]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kvm/reset.c
KVM: Harden copying of userspace-array against overflow
[thirdparty/kernel/stable.git] / arch / arm64 / kvm / reset.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/reset.c
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/kvm_host.h>
14 #include <linux/kvm.h>
15 #include <linux/hw_breakpoint.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19
20 #include <kvm/arm_arch_timer.h>
21
22 #include <asm/cpufeature.h>
23 #include <asm/cputype.h>
24 #include <asm/fpsimd.h>
25 #include <asm/ptrace.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_asm.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_mmu.h>
30 #include <asm/kvm_nested.h>
31 #include <asm/virt.h>
32
33 /* Maximum phys_shift supported for any VM on this host */
34 static u32 __ro_after_init kvm_ipa_limit;
35
36 /*
37 * ARMv8 Reset Values
38 */
39 #define VCPU_RESET_PSTATE_EL1 (PSR_MODE_EL1h | PSR_A_BIT | PSR_I_BIT | \
40 PSR_F_BIT | PSR_D_BIT)
41
42 #define VCPU_RESET_PSTATE_EL2 (PSR_MODE_EL2h | PSR_A_BIT | PSR_I_BIT | \
43 PSR_F_BIT | PSR_D_BIT)
44
45 #define VCPU_RESET_PSTATE_SVC (PSR_AA32_MODE_SVC | PSR_AA32_A_BIT | \
46 PSR_AA32_I_BIT | PSR_AA32_F_BIT)
47
48 unsigned int __ro_after_init kvm_sve_max_vl;
49
50 int __init kvm_arm_init_sve(void)
51 {
52 if (system_supports_sve()) {
53 kvm_sve_max_vl = sve_max_virtualisable_vl();
54
55 /*
56 * The get_sve_reg()/set_sve_reg() ioctl interface will need
57 * to be extended with multiple register slice support in
58 * order to support vector lengths greater than
59 * VL_ARCH_MAX:
60 */
61 if (WARN_ON(kvm_sve_max_vl > VL_ARCH_MAX))
62 kvm_sve_max_vl = VL_ARCH_MAX;
63
64 /*
65 * Don't even try to make use of vector lengths that
66 * aren't available on all CPUs, for now:
67 */
68 if (kvm_sve_max_vl < sve_max_vl())
69 pr_warn("KVM: SVE vector length for guests limited to %u bytes\n",
70 kvm_sve_max_vl);
71 }
72
73 return 0;
74 }
75
76 static void kvm_vcpu_enable_sve(struct kvm_vcpu *vcpu)
77 {
78 vcpu->arch.sve_max_vl = kvm_sve_max_vl;
79
80 /*
81 * Userspace can still customize the vector lengths by writing
82 * KVM_REG_ARM64_SVE_VLS. Allocation is deferred until
83 * kvm_arm_vcpu_finalize(), which freezes the configuration.
84 */
85 vcpu_set_flag(vcpu, GUEST_HAS_SVE);
86 }
87
88 /*
89 * Finalize vcpu's maximum SVE vector length, allocating
90 * vcpu->arch.sve_state as necessary.
