]> git.ipfire.org Git - thirdparty/u-boot.git/blob - arch/powerpc/cpu/mpc8xx/i2c.c
Add GPL-2.0+ SPDX-License-Identifier to source files
[thirdparty/u-boot.git] / arch / powerpc / cpu / mpc8xx / i2c.c
1 /*
2 * (C) Copyright 2000
3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4 *
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 * Back ported to the 8xx platform (from the 8260 platform) by
11 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
12 */
13
14 #include <common.h>
15
16 #ifdef CONFIG_HARD_I2C
17
18 #include <commproc.h>
19 #include <i2c.h>
20 #ifdef CONFIG_LWMON
21 #include <watchdog.h>
22 #endif
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
27 #define TOUT_LOOP 1000000
28
29 #define NUM_RX_BDS 4
30 #define NUM_TX_BDS 4
31 #define MAX_TX_SPACE 256
32 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
33
34 typedef struct I2C_BD {
35 unsigned short status;
36 unsigned short length;
37 unsigned char *addr;
38 } I2C_BD;
39
40 #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
41
42 #define BD_I2C_TX_CL 0x0001 /* collision error */
43 #define BD_I2C_TX_UN 0x0002 /* underflow error */
44 #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
45 #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
46
47 #define BD_I2C_RX_ERR BD_SC_OV
48
49 typedef void (*i2c_ecb_t) (int, int); /* error callback function */
50
51 /* This structure keeps track of the bd and buffer space usage. */
52 typedef struct i2c_state {
53 int rx_idx; /* index to next free Rx BD */
54 int tx_idx; /* index to next free Tx BD */
55 void *rxbd; /* pointer to next free Rx BD */
56 void *txbd; /* pointer to next free Tx BD */
57 int tx_space; /* number of Tx bytes left */
58 unsigned char *tx_buf; /* pointer to free Tx area */
59 i2c_ecb_t err_cb; /* error callback function */
60 } i2c_state_t;
61
62
63 /* flags for i2c_send() and i2c_receive() */
64 #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
65 #define I2CF_START_COND 0x02 /* tx: generate start condition */
66 #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
67
68 /* return codes */
69 #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
70 #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
71 #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
72 #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
73
74 /* error callback flags */
75 #define I2CECB_RX_ERR 0x10 /* this is a receive error */
76 #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
77 #define I2CECB_RX_MASK 0x0f /* mask for error bits */
78 #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
79 #define I2CECB_TX_CL 0x01 /* transmit collision error */
80 #define I2CECB_TX_UN 0x02 /* transmit underflow error */
81 #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
82 #define I2CECB_TX_MASK 0x0f /* mask for error bits */
83 #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
84
85 /*
86 * Returns the best value of I2BRG to meet desired clock speed of I2C with
87 * input parameters (clock speed, filter, and predivider value).
88 * It returns computer speed value and the difference between it and desired
89 * speed.
90 */
91 static inline int
92 i2c_roundrate(int hz, int speed, int filter, int modval,
93 int *brgval, int *totspeed)
94 {
95 int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
96
97 debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
98 hz, speed, filter, modval);
99
100 div = moddiv * speed;
101 brgdiv = (hz + div - 1) / div;
102
103 debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
104
105 *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
106
107 if ((*brgval < 0) || (*brgval > 255)) {
108 debug("\t\trejected brgval=%d\n", *brgval);
109 return -1;
110 }
111
112 brgdiv = 2 * (*brgval + 3 + (2 * filter));
113 div = moddiv * brgdiv;
114 *totspeed = hz / div;
115
116 debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
117
118 return 0;
119 }
120
121 /*
122 * Sets the I2C clock predivider and divider to meet required clock speed.
