]> git.ipfire.org Git - people/ms/u-boot.git/blob - arch/powerpc/cpu/mpc8xx/i2c.c
mpc8xx: remove lwmon board support
[people/ms/u-boot.git] / arch / powerpc / cpu / mpc8xx / i2c.c
1 /*
2 * (C) Copyright 2000
3 * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it
4 *
5 * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com>
6 * Marius Groeger <mgroeger@sysgo.de>
7 *
8 * SPDX-License-Identifier: GPL-2.0+
9 *
10 * Back ported to the 8xx platform (from the 8260 platform) by
11 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
12 */
13
14 #include <common.h>
15
16 #ifdef CONFIG_HARD_I2C
17
18 #include <commproc.h>
19 #include <i2c.h>
20
21 DECLARE_GLOBAL_DATA_PTR;
22
23 /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */
24 #define TOUT_LOOP 1000000
25
26 #define NUM_RX_BDS 4
27 #define NUM_TX_BDS 4
28 #define MAX_TX_SPACE 256
29 #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */
30
31 typedef struct I2C_BD {
32 unsigned short status;
33 unsigned short length;
34 unsigned char *addr;
35 } I2C_BD;
36
37 #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */
38
39 #define BD_I2C_TX_CL 0x0001 /* collision error */
40 #define BD_I2C_TX_UN 0x0002 /* underflow error */
41 #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */
42 #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL)
43
44 #define BD_I2C_RX_ERR BD_SC_OV
45
46 typedef void (*i2c_ecb_t) (int, int); /* error callback function */
47
48 /* This structure keeps track of the bd and buffer space usage. */
49 typedef struct i2c_state {
50 int rx_idx; /* index to next free Rx BD */
51 int tx_idx; /* index to next free Tx BD */
52 void *rxbd; /* pointer to next free Rx BD */
53 void *txbd; /* pointer to next free Tx BD */
54 int tx_space; /* number of Tx bytes left */
55 unsigned char *tx_buf; /* pointer to free Tx area */
56 i2c_ecb_t err_cb; /* error callback function */
57 } i2c_state_t;
58
59
60 /* flags for i2c_send() and i2c_receive() */
61 #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */
62 #define I2CF_START_COND 0x02 /* tx: generate start condition */
63 #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */
64
65 /* return codes */
66 #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */
67 #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */
68 #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */
69 #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */
70
71 /* error callback flags */
72 #define I2CECB_RX_ERR 0x10 /* this is a receive error */
73 #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */
74 #define I2CECB_RX_MASK 0x0f /* mask for error bits */
75 #define I2CECB_TX_ERR 0x20 /* this is a transmit error */
76 #define I2CECB_TX_CL 0x01 /* transmit collision error */
77 #define I2CECB_TX_UN 0x02 /* transmit underflow error */
78 #define I2CECB_TX_NAK 0x04 /* transmit no ack error */
79 #define I2CECB_TX_MASK 0x0f /* mask for error bits */
80 #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */
81
82 /*
83 * Returns the best value of I2BRG to meet desired clock speed of I2C with
84 * input parameters (clock speed, filter, and predivider value).
85 * It returns computer speed value and the difference between it and desired
86 * speed.
87 */
88 static inline int
89 i2c_roundrate(int hz, int speed, int filter, int modval,
90 int *brgval, int *totspeed)
91 {
92 int moddiv = 1 << (5 - (modval & 3)), brgdiv, div;
93
94 debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n",
95 hz, speed, filter, modval);
96
97 div = moddiv * speed;
98 brgdiv = (hz + div - 1) / div;
99
100 debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv);
101
102 *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter);
103
104 if ((*brgval < 0) || (*brgval > 255)) {
105 debug("\t\trejected brgval=%d\n", *brgval);
106 return -1;
107 }
108
109 brgdiv = 2 * (*brgval + 3 + (2 * filter));
110 div = moddiv * brgdiv;
111 *totspeed = hz / div;
112
113 debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed);
114
115 return 0;
116 }
117
118 /*
119 * Sets the I2C clock predivider and divider to meet required clock speed.