91 */
92 static int kvm_vcpu_finalize_sve(struct kvm_vcpu *vcpu)
93 {
94 void *buf;
95 unsigned int vl;
96 size_t reg_sz;
97 int ret;
98
99 vl = vcpu->arch.sve_max_vl;
100
101 /*
102 * Responsibility for these properties is shared between
103 * kvm_arm_init_sve(), kvm_vcpu_enable_sve() and
104 * set_sve_vls(). Double-check here just to be sure:
105 */
106 if (WARN_ON(!sve_vl_valid(vl) || vl > sve_max_virtualisable_vl() ||
107 vl > VL_ARCH_MAX))
108 return -EIO;
109
110 reg_sz = vcpu_sve_state_size(vcpu);
111 buf = kzalloc(reg_sz, GFP_KERNEL_ACCOUNT);
112 if (!buf)
113 return -ENOMEM;
114
115 ret = kvm_share_hyp(buf, buf + reg_sz);
116 if (ret) {
117 kfree(buf);
118 return ret;
119 }
120
121 vcpu->arch.sve_state = buf;
122 vcpu_set_flag(vcpu, VCPU_SVE_FINALIZED);
123 return 0;
124 }
125
126 int kvm_arm_vcpu_finalize(struct kvm_vcpu *vcpu, int feature)
127 {
128 switch (feature) {
129 case KVM_ARM_VCPU_SVE:
130 if (!vcpu_has_sve(vcpu))
131 return -EINVAL;
132
133 if (kvm_arm_vcpu_sve_finalized(vcpu))
134 return -EPERM;
135
136 return kvm_vcpu_finalize_sve(vcpu);
137 }
138
139 return -EINVAL;
140 }
141
142 bool kvm_arm_vcpu_is_finalized(struct kvm_vcpu *vcpu)
143 {
144 if (vcpu_has_sve(vcpu) && !kvm_arm_vcpu_sve_finalized(vcpu))
145 return false;
146
147 return true;
148 }
149
150 void kvm_arm_vcpu_destroy(struct kvm_vcpu *vcpu)
151 {
152 void *sve_state = vcpu->arch.sve_state;
153
154 kvm_vcpu_unshare_task_fp(vcpu);
155 kvm_unshare_hyp(vcpu, vcpu + 1);
156 if (sve_state)
157 kvm_unshare_hyp(sve_state, sve_state + vcpu_sve_state_size(vcpu));
158 kfree(sve_state);
159 kfree(vcpu->arch.ccsidr);
160 }
161
162 static void kvm_vcpu_reset_sve(struct kvm_vcpu *vcpu)
163 {
164 if (vcpu_has_sve(vcpu))
165 memset(vcpu->arch.sve_state, 0, vcpu_sve_state_size(vcpu));
166 }
167
168 static void kvm_vcpu_enable_ptrauth(struct kvm_vcpu *vcpu)
169 {
170 vcpu_set_flag(vcpu, GUEST_HAS_PTRAUTH);
171 }
172
173 /**
174 * kvm_reset_vcpu - sets core registers and sys_regs to reset value
175 * @vcpu: The VCPU pointer
176 *
177 * This function sets the registers on the virtual CPU struct to their
178 * architecturally defined reset values, except for registers whose reset is
179 * deferred until kvm_arm_vcpu_finalize().
180 *
181 * Note: This function can be called from two paths: The KVM_ARM_VCPU_INIT
182 * ioctl or as part of handling a request issued by another VCPU in the PSCI
183 * handling code. In the first case, the VCPU will not be loaded, and in the
184 * second case the VCPU will be loaded. Because this function operates purely
185 * on the memory-backed values of system registers, we want to do a full put if
186 * we were loaded (handling a request) and load the values back at the end of
187 * the function. Otherwise we leave the state alone. In both cases, we
188 * disable preemption around the vcpu reset as we would otherwise race with
189 * preempt notifiers which also call put/load.
