]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/arm64/kvm/sys_regs.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / arch / arm64 / kvm / sys_regs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/coproc.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Authors: Rusty Russell <rusty@rustcorp.com.au>
9 * Christoffer Dall <c.dall@virtualopensystems.com>
10 */
11
12 #include <linux/bitfield.h>
13 #include <linux/bsearch.h>
14 #include <linux/cacheinfo.h>
15 #include <linux/kvm_host.h>
16 #include <linux/mm.h>
17 #include <linux/printk.h>
18 #include <linux/uaccess.h>
19
20 #include <asm/cacheflush.h>
21 #include <asm/cputype.h>
22 #include <asm/debug-monitors.h>
23 #include <asm/esr.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_emulate.h>
26 #include <asm/kvm_hyp.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_nested.h>
29 #include <asm/perf_event.h>
30 #include <asm/sysreg.h>
31
32 #include <trace/events/kvm.h>
33
34 #include "sys_regs.h"
35
36 #include "trace.h"
37
38 /*
39 * For AArch32, we only take care of what is being trapped. Anything
40 * that has to do with init and userspace access has to go via the
41 * 64bit interface.
42 */
43
44 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
45 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
46 u64 val);
47
48 static bool read_from_write_only(struct kvm_vcpu *vcpu,
49 struct sys_reg_params *params,
50 const struct sys_reg_desc *r)
51 {
52 WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
53 print_sys_reg_instr(params);
54 kvm_inject_undefined(vcpu);
55 return false;
56 }
57
58 static bool write_to_read_only(struct kvm_vcpu *vcpu,
59 struct sys_reg_params *params,
60 const struct sys_reg_desc *r)
61 {
62 WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
63 print_sys_reg_instr(params);
64 kvm_inject_undefined(vcpu);
65 return false;
66 }
67
68 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
69 {
70 u64 val = 0x8badf00d8badf00d;
71
72 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
73 __vcpu_read_sys_reg_from_cpu(reg, &val))
74 return val;
75
76 return __vcpu_sys_reg(vcpu, reg);
77 }
78
79 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
80 {
81 if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) &&
82 __vcpu_write_sys_reg_to_cpu(val, reg))
83 return;
84
85 __vcpu_sys_reg(vcpu, reg) = val;
86 }
87
88 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
89 #define CSSELR_MAX 14
90
91 /*
92 * Returns the minimum line size for the selected cache, expressed as
93 * Log2(bytes).
94 */
95 static u8 get_min_cache_line_size(bool icache)
96 {
97 u64 ctr = read_sanitised_ftr_reg(SYS_CTR_EL0);
98 u8 field;
99
100 if (icache)
101 field = SYS_FIELD_GET(CTR_EL0, IminLine, ctr);
102 else
103 field = SYS_FIELD_GET(CTR_EL0, DminLine, ctr);
104
105 /*
106 * Cache line size is represented as Log2(words) in CTR_EL0.
107 * Log2(bytes) can be derived with the following:
108 *
109 * Log2(words) + 2 = Log2(bytes / 4) + 2
110 * = Log2(bytes) - 2 + 2
111 * = Log2(bytes)
112 */
113 return field + 2;
114 }
115
116 /* Which cache CCSIDR represents depends on CSSELR value. */
117 static u32 get_ccsidr(struct kvm_vcpu *vcpu, u32 csselr)
118 {
119 u8 line_size;
120
121 if (vcpu->arch.ccsidr)
122 return vcpu->arch.ccsidr[csselr];
123
124 line_size = get_min_cache_line_size(csselr & CSSELR_EL1_InD);
125
126 /*
127 * Fabricate a CCSIDR value as the overriding value does not exist.
128 * The real CCSIDR value will not be used as it can vary by the
129 * physical CPU which the vcpu currently resides in.
130 *
131 * The line size is determined with get_min_cache_line_size(), which
132 * should be valid for all CPUs even if they have different cache
133 * configuration.
134 *
135 * The associativity bits are cleared, meaning the geometry of all data
136 * and unified caches (which are guaranteed to be PIPT and thus
137 * non-aliasing) are 1 set and 1 way.
138 * Guests should not be doing cache operations by set/way at all, and
139 * for this reason, we trap them and attempt to infer the intent, so
140 * that we can flush the entire guest's address space at the appropriate
141 * time. The exposed geometry minimizes the number of the traps.
142 * [If guests should attempt to infer aliasing properties from the
143 * geometry (which is not permitted by the architecture), they would
144 * only do so for virtually indexed caches.]
145 *
146 * We don't check if the cache level exists as it is allowed to return
147 * an UNKNOWN value if not.
148 */
149 return SYS_FIELD_PREP(CCSIDR_EL1, LineSize, line_size - 4);
150 }
151
152 static int set_ccsidr(struct kvm_vcpu *vcpu, u32 csselr, u32 val)
153 {
154 u8 line_size = FIELD_GET(CCSIDR_EL1_LineSize, val) + 4;
155 u32 *ccsidr = vcpu->arch.ccsidr;
156 u32 i;
157
158 if ((val & CCSIDR_EL1_RES0) ||
159 line_size < get_min_cache_line_size(csselr & CSSELR_EL1_InD))
160 return -EINVAL;
161
162 if (!ccsidr) {
163 if (val == get_ccsidr(vcpu, csselr))
164 return 0;
165
166 ccsidr = kmalloc_array(CSSELR_MAX, sizeof(u32), GFP_KERNEL_ACCOUNT);
167 if (!ccsidr)
168 return -ENOMEM;
169
170 for (i = 0; i < CSSELR_MAX; i++)
171 ccsidr[i] = get_ccsidr(vcpu, i);
172
173 vcpu->arch.ccsidr = ccsidr;
174 }
175
176 ccsidr[csselr] = val;
177
178 return 0;
179 }
180
181 static bool access_rw(struct kvm_vcpu *vcpu,
182 struct sys_reg_params *p,
183 const struct sys_reg_desc *r)
184 {
185 if (p->is_write)
186 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
187 else
188 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
189
190 return true;
191 }
192
193 /*
194 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
195 */
196 static bool access_dcsw(struct kvm_vcpu *vcpu,
197 struct sys_reg_params *p,
198 const struct sys_reg_desc *r)
199 {
200 if (!p->is_write)
201 return read_from_write_only(vcpu, p, r);
202
203 /*
204 * Only track S/W ops if we don't have FWB. It still indicates
205 * that the guest is a bit broken (S/W operations should only
206 * be done by firmware, knowing that there is only a single
207 * CPU left in the system, and certainly not from non-secure
208 * software).
209 */
210 if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
211 kvm_set_way_flush(vcpu);
212
213 return true;
214 }
215
216 static bool access_dcgsw(struct kvm_vcpu *vcpu,
217 struct sys_reg_params *p,
218 const struct sys_reg_desc *r)
219 {
220 if (!kvm_has_mte(vcpu->kvm)) {
221 kvm_inject_undefined(vcpu);
222 return false;
223 }
224
225 /* Treat MTE S/W ops as we treat the classic ones: with contempt */
226 return access_dcsw(vcpu, p, r);
227 }
228
229 static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift)
230 {
231 switch (r->aarch32_map) {
232 case AA32_LO:
233 *mask = GENMASK_ULL(31, 0);
234 *shift = 0;
235 break;
236 case AA32_HI:
237 *mask = GENMASK_ULL(63, 32);
238 *shift = 32;
239 break;
240 default:
241 *mask = GENMASK_ULL(63, 0);
242 *shift = 0;
243 break;
244 }
245 }
246
247 /*
248 * Generic accessor for VM registers. Only called as long as HCR_TVM
249 * is set. If the guest enables the MMU, we stop trapping the VM
250 * sys_regs and leave it in complete control of the caches.
251 */
252 static bool access_vm_reg(struct kvm_vcpu *vcpu,
253 struct sys_reg_params *p,
254 const struct sys_reg_desc *r)
255 {
256 bool was_enabled = vcpu_has_cache_enabled(vcpu);
257 u64 val, mask, shift;
258
259 BUG_ON(!p->is_write);
260
261 get_access_mask(r, &mask, &shift);
262
263 if (~mask) {
264 val = vcpu_read_sys_reg(vcpu, r->reg);
265 val &= ~mask;
266 } else {
267 val = 0;
268 }
269
270 val |= (p->regval & (mask >> shift)) << shift;
271 vcpu_write_sys_reg(vcpu, val, r->reg);
272
273 kvm_toggle_cache(vcpu, was_enabled);
274 return true;
275 }
276
277 static bool access_actlr(struct kvm_vcpu *vcpu,
278 struct sys_reg_params *p,
279 const struct sys_reg_desc *r)
280 {
281 u64 mask, shift;
282
283 if (p->is_write)
284 return ignore_write(vcpu, p);
285
286 get_access_mask(r, &mask, &shift);
287 p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift;
288
289 return true;
290 }
291
292 /*
293 * Trap handler for the GICv3 SGI generation system register.
294 * Forward the request to the VGIC emulation.
295 * The cp15_64 code makes sure this automatically works
296 * for both AArch64 and AArch32 accesses.
297 */
298 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
299 struct sys_reg_params *p,
300 const struct sys_reg_desc *r)
301 {
302 bool g1;
303
304 if (!p->is_write)
305 return read_from_write_only(vcpu, p, r);
306
307 /*
308 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
309 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
310 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
311 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
312 * group.
313 */
314 if (p->Op0 == 0) { /* AArch32 */
315 switch (p->Op1) {
316 default: /* Keep GCC quiet */
317 case 0: /* ICC_SGI1R */
318 g1 = true;
319 break;
320 case 1: /* ICC_ASGI1R */
321 case 2: /* ICC_SGI0R */
322 g1 = false;
323 break;
324 }
325 } else { /* AArch64 */
326 switch (p->Op2) {
327 default: /* Keep GCC quiet */
328 case 5: /* ICC_SGI1R_EL1 */
329 g1 = true;
330 break;
331 case 6: /* ICC_ASGI1R_EL1 */
332 case 7: /* ICC_SGI0R_EL1 */
333 g1 = false;
334 break;
335 }
336 }
337
338 vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
339
340 return true;
341 }
342
343 static bool access_gic_sre(struct kvm_vcpu *vcpu,
344 struct sys_reg_params *p,
345 const struct sys_reg_desc *r)
346 {
347 if (p->is_write)
348 return ignore_write(vcpu, p);
349
350 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
351 return true;
352 }
353
354 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
355 struct sys_reg_params *p,
356 const struct sys_reg_desc *r)
357 {
358 if (p->is_write)
359 return ignore_write(vcpu, p);
360 else
361 return read_zero(vcpu, p);
362 }
363
364 static bool trap_undef(struct kvm_vcpu *vcpu,
365 struct sys_reg_params *p,
366 const struct sys_reg_desc *r)
367 {
368 kvm_inject_undefined(vcpu);
369 return false;
370 }
371
372 /*
373 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
374 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
375 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
376 * treat it separately.
377 */
378 static bool trap_loregion(struct kvm_vcpu *vcpu,
379 struct sys_reg_params *p,
380 const struct sys_reg_desc *r)
381 {
382 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
383 u32 sr = reg_to_encoding(r);
384
385 if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) {
386 kvm_inject_undefined(vcpu);
387 return false;
388 }
389
390 if (p->is_write && sr == SYS_LORID_EL1)
391 return write_to_read_only(vcpu, p, r);
392
393 return trap_raz_wi(vcpu, p, r);
394 }
395
396 static bool trap_oslar_el1(struct kvm_vcpu *vcpu,
397 struct sys_reg_params *p,
398 const struct sys_reg_desc *r)
399 {
400 u64 oslsr;
401
402 if (!p->is_write)
403 return read_from_write_only(vcpu, p, r);
404
405 /* Forward the OSLK bit to OSLSR */
406 oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~OSLSR_EL1_OSLK;
407 if (p->regval & OSLAR_EL1_OSLK)
408 oslsr |= OSLSR_EL1_OSLK;
409
410 __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr;
411 return true;
412 }
413
414 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
415 struct sys_reg_params *p,
416 const struct sys_reg_desc *r)
417 {
418 if (p->is_write)
419 return write_to_read_only(vcpu, p, r);
420
421 p->regval = __vcpu_sys_reg(vcpu, r->reg);
422 return true;
423 }
424
425 static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
426 u64 val)
427 {
428 /*
429 * The only modifiable bit is the OSLK bit. Refuse the write if
430 * userspace attempts to change any other bit in the register.
431 */
432 if ((val ^ rd->val) & ~OSLSR_EL1_OSLK)
433 return -EINVAL;
434
435 __vcpu_sys_reg(vcpu, rd->reg) = val;
436 return 0;
437 }
438
439 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
440 struct sys_reg_params *p,
441 const struct sys_reg_desc *r)
442 {
443 if (p->is_write) {
444 return ignore_write(vcpu, p);
445 } else {
446 p->regval = read_sysreg(dbgauthstatus_el1);
447 return true;
448 }
449 }
450
451 /*
452 * We want to avoid world-switching all the DBG registers all the
453 * time:
454 *
455 * - If we've touched any debug register, it is likely that we're
456 * going to touch more of them. It then makes sense to disable the
457 * traps and start doing the save/restore dance
458 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
459 * then mandatory to save/restore the registers, as the guest
460 * depends on them.
461 *
462 * For this, we use a DIRTY bit, indicating the guest has modified the
463 * debug registers, used as follow:
464 *
465 * On guest entry:
466 * - If the dirty bit is set (because we're coming back from trapping),
467 * disable the traps, save host registers, restore guest registers.
468 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
469 * set the dirty bit, disable the traps, save host registers,
470 * restore guest registers.
471 * - Otherwise, enable the traps
472 *
473 * On guest exit:
474 * - If the dirty bit is set, save guest registers, restore host
475 * registers and clear the dirty bit. This ensure that the host can
476 * now use the debug registers.
477 */
478 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
479 struct sys_reg_params *p,
480 const struct sys_reg_desc *r)
481 {
482 access_rw(vcpu, p, r);
483 if (p->is_write)
484 vcpu_set_flag(vcpu, DEBUG_DIRTY);
485
486 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
487
488 return true;
489 }
490
491 /*
492 * reg_to_dbg/dbg_to_reg
493 *
494 * A 32 bit write to a debug register leave top bits alone
495 * A 32 bit read from a debug register only returns the bottom bits
496 *
497 * All writes will set the DEBUG_DIRTY flag to ensure the hyp code
498 * switches between host and guest values in future.
