]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/arm64/kvm/hyp/sysreg-sr.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / arm64 / kvm / hyp / sysreg-sr.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012-2015 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/compiler.h>
8 #include <linux/kvm_host.h>
9
10 #include <asm/kprobes.h>
11 #include <asm/kvm_asm.h>
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_hyp.h>
14
15 /*
16 * Non-VHE: Both host and guest must save everything.
17 *
18 * VHE: Host and guest must save mdscr_el1 and sp_el0 (and the PC and pstate,
19 * which are handled as part of the el2 return state) on every switch.
20 * tpidr_el0 and tpidrro_el0 only need to be switched when going
21 * to host userspace or a different VCPU. EL1 registers only need to be
22 * switched when potentially going to run a different VCPU. The latter two
23 * classes are handled as part of kvm_arch_vcpu_load and kvm_arch_vcpu_put.
24 */
25
26 static void __hyp_text __sysreg_save_common_state(struct kvm_cpu_context *ctxt)
27 {
28 ctxt->sys_regs[MDSCR_EL1] = read_sysreg(mdscr_el1);
29
30 /*
31 * The host arm64 Linux uses sp_el0 to point to 'current' and it must
32 * therefore be saved/restored on every entry/exit to/from the guest.
33 */
34 ctxt->gp_regs.regs.sp = read_sysreg(sp_el0);
35 }
36
37 static void __hyp_text __sysreg_save_user_state(struct kvm_cpu_context *ctxt)
38 {
39 ctxt->sys_regs[TPIDR_EL0] = read_sysreg(tpidr_el0);
40 ctxt->sys_regs[TPIDRRO_EL0] = read_sysreg(tpidrro_el0);
41 }
42
43 static void __hyp_text __sysreg_save_el1_state(struct kvm_cpu_context *ctxt)
44 {
45 ctxt->sys_regs[CSSELR_EL1] = read_sysreg(csselr_el1);
46 ctxt->sys_regs[SCTLR_EL1] = read_sysreg_el1(SYS_SCTLR);
47 ctxt->sys_regs[ACTLR_EL1] = read_sysreg(actlr_el1);
48 ctxt->sys_regs[CPACR_EL1] = read_sysreg_el1(SYS_CPACR);
49 ctxt->sys_regs[TTBR0_EL1] = read_sysreg_el1(SYS_TTBR0);
50 ctxt->sys_regs[TTBR1_EL1] = read_sysreg_el1(SYS_TTBR1);
51 ctxt->sys_regs[TCR_EL1] = read_sysreg_el1(SYS_TCR);
52 ctxt->sys_regs[ESR_EL1] = read_sysreg_el1(SYS_ESR);
53 ctxt->sys_regs[AFSR0_EL1] = read_sysreg_el1(SYS_AFSR0);
54 ctxt->sys_regs[AFSR1_EL1] = read_sysreg_el1(SYS_AFSR1);
55 ctxt->sys_regs[FAR_EL1] = read_sysreg_el1(SYS_FAR);
56 ctxt->sys_regs[MAIR_EL1] = read_sysreg_el1(SYS_MAIR);
57 ctxt->sys_regs[VBAR_EL1] = read_sysreg_el1(SYS_VBAR);
58 ctxt->sys_regs[CONTEXTIDR_EL1] = read_sysreg_el1(SYS_CONTEXTIDR);
59 ctxt->sys_regs[AMAIR_EL1] = read_sysreg_el1(SYS_AMAIR);
60 ctxt->sys_regs[CNTKCTL_EL1] = read_sysreg_el1(SYS_CNTKCTL);
61 ctxt->sys_regs[PAR_EL1] = read_sysreg(par_el1);
62 ctxt->sys_regs[TPIDR_EL1] = read_sysreg(tpidr_el1);
63
64 ctxt->gp_regs.sp_el1 = read_sysreg(sp_el1);
65 ctxt->gp_regs.elr_el1 = read_sysreg_el1(SYS_ELR);
66 ctxt->gp_regs.spsr[KVM_SPSR_EL1]= read_sysreg_el1(SYS_SPSR);
67 }
68
69 static void __hyp_text __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt)
70 {
71 ctxt->gp_regs.regs.pc = read_sysreg_el2(SYS_ELR);
72 ctxt->gp_regs.regs.pstate = read_sysreg_el2(SYS_SPSR);
73
74 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