123 */
124 static int i2c_setrate(int hz, int speed)
125 {
126 immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
127 volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
128 int brgval,
129 modval, /* 0-3 */
130 bestspeed_diff = speed,
131 bestspeed_brgval = 0,
132 bestspeed_modval = 0,
133 bestspeed_filter = 0,
134 totspeed,
135 filter = 0; /* Use this fixed value */
136
137 for (modval = 0; modval < 4; modval++) {
138 if (i2c_roundrate
139 (hz, speed, filter, modval, &brgval, &totspeed) == 0) {
140 int diff = speed - totspeed;
141
142 if ((diff >= 0) && (diff < bestspeed_diff)) {
143 bestspeed_diff = diff;
144 bestspeed_modval = modval;
145 bestspeed_brgval = brgval;
146 bestspeed_filter = filter;
147 }
148 }
149 }
150
151 debug("[I2C] Best is:\n");
152 debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
153 hz,
154 speed,
155 bestspeed_filter,
156 bestspeed_modval,
157 bestspeed_brgval,
158 bestspeed_diff);
159
160 i2c->i2c_i2mod |=
161 ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
162 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
163
164 debug("[I2C] i2mod=%08x i2brg=%08x\n",
165 i2c->i2c_i2mod,
166 i2c->i2c_i2brg);
167
168 return 1;
169 }
170
171 void i2c_init(int speed, int slaveaddr)
172 {
173 volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
174 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
175 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
176 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
177 ulong rbase, tbase;
178 volatile I2C_BD *rxbd, *txbd;
179 uint dpaddr;
180
181 #ifdef CONFIG_SYS_I2C_INIT_BOARD
182 /* call board specific i2c bus reset routine before accessing the */
183 /* environment, which might be in a chip on that bus. For details */
184 /* about this problem see doc/I2C_Edge_Conditions. */
185 i2c_init_board();
186 #endif
187
188 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
189 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
190 #else
191 /* Disable relocation */
192 iip->iic_rpbase = 0;
193 #endif
194
195 #ifdef CONFIG_SYS_ALLOC_DPRAM
196 dpaddr = iip->iic_rbase;
197 if (dpaddr == 0) {
198 /* need to allocate dual port ram */
199 dpaddr = dpram_alloc_align((NUM_RX_BDS * sizeof(I2C_BD)) +
200 (NUM_TX_BDS * sizeof(I2C_BD)) +
201 MAX_TX_SPACE, 8);
202 }
203 #else
204 dpaddr = CPM_I2C_BASE;
205 #endif
206
207 /*
208 * initialise data in dual port ram:
209 *
210 * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
211 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
212 * tx buffer (MAX_TX_SPACE bytes)
213 */
214
215 rbase = dpaddr;
216 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
217
218 /* Initialize Port B I2C pins. */
219 cp->cp_pbpar |= 0x00000030;
220 cp->cp_pbdir |= 0x00000030;
221 cp->cp_pbodr |= 0x00000030;
222
223 /* Disable interrupts */
224 i2c->i2c_i2mod = 0x00;
225 i2c->i2c_i2cmr = 0x00;
226 i2c->i2c_i2cer = 0xff;
227 i2c->i2c_i2add = slaveaddr;
228
229 /*
230 * Set the I2C BRG Clock division factor from desired i2c rate
231 * and current CPU rate (we assume sccr dfbgr field is 0;
232 * divide BRGCLK by 1)
233 */
234 debug("[I2C] Setting rate...\n");
235 i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED);
236
237 /* Set I2C controller in master mode */
238 i2c->i2c_i2com = 0x01;
239
240 /* Set SDMA bus arbitration level to 5 (SDCR) */
241 immap->im_siu_conf.sc_sdcr = 0x0001;
242
243 /* Initialize Tx/Rx parameters */
244 iip->iic_rbase = rbase;
245 iip->iic_tbase = tbase;
246 rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]);
247 txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]);
248
249 debug("[I2C] rbase = %04x\n", iip->iic_rbase);
250 debug("[I2C] tbase = %04x\n", iip->iic_tbase);
251 debug("[I2C] rxbd = %08x\n", (int)rxbd);
252 debug("[I2C] txbd = %08x\n", (int)txbd);
253
254 /* Set big endian byte order */
255 iip->iic_tfcr = 0x10;
256 iip->iic_rfcr = 0x10;
257
258 /* Set maximum receive size. */
259 iip->iic_mrblr = I2C_RXTX_LEN;
260
261 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
262 /*
263 * Initialize required parameters if using microcode patch.