499 */
500 static void reg_to_dbg(struct kvm_vcpu *vcpu,
501 struct sys_reg_params *p,
502 const struct sys_reg_desc *rd,
503 u64 *dbg_reg)
504 {
505 u64 mask, shift, val;
506
507 get_access_mask(rd, &mask, &shift);
508
509 val = *dbg_reg;
510 val &= ~mask;
511 val |= (p->regval & (mask >> shift)) << shift;
512 *dbg_reg = val;
513
514 vcpu_set_flag(vcpu, DEBUG_DIRTY);
515 }
516
517 static void dbg_to_reg(struct kvm_vcpu *vcpu,
518 struct sys_reg_params *p,
519 const struct sys_reg_desc *rd,
520 u64 *dbg_reg)
521 {
522 u64 mask, shift;
523
524 get_access_mask(rd, &mask, &shift);
525 p->regval = (*dbg_reg & mask) >> shift;
526 }
527
528 static bool trap_bvr(struct kvm_vcpu *vcpu,
529 struct sys_reg_params *p,
530 const struct sys_reg_desc *rd)
531 {
532 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
533
534 if (p->is_write)
535 reg_to_dbg(vcpu, p, rd, dbg_reg);
536 else
537 dbg_to_reg(vcpu, p, rd, dbg_reg);
538
539 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
540
541 return true;
542 }
543
544 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545 u64 val)
546 {
547 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val;
548 return 0;
549 }
550
551 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
552 u64 *val)
553 {
554 *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm];
555 return 0;
556 }
557
558 static u64 reset_bvr(struct kvm_vcpu *vcpu,
559 const struct sys_reg_desc *rd)
560 {
561 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val;
562 return rd->val;
563 }
564
565 static bool trap_bcr(struct kvm_vcpu *vcpu,
566 struct sys_reg_params *p,
567 const struct sys_reg_desc *rd)
568 {
569 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
570
571 if (p->is_write)
572 reg_to_dbg(vcpu, p, rd, dbg_reg);
573 else
574 dbg_to_reg(vcpu, p, rd, dbg_reg);
575
576 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
577
578 return true;
579 }
580
581 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
582 u64 val)
583 {
584 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val;
585 return 0;
586 }
587
588 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
589 u64 *val)
590 {
591 *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm];
592 return 0;
593 }
594
595 static u64 reset_bcr(struct kvm_vcpu *vcpu,
596 const struct sys_reg_desc *rd)
597 {
598 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val;
599 return rd->val;
600 }
601
602 static bool trap_wvr(struct kvm_vcpu *vcpu,
603 struct sys_reg_params *p,
604 const struct sys_reg_desc *rd)
605 {
606 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
607
608 if (p->is_write)
609 reg_to_dbg(vcpu, p, rd, dbg_reg);
610 else
611 dbg_to_reg(vcpu, p, rd, dbg_reg);
612
613 trace_trap_reg(__func__, rd->CRm, p->is_write,
614 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]);
615
616 return true;
617 }
618
619 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
620 u64 val)
621 {
622 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val;
623 return 0;
624 }
625
626 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
627 u64 *val)
628 {
629 *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm];
630 return 0;
631 }
632
633 static u64 reset_wvr(struct kvm_vcpu *vcpu,
634 const struct sys_reg_desc *rd)
635 {
636 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val;
637 return rd->val;
638 }
639
640 static bool trap_wcr(struct kvm_vcpu *vcpu,
641 struct sys_reg_params *p,
642 const struct sys_reg_desc *rd)
643 {
644 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
645
646 if (p->is_write)
647 reg_to_dbg(vcpu, p, rd, dbg_reg);
648 else
649 dbg_to_reg(vcpu, p, rd, dbg_reg);
650
651 trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg);
652
653 return true;
654 }
655
656 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
657 u64 val)
658 {
659 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val;
660 return 0;
661 }
662
663 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
664 u64 *val)
665 {
666 *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm];
667 return 0;
668 }
669
670 static u64 reset_wcr(struct kvm_vcpu *vcpu,
671 const struct sys_reg_desc *rd)
672 {
673 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val;
674 return rd->val;
675 }
676
677 static u64 reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
678 {
679 u64 amair = read_sysreg(amair_el1);
680 vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
681 return amair;
682 }
683
684 static u64 reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
685 {
686 u64 actlr = read_sysreg(actlr_el1);
687 vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1);
688 return actlr;
689 }
690
691 static u64 reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
692 {
693 u64 mpidr;
694
695 /*
696 * Map the vcpu_id into the first three affinity level fields of
697 * the MPIDR. We limit the number of VCPUs in level 0 due to a
698 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
699 * of the GICv3 to be able to address each CPU directly when
700 * sending IPIs.
701 */
702 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
703 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
704 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
705 mpidr |= (1ULL << 31);
706 vcpu_write_sys_reg(vcpu, mpidr, MPIDR_EL1);
707
708 return mpidr;
709 }
710
711 static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu,
712 const struct sys_reg_desc *r)
713 {
714 if (kvm_vcpu_has_pmu(vcpu))
715 return 0;
716
717 return REG_HIDDEN;
718 }
719
720 static u64 reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
721 {
722 u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX);
723
724 /* No PMU available, any PMU reg may UNDEF... */
725 if (!kvm_arm_support_pmu_v3())
726 return 0;
727
728 n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT;
729 n &= ARMV8_PMU_PMCR_N_MASK;
730 if (n)
731 mask |= GENMASK(n - 1, 0);
732
733 reset_unknown(vcpu, r);
734 __vcpu_sys_reg(vcpu, r->reg) &= mask;
735
736 return __vcpu_sys_reg(vcpu, r->reg);
737 }
738
739 static u64 reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
740 {
741 reset_unknown(vcpu, r);
742 __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0);
743
744 return __vcpu_sys_reg(vcpu, r->reg);
745 }
746
747 static u64 reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
748 {
749 reset_unknown(vcpu, r);
750 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK;
751
752 return __vcpu_sys_reg(vcpu, r->reg);
753 }
754
755 static u64 reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
756 {
757 reset_unknown(vcpu, r);
758 __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK;
759
760 return __vcpu_sys_reg(vcpu, r->reg);
761 }
762
763 static u64 reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
764 {
765 u64 pmcr;
766
767 /* No PMU available, PMCR_EL0 may UNDEF... */
768 if (!kvm_arm_support_pmu_v3())
769 return 0;
770
771 /* Only preserve PMCR_EL0.N, and reset the rest to 0 */
772 pmcr = read_sysreg(pmcr_el0) & (ARMV8_PMU_PMCR_N_MASK << ARMV8_PMU_PMCR_N_SHIFT);
773 if (!kvm_supports_32bit_el0())
774 pmcr |= ARMV8_PMU_PMCR_LC;
775
776 __vcpu_sys_reg(vcpu, r->reg) = pmcr;
777
778 return __vcpu_sys_reg(vcpu, r->reg);
779 }
780
781 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
782 {
783 u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
784 bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
785
786 if (!enabled)
787 kvm_inject_undefined(vcpu);
788
789 return !enabled;
790 }
791
792 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
793 {
794 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
795 }
796
797 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
798 {
799 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
800 }
801
802 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
803 {
804 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
805 }
806
807 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
808 {
809 return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
810 }
811
812 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
813 const struct sys_reg_desc *r)
814 {
815 u64 val;
816
817 if (pmu_access_el0_disabled(vcpu))
818 return false;
819
820 if (p->is_write) {
821 /*
822 * Only update writeable bits of PMCR (continuing into
823 * kvm_pmu_handle_pmcr() as well)
824 */
825 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
826 val &= ~ARMV8_PMU_PMCR_MASK;
827 val |= p->regval & ARMV8_PMU_PMCR_MASK;
828 if (!kvm_supports_32bit_el0())
829 val |= ARMV8_PMU_PMCR_LC;
830 kvm_pmu_handle_pmcr(vcpu, val);
831 } else {
832 /* PMCR.P & PMCR.C are RAZ */
833 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
834 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
835 p->regval = val;
836 }
837
838 return true;
839 }
840
841 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
842 const struct sys_reg_desc *r)
843 {
844 if (pmu_access_event_counter_el0_disabled(vcpu))
845 return false;
846
847 if (p->is_write)
848 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
849 else
850 /* return PMSELR.SEL field */
851 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
852 & ARMV8_PMU_COUNTER_MASK;
853
854 return true;
855 }
856
857 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
858 const struct sys_reg_desc *r)
859 {
860 u64 pmceid, mask, shift;
861
862 BUG_ON(p->is_write);
863
864 if (pmu_access_el0_disabled(vcpu))
865 return false;
866
867 get_access_mask(r, &mask, &shift);
868
869 pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1));
870 pmceid &= mask;
871 pmceid >>= shift;
872
873 p->regval = pmceid;
874
875 return true;
876 }
877
878 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
879 {
880 u64 pmcr, val;
881
882 pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
883 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
884 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
885 kvm_inject_undefined(vcpu);
886 return false;
887 }
888
889 return true;
890 }
891
892 static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r,
893 u64 *val)
894 {
895 u64 idx;
896
897 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0)
898 /* PMCCNTR_EL0 */
899 idx = ARMV8_PMU_CYCLE_IDX;
900 else
901 /* PMEVCNTRn_EL0 */
902 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
903
904 *val = kvm_pmu_get_counter_value(vcpu, idx);
905 return 0;
906 }
907
908 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
909 struct sys_reg_params *p,
910 const struct sys_reg_desc *r)
911 {
912 u64 idx = ~0UL;
913
914 if (r->CRn == 9 && r->CRm == 13) {
915 if (r->Op2 == 2) {
916 /* PMXEVCNTR_EL0 */
917 if (pmu_access_event_counter_el0_disabled(vcpu))
918 return false;
919
920 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
921 & ARMV8_PMU_COUNTER_MASK;
922 } else if (r->Op2 == 0) {
923 /* PMCCNTR_EL0 */
924 if (pmu_access_cycle_counter_el0_disabled(vcpu))
925 return false;
926
927 idx = ARMV8_PMU_CYCLE_IDX;
928 }
929 } else if (r->CRn == 0 && r->CRm == 9) {
930 /* PMCCNTR */
931 if (pmu_access_event_counter_el0_disabled(vcpu))
932 return false;
933
934 idx = ARMV8_PMU_CYCLE_IDX;
935 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
936 /* PMEVCNTRn_EL0 */
937 if (pmu_access_event_counter_el0_disabled(vcpu))
938 return false;
939
940 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
941 }
942
943 /* Catch any decoding mistake */
944 WARN_ON(idx == ~0UL);
945
946 if (!pmu_counter_idx_valid(vcpu, idx))
947 return false;
948
949 if (p->is_write) {
950 if (pmu_access_el0_disabled(vcpu))
951 return false;
952
953 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
954 } else {
955 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
956 }
957
958 return true;
959 }
960
961 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
962 const struct sys_reg_desc *r)
963 {
964 u64 idx, reg;
965
966 if (pmu_access_el0_disabled(vcpu))
967 return false;
968
969 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
970 /* PMXEVTYPER_EL0 */
971 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
972 reg = PMEVTYPER0_EL0 + idx;
973 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
974 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
975 if (idx == ARMV8_PMU_CYCLE_IDX)
976 reg = PMCCFILTR_EL0;
977 else
978 /* PMEVTYPERn_EL0 */
979 reg = PMEVTYPER0_EL0 + idx;
980 } else {
981 BUG();
982 }
983
984 if (!pmu_counter_idx_valid(vcpu, idx))
985 return false;
986
987 if (p->is_write) {
988 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
989 kvm_vcpu_pmu_restore_guest(vcpu);
990 } else {
991 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
992 }
993
994 return true;
995 }
996
997 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
998 const struct sys_reg_desc *r)
999 {
1000 u64 val, mask;
1001
1002 if (pmu_access_el0_disabled(vcpu))
1003 return false;
1004
1005 mask = kvm_pmu_valid_counter_mask(vcpu);
1006 if (p->is_write) {
1007 val = p->regval & mask;
1008 if (r->Op2 & 0x1) {
1009 /* accessing PMCNTENSET_EL0 */
1010 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
1011 kvm_pmu_enable_counter_mask(vcpu, val);
1012 kvm_vcpu_pmu_restore_guest(vcpu);
1013 } else {
1014 /* accessing PMCNTENCLR_EL0 */
1015 __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
1016 kvm_pmu_disable_counter_mask(vcpu, val);
1017 }
1018 } else {
1019 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0);
1020 }
1021
1022 return true;
1023 }
1024
1025 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1026 const struct sys_reg_desc *r)
1027 {
1028 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1029
1030 if (check_pmu_access_disabled(vcpu, 0))
1031 return false;
1032
1033 if (p->is_write) {
1034 u64 val = p->regval & mask;
1035
1036 if (r->Op2 & 0x1)
1037 /* accessing PMINTENSET_EL1 */
1038 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
1039 else
1040 /* accessing PMINTENCLR_EL1 */
1041 __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
1042 } else {
1043 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1);
1044 }
1045
1046 return true;
1047 }
1048
1049 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1050 const struct sys_reg_desc *r)
1051 {
1052 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
1053
1054 if (pmu_access_el0_disabled(vcpu))
1055 return false;
1056
1057 if (p->is_write) {
1058 if (r->CRm & 0x2)
1059 /* accessing PMOVSSET_EL0 */
1060 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
1061 else
1062 /* accessing PMOVSCLR_EL0 */
1063 __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
1064 } else {
1065 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0);
1066 }
1067
1068 return true;
1069 }
1070
1071 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1072 const struct sys_reg_desc *r)
1073 {
1074 u64 mask;
1075
1076 if (!p->is_write)
1077 return read_from_write_only(vcpu, p, r);
1078
1079 if (pmu_write_swinc_el0_disabled(vcpu))
1080 return false;
1081
1082 mask = kvm_pmu_valid_counter_mask(vcpu);
1083 kvm_pmu_software_increment(vcpu, p->regval & mask);
1084 return true;
1085 }
1086
1087 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1088 const struct sys_reg_desc *r)
1089 {
1090 if (p->is_write) {
1091 if (!vcpu_mode_priv(vcpu)) {
1092 kvm_inject_undefined(vcpu);
1093 return false;
1094 }
1095
1096 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
1097 p->regval & ARMV8_PMU_USERENR_MASK;
1098 } else {
1099 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
1100 & ARMV8_PMU_USERENR_MASK;
1101 }
1102
1103 return true;
1104 }
1105
1106 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
1107 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
1108 { SYS_DESC(SYS_DBGBVRn_EL1(n)), \
1109 trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \
1110 { SYS_DESC(SYS_DBGBCRn_EL1(n)), \
1111 trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \
1112 { SYS_DESC(SYS_DBGWVRn_EL1(n)), \
1113 trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \
1114 { SYS_DESC(SYS_DBGWCRn_EL1(n)), \
1115 trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr }
1116
1117 #define PMU_SYS_REG(name) \
1118 SYS_DESC(SYS_##name), .reset = reset_pmu_reg, \
1119 .visibility = pmu_visibility
1120
1121 /* Macro to expand the PMEVCNTRn_EL0 register */
1122 #define PMU_PMEVCNTR_EL0(n) \
1123 { PMU_SYS_REG(PMEVCNTRn_EL0(n)), \
1124 .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \
1125 .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), }
1126
1127 /* Macro to expand the PMEVTYPERn_EL0 register */
1128 #define PMU_PMEVTYPER_EL0(n) \
1129 { PMU_SYS_REG(PMEVTYPERn_EL0(n)), \
1130 .reset = reset_pmevtyper, \
1131 .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), }
1132
1133 static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1134 const struct sys_reg_desc *r)
1135 {
1136 kvm_inject_undefined(vcpu);
1137
1138 return false;
1139 }
1140
1141 /* Macro to expand the AMU counter and type registers*/
1142 #define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access }
1143 #define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access }
1144 #define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access }
1145 #define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access }
1146
1147 static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
1148 const struct sys_reg_desc *rd)
1149 {
1150 return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN;
1151 }
1152
1153 /*
1154 * If we land here on a PtrAuth access, that is because we didn't
1155 * fixup the access on exit by allowing the PtrAuth sysregs. The only
1156 * way this happens is when the guest does not have PtrAuth support
1157 * enabled.
