]> git.ipfire.org Git - people/ms/linux.git/blob - arch/mips/pci/pci-octeon.c
Merge tag 'iwlwifi-fixes-for-kalle-2014-12-18' of git://git.kernel.org/pub/scm/linux...
[people/ms/linux.git] / arch / mips / pci / pci-octeon.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2005-2009 Cavium Networks
7 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23
24 #include <dma-coherence.h>
25
26 #define USE_OCTEON_INTERNAL_ARBITER
27
28 /*
29 * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
30 * addresses. Use PCI endian swapping 1 so no address swapping is
31 * necessary. The Linux io routines will endian swap the data.
32 */
33 #define OCTEON_PCI_IOSPACE_BASE 0x80011a0400000000ull
34 #define OCTEON_PCI_IOSPACE_SIZE (1ull<<32)
35
36 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
37 #define OCTEON_PCI_MEMSPACE_OFFSET (0x00011b0000000000ull)
38
39 u64 octeon_bar1_pci_phys;
40
41 /**
42 * This is the bit decoding used for the Octeon PCI controller addresses
43 */
44 union octeon_pci_address {
45 uint64_t u64;
46 struct {
47 uint64_t upper:2;
48 uint64_t reserved:13;
49 uint64_t io:1;
50 uint64_t did:5;
51 uint64_t subdid:3;
52 uint64_t reserved2:4;
53 uint64_t endian_swap:2;
54 uint64_t reserved3:10;
55 uint64_t bus:8;
56 uint64_t dev:5;
57 uint64_t func:3;
58 uint64_t reg:8;
59 } s;
60 };
61
62 int __initconst (*octeon_pcibios_map_irq)(const struct pci_dev *dev,
63 u8 slot, u8 pin);
64 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
65
66 /**
67 * Map a PCI device to the appropriate interrupt line
68 *
69 * @dev: The Linux PCI device structure for the device to map
70 * @slot: The slot number for this device on __BUS 0__. Linux
71 * enumerates through all the bridges and figures out the
72 * slot on Bus 0 where this device eventually hooks to.
73 * @pin: The PCI interrupt pin read from the device, then swizzled
74 * as it goes through each bridge.
75 * Returns Interrupt number for the device
76 */
77 int __init pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
78 {
79 if (octeon_pcibios_map_irq)
80 return octeon_pcibios_map_irq(dev, slot, pin);
81 else
82 panic("octeon_pcibios_map_irq not set.");
83 }
84
85
86 /*
87 * Called to perform platform specific PCI setup
88 */
89 int pcibios_plat_dev_init(struct pci_dev *dev)
90 {
91 uint16_t config;
92 uint32_t dconfig;
93 int pos;
94 /*
95 * Force the Cache line setting to 64 bytes. The standard
96 * Linux bus scan doesn't seem to set it. Octeon really has
97 * 128 byte lines, but Intel bridges get really upset if you
98 * try and set values above 64 bytes. Value is specified in
99 * 32bit words.
100 */
101 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
102 /* Set latency timers for all devices */
103 pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
104
105 /* Enable reporting System errors and parity errors on all devices */
106 /* Enable parity checking and error reporting */
107 pci_read_config_word(dev, PCI_COMMAND, &config);
108 config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
109 pci_write_config_word(dev, PCI_COMMAND, config);
110
111 if (dev->subordinate) {
112 /* Set latency timers on sub bridges */
113 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
114 /* More bridge error detection */
115 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
116 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
117 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
118 }
119
120 /* Enable the PCIe normal error reporting */
121 config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
122 config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
123 config |= PCI_EXP_DEVCTL_FERE; /* Fatal Error Reporting */
124 config |= PCI_EXP_DEVCTL_URRE; /* Unsupported Request */
125 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
126
127 /* Find the Advanced Error Reporting capability */
128 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
129 if (pos) {
130 /* Clear Uncorrectable Error Status */
131 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
132 &dconfig);
133 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
134 dconfig);
135 /* Enable reporting of all uncorrectable errors */
136 /* Uncorrectable Error Mask - turned on bits disable errors */
137 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
138 /*
139 * Leave severity at HW default. This only controls if
140 * errors are reported as uncorrectable or
141 * correctable, not if the error is reported.