264 */
265 iip->iic_rbptr = iip->iic_rbase;
266 iip->iic_tbptr = iip->iic_tbase;
267 iip->iic_rstate = 0;
268 iip->iic_tstate = 0;
269 #else
270 cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
271 do {
272 __asm__ __volatile__("eieio");
273 } while (cp->cp_cpcr & CPM_CR_FLG);
274 #endif
275
276 /* Clear events and interrupts */
277 i2c->i2c_i2cer = 0xff;
278 i2c->i2c_i2cmr = 0x00;
279 }
280
281 static void i2c_newio(i2c_state_t *state)
282 {
283 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
284 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
285 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
286
287 debug("[I2C] i2c_newio\n");
288
289 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
290 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
291 #endif
292 state->rx_idx = 0;
293 state->tx_idx = 0;
294 state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase];
295 state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase];
296 state->tx_space = MAX_TX_SPACE;
297 state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
298 state->err_cb = NULL;
299
300 debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
301 debug("[I2C] txbd = %08x\n", (int)state->txbd);
302 debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
303
304 /* clear the buffer memory */
305 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
306 }
307
308 static int
309 i2c_send(i2c_state_t *state,
310 unsigned char address,
311 unsigned char secondary_address,
312 unsigned int flags, unsigned short size, unsigned char *dataout)
313 {
314 volatile I2C_BD *txbd;
315 int i, j;
316
317 debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
318 address, secondary_address, flags, size);
319
320 /* trying to send message larger than BD */
321 if (size > I2C_RXTX_LEN)
322 return I2CERR_MSG_TOO_LONG;
323
324 /* no more free bds */
325 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
326 return I2CERR_NO_BUFFERS;
327
328 txbd = (I2C_BD *) state->txbd;
329 txbd->addr = state->tx_buf;
330
331 debug("[I2C] txbd = %08x\n", (int)txbd);
332
333 if (flags & I2CF_START_COND) {
334 debug("[I2C] Formatting addresses...\n");
335 if (flags & I2CF_ENABLE_SECONDARY) {
336 /* Length of msg + dest addr */
337 txbd->length = size + 2;
338
339 txbd->addr[0] = address << 1;
340 txbd->addr[1] = secondary_address;
341 i = 2;
342 } else {
343 /* Length of msg + dest addr */
344 txbd->length = size + 1;
345 /* Write dest addr to BD */
346 txbd->addr[0] = address << 1;
347 i = 1;
348 }
349 } else {
350 txbd->length = size; /* Length of message */
351 i = 0;
352 }
353
354 /* set up txbd */
355 txbd->status = BD_SC_READY;
356 if (flags & I2CF_START_COND)
357 txbd->status |= BD_I2C_TX_START;
358 if (flags & I2CF_STOP_COND)
359 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
360
361 /* Copy data to send into buffer */
362 debug("[I2C] copy data...\n");
363 for(j = 0; j < size; i++, j++)
364 txbd->addr[i] = dataout[j];
365
366 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
367 txbd->length,
368 txbd->status,
369 txbd->addr[0],
370 txbd->addr[1]);
371
372 /* advance state */
373 state->tx_buf += txbd->length;
374 state->tx_space -= txbd->length;
375 state->tx_idx++;
376 state->txbd = (void *) (txbd + 1);
377
378 return 0;
379 }
380
381 static int
382 i2c_receive(i2c_state_t *state,
383 unsigned char address,
384 unsigned char secondary_address,
385 unsigned int flags,
386 unsigned short size_to_expect, unsigned char *datain)
387 {
388 volatile I2C_BD *rxbd, *txbd;
389
390 debug("[I2C] i2c_receive %02d %02d %02d\n",
391 address, secondary_address, flags);
392
393 /* Expected to receive too much */
394 if (size_to_expect > I2C_RXTX_LEN)
395 return I2CERR_MSG_TOO_LONG;