1158 */
1159 #define __PTRAUTH_KEY(k) \
1160 { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \
1161 .visibility = ptrauth_visibility}
1162
1163 #define PTRAUTH_KEY(k) \
1164 __PTRAUTH_KEY(k ## KEYLO_EL1), \
1165 __PTRAUTH_KEY(k ## KEYHI_EL1)
1166
1167 static bool access_arch_timer(struct kvm_vcpu *vcpu,
1168 struct sys_reg_params *p,
1169 const struct sys_reg_desc *r)
1170 {
1171 enum kvm_arch_timers tmr;
1172 enum kvm_arch_timer_regs treg;
1173 u64 reg = reg_to_encoding(r);
1174
1175 switch (reg) {
1176 case SYS_CNTP_TVAL_EL0:
1177 case SYS_AARCH32_CNTP_TVAL:
1178 tmr = TIMER_PTIMER;
1179 treg = TIMER_REG_TVAL;
1180 break;
1181 case SYS_CNTP_CTL_EL0:
1182 case SYS_AARCH32_CNTP_CTL:
1183 tmr = TIMER_PTIMER;
1184 treg = TIMER_REG_CTL;
1185 break;
1186 case SYS_CNTP_CVAL_EL0:
1187 case SYS_AARCH32_CNTP_CVAL:
1188 tmr = TIMER_PTIMER;
1189 treg = TIMER_REG_CVAL;
1190 break;
1191 case SYS_CNTPCT_EL0:
1192 case SYS_CNTPCTSS_EL0:
1193 case SYS_AARCH32_CNTPCT:
1194 tmr = TIMER_PTIMER;
1195 treg = TIMER_REG_CNT;
1196 break;
1197 default:
1198 print_sys_reg_msg(p, "%s", "Unhandled trapped timer register");
1199 kvm_inject_undefined(vcpu);
1200 return false;
1201 }
1202
1203 if (p->is_write)
1204 kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
1205 else
1206 p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);
1207
1208 return true;
1209 }
1210
1211 static s64 kvm_arm64_ftr_safe_value(u32 id, const struct arm64_ftr_bits *ftrp,
1212 s64 new, s64 cur)
1213 {
1214 struct arm64_ftr_bits kvm_ftr = *ftrp;
1215
1216 /* Some features have different safe value type in KVM than host features */
1217 switch (id) {
1218 case SYS_ID_AA64DFR0_EL1:
1219 if (kvm_ftr.shift == ID_AA64DFR0_EL1_PMUVer_SHIFT)
1220 kvm_ftr.type = FTR_LOWER_SAFE;
1221 break;
1222 case SYS_ID_DFR0_EL1:
1223 if (kvm_ftr.shift == ID_DFR0_EL1_PerfMon_SHIFT)
1224 kvm_ftr.type = FTR_LOWER_SAFE;
1225 break;
1226 }
1227
1228 return arm64_ftr_safe_value(&kvm_ftr, new, cur);
1229 }
1230
1231 /**
1232 * arm64_check_features() - Check if a feature register value constitutes
1233 * a subset of features indicated by the idreg's KVM sanitised limit.
1234 *
1235 * This function will check if each feature field of @val is the "safe" value
1236 * against idreg's KVM sanitised limit return from reset() callback.
1237 * If a field value in @val is the same as the one in limit, it is always
1238 * considered the safe value regardless For register fields that are not in
1239 * writable, only the value in limit is considered the safe value.
1240 *
1241 * Return: 0 if all the fields are safe. Otherwise, return negative errno.
1242 */
1243 static int arm64_check_features(struct kvm_vcpu *vcpu,
1244 const struct sys_reg_desc *rd,
1245 u64 val)
1246 {
1247 const struct arm64_ftr_reg *ftr_reg;
1248 const struct arm64_ftr_bits *ftrp = NULL;
1249 u32 id = reg_to_encoding(rd);
1250 u64 writable_mask = rd->val;
1251 u64 limit = rd->reset(vcpu, rd);
1252 u64 mask = 0;
1253
1254 /*
1255 * Hidden and unallocated ID registers may not have a corresponding
1256 * struct arm64_ftr_reg. Of course, if the register is RAZ we know the
1257 * only safe value is 0.
1258 */
1259 if (sysreg_visible_as_raz(vcpu, rd))
1260 return val ? -E2BIG : 0;
1261
1262 ftr_reg = get_arm64_ftr_reg(id);
1263 if (!ftr_reg)
1264 return -EINVAL;
1265
1266 ftrp = ftr_reg->ftr_bits;
1267
1268 for (; ftrp && ftrp->width; ftrp++) {
1269 s64 f_val, f_lim, safe_val;
1270 u64 ftr_mask;
1271
1272 ftr_mask = arm64_ftr_mask(ftrp);
1273 if ((ftr_mask & writable_mask) != ftr_mask)
1274 continue;
1275
1276 f_val = arm64_ftr_value(ftrp, val);
1277 f_lim = arm64_ftr_value(ftrp, limit);
1278 mask |= ftr_mask;
1279
1280 if (f_val == f_lim)
1281 safe_val = f_val;
1282 else
1283 safe_val = kvm_arm64_ftr_safe_value(id, ftrp, f_val, f_lim);
1284
1285 if (safe_val != f_val)
1286 return -E2BIG;
1287 }
1288
1289 /* For fields that are not writable, values in limit are the safe values. */
1290 if ((val & ~mask) != (limit & ~mask))
1291 return -E2BIG;
1292
1293 return 0;
1294 }
1295
1296 static u8 pmuver_to_perfmon(u8 pmuver)
1297 {
1298 switch (pmuver) {
1299 case ID_AA64DFR0_EL1_PMUVer_IMP:
1300 return ID_DFR0_EL1_PerfMon_PMUv3;
1301 case ID_AA64DFR0_EL1_PMUVer_IMP_DEF:
1302 return ID_DFR0_EL1_PerfMon_IMPDEF;
1303 default:
1304 /* Anything ARMv8.1+ and NI have the same value. For now. */
1305 return pmuver;
1306 }
1307 }
1308
1309 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1310 static u64 __kvm_read_sanitised_id_reg(const struct kvm_vcpu *vcpu,
1311 const struct sys_reg_desc *r)
1312 {
1313 u32 id = reg_to_encoding(r);
1314 u64 val;
1315
1316 if (sysreg_visible_as_raz(vcpu, r))
1317 return 0;
1318
1319 val = read_sanitised_ftr_reg(id);
1320
1321 switch (id) {
1322 case SYS_ID_AA64PFR1_EL1:
1323 if (!kvm_has_mte(vcpu->kvm))
1324 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE);
1325
1326 val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME);
1327 break;
1328 case SYS_ID_AA64ISAR1_EL1:
1329 if (!vcpu_has_ptrauth(vcpu))
1330 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) |
1331 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) |
1332 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) |
1333 ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI));
1334 break;
1335 case SYS_ID_AA64ISAR2_EL1:
1336 if (!vcpu_has_ptrauth(vcpu))
1337 val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) |
1338 ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3));
1339 if (!cpus_have_final_cap(ARM64_HAS_WFXT))
1340 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT);
1341 val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_MOPS);
1342 break;
1343 case SYS_ID_AA64MMFR2_EL1:
1344 val &= ~ID_AA64MMFR2_EL1_CCIDX_MASK;
1345 break;
1346 case SYS_ID_MMFR4_EL1:
1347 val &= ~ARM64_FEATURE_MASK(ID_MMFR4_EL1_CCIDX);
1348 break;
1349 }
1350
1351 return val;
1352 }
1353
1354 static u64 kvm_read_sanitised_id_reg(struct kvm_vcpu *vcpu,
1355 const struct sys_reg_desc *r)
1356 {
1357 return __kvm_read_sanitised_id_reg(vcpu, r);
1358 }
1359
1360 static u64 read_id_reg(const struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1361 {
1362 return IDREG(vcpu->kvm, reg_to_encoding(r));
1363 }
1364
1365 /*
1366 * Return true if the register's (Op0, Op1, CRn, CRm, Op2) is
1367 * (3, 0, 0, crm, op2), where 1<=crm<8, 0<=op2<8.
1368 */
1369 static inline bool is_id_reg(u32 id)
1370 {
1371 return (sys_reg_Op0(id) == 3 && sys_reg_Op1(id) == 0 &&
1372 sys_reg_CRn(id) == 0 && sys_reg_CRm(id) >= 1 &&
1373 sys_reg_CRm(id) < 8);
1374 }
1375
1376 static unsigned int id_visibility(const struct kvm_vcpu *vcpu,
1377 const struct sys_reg_desc *r)
1378 {
1379 u32 id = reg_to_encoding(r);
1380
1381 switch (id) {
1382 case SYS_ID_AA64ZFR0_EL1:
1383 if (!vcpu_has_sve(vcpu))
1384 return REG_RAZ;
1385 break;
1386 }
1387
1388 return 0;
1389 }
1390
1391 static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu,
1392 const struct sys_reg_desc *r)
1393 {
1394 /*
1395 * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any
1396 * EL. Promote to RAZ/WI in order to guarantee consistency between
1397 * systems.
1398 */
1399 if (!kvm_supports_32bit_el0())
1400 return REG_RAZ | REG_USER_WI;
1401
1402 return id_visibility(vcpu, r);
1403 }
1404
1405 static unsigned int raz_visibility(const struct kvm_vcpu *vcpu,
1406 const struct sys_reg_desc *r)
1407 {
1408 return REG_RAZ;
1409 }
1410
1411 /* cpufeature ID register access trap handlers */
1412
1413 static bool access_id_reg(struct kvm_vcpu *vcpu,
1414 struct sys_reg_params *p,
1415 const struct sys_reg_desc *r)
1416 {
1417 if (p->is_write)
1418 return write_to_read_only(vcpu, p, r);
1419
1420 p->regval = read_id_reg(vcpu, r);
1421 if (vcpu_has_nv(vcpu))
1422 access_nested_id_reg(vcpu, p, r);
1423
1424 return true;
1425 }
1426
1427 /* Visibility overrides for SVE-specific control registers */
1428 static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
1429 const struct sys_reg_desc *rd)
1430 {
1431 if (vcpu_has_sve(vcpu))
1432 return 0;
1433
1434 return REG_HIDDEN;
1435 }
1436
1437 static u64 read_sanitised_id_aa64pfr0_el1(struct kvm_vcpu *vcpu,
1438 const struct sys_reg_desc *rd)
1439 {
1440 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1441
1442 if (!vcpu_has_sve(vcpu))
1443 val &= ~ID_AA64PFR0_EL1_SVE_MASK;
1444
1445 /*
1446 * The default is to expose CSV2 == 1 if the HW isn't affected.
1447 * Although this is a per-CPU feature, we make it global because
1448 * asymmetric systems are just a nuisance.
1449 *
1450 * Userspace can override this as long as it doesn't promise
1451 * the impossible.
1452 */
1453 if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED) {
1454 val &= ~ID_AA64PFR0_EL1_CSV2_MASK;
1455 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV2, IMP);
1456 }
1457 if (arm64_get_meltdown_state() == SPECTRE_UNAFFECTED) {
1458 val &= ~ID_AA64PFR0_EL1_CSV3_MASK;
1459 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, CSV3, IMP);
1460 }
1461
1462 if (kvm_vgic_global_state.type == VGIC_V3) {
1463 val &= ~ID_AA64PFR0_EL1_GIC_MASK;
1464 val |= SYS_FIELD_PREP_ENUM(ID_AA64PFR0_EL1, GIC, IMP);
1465 }
1466
1467 val &= ~ID_AA64PFR0_EL1_AMU_MASK;
1468
1469 return val;
1470 }
1471
1472 static u64 read_sanitised_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1473 const struct sys_reg_desc *rd)
1474 {
1475 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1476
1477 /* Limit debug to ARMv8.0 */
1478 val &= ~ID_AA64DFR0_EL1_DebugVer_MASK;
1479 val |= SYS_FIELD_PREP_ENUM(ID_AA64DFR0_EL1, DebugVer, IMP);
1480
1481 /*
1482 * Only initialize the PMU version if the vCPU was configured with one.
1483 */
1484 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1485 if (kvm_vcpu_has_pmu(vcpu))
1486 val |= SYS_FIELD_PREP(ID_AA64DFR0_EL1, PMUVer,
1487 kvm_arm_pmu_get_pmuver_limit());
1488
1489 /* Hide SPE from guests */
1490 val &= ~ID_AA64DFR0_EL1_PMSVer_MASK;
1491
1492 return val;
1493 }
1494
1495 static int set_id_aa64dfr0_el1(struct kvm_vcpu *vcpu,
1496 const struct sys_reg_desc *rd,
1497 u64 val)
1498 {
1499 u8 pmuver = SYS_FIELD_GET(ID_AA64DFR0_EL1, PMUVer, val);
1500
1501 /*
1502 * Prior to commit 3d0dba5764b9 ("KVM: arm64: PMU: Move the
1503 * ID_AA64DFR0_EL1.PMUver limit to VM creation"), KVM erroneously
1504 * exposed an IMP_DEF PMU to userspace and the guest on systems w/
1505 * non-architectural PMUs. Of course, PMUv3 is the only game in town for
1506 * PMU virtualization, so the IMP_DEF value was rather user-hostile.
1507 *
1508 * At minimum, we're on the hook to allow values that were given to
1509 * userspace by KVM. Cover our tracks here and replace the IMP_DEF value
1510 * with a more sensible NI. The value of an ID register changing under
1511 * the nose of the guest is unfortunate, but is certainly no more
1512 * surprising than an ill-guided PMU driver poking at impdef system
1513 * registers that end in an UNDEF...