75 ctxt->sys_regs[DISR_EL1] = read_sysreg_s(SYS_VDISR_EL2);
76 }
77
78 void __hyp_text __sysreg_save_state_nvhe(struct kvm_cpu_context *ctxt)
79 {
80 __sysreg_save_el1_state(ctxt);
81 __sysreg_save_common_state(ctxt);
82 __sysreg_save_user_state(ctxt);
83 __sysreg_save_el2_return_state(ctxt);
84 }
85
86 void sysreg_save_host_state_vhe(struct kvm_cpu_context *ctxt)
87 {
88 __sysreg_save_common_state(ctxt);
89 }
90 NOKPROBE_SYMBOL(sysreg_save_host_state_vhe);
91
92 void sysreg_save_guest_state_vhe(struct kvm_cpu_context *ctxt)
93 {
94 __sysreg_save_common_state(ctxt);
95 __sysreg_save_el2_return_state(ctxt);
96 }
97 NOKPROBE_SYMBOL(sysreg_save_guest_state_vhe);
98
99 static void __hyp_text __sysreg_restore_common_state(struct kvm_cpu_context *ctxt)
100 {
101 write_sysreg(ctxt->sys_regs[MDSCR_EL1], mdscr_el1);
102
103 /*
104 * The host arm64 Linux uses sp_el0 to point to 'current' and it must
105 * therefore be saved/restored on every entry/exit to/from the guest.
106 */
107 write_sysreg(ctxt->gp_regs.regs.sp, sp_el0);
108 }
109
110 static void __hyp_text __sysreg_restore_user_state(struct kvm_cpu_context *ctxt)
111 {
112 write_sysreg(ctxt->sys_regs[TPIDR_EL0], tpidr_el0);
113 write_sysreg(ctxt->sys_regs[TPIDRRO_EL0], tpidrro_el0);
114 }
115
116 static void __hyp_text __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt)
117 {
118 write_sysreg(ctxt->sys_regs[MPIDR_EL1], vmpidr_el2);
119 write_sysreg(ctxt->sys_regs[CSSELR_EL1], csselr_el1);
120
121 if (!cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE)) {
122 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
123 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
124 } else if (!ctxt->__hyp_running_vcpu) {
125 /*
126 * Must only be done for guest registers, hence the context
127 * test. We're coming from the host, so SCTLR.M is already
128 * set. Pairs with __activate_traps_nvhe().
129 */
130 write_sysreg_el1((ctxt->sys_regs[TCR_EL1] |
131 TCR_EPD1_MASK | TCR_EPD0_MASK),
132 SYS_TCR);
133 isb();
134 }
135
136 write_sysreg(ctxt->sys_regs[ACTLR_EL1], actlr_el1);
137 write_sysreg_el1(ctxt->sys_regs[CPACR_EL1], SYS_CPACR);
138 write_sysreg_el1(ctxt->sys_regs[TTBR0_EL1], SYS_TTBR0);
139 write_sysreg_el1(ctxt->sys_regs[TTBR1_EL1], SYS_TTBR1);
140 write_sysreg_el1(ctxt->sys_regs[ESR_EL1], SYS_ESR);
141 write_sysreg_el1(ctxt->sys_regs[AFSR0_EL1], SYS_AFSR0);
142 write_sysreg_el1(ctxt->sys_regs[AFSR1_EL1], SYS_AFSR1);
143 write_sysreg_el1(ctxt->sys_regs[FAR_EL1], SYS_FAR);
144 write_sysreg_el1(ctxt->sys_regs[MAIR_EL1], SYS_MAIR);
145 write_sysreg_el1(ctxt->sys_regs[VBAR_EL1], SYS_VBAR);
146 write_sysreg_el1(ctxt->sys_regs[CONTEXTIDR_EL1],SYS_CONTEXTIDR);
147 write_sysreg_el1(ctxt->sys_regs[AMAIR_EL1], SYS_AMAIR);
148 write_sysreg_el1(ctxt->sys_regs[CNTKCTL_EL1], SYS_CNTKCTL);
149 write_sysreg(ctxt->sys_regs[PAR_EL1], par_el1);
150 write_sysreg(ctxt->sys_regs[TPIDR_EL1], tpidr_el1);
151
152 if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT_NVHE) &&
153 ctxt->__hyp_running_vcpu) {
154 /*
155 * Must only be done for host registers, hence the context
156 * test. Pairs with __deactivate_traps_nvhe().