120 */
121 static int i2c_setrate(int hz, int speed)
122 {
123 immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
124 volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c;
125 int brgval,
126 modval, /* 0-3 */
127 bestspeed_diff = speed,
128 bestspeed_brgval = 0,
129 bestspeed_modval = 0,
130 bestspeed_filter = 0,
131 totspeed,
132 filter = 0; /* Use this fixed value */
133
134 for (modval = 0; modval < 4; modval++) {
135 if (i2c_roundrate
136 (hz, speed, filter, modval, &brgval, &totspeed) == 0) {
137 int diff = speed - totspeed;
138
139 if ((diff >= 0) && (diff < bestspeed_diff)) {
140 bestspeed_diff = diff;
141 bestspeed_modval = modval;
142 bestspeed_brgval = brgval;
143 bestspeed_filter = filter;
144 }
145 }
146 }
147
148 debug("[I2C] Best is:\n");
149 debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n",
150 hz,
151 speed,
152 bestspeed_filter,
153 bestspeed_modval,
154 bestspeed_brgval,
155 bestspeed_diff);
156
157 i2c->i2c_i2mod |=
158 ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3);
159 i2c->i2c_i2brg = bestspeed_brgval & 0xff;
160
161 debug("[I2C] i2mod=%08x i2brg=%08x\n",
162 i2c->i2c_i2mod,
163 i2c->i2c_i2brg);
164
165 return 1;
166 }
167
168 void i2c_init(int speed, int slaveaddr)
169 {
170 volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR;
171 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
172 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
173 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
174 ulong rbase, tbase;
175 volatile I2C_BD *rxbd, *txbd;
176 uint dpaddr;
177
178 #ifdef CONFIG_SYS_I2C_INIT_BOARD
179 /* call board specific i2c bus reset routine before accessing the */
180 /* environment, which might be in a chip on that bus. For details */
181 /* about this problem see doc/I2C_Edge_Conditions. */
182 i2c_init_board();
183 #endif
184
185 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
186 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
187 #else
188 /* Disable relocation */
189 iip->iic_rpbase = 0;
190 #endif
191
192 #ifdef CONFIG_SYS_ALLOC_DPRAM
193 dpaddr = iip->iic_rbase;
194 if (dpaddr == 0) {
195 /* need to allocate dual port ram */
196 dpaddr = dpram_alloc_align((NUM_RX_BDS * sizeof(I2C_BD)) +
197 (NUM_TX_BDS * sizeof(I2C_BD)) +
198 MAX_TX_SPACE, 8);
199 }
200 #else
201 dpaddr = CPM_I2C_BASE;
202 #endif
203
204 /*
205 * initialise data in dual port ram:
206 *
207 * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes)
208 * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes)
209 * tx buffer (MAX_TX_SPACE bytes)
210 */
211
212 rbase = dpaddr;
213 tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD);
214
215 /* Initialize Port B I2C pins. */
216 cp->cp_pbpar |= 0x00000030;
217 cp->cp_pbdir |= 0x00000030;
218 cp->cp_pbodr |= 0x00000030;
219
220 /* Disable interrupts */
221 i2c->i2c_i2mod = 0x00;
222 i2c->i2c_i2cmr = 0x00;
223 i2c->i2c_i2cer = 0xff;
224 i2c->i2c_i2add = slaveaddr;
225
226 /*
227 * Set the I2C BRG Clock division factor from desired i2c rate
228 * and current CPU rate (we assume sccr dfbgr field is 0;
229 * divide BRGCLK by 1)
230 */
231 debug("[I2C] Setting rate...\n");
232 i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED);
233
234 /* Set I2C controller in master mode */
235 i2c->i2c_i2com = 0x01;
236
237 /* Set SDMA bus arbitration level to 5 (SDCR) */
238 immap->im_siu_conf.sc_sdcr = 0x0001;
239
240 /* Initialize Tx/Rx parameters */
241 iip->iic_rbase = rbase;
242 iip->iic_tbase = tbase;
243 rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]);
244 txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]);
245
246 debug("[I2C] rbase = %04x\n", iip->iic_rbase);
247 debug("[I2C] tbase = %04x\n", iip->iic_tbase);
248 debug("[I2C] rxbd = %08x\n", (int)rxbd);
249 debug("[I2C] txbd = %08x\n", (int)txbd);
250
251 /* Set big endian byte order */
252 iip->iic_tfcr = 0x10;
253 iip->iic_rfcr = 0x10;
254
255 /* Set maximum receive size. */
256 iip->iic_mrblr = I2C_RXTX_LEN;
257
258 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
259 /*
260 * Initialize required parameters if using microcode patch.