1514 */
1515 if (pmuver == ID_AA64DFR0_EL1_PMUVer_IMP_DEF)
1516 val &= ~ID_AA64DFR0_EL1_PMUVer_MASK;
1517
1518 return set_id_reg(vcpu, rd, val);
1519 }
1520
1521 static u64 read_sanitised_id_dfr0_el1(struct kvm_vcpu *vcpu,
1522 const struct sys_reg_desc *rd)
1523 {
1524 u8 perfmon = pmuver_to_perfmon(kvm_arm_pmu_get_pmuver_limit());
1525 u64 val = read_sanitised_ftr_reg(SYS_ID_DFR0_EL1);
1526
1527 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1528 if (kvm_vcpu_has_pmu(vcpu))
1529 val |= SYS_FIELD_PREP(ID_DFR0_EL1, PerfMon, perfmon);
1530
1531 return val;
1532 }
1533
1534 static int set_id_dfr0_el1(struct kvm_vcpu *vcpu,
1535 const struct sys_reg_desc *rd,
1536 u64 val)
1537 {
1538 u8 perfmon = SYS_FIELD_GET(ID_DFR0_EL1, PerfMon, val);
1539
1540 if (perfmon == ID_DFR0_EL1_PerfMon_IMPDEF) {
1541 val &= ~ID_DFR0_EL1_PerfMon_MASK;
1542 perfmon = 0;
1543 }
1544
1545 /*
1546 * Allow DFR0_EL1.PerfMon to be set from userspace as long as
1547 * it doesn't promise more than what the HW gives us on the
1548 * AArch64 side (as everything is emulated with that), and
1549 * that this is a PMUv3.
1550 */
1551 if (perfmon != 0 && perfmon < ID_DFR0_EL1_PerfMon_PMUv3)
1552 return -EINVAL;
1553
1554 return set_id_reg(vcpu, rd, val);
1555 }
1556
1557 /*
1558 * cpufeature ID register user accessors
1559 *
1560 * For now, these registers are immutable for userspace, so no values
1561 * are stored, and for set_id_reg() we don't allow the effective value
1562 * to be changed.
1563 */
1564 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1565 u64 *val)
1566 {
1567 /*
1568 * Avoid locking if the VM has already started, as the ID registers are
1569 * guaranteed to be invariant at that point.
1570 */
1571 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1572 *val = read_id_reg(vcpu, rd);
1573 return 0;
1574 }
1575
1576 mutex_lock(&vcpu->kvm->arch.config_lock);
1577 *val = read_id_reg(vcpu, rd);
1578 mutex_unlock(&vcpu->kvm->arch.config_lock);
1579
1580 return 0;
1581 }
1582
1583 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1584 u64 val)
1585 {
1586 u32 id = reg_to_encoding(rd);
1587 int ret;
1588
1589 mutex_lock(&vcpu->kvm->arch.config_lock);
1590
1591 /*
1592 * Once the VM has started the ID registers are immutable. Reject any
1593 * write that does not match the final register value.
1594 */
1595 if (kvm_vm_has_ran_once(vcpu->kvm)) {
1596 if (val != read_id_reg(vcpu, rd))
1597 ret = -EBUSY;
1598 else
1599 ret = 0;
1600
1601 mutex_unlock(&vcpu->kvm->arch.config_lock);
1602 return ret;
1603 }
1604
1605 ret = arm64_check_features(vcpu, rd, val);
1606 if (!ret)
1607 IDREG(vcpu->kvm, id) = val;
1608
1609 mutex_unlock(&vcpu->kvm->arch.config_lock);
1610
1611 /*
1612 * arm64_check_features() returns -E2BIG to indicate the register's
1613 * feature set is a superset of the maximally-allowed register value.
1614 * While it would be nice to precisely describe this to userspace, the
1615 * existing UAPI for KVM_SET_ONE_REG has it that invalid register
1616 * writes return -EINVAL.
1617 */
1618 if (ret == -E2BIG)
1619 ret = -EINVAL;
1620 return ret;
1621 }
1622
1623 static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1624 u64 *val)
1625 {
1626 *val = 0;
1627 return 0;
1628 }
1629
1630 static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1631 u64 val)
1632 {
1633 return 0;
1634 }
1635
1636 static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1637 const struct sys_reg_desc *r)
1638 {
1639 if (p->is_write)
1640 return write_to_read_only(vcpu, p, r);
1641
1642 p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
1643 return true;
1644 }
1645
1646 static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1647 const struct sys_reg_desc *r)
1648 {
1649 if (p->is_write)
1650 return write_to_read_only(vcpu, p, r);
1651
1652 p->regval = __vcpu_sys_reg(vcpu, r->reg);
1653 return true;
1654 }
1655
1656 /*
1657 * Fabricate a CLIDR_EL1 value instead of using the real value, which can vary
1658 * by the physical CPU which the vcpu currently resides in.
1659 */
1660 static u64 reset_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
1661 {
1662 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1663 u64 clidr;
1664 u8 loc;
1665
1666 if ((ctr_el0 & CTR_EL0_IDC)) {
1667 /*
1668 * Data cache clean to the PoU is not required so LoUU and LoUIS
1669 * will not be set and a unified cache, which will be marked as
1670 * LoC, will be added.
1671 *
1672 * If not DIC, let the unified cache L2 so that an instruction
1673 * cache can be added as L1 later.
1674 */
1675 loc = (ctr_el0 & CTR_EL0_DIC) ? 1 : 2;
1676 clidr = CACHE_TYPE_UNIFIED << CLIDR_CTYPE_SHIFT(loc);
1677 } else {
1678 /*
1679 * Data cache clean to the PoU is required so let L1 have a data
1680 * cache and mark it as LoUU and LoUIS. As L1 has a data cache,
1681 * it can be marked as LoC too.
1682 */
1683 loc = 1;
1684 clidr = 1 << CLIDR_LOUU_SHIFT;
1685 clidr |= 1 << CLIDR_LOUIS_SHIFT;
1686 clidr |= CACHE_TYPE_DATA << CLIDR_CTYPE_SHIFT(1);
1687 }
1688
1689 /*
1690 * Instruction cache invalidation to the PoU is required so let L1 have
1691 * an instruction cache. If L1 already has a data cache, it will be
1692 * CACHE_TYPE_SEPARATE.
1693 */
1694 if (!(ctr_el0 & CTR_EL0_DIC))
1695 clidr |= CACHE_TYPE_INST << CLIDR_CTYPE_SHIFT(1);
1696
1697 clidr |= loc << CLIDR_LOC_SHIFT;
1698
1699 /*
1700 * Add tag cache unified to data cache. Allocation tags and data are
1701 * unified in a cache line so that it looks valid even if there is only
1702 * one cache line.
1703 */
1704 if (kvm_has_mte(vcpu->kvm))
1705 clidr |= 2 << CLIDR_TTYPE_SHIFT(loc);
1706
1707 __vcpu_sys_reg(vcpu, r->reg) = clidr;
1708
1709 return __vcpu_sys_reg(vcpu, r->reg);
1710 }
1711
1712 static int set_clidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1713 u64 val)
1714 {
1715 u64 ctr_el0 = read_sanitised_ftr_reg(SYS_CTR_EL0);
1716 u64 idc = !CLIDR_LOC(val) || (!CLIDR_LOUIS(val) && !CLIDR_LOUU(val));
1717
1718 if ((val & CLIDR_EL1_RES0) || (!(ctr_el0 & CTR_EL0_IDC) && idc))
1719 return -EINVAL;
1720
1721 __vcpu_sys_reg(vcpu, rd->reg) = val;
1722
1723 return 0;
1724 }
1725
1726 static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1727 const struct sys_reg_desc *r)
1728 {
1729 int reg = r->reg;
1730
1731 if (p->is_write)
1732 vcpu_write_sys_reg(vcpu, p->regval, reg);
1733 else
1734 p->regval = vcpu_read_sys_reg(vcpu, reg);
1735 return true;
1736 }
1737
1738 static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
1739 const struct sys_reg_desc *r)
1740 {
1741 u32 csselr;
1742
1743 if (p->is_write)
1744 return write_to_read_only(vcpu, p, r);
1745
1746 csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
1747 csselr &= CSSELR_EL1_Level | CSSELR_EL1_InD;
1748 if (csselr < CSSELR_MAX)
1749 p->regval = get_ccsidr(vcpu, csselr);
1750
1751 return true;
1752 }
1753
1754 static unsigned int mte_visibility(const struct kvm_vcpu *vcpu,
1755 const struct sys_reg_desc *rd)
1756 {
1757 if (kvm_has_mte(vcpu->kvm))
1758 return 0;
1759
1760 return REG_HIDDEN;
1761 }
1762
1763 #define MTE_REG(name) { \
1764 SYS_DESC(SYS_##name), \
1765 .access = undef_access, \
1766 .reset = reset_unknown, \
1767 .reg = name, \
1768 .visibility = mte_visibility, \
1769 }
1770
1771 static unsigned int el2_visibility(const struct kvm_vcpu *vcpu,
1772 const struct sys_reg_desc *rd)
1773 {
1774 if (vcpu_has_nv(vcpu))
1775 return 0;
1776
1777 return REG_HIDDEN;
1778 }
1779
1780 #define EL2_REG(name, acc, rst, v) { \
1781 SYS_DESC(SYS_##name), \
1782 .access = acc, \
1783 .reset = rst, \
1784 .reg = name, \
1785 .visibility = el2_visibility, \
1786 .val = v, \
1787 }
1788
1789 /*
1790 * EL{0,1}2 registers are the EL2 view on an EL0 or EL1 register when
1791 * HCR_EL2.E2H==1, and only in the sysreg table for convenience of
1792 * handling traps. Given that, they are always hidden from userspace.
1793 */
1794 static unsigned int elx2_visibility(const struct kvm_vcpu *vcpu,
1795 const struct sys_reg_desc *rd)
1796 {
1797 return REG_HIDDEN_USER;
1798 }
1799
1800 #define EL12_REG(name, acc, rst, v) { \
1801 SYS_DESC(SYS_##name##_EL12), \
1802 .access = acc, \
1803 .reset = rst, \
1804 .reg = name##_EL1, \
1805 .val = v, \
1806 .visibility = elx2_visibility, \
1807 }
1808
1809 /*
1810 * Since reset() callback and field val are not used for idregs, they will be
1811 * used for specific purposes for idregs.
1812 * The reset() would return KVM sanitised register value. The value would be the
1813 * same as the host kernel sanitised value if there is no KVM sanitisation.
1814 * The val would be used as a mask indicating writable fields for the idreg.
1815 * Only bits with 1 are writable from userspace. This mask might not be
1816 * necessary in the future whenever all ID registers are enabled as writable
1817 * from userspace.
1818 */
1819
1820 /* sys_reg_desc initialiser for known cpufeature ID registers */
1821 #define ID_SANITISED(name) { \
1822 SYS_DESC(SYS_##name), \
1823 .access = access_id_reg, \
1824 .get_user = get_id_reg, \
1825 .set_user = set_id_reg, \
1826 .visibility = id_visibility, \
1827 .reset = kvm_read_sanitised_id_reg, \
1828 .val = 0, \
1829 }
1830
1831 /* sys_reg_desc initialiser for known cpufeature ID registers */
1832 #define AA32_ID_SANITISED(name) { \
1833 SYS_DESC(SYS_##name), \
1834 .access = access_id_reg, \
1835 .get_user = get_id_reg, \
1836 .set_user = set_id_reg, \
1837 .visibility = aa32_id_visibility, \
1838 .reset = kvm_read_sanitised_id_reg, \
1839 .val = 0, \
1840 }
1841
1842 /*
1843 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1844 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1845 * (1 <= crm < 8, 0 <= Op2 < 8).
1846 */
1847 #define ID_UNALLOCATED(crm, op2) { \
1848 Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \
1849 .access = access_id_reg, \
1850 .get_user = get_id_reg, \
1851 .set_user = set_id_reg, \
1852 .visibility = raz_visibility, \
1853 .reset = kvm_read_sanitised_id_reg, \
1854 .val = 0, \
1855 }
1856
1857 /*
1858 * sys_reg_desc initialiser for known ID registers that we hide from guests.
1859 * For now, these are exposed just like unallocated ID regs: they appear
1860 * RAZ for the guest.
1861 */
1862 #define ID_HIDDEN(name) { \
1863 SYS_DESC(SYS_##name), \
1864 .access = access_id_reg, \
1865 .get_user = get_id_reg, \
1866 .set_user = set_id_reg, \
1867 .visibility = raz_visibility, \
1868 .reset = kvm_read_sanitised_id_reg, \
1869 .val = 0, \
1870 }
1871
1872 static bool access_sp_el1(struct kvm_vcpu *vcpu,
1873 struct sys_reg_params *p,
1874 const struct sys_reg_desc *r)
1875 {
1876 if (p->is_write)
1877 __vcpu_sys_reg(vcpu, SP_EL1) = p->regval;
1878 else
1879 p->regval = __vcpu_sys_reg(vcpu, SP_EL1);
1880
1881 return true;
1882 }
1883
1884 static bool access_elr(struct kvm_vcpu *vcpu,
1885 struct sys_reg_params *p,
1886 const struct sys_reg_desc *r)
1887 {
1888 if (p->is_write)
1889 vcpu_write_sys_reg(vcpu, p->regval, ELR_EL1);
1890 else
1891 p->regval = vcpu_read_sys_reg(vcpu, ELR_EL1);
1892
1893 return true;
1894 }
1895
1896 static bool access_spsr(struct kvm_vcpu *vcpu,
1897 struct sys_reg_params *p,
1898 const struct sys_reg_desc *r)
1899 {
1900 if (p->is_write)
1901 __vcpu_sys_reg(vcpu, SPSR_EL1) = p->regval;
1902 else
1903 p->regval = __vcpu_sys_reg(vcpu, SPSR_EL1);
1904
1905 return true;
1906 }
1907
1908 /*
1909 * Architected system registers.
1910 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1911 *
1912 * Debug handling: We do trap most, if not all debug related system
1913 * registers. The implementation is good enough to ensure that a guest
1914 * can use these with minimal performance degradation. The drawback is
1915 * that we don't implement any of the external debug architecture.
1916 * This should be revisited if we ever encounter a more demanding
1917 * guest...