142 */
143 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
144 /* Clear Correctable Error Status */
145 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
146 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
147 /* Enable reporting of all correctable errors */
148 /* Correctable Error Mask - turned on bits disable errors */
149 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
150 /* Advanced Error Capabilities */
151 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
152 /* ECRC Generation Enable */
153 if (config & PCI_ERR_CAP_ECRC_GENC)
154 config |= PCI_ERR_CAP_ECRC_GENE;
155 /* ECRC Check Enable */
156 if (config & PCI_ERR_CAP_ECRC_CHKC)
157 config |= PCI_ERR_CAP_ECRC_CHKE;
158 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
159 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
160 /* Report all errors to the root complex */
161 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
162 PCI_ERR_ROOT_CMD_COR_EN |
163 PCI_ERR_ROOT_CMD_NONFATAL_EN |
164 PCI_ERR_ROOT_CMD_FATAL_EN);
165 /* Clear the Root status register */
166 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
167 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
168 }
169
170 dev->dev.archdata.dma_ops = octeon_pci_dma_map_ops;
171
172 return 0;
173 }
174
175 /**
176 * Return the mapping of PCI device number to IRQ line. Each
177 * character in the return string represents the interrupt
178 * line for the device at that position. Device 1 maps to the
179 * first character, etc. The characters A-D are used for PCI
180 * interrupts.
181 *
182 * Returns PCI interrupt mapping
183 */
184 const char *octeon_get_pci_interrupts(void)
185 {
186 /*
187 * Returning an empty string causes the interrupts to be
188 * routed based on the PCI specification. From the PCI spec:
189 *
190 * INTA# of Device Number 0 is connected to IRQW on the system
191 * board. (Device Number has no significance regarding being
192 * located on the system board or in a connector.) INTA# of
193 * Device Number 1 is connected to IRQX on the system
194 * board. INTA# of Device Number 2 is connected to IRQY on the
195 * system board. INTA# of Device Number 3 is connected to IRQZ
196 * on the system board. The table below describes how each
197 * agent's INTx# lines are connected to the system board
198 * interrupt lines. The following equation can be used to
199 * determine to which INTx# signal on the system board a given
200 * device's INTx# line(s) is connected.
201 *
202 * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
203 * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
204 * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
205 * INTD# = 3)
206 */
207 switch (octeon_bootinfo->board_type) {
208 case CVMX_BOARD_TYPE_NAO38:
209 /* This is really the NAC38 */
210 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
211 case CVMX_BOARD_TYPE_EBH3100:
212 case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
213 case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
214 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
215 case CVMX_BOARD_TYPE_BBGW_REF:
216 return "AABCD";
217 case CVMX_BOARD_TYPE_THUNDER:
218 case CVMX_BOARD_TYPE_EBH3000:
219 default:
220 return "";
221 }
222 }
223
224 /**
225 * Map a PCI device to the appropriate interrupt line
226 *
227 * @dev: The Linux PCI device structure for the device to map
228 * @slot: The slot number for this device on __BUS 0__. Linux
229 * enumerates through all the bridges and figures out the
230 * slot on Bus 0 where this device eventually hooks to.
231 * @pin: The PCI interrupt pin read from the device, then swizzled
232 * as it goes through each bridge.