261 */
262 iip->iic_rbptr = iip->iic_rbase;
263 iip->iic_tbptr = iip->iic_tbase;
264 iip->iic_rstate = 0;
265 iip->iic_tstate = 0;
266 #else
267 cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG;
268 do {
269 __asm__ __volatile__("eieio");
270 } while (cp->cp_cpcr & CPM_CR_FLG);
271 #endif
272
273 /* Clear events and interrupts */
274 i2c->i2c_i2cer = 0xff;
275 i2c->i2c_i2cmr = 0x00;
276 }
277
278 static void i2c_newio(i2c_state_t *state)
279 {
280 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
281 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
282 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
283
284 debug("[I2C] i2c_newio\n");
285
286 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
287 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
288 #endif
289 state->rx_idx = 0;
290 state->tx_idx = 0;
291 state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase];
292 state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase];
293 state->tx_space = MAX_TX_SPACE;
294 state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD);
295 state->err_cb = NULL;
296
297 debug("[I2C] rxbd = %08x\n", (int)state->rxbd);
298 debug("[I2C] txbd = %08x\n", (int)state->txbd);
299 debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf);
300
301 /* clear the buffer memory */
302 memset((char *)state->tx_buf, 0, MAX_TX_SPACE);
303 }
304
305 static int
306 i2c_send(i2c_state_t *state,
307 unsigned char address,
308 unsigned char secondary_address,
309 unsigned int flags, unsigned short size, unsigned char *dataout)
310 {
311 volatile I2C_BD *txbd;
312 int i, j;
313
314 debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n",
315 address, secondary_address, flags, size);
316
317 /* trying to send message larger than BD */
318 if (size > I2C_RXTX_LEN)
319 return I2CERR_MSG_TOO_LONG;
320
321 /* no more free bds */
322 if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size))
323 return I2CERR_NO_BUFFERS;
324
325 txbd = (I2C_BD *) state->txbd;
326 txbd->addr = state->tx_buf;
327
328 debug("[I2C] txbd = %08x\n", (int)txbd);
329
330 if (flags & I2CF_START_COND) {
331 debug("[I2C] Formatting addresses...\n");
332 if (flags & I2CF_ENABLE_SECONDARY) {
333 /* Length of msg + dest addr */
334 txbd->length = size + 2;
335
336 txbd->addr[0] = address << 1;
337 txbd->addr[1] = secondary_address;
338 i = 2;
339 } else {
340 /* Length of msg + dest addr */
341 txbd->length = size + 1;
342 /* Write dest addr to BD */
343 txbd->addr[0] = address << 1;
344 i = 1;
345 }
346 } else {
347 txbd->length = size; /* Length of message */
348 i = 0;
349 }
350
351 /* set up txbd */
352 txbd->status = BD_SC_READY;
353 if (flags & I2CF_START_COND)
354 txbd->status |= BD_I2C_TX_START;
355 if (flags & I2CF_STOP_COND)
356 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
357
358 /* Copy data to send into buffer */
359 debug("[I2C] copy data...\n");
360 for(j = 0; j < size; i++, j++)
361 txbd->addr[i] = dataout[j];
362
363 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
364 txbd->length,
365 txbd->status,
366 txbd->addr[0],
367 txbd->addr[1]);
368
369 /* advance state */
370 state->tx_buf += txbd->length;
371 state->tx_space -= txbd->length;
372 state->tx_idx++;
373 state->txbd = (void *) (txbd + 1);
374
375 return 0;
376 }
377
378 static int