1918 */
1919 static const struct sys_reg_desc sys_reg_descs[] = {
1920 { SYS_DESC(SYS_DC_ISW), access_dcsw },
1921 { SYS_DESC(SYS_DC_IGSW), access_dcgsw },
1922 { SYS_DESC(SYS_DC_IGDSW), access_dcgsw },
1923 { SYS_DESC(SYS_DC_CSW), access_dcsw },
1924 { SYS_DESC(SYS_DC_CGSW), access_dcgsw },
1925 { SYS_DESC(SYS_DC_CGDSW), access_dcgsw },
1926 { SYS_DESC(SYS_DC_CISW), access_dcsw },
1927 { SYS_DESC(SYS_DC_CIGSW), access_dcgsw },
1928 { SYS_DESC(SYS_DC_CIGDSW), access_dcgsw },
1929
1930 DBG_BCR_BVR_WCR_WVR_EL1(0),
1931 DBG_BCR_BVR_WCR_WVR_EL1(1),
1932 { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1933 { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1934 DBG_BCR_BVR_WCR_WVR_EL1(2),
1935 DBG_BCR_BVR_WCR_WVR_EL1(3),
1936 DBG_BCR_BVR_WCR_WVR_EL1(4),
1937 DBG_BCR_BVR_WCR_WVR_EL1(5),
1938 DBG_BCR_BVR_WCR_WVR_EL1(6),
1939 DBG_BCR_BVR_WCR_WVR_EL1(7),
1940 DBG_BCR_BVR_WCR_WVR_EL1(8),
1941 DBG_BCR_BVR_WCR_WVR_EL1(9),
1942 DBG_BCR_BVR_WCR_WVR_EL1(10),
1943 DBG_BCR_BVR_WCR_WVR_EL1(11),
1944 DBG_BCR_BVR_WCR_WVR_EL1(12),
1945 DBG_BCR_BVR_WCR_WVR_EL1(13),
1946 DBG_BCR_BVR_WCR_WVR_EL1(14),
1947 DBG_BCR_BVR_WCR_WVR_EL1(15),
1948
1949 { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1950 { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 },
1951 { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1,
1952 OSLSR_EL1_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, },
1953 { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1954 { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1955 { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1956 { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1957 { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1958
1959 { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1960 { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1961 // DBGDTR[TR]X_EL0 share the same encoding
1962 { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1963
1964 { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1965
1966 { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1967
1968 /*
1969 * ID regs: all ID_SANITISED() entries here must have corresponding
1970 * entries in arm64_ftr_regs[].
1971 */
1972
1973 /* AArch64 mappings of the AArch32 ID registers */
1974 /* CRm=1 */
1975 AA32_ID_SANITISED(ID_PFR0_EL1),
1976 AA32_ID_SANITISED(ID_PFR1_EL1),
1977 { SYS_DESC(SYS_ID_DFR0_EL1),
1978 .access = access_id_reg,
1979 .get_user = get_id_reg,
1980 .set_user = set_id_dfr0_el1,
1981 .visibility = aa32_id_visibility,
1982 .reset = read_sanitised_id_dfr0_el1,
1983 .val = ID_DFR0_EL1_PerfMon_MASK, },
1984 ID_HIDDEN(ID_AFR0_EL1),
1985 AA32_ID_SANITISED(ID_MMFR0_EL1),
1986 AA32_ID_SANITISED(ID_MMFR1_EL1),
1987 AA32_ID_SANITISED(ID_MMFR2_EL1),
1988 AA32_ID_SANITISED(ID_MMFR3_EL1),
1989
1990 /* CRm=2 */
1991 AA32_ID_SANITISED(ID_ISAR0_EL1),
1992 AA32_ID_SANITISED(ID_ISAR1_EL1),
1993 AA32_ID_SANITISED(ID_ISAR2_EL1),
1994 AA32_ID_SANITISED(ID_ISAR3_EL1),
1995 AA32_ID_SANITISED(ID_ISAR4_EL1),
1996 AA32_ID_SANITISED(ID_ISAR5_EL1),
1997 AA32_ID_SANITISED(ID_MMFR4_EL1),
1998 AA32_ID_SANITISED(ID_ISAR6_EL1),
1999
2000 /* CRm=3 */
2001 AA32_ID_SANITISED(MVFR0_EL1),
2002 AA32_ID_SANITISED(MVFR1_EL1),
2003 AA32_ID_SANITISED(MVFR2_EL1),
2004 ID_UNALLOCATED(3,3),
2005 AA32_ID_SANITISED(ID_PFR2_EL1),
2006 ID_HIDDEN(ID_DFR1_EL1),
2007 AA32_ID_SANITISED(ID_MMFR5_EL1),
2008 ID_UNALLOCATED(3,7),
2009
2010 /* AArch64 ID registers */
2011 /* CRm=4 */
2012 { SYS_DESC(SYS_ID_AA64PFR0_EL1),
2013 .access = access_id_reg,
2014 .get_user = get_id_reg,
2015 .set_user = set_id_reg,
2016 .reset = read_sanitised_id_aa64pfr0_el1,
2017 .val = ID_AA64PFR0_EL1_CSV2_MASK | ID_AA64PFR0_EL1_CSV3_MASK, },
2018 ID_SANITISED(ID_AA64PFR1_EL1),
2019 ID_UNALLOCATED(4,2),
2020 ID_UNALLOCATED(4,3),
2021 ID_SANITISED(ID_AA64ZFR0_EL1),
2022 ID_HIDDEN(ID_AA64SMFR0_EL1),
2023 ID_UNALLOCATED(4,6),
2024 ID_UNALLOCATED(4,7),
2025
2026 /* CRm=5 */
2027 { SYS_DESC(SYS_ID_AA64DFR0_EL1),
2028 .access = access_id_reg,
2029 .get_user = get_id_reg,
2030 .set_user = set_id_aa64dfr0_el1,
2031 .reset = read_sanitised_id_aa64dfr0_el1,
2032 .val = ID_AA64DFR0_EL1_PMUVer_MASK, },
2033 ID_SANITISED(ID_AA64DFR1_EL1),
2034 ID_UNALLOCATED(5,2),
2035 ID_UNALLOCATED(5,3),
2036 ID_HIDDEN(ID_AA64AFR0_EL1),
2037 ID_HIDDEN(ID_AA64AFR1_EL1),
2038 ID_UNALLOCATED(5,6),
2039 ID_UNALLOCATED(5,7),
2040
2041 /* CRm=6 */
2042 ID_SANITISED(ID_AA64ISAR0_EL1),
2043 ID_SANITISED(ID_AA64ISAR1_EL1),
2044 ID_SANITISED(ID_AA64ISAR2_EL1),
2045 ID_UNALLOCATED(6,3),
2046 ID_UNALLOCATED(6,4),
2047 ID_UNALLOCATED(6,5),
2048 ID_UNALLOCATED(6,6),
2049 ID_UNALLOCATED(6,7),
2050
2051 /* CRm=7 */
2052 ID_SANITISED(ID_AA64MMFR0_EL1),
2053 ID_SANITISED(ID_AA64MMFR1_EL1),
2054 ID_SANITISED(ID_AA64MMFR2_EL1),
2055 ID_SANITISED(ID_AA64MMFR3_EL1),
2056 ID_UNALLOCATED(7,4),
2057 ID_UNALLOCATED(7,5),
2058 ID_UNALLOCATED(7,6),
2059 ID_UNALLOCATED(7,7),
2060
2061 { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
2062 { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 },
2063 { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
2064
2065 MTE_REG(RGSR_EL1),
2066 MTE_REG(GCR_EL1),
2067
2068 { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
2069 { SYS_DESC(SYS_TRFCR_EL1), undef_access },
2070 { SYS_DESC(SYS_SMPRI_EL1), undef_access },
2071 { SYS_DESC(SYS_SMCR_EL1), undef_access },
2072 { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
2073 { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
2074 { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
2075 { SYS_DESC(SYS_TCR2_EL1), access_vm_reg, reset_val, TCR2_EL1, 0 },
2076
2077 PTRAUTH_KEY(APIA),
2078 PTRAUTH_KEY(APIB),
2079 PTRAUTH_KEY(APDA),
2080 PTRAUTH_KEY(APDB),
2081 PTRAUTH_KEY(APGA),
2082
2083 { SYS_DESC(SYS_SPSR_EL1), access_spsr},
2084 { SYS_DESC(SYS_ELR_EL1), access_elr},
2085
2086 { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
2087 { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
2088 { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
2089
2090 { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
2091 { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
2092 { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
2093 { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
2094 { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
2095 { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
2096 { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
2097 { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
2098
2099 MTE_REG(TFSR_EL1),
2100 MTE_REG(TFSRE0_EL1),
2101
2102 { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
2103 { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
2104
2105 { SYS_DESC(SYS_PMSCR_EL1), undef_access },
2106 { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access },
2107 { SYS_DESC(SYS_PMSICR_EL1), undef_access },
2108 { SYS_DESC(SYS_PMSIRR_EL1), undef_access },
2109 { SYS_DESC(SYS_PMSFCR_EL1), undef_access },
2110 { SYS_DESC(SYS_PMSEVFR_EL1), undef_access },
2111 { SYS_DESC(SYS_PMSLATFR_EL1), undef_access },
2112 { SYS_DESC(SYS_PMSIDR_EL1), undef_access },
2113 { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access },
2114 { SYS_DESC(SYS_PMBPTR_EL1), undef_access },
2115 { SYS_DESC(SYS_PMBSR_EL1), undef_access },
2116 /* PMBIDR_EL1 is not trapped */
2117
2118 { PMU_SYS_REG(PMINTENSET_EL1),
2119 .access = access_pminten, .reg = PMINTENSET_EL1 },
2120 { PMU_SYS_REG(PMINTENCLR_EL1),
2121 .access = access_pminten, .reg = PMINTENSET_EL1 },
2122 { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi },
2123
2124 { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
2125 { SYS_DESC(SYS_PIRE0_EL1), access_vm_reg, reset_unknown, PIRE0_EL1 },
2126 { SYS_DESC(SYS_PIR_EL1), access_vm_reg, reset_unknown, PIR_EL1 },
2127 { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
2128
2129 { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
2130 { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
2131 { SYS_DESC(SYS_LORN_EL1), trap_loregion },
2132 { SYS_DESC(SYS_LORC_EL1), trap_loregion },
2133 { SYS_DESC(SYS_LORID_EL1), trap_loregion },
2134
2135 { SYS_DESC(SYS_VBAR_EL1), access_rw, reset_val, VBAR_EL1, 0 },
2136 { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
2137
2138 { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
2139 { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
2140 { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
2141 { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
2142 { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
2143 { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
2144 { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
2145 { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
2146 { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
2147 { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
2148 { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
2149 { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
2150
2151 { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
2152 { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
2153
2154 { SYS_DESC(SYS_ACCDATA_EL1), undef_access },
2155
2156 { SYS_DESC(SYS_SCXTNUM_EL1), undef_access },
2157
2158 { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
2159
2160 { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
2161 { SYS_DESC(SYS_CLIDR_EL1), access_clidr, reset_clidr, CLIDR_EL1,
2162 .set_user = set_clidr },
2163 { SYS_DESC(SYS_CCSIDR2_EL1), undef_access },
2164 { SYS_DESC(SYS_SMIDR_EL1), undef_access },
2165 { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
2166 { SYS_DESC(SYS_CTR_EL0), access_ctr },
2167 { SYS_DESC(SYS_SVCR), undef_access },
2168
2169 { PMU_SYS_REG(PMCR_EL0), .access = access_pmcr,
2170 .reset = reset_pmcr, .reg = PMCR_EL0 },
2171 { PMU_SYS_REG(PMCNTENSET_EL0),
2172 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2173 { PMU_SYS_REG(PMCNTENCLR_EL0),
2174 .access = access_pmcnten, .reg = PMCNTENSET_EL0 },
2175 { PMU_SYS_REG(PMOVSCLR_EL0),
2176 .access = access_pmovs, .reg = PMOVSSET_EL0 },
2177 /*
2178 * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was
2179 * previously (and pointlessly) advertised in the past...
2180 */
2181 { PMU_SYS_REG(PMSWINC_EL0),
2182 .get_user = get_raz_reg, .set_user = set_wi_reg,
2183 .access = access_pmswinc, .reset = NULL },
2184 { PMU_SYS_REG(PMSELR_EL0),
2185 .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 },
2186 { PMU_SYS_REG(PMCEID0_EL0),
2187 .access = access_pmceid, .reset = NULL },
2188 { PMU_SYS_REG(PMCEID1_EL0),
2189 .access = access_pmceid, .reset = NULL },
2190 { PMU_SYS_REG(PMCCNTR_EL0),
2191 .access = access_pmu_evcntr, .reset = reset_unknown,
2192 .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr},
2193 { PMU_SYS_REG(PMXEVTYPER_EL0),
2194 .access = access_pmu_evtyper, .reset = NULL },
2195 { PMU_SYS_REG(PMXEVCNTR_EL0),
2196 .access = access_pmu_evcntr, .reset = NULL },
2197 /*
2198 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
2199 * in 32bit mode. Here we choose to reset it as zero for consistency.