233 * Returns Interrupt number for the device
234 */
235 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
236 u8 slot, u8 pin)
237 {
238 int irq_num;
239 const char *interrupts;
240 int dev_num;
241
242 /* Get the board specific interrupt mapping */
243 interrupts = octeon_get_pci_interrupts();
244
245 dev_num = dev->devfn >> 3;
246 if (dev_num < strlen(interrupts))
247 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
248 OCTEON_IRQ_PCI_INT0;
249 else
250 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
251 return irq_num;
252 }
253
254
255 /*
256 * Read a value from configuration space
257 */
258 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
259 int reg, int size, u32 *val)
260 {
261 union octeon_pci_address pci_addr;
262
263 pci_addr.u64 = 0;
264 pci_addr.s.upper = 2;
265 pci_addr.s.io = 1;
266 pci_addr.s.did = 3;
267 pci_addr.s.subdid = 1;
268 pci_addr.s.endian_swap = 1;
269 pci_addr.s.bus = bus->number;
270 pci_addr.s.dev = devfn >> 3;
271 pci_addr.s.func = devfn & 0x7;
272 pci_addr.s.reg = reg;
273
274 #if PCI_CONFIG_SPACE_DELAY
275 udelay(PCI_CONFIG_SPACE_DELAY);
276 #endif
277 switch (size) {
278 case 4:
279 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
280 return PCIBIOS_SUCCESSFUL;
281 case 2:
282 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
283 return PCIBIOS_SUCCESSFUL;
284 case 1:
285 *val = cvmx_read64_uint8(pci_addr.u64);
286 return PCIBIOS_SUCCESSFUL;
287 }
288 return PCIBIOS_FUNC_NOT_SUPPORTED;
289 }
290
291
292 /*
293 * Write a value to PCI configuration space
294 */
295 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
296 int reg, int size, u32 val)
297 {
298 union octeon_pci_address pci_addr;
299
300 pci_addr.u64 = 0;
301 pci_addr.s.upper = 2;
302 pci_addr.s.io = 1;
303 pci_addr.s.did = 3;
304 pci_addr.s.subdid = 1;
305 pci_addr.s.endian_swap = 1;
306 pci_addr.s.bus = bus->number;
307 pci_addr.s.dev = devfn >> 3;
308 pci_addr.s.func = devfn & 0x7;
309 pci_addr.s.reg = reg;
310
311 #if PCI_CONFIG_SPACE_DELAY
312 udelay(PCI_CONFIG_SPACE_DELAY);
313 #endif
314 switch (size) {
315 case 4:
316 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
317 return PCIBIOS_SUCCESSFUL;
318 case 2:
319 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
320 return PCIBIOS_SUCCESSFUL;
321 case 1:
322 cvmx_write64_uint8(pci_addr.u64, val);
323 return PCIBIOS_SUCCESSFUL;
324 }
325 return PCIBIOS_FUNC_NOT_SUPPORTED;
326 }
327
328
329 static struct pci_ops octeon_pci_ops = {
330 octeon_read_config,
331 octeon_write_config,
332 };
333
334 static struct resource octeon_pci_mem_resource = {
335 .start = 0,
336 .end = 0,
337 .name = "Octeon PCI MEM",
338 .flags = IORESOURCE_MEM,
339 };
340
341 /*
342 * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
343 * bridge
344 */
345 static struct resource octeon_pci_io_resource = {
346 .start = 0x4000,
347 .end = OCTEON_PCI_IOSPACE_SIZE - 1,
348 .name = "Octeon PCI IO",
349 .flags = IORESOURCE_IO,
350 };
351
352 static struct pci_controller octeon_pci_controller = {
353 .pci_ops = &octeon_pci_ops,
354 .mem_resource = &octeon_pci_mem_resource,
355 .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
356 .io_resource = &octeon_pci_io_resource,
357 .io_offset = 0,
358 .io_map_base = OCTEON_PCI_IOSPACE_BASE,
359 };
360
361
362 /*
363 * Low level initialize the Octeon PCI controller
364 */
365 static void octeon_pci_initialize(void)
366 {
367 union cvmx_pci_cfg01 cfg01;
368 union cvmx_npi_ctl_status ctl_status;
369 union cvmx_pci_ctl_status_2 ctl_status_2;
370 union cvmx_pci_cfg19 cfg19;
371 union cvmx_pci_cfg16 cfg16;
372 union cvmx_pci_cfg22 cfg22;
373 union cvmx_pci_cfg56 cfg56;
374
375 /* Reset the PCI Bus */
376 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
377 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
378
379 udelay(2000); /* Hold PCI reset for 2 ms */
380
381 ctl_status.u64 = 0; /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