190 */
191 void kvm_reset_vcpu(struct kvm_vcpu *vcpu)
192 {
193 struct vcpu_reset_state reset_state;
194 bool loaded;
195 u32 pstate;
196
197 spin_lock(&vcpu->arch.mp_state_lock);
198 reset_state = vcpu->arch.reset_state;
199 vcpu->arch.reset_state.reset = false;
200 spin_unlock(&vcpu->arch.mp_state_lock);
201
202 /* Reset PMU outside of the non-preemptible section */
203 kvm_pmu_vcpu_reset(vcpu);
204
205 preempt_disable();
206 loaded = (vcpu->cpu != -1);
207 if (loaded)
208 kvm_arch_vcpu_put(vcpu);
209
210 if (!kvm_arm_vcpu_sve_finalized(vcpu)) {
211 if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_SVE))
212 kvm_vcpu_enable_sve(vcpu);
213 } else {
214 kvm_vcpu_reset_sve(vcpu);
215 }
216
217 if (vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_ADDRESS) ||
218 vcpu_has_feature(vcpu, KVM_ARM_VCPU_PTRAUTH_GENERIC))
219 kvm_vcpu_enable_ptrauth(vcpu);
220
221 if (vcpu_el1_is_32bit(vcpu))
222 pstate = VCPU_RESET_PSTATE_SVC;
223 else if (vcpu_has_nv(vcpu))
224 pstate = VCPU_RESET_PSTATE_EL2;
225 else
226 pstate = VCPU_RESET_PSTATE_EL1;
227
228 /* Reset core registers */
229 memset(vcpu_gp_regs(vcpu), 0, sizeof(*vcpu_gp_regs(vcpu)));
230 memset(&vcpu->arch.ctxt.fp_regs, 0, sizeof(vcpu->arch.ctxt.fp_regs));
231 vcpu->arch.ctxt.spsr_abt = 0;
232 vcpu->arch.ctxt.spsr_und = 0;
233 vcpu->arch.ctxt.spsr_irq = 0;
234 vcpu->arch.ctxt.spsr_fiq = 0;
235 vcpu_gp_regs(vcpu)->pstate = pstate;
236
237 /* Reset system registers */
238 kvm_reset_sys_regs(vcpu);
239
240 /*
241 * Additional reset state handling that PSCI may have imposed on us.
242 * Must be done after all the sys_reg reset.
243 */
244 if (reset_state.reset) {
245 unsigned long target_pc = reset_state.pc;
246
247 /* Gracefully handle Thumb2 entry point */
248 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
249 target_pc &= ~1UL;
250 vcpu_set_thumb(vcpu);
251 }
252
253 /* Propagate caller endianness */
254 if (reset_state.be)
255 kvm_vcpu_set_be(vcpu);
256
257 *vcpu_pc(vcpu) = target_pc;
258 vcpu_set_reg(vcpu, 0, reset_state.r0);
259 }
260
261 /* Reset timer */
262 kvm_timer_vcpu_reset(vcpu);
263
264 if (loaded)
265 kvm_arch_vcpu_load(vcpu, smp_processor_id());
266 preempt_enable();
267 }
268
269 u32 get_kvm_ipa_limit(void)
270 {
271 return kvm_ipa_limit;
272 }
273
274 int __init kvm_set_ipa_limit(void)
275 {
276 unsigned int parange;
277 u64 mmfr0;
278
279 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
280 parange = cpuid_feature_extract_unsigned_field(mmfr0,
281 ID_AA64MMFR0_EL1_PARANGE_SHIFT);
282 /*
283 * IPA size beyond 48 bits could not be supported
284 * on either 4K or 16K page size. Hence let's cap
285 * it to 48 bits, in case it's reported as larger
286 * on the system.
287 */
288 if (PAGE_SIZE != SZ_64K)
289 parange = min(parange, (unsigned int)ID_AA64MMFR0_EL1_PARANGE_48);
290
291 /*
292 * Check with ARMv8.5-GTG that our PAGE_SIZE is supported at
293 * Stage-2. If not, things will stop very quickly.
294 */
295 switch (cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_EL1_TGRAN_2_SHIFT)) {
296 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_NONE:
297 kvm_err("PAGE_SIZE not supported at Stage-2, giving up\n");
298 return -EINVAL;
299 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_DEFAULT:
300 kvm_debug("PAGE_SIZE supported at Stage-2 (default)\n");
301 break;
302 case ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MIN ... ID_AA64MMFR0_EL1_TGRAN_2_SUPPORTED_MAX:
303 kvm_debug("PAGE_SIZE supported at Stage-2 (advertised)\n");
304 break;
305 default:
306 kvm_err("Unsupported value for TGRAN_2, giving up\n");
307 return -EINVAL;
308 }
309
310 kvm_ipa_limit = id_aa64mmfr0_parange_to_phys_shift(parange);
311 kvm_info("IPA Size Limit: %d bits%s\n", kvm_ipa_limit,
312 ((kvm_ipa_limit < KVM_PHYS_SHIFT) ?
313 " (Reduced IPA size, limited VM/VMM compatibility)" : ""));
314
315 return 0;
316 }