2200 */
2201 { PMU_SYS_REG(PMUSERENR_EL0), .access = access_pmuserenr,
2202 .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 },
2203 { PMU_SYS_REG(PMOVSSET_EL0),
2204 .access = access_pmovs, .reg = PMOVSSET_EL0 },
2205
2206 { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
2207 { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
2208 { SYS_DESC(SYS_TPIDR2_EL0), undef_access },
2209
2210 { SYS_DESC(SYS_SCXTNUM_EL0), undef_access },
2211
2212 { SYS_DESC(SYS_AMCR_EL0), undef_access },
2213 { SYS_DESC(SYS_AMCFGR_EL0), undef_access },
2214 { SYS_DESC(SYS_AMCGCR_EL0), undef_access },
2215 { SYS_DESC(SYS_AMUSERENR_EL0), undef_access },
2216 { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access },
2217 { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access },
2218 { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access },
2219 { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access },
2220 AMU_AMEVCNTR0_EL0(0),
2221 AMU_AMEVCNTR0_EL0(1),
2222 AMU_AMEVCNTR0_EL0(2),
2223 AMU_AMEVCNTR0_EL0(3),
2224 AMU_AMEVCNTR0_EL0(4),
2225 AMU_AMEVCNTR0_EL0(5),
2226 AMU_AMEVCNTR0_EL0(6),
2227 AMU_AMEVCNTR0_EL0(7),
2228 AMU_AMEVCNTR0_EL0(8),
2229 AMU_AMEVCNTR0_EL0(9),
2230 AMU_AMEVCNTR0_EL0(10),
2231 AMU_AMEVCNTR0_EL0(11),
2232 AMU_AMEVCNTR0_EL0(12),
2233 AMU_AMEVCNTR0_EL0(13),
2234 AMU_AMEVCNTR0_EL0(14),
2235 AMU_AMEVCNTR0_EL0(15),
2236 AMU_AMEVTYPER0_EL0(0),
2237 AMU_AMEVTYPER0_EL0(1),
2238 AMU_AMEVTYPER0_EL0(2),
2239 AMU_AMEVTYPER0_EL0(3),
2240 AMU_AMEVTYPER0_EL0(4),
2241 AMU_AMEVTYPER0_EL0(5),
2242 AMU_AMEVTYPER0_EL0(6),
2243 AMU_AMEVTYPER0_EL0(7),
2244 AMU_AMEVTYPER0_EL0(8),
2245 AMU_AMEVTYPER0_EL0(9),
2246 AMU_AMEVTYPER0_EL0(10),
2247 AMU_AMEVTYPER0_EL0(11),
2248 AMU_AMEVTYPER0_EL0(12),
2249 AMU_AMEVTYPER0_EL0(13),
2250 AMU_AMEVTYPER0_EL0(14),
2251 AMU_AMEVTYPER0_EL0(15),
2252 AMU_AMEVCNTR1_EL0(0),
2253 AMU_AMEVCNTR1_EL0(1),
2254 AMU_AMEVCNTR1_EL0(2),
2255 AMU_AMEVCNTR1_EL0(3),
2256 AMU_AMEVCNTR1_EL0(4),
2257 AMU_AMEVCNTR1_EL0(5),
2258 AMU_AMEVCNTR1_EL0(6),
2259 AMU_AMEVCNTR1_EL0(7),
2260 AMU_AMEVCNTR1_EL0(8),
2261 AMU_AMEVCNTR1_EL0(9),
2262 AMU_AMEVCNTR1_EL0(10),
2263 AMU_AMEVCNTR1_EL0(11),
2264 AMU_AMEVCNTR1_EL0(12),
2265 AMU_AMEVCNTR1_EL0(13),
2266 AMU_AMEVCNTR1_EL0(14),
2267 AMU_AMEVCNTR1_EL0(15),
2268 AMU_AMEVTYPER1_EL0(0),
2269 AMU_AMEVTYPER1_EL0(1),
2270 AMU_AMEVTYPER1_EL0(2),
2271 AMU_AMEVTYPER1_EL0(3),
2272 AMU_AMEVTYPER1_EL0(4),
2273 AMU_AMEVTYPER1_EL0(5),
2274 AMU_AMEVTYPER1_EL0(6),
2275 AMU_AMEVTYPER1_EL0(7),
2276 AMU_AMEVTYPER1_EL0(8),
2277 AMU_AMEVTYPER1_EL0(9),
2278 AMU_AMEVTYPER1_EL0(10),
2279 AMU_AMEVTYPER1_EL0(11),
2280 AMU_AMEVTYPER1_EL0(12),
2281 AMU_AMEVTYPER1_EL0(13),
2282 AMU_AMEVTYPER1_EL0(14),
2283 AMU_AMEVTYPER1_EL0(15),
2284
2285 { SYS_DESC(SYS_CNTPCT_EL0), access_arch_timer },
2286 { SYS_DESC(SYS_CNTPCTSS_EL0), access_arch_timer },
2287 { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
2288 { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
2289 { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },
2290
2291 /* PMEVCNTRn_EL0 */
2292 PMU_PMEVCNTR_EL0(0),
2293 PMU_PMEVCNTR_EL0(1),
2294 PMU_PMEVCNTR_EL0(2),
2295 PMU_PMEVCNTR_EL0(3),
2296 PMU_PMEVCNTR_EL0(4),
2297 PMU_PMEVCNTR_EL0(5),
2298 PMU_PMEVCNTR_EL0(6),
2299 PMU_PMEVCNTR_EL0(7),
2300 PMU_PMEVCNTR_EL0(8),
2301 PMU_PMEVCNTR_EL0(9),
2302 PMU_PMEVCNTR_EL0(10),
2303 PMU_PMEVCNTR_EL0(11),
2304 PMU_PMEVCNTR_EL0(12),
2305 PMU_PMEVCNTR_EL0(13),
2306 PMU_PMEVCNTR_EL0(14),
2307 PMU_PMEVCNTR_EL0(15),
2308 PMU_PMEVCNTR_EL0(16),
2309 PMU_PMEVCNTR_EL0(17),
2310 PMU_PMEVCNTR_EL0(18),
2311 PMU_PMEVCNTR_EL0(19),
2312 PMU_PMEVCNTR_EL0(20),
2313 PMU_PMEVCNTR_EL0(21),
2314 PMU_PMEVCNTR_EL0(22),
2315 PMU_PMEVCNTR_EL0(23),
2316 PMU_PMEVCNTR_EL0(24),
2317 PMU_PMEVCNTR_EL0(25),
2318 PMU_PMEVCNTR_EL0(26),
2319 PMU_PMEVCNTR_EL0(27),
2320 PMU_PMEVCNTR_EL0(28),
2321 PMU_PMEVCNTR_EL0(29),
2322 PMU_PMEVCNTR_EL0(30),
2323 /* PMEVTYPERn_EL0 */
2324 PMU_PMEVTYPER_EL0(0),
2325 PMU_PMEVTYPER_EL0(1),
2326 PMU_PMEVTYPER_EL0(2),
2327 PMU_PMEVTYPER_EL0(3),
2328 PMU_PMEVTYPER_EL0(4),
2329 PMU_PMEVTYPER_EL0(5),
2330 PMU_PMEVTYPER_EL0(6),
2331 PMU_PMEVTYPER_EL0(7),
2332 PMU_PMEVTYPER_EL0(8),
2333 PMU_PMEVTYPER_EL0(9),
2334 PMU_PMEVTYPER_EL0(10),
2335 PMU_PMEVTYPER_EL0(11),
2336 PMU_PMEVTYPER_EL0(12),
2337 PMU_PMEVTYPER_EL0(13),
2338 PMU_PMEVTYPER_EL0(14),
2339 PMU_PMEVTYPER_EL0(15),
2340 PMU_PMEVTYPER_EL0(16),
2341 PMU_PMEVTYPER_EL0(17),
2342 PMU_PMEVTYPER_EL0(18),
2343 PMU_PMEVTYPER_EL0(19),
2344 PMU_PMEVTYPER_EL0(20),
2345 PMU_PMEVTYPER_EL0(21),
2346 PMU_PMEVTYPER_EL0(22),
2347 PMU_PMEVTYPER_EL0(23),
2348 PMU_PMEVTYPER_EL0(24),
2349 PMU_PMEVTYPER_EL0(25),
2350 PMU_PMEVTYPER_EL0(26),
2351 PMU_PMEVTYPER_EL0(27),
2352 PMU_PMEVTYPER_EL0(28),
2353 PMU_PMEVTYPER_EL0(29),
2354 PMU_PMEVTYPER_EL0(30),
2355 /*
2356 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
2357 * in 32bit mode. Here we choose to reset it as zero for consistency.
2358 */
2359 { PMU_SYS_REG(PMCCFILTR_EL0), .access = access_pmu_evtyper,
2360 .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 },
2361
2362 EL2_REG(VPIDR_EL2, access_rw, reset_unknown, 0),
2363 EL2_REG(VMPIDR_EL2, access_rw, reset_unknown, 0),
2364 EL2_REG(SCTLR_EL2, access_rw, reset_val, SCTLR_EL2_RES1),
2365 EL2_REG(ACTLR_EL2, access_rw, reset_val, 0),
2366 EL2_REG(HCR_EL2, access_rw, reset_val, 0),
2367 EL2_REG(MDCR_EL2, access_rw, reset_val, 0),
2368 EL2_REG(CPTR_EL2, access_rw, reset_val, CPTR_NVHE_EL2_RES1),
2369 EL2_REG(HSTR_EL2, access_rw, reset_val, 0),
2370 EL2_REG(HFGRTR_EL2, access_rw, reset_val, 0),
2371 EL2_REG(HFGWTR_EL2, access_rw, reset_val, 0),
2372 EL2_REG(HFGITR_EL2, access_rw, reset_val, 0),
2373 EL2_REG(HACR_EL2, access_rw, reset_val, 0),
2374
2375 EL2_REG(HCRX_EL2, access_rw, reset_val, 0),
2376
2377 EL2_REG(TTBR0_EL2, access_rw, reset_val, 0),
2378 EL2_REG(TTBR1_EL2, access_rw, reset_val, 0),
2379 EL2_REG(TCR_EL2, access_rw, reset_val, TCR_EL2_RES1),
2380 EL2_REG(VTTBR_EL2, access_rw, reset_val, 0),
2381 EL2_REG(VTCR_EL2, access_rw, reset_val, 0),
2382
2383 { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
2384 EL2_REG(HDFGRTR_EL2, access_rw, reset_val, 0),
2385 EL2_REG(HDFGWTR_EL2, access_rw, reset_val, 0),
2386 EL2_REG(SPSR_EL2, access_rw, reset_val, 0),
2387 EL2_REG(ELR_EL2, access_rw, reset_val, 0),
2388 { SYS_DESC(SYS_SP_EL1), access_sp_el1},
2389
2390 { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
2391 EL2_REG(AFSR0_EL2, access_rw, reset_val, 0),
2392 EL2_REG(AFSR1_EL2, access_rw, reset_val, 0),
2393 EL2_REG(ESR_EL2, access_rw, reset_val, 0),
2394 { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
2395
2396 EL2_REG(FAR_EL2, access_rw, reset_val, 0),
2397 EL2_REG(HPFAR_EL2, access_rw, reset_val, 0),
2398
2399 EL2_REG(MAIR_EL2, access_rw, reset_val, 0),
2400 EL2_REG(AMAIR_EL2, access_rw, reset_val, 0),
2401
2402 EL2_REG(VBAR_EL2, access_rw, reset_val, 0),
2403 EL2_REG(RVBAR_EL2, access_rw, reset_val, 0),
2404 { SYS_DESC(SYS_RMR_EL2), trap_undef },
2405
2406 EL2_REG(CONTEXTIDR_EL2, access_rw, reset_val, 0),
2407 EL2_REG(TPIDR_EL2, access_rw, reset_val, 0),
2408
2409 EL2_REG(CNTVOFF_EL2, access_rw, reset_val, 0),
2410 EL2_REG(CNTHCTL_EL2, access_rw, reset_val, 0),
2411
2412 EL12_REG(SCTLR, access_vm_reg, reset_val, 0x00C50078),
2413 EL12_REG(CPACR, access_rw, reset_val, 0),
2414 EL12_REG(TTBR0, access_vm_reg, reset_unknown, 0),
2415 EL12_REG(TTBR1, access_vm_reg, reset_unknown, 0),
2416 EL12_REG(TCR, access_vm_reg, reset_val, 0),
2417 { SYS_DESC(SYS_SPSR_EL12), access_spsr},
2418 { SYS_DESC(SYS_ELR_EL12), access_elr},
2419 EL12_REG(AFSR0, access_vm_reg, reset_unknown, 0),
2420 EL12_REG(AFSR1, access_vm_reg, reset_unknown, 0),
2421 EL12_REG(ESR, access_vm_reg, reset_unknown, 0),
2422 EL12_REG(FAR, access_vm_reg, reset_unknown, 0),
2423 EL12_REG(MAIR, access_vm_reg, reset_unknown, 0),
2424 EL12_REG(AMAIR, access_vm_reg, reset_amair_el1, 0),
2425 EL12_REG(VBAR, access_rw, reset_val, 0),
2426 EL12_REG(CONTEXTIDR, access_vm_reg, reset_val, 0),
2427 EL12_REG(CNTKCTL, access_rw, reset_val, 0),
2428
2429 EL2_REG(SP_EL2, NULL, reset_unknown, 0),
2430 };
2431
2432 static const struct sys_reg_desc *first_idreg;
2433
2434 static bool trap_dbgdidr(struct kvm_vcpu *vcpu,
2435 struct sys_reg_params *p,
2436 const struct sys_reg_desc *r)
2437 {
2438 if (p->is_write) {
2439 return ignore_write(vcpu, p);
2440 } else {
2441 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
2442 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2443 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT);
2444
2445 p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) |
2446 (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) |
2447 (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20)
2448 | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12));
2449 return true;
2450 }
2451 }
2452
2453 /*
2454 * AArch32 debug register mappings
2455 *
2456 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
2457 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
2458 *
2459 * None of the other registers share their location, so treat them as
2460 * if they were 64bit.
2461 */
2462 #define DBG_BCR_BVR_WCR_WVR(n) \
2463 /* DBGBVRn */ \
2464 { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
2465 /* DBGBCRn */ \
2466 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
2467 /* DBGWVRn */ \
2468 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
2469 /* DBGWCRn */ \
2470 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
2471
2472 #define DBGBXVR(n) \
2473 { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n }
2474
2475 /*
2476 * Trapped cp14 registers. We generally ignore most of the external
2477 * debug, on the principle that they don't really make sense to a
2478 * guest. Revisit this one day, would this principle change.
2479 */
2480 static const struct sys_reg_desc cp14_regs[] = {
2481 /* DBGDIDR */
2482 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr },
2483 /* DBGDTRRXext */
2484 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
2485
2486 DBG_BCR_BVR_WCR_WVR(0),
2487 /* DBGDSCRint */
2488 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
2489 DBG_BCR_BVR_WCR_WVR(1),
2490 /* DBGDCCINT */
2491 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 },
2492 /* DBGDSCRext */
2493 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 },
2494 DBG_BCR_BVR_WCR_WVR(2),
2495 /* DBGDTR[RT]Xint */
2496 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
2497 /* DBGDTR[RT]Xext */
2498 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
2499 DBG_BCR_BVR_WCR_WVR(3),
2500 DBG_BCR_BVR_WCR_WVR(4),
2501 DBG_BCR_BVR_WCR_WVR(5),
2502 /* DBGWFAR */
2503 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
2504 /* DBGOSECCR */
2505 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
2506 DBG_BCR_BVR_WCR_WVR(6),
2507 /* DBGVCR */
2508 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 },
2509 DBG_BCR_BVR_WCR_WVR(7),
2510 DBG_BCR_BVR_WCR_WVR(8),
2511 DBG_BCR_BVR_WCR_WVR(9),
2512 DBG_BCR_BVR_WCR_WVR(10),
2513 DBG_BCR_BVR_WCR_WVR(11),
2514 DBG_BCR_BVR_WCR_WVR(12),
2515 DBG_BCR_BVR_WCR_WVR(13),
2516 DBG_BCR_BVR_WCR_WVR(14),
2517 DBG_BCR_BVR_WCR_WVR(15),
2518
2519 /* DBGDRAR (32bit) */
2520 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
2521
2522 DBGBXVR(0),
2523 /* DBGOSLAR */
2524 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 },
2525 DBGBXVR(1),
2526 /* DBGOSLSR */
2527 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 },
2528 DBGBXVR(2),
2529 DBGBXVR(3),
2530 /* DBGOSDLR */
2531 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
2532 DBGBXVR(4),
2533 /* DBGPRCR */
2534 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
2535 DBGBXVR(5),
2536 DBGBXVR(6),
2537 DBGBXVR(7),
2538 DBGBXVR(8),
2539 DBGBXVR(9),
2540 DBGBXVR(10),
2541 DBGBXVR(11),
2542 DBGBXVR(12),
2543 DBGBXVR(13),
2544 DBGBXVR(14),
2545 DBGBXVR(15),
2546
2547 /* DBGDSAR (32bit) */
2548 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
2549
2550 /* DBGDEVID2 */
2551 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
2552 /* DBGDEVID1 */
2553 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
2554 /* DBGDEVID */
2555 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
2556 /* DBGCLAIMSET */
2557 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
2558 /* DBGCLAIMCLR */
2559 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
2560 /* DBGAUTHSTATUS */
2561 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
2562 };
2563
2564 /* Trapped cp14 64bit registers */
2565 static const struct sys_reg_desc cp14_64_regs[] = {
2566 /* DBGDRAR (64bit) */
2567 { Op1( 0), CRm( 1), .access = trap_raz_wi },
2568
2569 /* DBGDSAR (64bit) */
2570 { Op1( 0), CRm( 2), .access = trap_raz_wi },
2571 };
2572
2573 #define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \
2574 AA32(_map), \
2575 Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \
2576 .visibility = pmu_visibility
2577
2578 /* Macro to expand the PMEVCNTRn register */
2579 #define PMU_PMEVCNTR(n) \
2580 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2581 (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2582 .access = access_pmu_evcntr }
2583
2584 /* Macro to expand the PMEVTYPERn register */
2585 #define PMU_PMEVTYPER(n) \
2586 { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \
2587 (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \
2588 .access = access_pmu_evtyper }
2589 /*
2590 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
2591 * depending on the way they are accessed (as a 32bit or a 64bit
2592 * register).