382 ctl_status.s.max_word = 1;
383 ctl_status.s.timer = 1;
384 cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
385
386 /* Deassert PCI reset and advertize PCX Host Mode Device Capability
387 (64b) */
388 cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
389 cvmx_read_csr(CVMX_CIU_SOFT_PRST);
390
391 udelay(2000); /* Wait 2 ms after deasserting PCI reset */
392
393 ctl_status_2.u32 = 0;
394 ctl_status_2.s.tsr_hwm = 1; /* Initializes to 0. Must be set
395 before any PCI reads. */
396 ctl_status_2.s.bar2pres = 1; /* Enable BAR2 */
397 ctl_status_2.s.bar2_enb = 1;
398 ctl_status_2.s.bar2_cax = 1; /* Don't use L2 */
399 ctl_status_2.s.bar2_esx = 1;
400 ctl_status_2.s.pmo_amod = 1; /* Round robin priority */
401 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
402 /* BAR1 hole */
403 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
404 ctl_status_2.s.bb1_siz = 1; /* BAR1 is 2GB */
405 ctl_status_2.s.bb_ca = 1; /* Don't use L2 with big bars */
406 ctl_status_2.s.bb_es = 1; /* Big bar in byte swap mode */
407 ctl_status_2.s.bb1 = 1; /* BAR1 is big */
408 ctl_status_2.s.bb0 = 1; /* BAR0 is big */
409 }
410
411 octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
412 udelay(2000); /* Wait 2 ms before doing PCI reads */
413
414 ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
415 pr_notice("PCI Status: %s %s-bit\n",
416 ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
417 ctl_status_2.s.ap_64ad ? "64" : "32");
418
419 if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
420 union cvmx_pci_cnt_reg cnt_reg_start;
421 union cvmx_pci_cnt_reg cnt_reg_end;
422 unsigned long cycles, pci_clock;
423
424 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
425 cycles = read_c0_cvmcount();
426 udelay(1000);
427 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
428 cycles = read_c0_cvmcount() - cycles;
429 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
430 (cycles / (mips_hpt_frequency / 1000000));
431 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
432 }
433
434 /*
435 * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
436 * in PCI-X mode to allow four outstanding splits. Otherwise,
437 * should not change from its reset value. Don't write PCI_CFG19
438 * in PCI mode (0x82000001 reset value), write it to 0x82000004
439 * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
440 * MRBCM -> must be one.
441 */
442 if (ctl_status_2.s.ap_pcix) {
443 cfg19.u32 = 0;
444 /*
445 * Target Delayed/Split request outstanding maximum
446 * count. [1..31] and 0=32. NOTE: If the user
447 * programs these bits beyond the Designed Maximum
448 * outstanding count, then the designed maximum table
449 * depth will be used instead. No additional
450 * Deferred/Split transactions will be accepted if
451 * this outstanding maximum count is
452 * reached. Furthermore, no additional deferred/split
453 * transactions will be accepted if the I/O delay/ I/O
454 * Split Request outstanding maximum is reached.
455 */
456 cfg19.s.tdomc = 4;
457 /*
458 * Master Deferred Read Request Outstanding Max Count
459 * (PCI only). CR4C[26:24] Max SAC cycles MAX DAC
460 * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
461 * 5 2 110 6 3 111 7 3 For example, if these bits are
462 * programmed to 100, the core can support 2 DAC
463 * cycles, 4 SAC cycles or a combination of 1 DAC and
464 * 2 SAC cycles. NOTE: For the PCI-X maximum
465 * outstanding split transactions, refer to
466 * CRE0[22:20].
467 */
468 cfg19.s.mdrrmc = 2;
469 /*
470 * Master Request (Memory Read) Byte Count/Byte Enable
471 * select. 0 = Byte Enables valid. In PCI mode, a
472 * burst transaction cannot be performed using Memory
473 * Read command=4?h6. 1 = DWORD Byte Count valid
474 * (default). In PCI Mode, the memory read byte
475 * enables are automatically generated by the
476 * core. Note: N3 Master Request transaction sizes are
477 * always determined through the
478 * am_attr[<35:32>|<7:0>] field.