396
397 /* no more free bds */
398 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
399 || state->tx_space < 2)
400 return I2CERR_NO_BUFFERS;
401
402 rxbd = (I2C_BD *) state->rxbd;
403 txbd = (I2C_BD *) state->txbd;
404
405 debug("[I2C] rxbd = %08x\n", (int)rxbd);
406 debug("[I2C] txbd = %08x\n", (int)txbd);
407
408 txbd->addr = state->tx_buf;
409
410 /* set up TXBD for destination address */
411 if (flags & I2CF_ENABLE_SECONDARY) {
412 txbd->length = 2;
413 txbd->addr[0] = address << 1; /* Write data */
414 txbd->addr[1] = secondary_address; /* Internal address */
415 txbd->status = BD_SC_READY;
416 } else {
417 txbd->length = 1 + size_to_expect;
418 txbd->addr[0] = (address << 1) | 0x01;
419 txbd->status = BD_SC_READY;
420 memset(&txbd->addr[1], 0, txbd->length);
421 }
422
423 /* set up rxbd for reception */
424 rxbd->status = BD_SC_EMPTY;
425 rxbd->length = size_to_expect;
426 rxbd->addr = datain;
427
428 txbd->status |= BD_I2C_TX_START;
429 if (flags & I2CF_STOP_COND) {
430 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
431 rxbd->status |= BD_SC_WRAP;
432 }
433
434 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
435 txbd->length,
436 txbd->status,
437 txbd->addr[0],
438 txbd->addr[1]);
439 debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
440 rxbd->length,
441 rxbd->status,
442 rxbd->addr[0],
443 rxbd->addr[1]);
444
445 /* advance state */
446 state->tx_buf += txbd->length;
447 state->tx_space -= txbd->length;
448 state->tx_idx++;
449 state->txbd = (void *) (txbd + 1);
450 state->rx_idx++;
451 state->rxbd = (void *) (rxbd + 1);
452
453 return 0;
454 }
455
456
457 static int i2c_doio(i2c_state_t *state)
458 {
459 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
460 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
461 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
462 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
463 volatile I2C_BD *txbd, *rxbd;
464 volatile int j = 0;
465
466 debug("[I2C] i2c_doio\n");
467
468 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
469 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
470 #endif
471
472 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
473 debug("[I2C] No I/O is queued\n");
474 return I2CERR_QUEUE_EMPTY;
475 }
476
477 iip->iic_rbptr = iip->iic_rbase;
478 iip->iic_tbptr = iip->iic_tbase;
479
480 /* Enable I2C */
481 debug("[I2C] Enabling I2C...\n");
482 i2c->i2c_i2mod |= 0x01;
483
484 /* Begin transmission */
485 i2c->i2c_i2com |= 0x80;
486
487 /* Loop until transmit & receive completed */
488
489 if (state->tx_idx > 0) {
490 txbd = ((I2C_BD*)state->txbd) - 1;
491
492 debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
493 (ulong)txbd);
494
495 while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
496 if (ctrlc())
497 return (-1);
498
499 __asm__ __volatile__("eieio");
500 }
501 }
502
503 if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
504 rxbd = ((I2C_BD*)state->rxbd) - 1;
505
506 debug("[I2C] Receiving...(rxbd=0x%08lx)\n",
507 (ulong)rxbd);
508
509 while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
510 if (ctrlc())
511 return (-1);
512
513 __asm__ __volatile__("eieio");
514 }
515 }
516
517 /* Turn off I2C */
518 i2c->i2c_i2mod &= ~0x01;
519
520 if (state->err_cb != NULL) {
521 int n, i, b;
522
523 /*
524 * if we have an error callback function, look at the
525 * error bits in the bd status and pass them back
526 */
527
528 if ((n = state->tx_idx) > 0) {
529 for (i = 0; i < n; i++) {
530 txbd = ((I2C_BD *) state->txbd) - (n - i);
531 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
532 (*state->err_cb) (I2CECB_TX_ERR | b,
533 i);
534 }
535 }
536
537 if ((n = state->rx_idx) > 0) {
538 for (i = 0; i < n; i++) {