2593 */
2594 static const struct sys_reg_desc cp15_regs[] = {
2595 { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
2596 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 },
2597 /* ACTLR */
2598 { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 },
2599 /* ACTLR2 */
2600 { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 },
2601 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2602 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 },
2603 /* TTBCR */
2604 { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 },
2605 /* TTBCR2 */
2606 { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 },
2607 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 },
2608 /* DFSR */
2609 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 },
2610 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 },
2611 /* ADFSR */
2612 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 },
2613 /* AIFSR */
2614 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 },
2615 /* DFAR */
2616 { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 },
2617 /* IFAR */
2618 { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 },
2619
2620 /*
2621 * DC{C,I,CI}SW operations:
2622 */
2623 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
2624 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
2625 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
2626
2627 /* PMU */
2628 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr },
2629 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten },
2630 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten },
2631 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs },
2632 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc },
2633 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr },
2634 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid },
2635 { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid },
2636 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr },
2637 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper },
2638 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr },
2639 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr },
2640 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten },
2641 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten },
2642 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs },
2643 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid },
2644 { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid },
2645 /* PMMIR */
2646 { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi },
2647
2648 /* PRRR/MAIR0 */
2649 { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 },
2650 /* NMRR/MAIR1 */
2651 { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 },
2652 /* AMAIR0 */
2653 { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 },
2654 /* AMAIR1 */
2655 { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 },
2656
2657 /* ICC_SRE */
2658 { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
2659
2660 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 },
2661
2662 /* Arch Tmers */
2663 { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
2664 { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },
2665
2666 /* PMEVCNTRn */
2667 PMU_PMEVCNTR(0),
2668 PMU_PMEVCNTR(1),
2669 PMU_PMEVCNTR(2),
2670 PMU_PMEVCNTR(3),
2671 PMU_PMEVCNTR(4),
2672 PMU_PMEVCNTR(5),
2673 PMU_PMEVCNTR(6),
2674 PMU_PMEVCNTR(7),
2675 PMU_PMEVCNTR(8),
2676 PMU_PMEVCNTR(9),
2677 PMU_PMEVCNTR(10),
2678 PMU_PMEVCNTR(11),
2679 PMU_PMEVCNTR(12),
2680 PMU_PMEVCNTR(13),
2681 PMU_PMEVCNTR(14),
2682 PMU_PMEVCNTR(15),
2683 PMU_PMEVCNTR(16),
2684 PMU_PMEVCNTR(17),
2685 PMU_PMEVCNTR(18),
2686 PMU_PMEVCNTR(19),
2687 PMU_PMEVCNTR(20),
2688 PMU_PMEVCNTR(21),
2689 PMU_PMEVCNTR(22),
2690 PMU_PMEVCNTR(23),
2691 PMU_PMEVCNTR(24),
2692 PMU_PMEVCNTR(25),
2693 PMU_PMEVCNTR(26),
2694 PMU_PMEVCNTR(27),
2695 PMU_PMEVCNTR(28),
2696 PMU_PMEVCNTR(29),
2697 PMU_PMEVCNTR(30),
2698 /* PMEVTYPERn */
2699 PMU_PMEVTYPER(0),
2700 PMU_PMEVTYPER(1),
2701 PMU_PMEVTYPER(2),
2702 PMU_PMEVTYPER(3),
2703 PMU_PMEVTYPER(4),
2704 PMU_PMEVTYPER(5),
2705 PMU_PMEVTYPER(6),
2706 PMU_PMEVTYPER(7),
2707 PMU_PMEVTYPER(8),
2708 PMU_PMEVTYPER(9),
2709 PMU_PMEVTYPER(10),
2710 PMU_PMEVTYPER(11),
2711 PMU_PMEVTYPER(12),
2712 PMU_PMEVTYPER(13),
2713 PMU_PMEVTYPER(14),
2714 PMU_PMEVTYPER(15),
2715 PMU_PMEVTYPER(16),
2716 PMU_PMEVTYPER(17),
2717 PMU_PMEVTYPER(18),
2718 PMU_PMEVTYPER(19),
2719 PMU_PMEVTYPER(20),
2720 PMU_PMEVTYPER(21),
2721 PMU_PMEVTYPER(22),
2722 PMU_PMEVTYPER(23),
2723 PMU_PMEVTYPER(24),
2724 PMU_PMEVTYPER(25),
2725 PMU_PMEVTYPER(26),
2726 PMU_PMEVTYPER(27),
2727 PMU_PMEVTYPER(28),
2728 PMU_PMEVTYPER(29),
2729 PMU_PMEVTYPER(30),
2730 /* PMCCFILTR */
2731 { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper },
2732
2733 { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
2734 { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
2735
2736 /* CCSIDR2 */
2737 { Op1(1), CRn( 0), CRm( 0), Op2(2), undef_access },
2738
2739 { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 },
2740 };
2741
2742 static const struct sys_reg_desc cp15_64_regs[] = {
2743 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 },
2744 { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr },
2745 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
2746 { SYS_DESC(SYS_AARCH32_CNTPCT), access_arch_timer },
2747 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 },
2748 { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
2749 { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
2750 { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer },
2751 { SYS_DESC(SYS_AARCH32_CNTPCTSS), access_arch_timer },
2752 };
2753
2754 static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n,
2755 bool is_32)
2756 {
2757 unsigned int i;
2758
2759 for (i = 0; i < n; i++) {
2760 if (!is_32 && table[i].reg && !table[i].reset) {
2761 kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i);
2762 return false;
2763 }
2764
2765 if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2766 kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1);
2767 return false;
2768 }
2769 }
2770
2771 return true;
2772 }
2773
2774 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu)
2775 {
2776 kvm_inject_undefined(vcpu);
2777 return 1;
2778 }
2779
2780 static void perform_access(struct kvm_vcpu *vcpu,
2781 struct sys_reg_params *params,
2782 const struct sys_reg_desc *r)
2783 {
2784 trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
2785
2786 /* Check for regs disabled by runtime config */
2787 if (sysreg_hidden(vcpu, r)) {
2788 kvm_inject_undefined(vcpu);
2789 return;
2790 }
2791
2792 /*
2793 * Not having an accessor means that we have configured a trap
2794 * that we don't know how to handle. This certainly qualifies
2795 * as a gross bug that should be fixed right away.
2796 */
2797 BUG_ON(!r->access);
2798
2799 /* Skip instruction if instructed so */
2800 if (likely(r->access(vcpu, params, r)))
2801 kvm_incr_pc(vcpu);
2802 }
2803
2804 /*
2805 * emulate_cp -- tries to match a sys_reg access in a handling table, and
2806 * call the corresponding trap handler.
2807 *
2808 * @params: pointer to the descriptor of the access
2809 * @table: array of trap descriptors
2810 * @num: size of the trap descriptor array
2811 *
2812 * Return true if the access has been handled, false if not.
2813 */
2814 static bool emulate_cp(struct kvm_vcpu *vcpu,
2815 struct sys_reg_params *params,
2816 const struct sys_reg_desc *table,
2817 size_t num)
2818 {
2819 const struct sys_reg_desc *r;
2820
2821 if (!table)
2822 return false; /* Not handled */
2823
2824 r = find_reg(params, table, num);
2825
2826 if (r) {
2827 perform_access(vcpu, params, r);
2828 return true;
2829 }
2830
2831 /* Not handled */
2832 return false;
2833 }
2834
2835 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
2836 struct sys_reg_params *params)
2837 {
2838 u8 esr_ec = kvm_vcpu_trap_get_class(vcpu);
2839 int cp = -1;
2840
2841 switch (esr_ec) {
2842 case ESR_ELx_EC_CP15_32:
2843 case ESR_ELx_EC_CP15_64:
2844 cp = 15;
2845 break;
2846 case ESR_ELx_EC_CP14_MR:
2847 case ESR_ELx_EC_CP14_64:
2848 cp = 14;
2849 break;
2850 default:
2851 WARN_ON(1);
2852 }
2853
2854 print_sys_reg_msg(params,
2855 "Unsupported guest CP%d access at: %08lx [%08lx]\n",
2856 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2857 kvm_inject_undefined(vcpu);
2858 }
2859
2860 /**
2861 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
2862 * @vcpu: The VCPU pointer
2863 * @run: The kvm_run struct
2864 */
2865 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
2866 const struct sys_reg_desc *global,
2867 size_t nr_global)
2868 {
2869 struct sys_reg_params params;
2870 u64 esr = kvm_vcpu_get_esr(vcpu);
2871 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2872 int Rt2 = (esr >> 10) & 0x1f;
2873
2874 params.CRm = (esr >> 1) & 0xf;
2875 params.is_write = ((esr & 1) == 0);
2876
2877 params.Op0 = 0;
2878 params.Op1 = (esr >> 16) & 0xf;
2879 params.Op2 = 0;
2880 params.CRn = 0;
2881
2882 /*
2883 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
2884 * backends between AArch32 and AArch64, we get away with it.
2885 */
2886 if (params.is_write) {
2887 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
2888 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
2889 }
2890
2891 /*
2892 * If the table contains a handler, handle the
2893 * potential register operation in the case of a read and return
2894 * with success.
2895 */
2896 if (emulate_cp(vcpu, &params, global, nr_global)) {
2897 /* Split up the value between registers for the read side */
2898 if (!params.is_write) {
2899 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
2900 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
2901 }
2902
2903 return 1;
2904 }
2905
2906 unhandled_cp_access(vcpu, &params);
2907 return 1;
2908 }
2909
2910 static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params);
2911
2912 /*
2913 * The CP10 ID registers are architecturally mapped to AArch64 feature
2914 * registers. Abuse that fact so we can rely on the AArch64 handler for accesses
2915 * from AArch32.
2916 */
2917 static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params)
2918 {
2919 u8 reg_id = (esr >> 10) & 0xf;
2920 bool valid;
2921
2922 params->is_write = ((esr & 1) == 0);
2923 params->Op0 = 3;
2924 params->Op1 = 0;
2925 params->CRn = 0;
2926 params->CRm = 3;
2927
2928 /* CP10 ID registers are read-only */
2929 valid = !params->is_write;
2930
2931 switch (reg_id) {
2932 /* MVFR0 */
2933 case 0b0111:
2934 params->Op2 = 0;
2935 break;
2936 /* MVFR1 */
2937 case 0b0110:
2938 params->Op2 = 1;
2939 break;
2940 /* MVFR2 */
2941 case 0b0101:
2942 params->Op2 = 2;
2943 break;
2944 default:
2945 valid = false;
2946 }
2947
2948 if (valid)
2949 return true;
2950
2951 kvm_pr_unimpl("Unhandled cp10 register %s: %u\n",
2952 params->is_write ? "write" : "read", reg_id);
2953 return false;
2954 }
2955
2956 /**
2957 * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and
2958 * VFP Register' from AArch32.
2959 * @vcpu: The vCPU pointer
2960 *
2961 * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers.
2962 * Work out the correct AArch64 system register encoding and reroute to the
2963 * AArch64 system register emulation.
2964 */
2965 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu)
2966 {
2967 int Rt = kvm_vcpu_sys_get_rt(vcpu);
2968 u64 esr = kvm_vcpu_get_esr(vcpu);
2969 struct sys_reg_params params;
2970
2971 /* UNDEF on any unhandled register access */
2972 if (!kvm_esr_cp10_id_to_sys64(esr, &params)) {
2973 kvm_inject_undefined(vcpu);
2974 return 1;
2975 }
2976
2977 if (emulate_sys_reg(vcpu, &params))
2978 vcpu_set_reg(vcpu, Rt, params.regval);
2979
2980 return 1;
2981 }
2982
2983 /**
2984 * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where
2985 * CRn=0, which corresponds to the AArch32 feature
2986 * registers.
2987 * @vcpu: the vCPU pointer
2988 * @params: the system register access parameters.
2989 *
2990 * Our cp15 system register tables do not enumerate the AArch32 feature
2991 * registers. Conveniently, our AArch64 table does, and the AArch32 system
2992 * register encoding can be trivially remapped into the AArch64 for the feature
2993 * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same.
2994 *
2995 * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit
2996 * System registers with (coproc=0b1111, CRn==c0)", read accesses from this
2997 * range are either UNKNOWN or RES0. Rerouting remains architectural as we
2998 * treat undefined registers in this range as RAZ.
2999 */
3000 static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu,
3001 struct sys_reg_params *params)
3002 {
3003 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3004
3005 /* Treat impossible writes to RO registers as UNDEFINED */
3006 if (params->is_write) {
3007 unhandled_cp_access(vcpu, params);
3008 return 1;
3009 }
3010
3011 params->Op0 = 3;
3012
3013 /*
3014 * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32.
3015 * Avoid conflicting with future expansion of AArch64 feature registers
3016 * and simply treat them as RAZ here.
3017 */
3018 if (params->CRm > 3)
3019 params->regval = 0;
3020 else if (!emulate_sys_reg(vcpu, params))
3021 return 1;
3022
3023 vcpu_set_reg(vcpu, Rt, params->regval);
3024 return 1;
3025 }
3026
3027 /**
3028 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
3029 * @vcpu: The VCPU pointer
3030 * @run: The kvm_run struct
3031 */
3032 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
3033 struct sys_reg_params *params,
3034 const struct sys_reg_desc *global,
3035 size_t nr_global)
3036 {
3037 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3038
3039 params->regval = vcpu_get_reg(vcpu, Rt);
3040
3041 if (emulate_cp(vcpu, params, global, nr_global)) {
3042 if (!params->is_write)
3043 vcpu_set_reg(vcpu, Rt, params->regval);
3044 return 1;
3045 }
3046
3047 unhandled_cp_access(vcpu, params);
3048 return 1;
3049 }
3050
3051 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu)
3052 {
3053 return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs));
3054 }
3055
3056 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu)
3057 {
3058 struct sys_reg_params params;
3059
3060 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3061
3062 /*
3063 * Certain AArch32 ID registers are handled by rerouting to the AArch64
3064 * system register table. Registers in the ID range where CRm=0 are
3065 * excluded from this scheme as they do not trivially map into AArch64
3066 * system register encodings.