479 */
480 cfg19.s.mrbcm = 1;
481 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
482 }
483
484
485 cfg01.u32 = 0;
486 cfg01.s.msae = 1; /* Memory Space Access Enable */
487 cfg01.s.me = 1; /* Master Enable */
488 cfg01.s.pee = 1; /* PERR# Enable */
489 cfg01.s.see = 1; /* System Error Enable */
490 cfg01.s.fbbe = 1; /* Fast Back to Back Transaction Enable */
491
492 octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
493
494 #ifdef USE_OCTEON_INTERNAL_ARBITER
495 /*
496 * When OCTEON is a PCI host, most systems will use OCTEON's
497 * internal arbiter, so must enable it before any PCI/PCI-X
498 * traffic can occur.
499 */
500 {
501 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
502
503 pci_int_arb_cfg.u64 = 0;
504 pci_int_arb_cfg.s.en = 1; /* Internal arbiter enable */
505 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
506 }
507 #endif /* USE_OCTEON_INTERNAL_ARBITER */
508
509 /*
510 * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
511 * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
512 * 1..7.
513 */
514 cfg16.u32 = 0;
515 cfg16.s.mltd = 1; /* Master Latency Timer Disable */
516 octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
517
518 /*
519 * Should be written to 0x4ff00. MTTV -> must be zero.
520 * FLUSH -> must be 1. MRV -> should be 0xFF.
521 */
522 cfg22.u32 = 0;
523 /* Master Retry Value [1..255] and 0=infinite */
524 cfg22.s.mrv = 0xff;
525 /*
526 * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
527 * N3K operation.
528 */
529 cfg22.s.flush = 1;
530 octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
531
532 /*
533 * MOST Indicates the maximum number of outstanding splits (in -1
534 * notation) when OCTEON is in PCI-X mode. PCI-X performance is
535 * affected by the MOST selection. Should generally be written
536 * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
537 * depending on the desired MOST of 3, 2, 1, or 0, respectively.
538 */
539 cfg56.u32 = 0;
540 cfg56.s.pxcid = 7; /* RO - PCI-X Capability ID */
541 cfg56.s.ncp = 0xe8; /* RO - Next Capability Pointer */
542 cfg56.s.dpere = 1; /* Data Parity Error Recovery Enable */
543 cfg56.s.roe = 1; /* Relaxed Ordering Enable */
544 cfg56.s.mmbc = 1; /* Maximum Memory Byte Count
545 [0=512B,1=1024B,2=2048B,3=4096B] */
546 cfg56.s.most = 3; /* Maximum outstanding Split transactions [0=1
547 .. 7=32] */
548
549 octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
550
551 /*
552 * Affects PCI performance when OCTEON services reads to its
553 * BAR1/BAR2. Refer to Section 10.6.1. The recommended values are
554 * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
555 * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
556 * these values need to be changed so they won't possibly prefetch off
557 * of the end of memory if PCI is DMAing a buffer at the end of
558 * memory. Note that these values differ from their reset values.