539 rxbd = ((I2C_BD *) state->rxbd) - (n - i);
540 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
541 (*state->err_cb) (I2CECB_RX_ERR | b,
542 i);
543 }
544 }
545
546 if (j >= TOUT_LOOP)
547 (*state->err_cb) (I2CECB_TIMEOUT, 0);
548 }
549
550 return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
551 }
552
553 static int had_tx_nak;
554
555 static void i2c_test_callback(int flags, int xnum)
556 {
557 if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
558 had_tx_nak = 1;
559 }
560
561 int i2c_probe(uchar chip)
562 {
563 i2c_state_t state;
564 int rc;
565 uchar buf[1];
566
567 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
568
569 i2c_newio(&state);
570
571 state.err_cb = i2c_test_callback;
572 had_tx_nak = 0;
573
574 rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
575 buf);
576
577 if (rc != 0)
578 return (rc);
579
580 rc = i2c_doio(&state);
581
582 if ((rc != 0) && (rc != I2CERR_TIMEOUT))
583 return (rc);
584
585 return (had_tx_nak);
586 }
587
588 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
589 {
590 i2c_state_t state;
591 uchar xaddr[4];
592 int rc;
593
594 #ifdef CONFIG_LWMON
595 WATCHDOG_RESET();
596 #endif
597
598 xaddr[0] = (addr >> 24) & 0xFF;
599 xaddr[1] = (addr >> 16) & 0xFF;
600 xaddr[2] = (addr >> 8) & 0xFF;
601 xaddr[3] = addr & 0xFF;
602
603 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
604 /*
605 * EEPROM chips that implement "address overflow" are ones like
606 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
607 * extra bits end up in the "chip address" bit slots. This makes
608 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
609 *
610 * Note that we consider the length of the address field to still
611 * be one byte because the extra address bits are hidden in the
612 * chip address.
613 */
614 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
615 #endif
616
617 i2c_newio(&state);
618
619 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
620 &xaddr[4 - alen]);
621 if (rc != 0) {
622 printf("i2c_read: i2c_send failed (%d)\n", rc);
623 return 1;
624 }
625
626 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
627 if (rc != 0) {
628 printf("i2c_read: i2c_receive failed (%d)\n", rc);
629 return 1;
630 }
631
632 rc = i2c_doio(&state);
633 if (rc != 0) {
634 printf("i2c_read: i2c_doio failed (%d)\n", rc);
635 return 1;
636 }
637 return 0;
638 }
639
640 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
641 {
642 i2c_state_t state;
643 uchar xaddr[4];
644 int rc;
645
646 xaddr[0] = (addr >> 24) & 0xFF;
647 xaddr[1] = (addr >> 16) & 0xFF;
648 xaddr[2] = (addr >> 8) & 0xFF;
649 xaddr[3] = addr & 0xFF;
650
651 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
652 /*
653 * EEPROM chips that implement "address overflow" are ones like
654 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
655 * extra bits end up in the "chip address" bit slots. This makes
656 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
657 *
658 * Note that we consider the length of the address field to still
659 * be one byte because the extra address bits are hidden in the
660 * chip address.
661 */
662 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
663 #endif
664
665 i2c_newio(&state);
666
667 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
668 &xaddr[4 - alen]);
669 if (rc != 0) {
670 printf("i2c_write: first i2c_send failed (%d)\n", rc);
671 return 1;
672 }
673
674 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
675 if (rc != 0) {
676 printf("i2c_write: second i2c_send failed (%d)\n", rc);
677 return 1;
678 }
679
680 rc = i2c_doio(&state);
681 if (rc != 0) {
682 printf("i2c_write: i2c_doio failed (%d)\n", rc);
683 return 1;
684 }
685 return 0;
686 }
687
688 #endif /* CONFIG_HARD_I2C */