3067 */
3068 if (params.Op1 == 0 && params.CRn == 0 && params.CRm)
3069 return kvm_emulate_cp15_id_reg(vcpu, &params);
3070
3071 return kvm_handle_cp_32(vcpu, &params, cp15_regs, ARRAY_SIZE(cp15_regs));
3072 }
3073
3074 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu)
3075 {
3076 return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs));
3077 }
3078
3079 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu)
3080 {
3081 struct sys_reg_params params;
3082
3083 params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu));
3084
3085 return kvm_handle_cp_32(vcpu, &params, cp14_regs, ARRAY_SIZE(cp14_regs));
3086 }
3087
3088 static bool is_imp_def_sys_reg(struct sys_reg_params *params)
3089 {
3090 // See ARM DDI 0487E.a, section D12.3.2
3091 return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011;
3092 }
3093
3094 /**
3095 * emulate_sys_reg - Emulate a guest access to an AArch64 system register
3096 * @vcpu: The VCPU pointer
3097 * @params: Decoded system register parameters
3098 *
3099 * Return: true if the system register access was successful, false otherwise.
3100 */
3101 static bool emulate_sys_reg(struct kvm_vcpu *vcpu,
3102 struct sys_reg_params *params)
3103 {
3104 const struct sys_reg_desc *r;
3105
3106 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3107
3108 if (likely(r)) {
3109 perform_access(vcpu, params, r);
3110 return true;
3111 }
3112
3113 if (is_imp_def_sys_reg(params)) {
3114 kvm_inject_undefined(vcpu);
3115 } else {
3116 print_sys_reg_msg(params,
3117 "Unsupported guest sys_reg access at: %lx [%08lx]\n",
3118 *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
3119 kvm_inject_undefined(vcpu);
3120 }
3121 return false;
3122 }
3123
3124 static void kvm_reset_id_regs(struct kvm_vcpu *vcpu)
3125 {
3126 const struct sys_reg_desc *idreg = first_idreg;
3127 u32 id = reg_to_encoding(idreg);
3128 struct kvm *kvm = vcpu->kvm;
3129
3130 if (test_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags))
3131 return;
3132
3133 lockdep_assert_held(&kvm->arch.config_lock);
3134
3135 /* Initialize all idregs */
3136 while (is_id_reg(id)) {
3137 IDREG(kvm, id) = idreg->reset(vcpu, idreg);
3138
3139 idreg++;
3140 id = reg_to_encoding(idreg);
3141 }
3142
3143 set_bit(KVM_ARCH_FLAG_ID_REGS_INITIALIZED, &kvm->arch.flags);
3144 }
3145
3146 /**
3147 * kvm_reset_sys_regs - sets system registers to reset value
3148 * @vcpu: The VCPU pointer
3149 *
3150 * This function finds the right table above and sets the registers on the
3151 * virtual CPU struct to their architecturally defined reset values.
3152 */
3153 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
3154 {
3155 unsigned long i;
3156
3157 kvm_reset_id_regs(vcpu);
3158
3159 for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) {
3160 const struct sys_reg_desc *r = &sys_reg_descs[i];
3161
3162 if (is_id_reg(reg_to_encoding(r)))
3163 continue;
3164
3165 if (r->reset)
3166 r->reset(vcpu, r);
3167 }
3168 }
3169
3170 /**
3171 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
3172 * @vcpu: The VCPU pointer
3173 */
3174 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu)
3175 {
3176 struct sys_reg_params params;
3177 unsigned long esr = kvm_vcpu_get_esr(vcpu);
3178 int Rt = kvm_vcpu_sys_get_rt(vcpu);
3179
3180 trace_kvm_handle_sys_reg(esr);
3181
3182 if (__check_nv_sr_forward(vcpu))
3183 return 1;
3184
3185 params = esr_sys64_to_params(esr);
3186 params.regval = vcpu_get_reg(vcpu, Rt);
3187
3188 if (!emulate_sys_reg(vcpu, &params))
3189 return 1;
3190
3191 if (!params.is_write)
3192 vcpu_set_reg(vcpu, Rt, params.regval);
3193 return 1;
3194 }
3195
3196 /******************************************************************************
3197 * Userspace API
3198 *****************************************************************************/
3199
3200 static bool index_to_params(u64 id, struct sys_reg_params *params)
3201 {
3202 switch (id & KVM_REG_SIZE_MASK) {
3203 case KVM_REG_SIZE_U64:
3204 /* Any unused index bits means it's not valid. */
3205 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
3206 | KVM_REG_ARM_COPROC_MASK
3207 | KVM_REG_ARM64_SYSREG_OP0_MASK
3208 | KVM_REG_ARM64_SYSREG_OP1_MASK
3209 | KVM_REG_ARM64_SYSREG_CRN_MASK
3210 | KVM_REG_ARM64_SYSREG_CRM_MASK
3211 | KVM_REG_ARM64_SYSREG_OP2_MASK))
3212 return false;
3213 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
3214 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
3215 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
3216 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
3217 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
3218 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
3219 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
3220 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
3221 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
3222 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
3223 return true;
3224 default:
3225 return false;
3226 }
3227 }
3228
3229 const struct sys_reg_desc *get_reg_by_id(u64 id,
3230 const struct sys_reg_desc table[],
3231 unsigned int num)
3232 {
3233 struct sys_reg_params params;
3234
3235 if (!index_to_params(id, &params))
3236 return NULL;
3237
3238 return find_reg(&params, table, num);
3239 }
3240
3241 /* Decode an index value, and find the sys_reg_desc entry. */
3242 static const struct sys_reg_desc *
3243 id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id,
3244 const struct sys_reg_desc table[], unsigned int num)
3245
3246 {
3247 const struct sys_reg_desc *r;
3248
3249 /* We only do sys_reg for now. */
3250 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
3251 return NULL;
3252
3253 r = get_reg_by_id(id, table, num);
3254
3255 /* Not saved in the sys_reg array and not otherwise accessible? */
3256 if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r)))
3257 r = NULL;
3258
3259 return r;
3260 }
3261
3262 /*
3263 * These are the invariant sys_reg registers: we let the guest see the
3264 * host versions of these, so they're part of the guest state.
3265 *
3266 * A future CPU may provide a mechanism to present different values to
3267 * the guest, or a future kvm may trap them.
3268 */
3269
3270 #define FUNCTION_INVARIANT(reg) \
3271 static u64 get_##reg(struct kvm_vcpu *v, \
3272 const struct sys_reg_desc *r) \
3273 { \
3274 ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \
3275 return ((struct sys_reg_desc *)r)->val; \
3276 }
3277
3278 FUNCTION_INVARIANT(midr_el1)
3279 FUNCTION_INVARIANT(revidr_el1)
3280 FUNCTION_INVARIANT(aidr_el1)
3281
3282 static u64 get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
3283 {
3284 ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
3285 return ((struct sys_reg_desc *)r)->val;
3286 }
3287
3288 /* ->val is filled in by kvm_sys_reg_table_init() */
3289 static struct sys_reg_desc invariant_sys_regs[] __ro_after_init = {
3290 { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
3291 { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
3292 { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
3293 { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
3294 };
3295
3296 static int get_invariant_sys_reg(u64 id, u64 __user *uaddr)
3297 {
3298 const struct sys_reg_desc *r;
3299
3300 r = get_reg_by_id(id, invariant_sys_regs,
3301 ARRAY_SIZE(invariant_sys_regs));
3302 if (!r)
3303 return -ENOENT;
3304
3305 return put_user(r->val, uaddr);
3306 }
3307
3308 static int set_invariant_sys_reg(u64 id, u64 __user *uaddr)
3309 {
3310 const struct sys_reg_desc *r;
3311 u64 val;
3312
3313 r = get_reg_by_id(id, invariant_sys_regs,
3314 ARRAY_SIZE(invariant_sys_regs));
3315 if (!r)
3316 return -ENOENT;
3317
3318 if (get_user(val, uaddr))
3319 return -EFAULT;
3320
3321 /* This is what we mean by invariant: you can't change it. */
3322 if (r->val != val)
3323 return -EINVAL;
3324
3325 return 0;
3326 }
3327
3328 static int demux_c15_get(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3329 {
3330 u32 val;
3331 u32 __user *uval = uaddr;
3332
3333 /* Fail if we have unknown bits set. */
3334 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3335 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3336 return -ENOENT;
3337
3338 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3339 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3340 if (KVM_REG_SIZE(id) != 4)
3341 return -ENOENT;
3342 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3343 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3344 if (val >= CSSELR_MAX)
3345 return -ENOENT;
3346
3347 return put_user(get_ccsidr(vcpu, val), uval);
3348 default:
3349 return -ENOENT;
3350 }
3351 }
3352
3353 static int demux_c15_set(struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
3354 {
3355 u32 val, newval;
3356 u32 __user *uval = uaddr;
3357
3358 /* Fail if we have unknown bits set. */
3359 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
3360 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
3361 return -ENOENT;
3362
3363 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
3364 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
3365 if (KVM_REG_SIZE(id) != 4)
3366 return -ENOENT;
3367 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
3368 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
3369 if (val >= CSSELR_MAX)
3370 return -ENOENT;
3371
3372 if (get_user(newval, uval))
3373 return -EFAULT;
3374
3375 return set_ccsidr(vcpu, val, newval);
3376 default:
3377 return -ENOENT;
3378 }
3379 }
3380
3381 int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3382 const struct sys_reg_desc table[], unsigned int num)
3383 {
3384 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3385 const struct sys_reg_desc *r;
3386 u64 val;
3387 int ret;
3388
3389 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3390 if (!r || sysreg_hidden_user(vcpu, r))
3391 return -ENOENT;
3392
3393 if (r->get_user) {
3394 ret = (r->get_user)(vcpu, r, &val);
3395 } else {
3396 val = __vcpu_sys_reg(vcpu, r->reg);
3397 ret = 0;
3398 }
3399
3400 if (!ret)
3401 ret = put_user(val, uaddr);
3402
3403 return ret;
3404 }
3405
3406 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3407 {
3408 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3409 int err;
3410
3411 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3412 return demux_c15_get(vcpu, reg->id, uaddr);
3413
3414 err = get_invariant_sys_reg(reg->id, uaddr);
3415 if (err != -ENOENT)
3416 return err;
3417
3418 return kvm_sys_reg_get_user(vcpu, reg,
3419 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3420 }
3421
3422 int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg,
3423 const struct sys_reg_desc table[], unsigned int num)
3424 {
3425 u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr;
3426 const struct sys_reg_desc *r;
3427 u64 val;
3428 int ret;
3429
3430 if (get_user(val, uaddr))
3431 return -EFAULT;
3432
3433 r = id_to_sys_reg_desc(vcpu, reg->id, table, num);
3434 if (!r || sysreg_hidden_user(vcpu, r))
3435 return -ENOENT;
3436
3437 if (sysreg_user_write_ignore(vcpu, r))
3438 return 0;
3439
3440 if (r->set_user) {
3441 ret = (r->set_user)(vcpu, r, val);
3442 } else {
3443 __vcpu_sys_reg(vcpu, r->reg) = val;
3444 ret = 0;
3445 }
3446
3447 return ret;
3448 }
3449
3450 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
3451 {
3452 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
3453 int err;
3454
3455 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
3456 return demux_c15_set(vcpu, reg->id, uaddr);
3457
3458 err = set_invariant_sys_reg(reg->id, uaddr);
3459 if (err != -ENOENT)
3460 return err;
3461
3462 return kvm_sys_reg_set_user(vcpu, reg,
3463 sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3464 }
3465
3466 static unsigned int num_demux_regs(void)
3467 {
3468 return CSSELR_MAX;
3469 }
3470
3471 static int write_demux_regids(u64 __user *uindices)
3472 {
3473 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
3474 unsigned int i;
3475
3476 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
3477 for (i = 0; i < CSSELR_MAX; i++) {
3478 if (put_user(val | i, uindices))
3479 return -EFAULT;
3480 uindices++;
3481 }
3482 return 0;
3483 }
3484
3485 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
3486 {
3487 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
3488 KVM_REG_ARM64_SYSREG |
3489 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
3490 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
3491 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
3492 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
3493 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
3494 }
3495
3496 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
3497 {
3498 if (!*uind)
3499 return true;
3500
3501 if (put_user(sys_reg_to_index(reg), *uind))
3502 return false;
3503
3504 (*uind)++;
3505 return true;
3506 }
3507
3508 static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
3509 const struct sys_reg_desc *rd,
3510 u64 __user **uind,
3511 unsigned int *total)
3512 {
3513 /*
3514 * Ignore registers we trap but don't save,
3515 * and for which no custom user accessor is provided.
3516 */
3517 if (!(rd->reg || rd->get_user))
3518 return 0;
3519
3520 if (sysreg_hidden_user(vcpu, rd))
3521 return 0;
3522
3523 if (!copy_reg_to_user(rd, uind))
3524 return -EFAULT;
3525
3526 (*total)++;
3527 return 0;
3528 }
3529
3530 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
3531 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
3532 {
3533 const struct sys_reg_desc *i2, *end2;
3534 unsigned int total = 0;
3535 int err;
3536
3537 i2 = sys_reg_descs;
3538 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
3539
3540 while (i2 != end2) {
3541 err = walk_one_sys_reg(vcpu, i2++, &uind, &total);
3542 if (err)
3543 return err;
3544 }
3545 return total;
3546 }
3547
3548 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
3549 {
3550 return ARRAY_SIZE(invariant_sys_regs)
3551 + num_demux_regs()
3552 + walk_sys_regs(vcpu, (u64 __user *)NULL);
3553 }
3554
3555 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
3556 {
3557 unsigned int i;
3558 int err;
3559
3560 /* Then give them all the invariant registers' indices. */
3561 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
3562 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
3563 return -EFAULT;
3564 uindices++;
3565 }
3566
3567 err = walk_sys_regs(vcpu, uindices);
3568 if (err < 0)
3569 return err;
3570 uindices += err;
3571
3572 return write_demux_regids(uindices);
3573 }
3574
3575 int __init kvm_sys_reg_table_init(void)
3576 {
3577 struct sys_reg_params params;
3578 bool valid = true;
3579 unsigned int i;
3580
3581 /* Make sure tables are unique and in order. */
3582 valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false);
3583 valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true);
3584 valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true);
3585 valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true);
3586 valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true);
3587 valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false);
3588
3589 if (!valid)
3590 return -EINVAL;
3591
3592 /* We abuse the reset function to overwrite the table itself. */
3593 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
3594 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
3595
3596 /* Find the first idreg (SYS_ID_PFR0_EL1) in sys_reg_descs. */
3597 params = encoding_to_params(SYS_ID_PFR0_EL1);
3598 first_idreg = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
3599 if (!first_idreg)
3600 return -EINVAL;
3601
3602 if (kvm_get_mode() == KVM_MODE_NV)
3603 return populate_nv_trap_config();
3604
3605 return 0;
3606 }