157 */
158 isb();
159 /*
160 * At this stage, and thanks to the above isb(), S2 is
161 * deconfigured and disabled. We can now restore the host's
162 * S1 configuration: SCTLR, and only then TCR.
163 */
164 write_sysreg_el1(ctxt->sys_regs[SCTLR_EL1], SYS_SCTLR);
165 isb();
166 write_sysreg_el1(ctxt->sys_regs[TCR_EL1], SYS_TCR);
167 }
168
169 write_sysreg(ctxt->gp_regs.sp_el1, sp_el1);
170 write_sysreg_el1(ctxt->gp_regs.elr_el1, SYS_ELR);
171 write_sysreg_el1(ctxt->gp_regs.spsr[KVM_SPSR_EL1],SYS_SPSR);
172 }
173
174 static void __hyp_text
175 __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt)
176 {
177 u64 pstate = ctxt->gp_regs.regs.pstate;
178 u64 mode = pstate & PSR_AA32_MODE_MASK;
179
180 /*
181 * Safety check to ensure we're setting the CPU up to enter the guest
182 * in a less privileged mode.
183 *
184 * If we are attempting a return to EL2 or higher in AArch64 state,
185 * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that
186 * we'll take an illegal exception state exception immediately after
187 * the ERET to the guest. Attempts to return to AArch32 Hyp will
188 * result in an illegal exception return because EL2's execution state
189 * is determined by SCR_EL3.RW.
190 */
191 if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t)
192 pstate = PSR_MODE_EL2h | PSR_IL_BIT;
193
194 write_sysreg_el2(ctxt->gp_regs.regs.pc, SYS_ELR);
195 write_sysreg_el2(pstate, SYS_SPSR);
196
197 if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN))
198 write_sysreg_s(ctxt->sys_regs[DISR_EL1], SYS_VDISR_EL2);
199 }
200
201 void __hyp_text __sysreg_restore_state_nvhe(struct kvm_cpu_context *ctxt)
202 {
203 __sysreg_restore_el1_state(ctxt);
204 __sysreg_restore_common_state(ctxt);
205 __sysreg_restore_user_state(ctxt);
206 __sysreg_restore_el2_return_state(ctxt);
207 }
208
209 void sysreg_restore_host_state_vhe(struct kvm_cpu_context *ctxt)
210 {
211 __sysreg_restore_common_state(ctxt);
212 }
213 NOKPROBE_SYMBOL(sysreg_restore_host_state_vhe);
214
215 void sysreg_restore_guest_state_vhe(struct kvm_cpu_context *ctxt)
216 {
217 __sysreg_restore_common_state(ctxt);
218 __sysreg_restore_el2_return_state(ctxt);
219 }
220 NOKPROBE_SYMBOL(sysreg_restore_guest_state_vhe);
221
222 void __hyp_text __sysreg32_save_state(struct kvm_vcpu *vcpu)
223 {
224 u64 *spsr, *sysreg;
225
226 if (!vcpu_el1_is_32bit(vcpu))
227 return;
228
229 spsr = vcpu->arch.ctxt.gp_regs.spsr;
230 sysreg = vcpu->arch.ctxt.sys_regs;
231
232 spsr[KVM_SPSR_ABT] = read_sysreg(spsr_abt);
233 spsr[KVM_SPSR_UND] = read_sysreg(spsr_und);
234 spsr[KVM_SPSR_IRQ] = read_sysreg(spsr_irq);
235 spsr[KVM_SPSR_FIQ] = read_sysreg(spsr_fiq);
236
237 sysreg[DACR32_EL2] = read_sysreg(dacr32_el2);
238 sysreg[IFSR32_EL2] = read_sysreg(ifsr32_el2);
239
240 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
241 sysreg[DBGVCR32_EL2] = read_sysreg(dbgvcr32_el2);
242 }
243
244 void __hyp_text __sysreg32_restore_state(struct kvm_vcpu *vcpu)
245 {