559 */
560 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
561 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
562 octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
563 }
564
565
566 /*
567 * Initialize the Octeon PCI controller
568 */
569 static int __init octeon_pci_setup(void)
570 {
571 union cvmx_npi_mem_access_subidx mem_access;
572 int index;
573
574 /* Only these chips have PCI */
575 if (octeon_has_feature(OCTEON_FEATURE_PCIE))
576 return 0;
577
578 /* Point pcibios_map_irq() to the PCI version of it */
579 octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
580
581 /* Only use the big bars on chips that support it */
582 if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
583 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
584 OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
585 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
586 else
587 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
588
589 if (!octeon_is_pci_host()) {
590 pr_notice("Not in host mode, PCI Controller not initialized\n");
591 return 0;
592 }
593
594 /* PCI I/O and PCI MEM values */
595 set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
596 ioport_resource.start = 0;
597 ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
598
599 pr_notice("%s Octeon big bar support\n",
600 (octeon_dma_bar_type ==
601 OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
602
603 octeon_pci_initialize();
604
605 mem_access.u64 = 0;
606 mem_access.s.esr = 1; /* Endian-Swap on read. */
607 mem_access.s.esw = 1; /* Endian-Swap on write. */
608 mem_access.s.nsr = 0; /* No-Snoop on read. */
609 mem_access.s.nsw = 0; /* No-Snoop on write. */
610 mem_access.s.ror = 0; /* Relax Read on read. */
611 mem_access.s.row = 0; /* Relax Order on write. */
612 mem_access.s.ba = 0; /* PCI Address bits [63:36]. */
613 cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
614
615 /*
616 * Remap the Octeon BAR 2 above all 32 bit devices
617 * (0x8000000000ul). This is done here so it is remapped
618 * before the readl()'s below. We don't want BAR2 overlapping
619 * with BAR0/BAR1 during these reads.
620 */
621 octeon_npi_write32(CVMX_NPI_PCI_CFG08,
622 (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
623 octeon_npi_write32(CVMX_NPI_PCI_CFG09,
624 (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
625
626 if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
627 /* Remap the Octeon BAR 0 to 0-2GB */
628 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
629 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
630
631 /*
632 * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
633 * BAR 1 hole).
634 */
635 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
636 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
637
638 /* BAR1 movable mappings set for identity mapping */
639 octeon_bar1_pci_phys = 0x80000000ull;
640 for (index = 0; index < 32; index++) {
641 union cvmx_pci_bar1_indexx bar1_index;
642
643 bar1_index.u32 = 0;
644 /* Address bits[35:22] sent to L2C */
645 bar1_index.s.addr_idx =
646 (octeon_bar1_pci_phys >> 22) + index;
647 /* Don't put PCI accesses in L2. */
648 bar1_index.s.ca = 1;
649 /* Endian Swap Mode */
650 bar1_index.s.end_swp = 1;
651 /* Set '1' when the selected address range is valid. */
652 bar1_index.s.addr_v = 1;
653 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
654 bar1_index.u32);
655 }
656
657 /* Devices go after BAR1 */
658 octeon_pci_mem_resource.start =
659 OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
660 (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
661 octeon_pci_mem_resource.end =
662 octeon_pci_mem_resource.start + (1ul << 30);
663 } else {
664 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
665 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
666 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
667
668 /* Remap the Octeon BAR 1 to map 0-128MB */
669 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
670 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
671
672 /* BAR1 movable regions contiguous to cover the swiotlb */
673 octeon_bar1_pci_phys =
674 virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
675
676 for (index = 0; index < 32; index++) {
677 union cvmx_pci_bar1_indexx bar1_index;
678
679 bar1_index.u32 = 0;
680 /* Address bits[35:22] sent to L2C */
681 bar1_index.s.addr_idx =
682 (octeon_bar1_pci_phys >> 22) + index;
683 /* Don't put PCI accesses in L2. */
684 bar1_index.s.ca = 1;
685 /* Endian Swap Mode */
686 bar1_index.s.end_swp = 1;
687 /* Set '1' when the selected address range is valid. */
688 bar1_index.s.addr_v = 1;
689 octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
690 bar1_index.u32);
691 }
692
693 /* Devices go after BAR0 */
694 octeon_pci_mem_resource.start =
695 OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
696 (4ul << 10);
697 octeon_pci_mem_resource.end =
698 octeon_pci_mem_resource.start + (1ul << 30);
699 }
700
701 register_pci_controller(&octeon_pci_controller);
702
703 /*
704 * Clear any errors that might be pending from before the bus
705 * was setup properly.
706 */
707 cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
708
709 if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
710 -1, NULL, 0)))
711 pr_err("Registration of co_pci_edac failed!\n");
712
713 octeon_pci_dma_init();
714
715 return 0;
716 }
717
718 arch_initcall(octeon_pci_setup);