them on every exit from the VM.
301 */
302 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
303 {
304 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
305 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
306
307 if (!has_vhe())
308 return;
309
310 deactivate_traps_vhe_put();
311
312 __sysreg_save_el1_state(guest_ctxt);
313 __sysreg_save_user_state(guest_ctxt);
314 __sysreg32_save_state(vcpu);
315
316 /* Restore host user state */
317 __sysreg_restore_user_state(host_ctxt);
318
319 vcpu->arch.sysregs_loaded_on_cpu = false;
320 }
321
322 void __hyp_text __kvm_enable_ssbs(void)
323 {
324 u64 tmp;
325
326 asm volatile(
327 "mrs %0, sctlr_el2\n"
328 "orr %0, %0, %1\n"
329 "msr sctlr_el2, %0"
330 : "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
331 }