246 u64 *spsr, *sysreg;
247
248 if (!vcpu_el1_is_32bit(vcpu))
249 return;
250
251 spsr = vcpu->arch.ctxt.gp_regs.spsr;
252 sysreg = vcpu->arch.ctxt.sys_regs;
253
254 write_sysreg(spsr[KVM_SPSR_ABT], spsr_abt);
255 write_sysreg(spsr[KVM_SPSR_UND], spsr_und);
256 write_sysreg(spsr[KVM_SPSR_IRQ], spsr_irq);
257 write_sysreg(spsr[KVM_SPSR_FIQ], spsr_fiq);
258
259 write_sysreg(sysreg[DACR32_EL2], dacr32_el2);
260 write_sysreg(sysreg[IFSR32_EL2], ifsr32_el2);
261
262 if (has_vhe() || vcpu->arch.flags & KVM_ARM64_DEBUG_DIRTY)
263 write_sysreg(sysreg[DBGVCR32_EL2], dbgvcr32_el2);
264 }
265
266 /**
267 * kvm_vcpu_load_sysregs - Load guest system registers to the physical CPU
268 *
269 * @vcpu: The VCPU pointer
270 *
271 * Load system registers that do not affect the host's execution, for
272 * example EL1 system registers on a VHE system where the host kernel
273 * runs at EL2. This function is called from KVM's vcpu_load() function
274 * and loading system register state early avoids having to load them on
275 * every entry to the VM.
276 */
277 void kvm_vcpu_load_sysregs(struct kvm_vcpu *vcpu)
278 {
279 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
280 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
281
282 if (!has_vhe())
283 return;
284
285 __sysreg_save_user_state(host_ctxt);
286
287 /*
288 * Load guest EL1 and user state
289 *
290 * We must restore the 32-bit state before the sysregs, thanks
291 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
292 */
293 __sysreg32_restore_state(vcpu);
294 __sysreg_restore_user_state(guest_ctxt);
295 __sysreg_restore_el1_state(guest_ctxt);
296
297 vcpu->arch.sysregs_loaded_on_cpu = true;
298
299 activate_traps_vhe_load(vcpu);
300 }
301
302 /**
303 * kvm_vcpu_put_sysregs - Restore host system registers to the physical CPU
304 *
305 * @vcpu: The VCPU pointer
306 *
307 * Save guest system registers that do not affect the host's execution, for
308 * example EL1 system registers on a VHE system where the host kernel
309 * runs at EL2. This function is called from KVM's vcpu_put() function
310 * and deferring saving system register state until we're no longer running the
311 * VCPU avoids having to save them on every exit from the VM.
312 */
313 void kvm_vcpu_put_sysregs(struct kvm_vcpu *vcpu)
314 {
315 struct kvm_cpu_context *host_ctxt = vcpu->arch.host_cpu_context;
316 struct kvm_cpu_context *guest_ctxt = &vcpu->arch.ctxt;
317
318 if (!has_vhe())
319 return;
320
321 deactivate_traps_vhe_put();
322
323 __sysreg_save_el1_state(guest_ctxt);
324 __sysreg_save_user_state(guest_ctxt);
325 __sysreg32_save_state(vcpu);
326
327 /* Restore host user state */
328 __sysreg_restore_user_state(host_ctxt);
329
330 vcpu->arch.sysregs_loaded_on_cpu = false;
331 }
332
333 void __hyp_text __kvm_enable_ssbs(void)
334 {
335 u64 tmp;
336
337 asm volatile(
338 "mrs %0, sctlr_el2\n"
339 "orr %0, %0, %1\n"
340 "msr sctlr_el2, %0"
341 : "=&r" (tmp) : "L" (SCTLR_ELx_DSSBS));
342 }