379 i2c_receive(i2c_state_t *state,
380 unsigned char address,
381 unsigned char secondary_address,
382 unsigned int flags,
383 unsigned short size_to_expect, unsigned char *datain)
384 {
385 volatile I2C_BD *rxbd, *txbd;
386
387 debug("[I2C] i2c_receive %02d %02d %02d\n",
388 address, secondary_address, flags);
389
390 /* Expected to receive too much */
391 if (size_to_expect > I2C_RXTX_LEN)
392 return I2CERR_MSG_TOO_LONG;
393
394 /* no more free bds */
395 if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS
396 || state->tx_space < 2)
397 return I2CERR_NO_BUFFERS;
398
399 rxbd = (I2C_BD *) state->rxbd;
400 txbd = (I2C_BD *) state->txbd;
401
402 debug("[I2C] rxbd = %08x\n", (int)rxbd);
403 debug("[I2C] txbd = %08x\n", (int)txbd);
404
405 txbd->addr = state->tx_buf;
406
407 /* set up TXBD for destination address */
408 if (flags & I2CF_ENABLE_SECONDARY) {
409 txbd->length = 2;
410 txbd->addr[0] = address << 1; /* Write data */
411 txbd->addr[1] = secondary_address; /* Internal address */
412 txbd->status = BD_SC_READY;
413 } else {
414 txbd->length = 1 + size_to_expect;
415 txbd->addr[0] = (address << 1) | 0x01;
416 txbd->status = BD_SC_READY;
417 memset(&txbd->addr[1], 0, txbd->length);
418 }
419
420 /* set up rxbd for reception */
421 rxbd->status = BD_SC_EMPTY;
422 rxbd->length = size_to_expect;
423 rxbd->addr = datain;
424
425 txbd->status |= BD_I2C_TX_START;
426 if (flags & I2CF_STOP_COND) {
427 txbd->status |= BD_SC_LAST | BD_SC_WRAP;
428 rxbd->status |= BD_SC_WRAP;
429 }
430
431 debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
432 txbd->length,
433 txbd->status,
434 txbd->addr[0],
435 txbd->addr[1]);
436 debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n",
437 rxbd->length,
438 rxbd->status,
439 rxbd->addr[0],
440 rxbd->addr[1]);
441
442 /* advance state */
443 state->tx_buf += txbd->length;
444 state->tx_space -= txbd->length;
445 state->tx_idx++;
446 state->txbd = (void *) (txbd + 1);
447 state->rx_idx++;
448 state->rxbd = (void *) (rxbd + 1);
449
450 return 0;
451 }
452
453
454 static int i2c_doio(i2c_state_t *state)
455 {
456 volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
457 volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm;
458 volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c;
459 volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC];
460 volatile I2C_BD *txbd, *rxbd;
461 volatile int j = 0;
462
463 debug("[I2C] i2c_doio\n");
464
465 #ifdef CONFIG_SYS_I2C_UCODE_PATCH
466 iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase];
467 #endif
468
469 if (state->tx_idx <= 0 && state->rx_idx <= 0) {
470 debug("[I2C] No I/O is queued\n");
471 return I2CERR_QUEUE_EMPTY;
472 }
473
474 iip->iic_rbptr = iip->iic_rbase;
475 iip->iic_tbptr = iip->iic_tbase;
476
477 /* Enable I2C */
478 debug("[I2C] Enabling I2C...\n");
479 i2c->i2c_i2mod |= 0x01;
480
481 /* Begin transmission */
482 i2c->i2c_i2com |= 0x80;
483
484 /* Loop until transmit & receive completed */
485
486 if (state->tx_idx > 0) {
487 txbd = ((I2C_BD*)state->txbd) - 1;
488
489 debug("[I2C] Transmitting...(txbd=0x%08lx)\n",
490 (ulong)txbd);
491
492 while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) {
493 if (ctrlc())
494 return (-1);
495
496 __asm__ __volatile__("eieio");
497 }
498 }
499
500 if ((state->rx_idx > 0) && (j < TOUT_LOOP)) {
501 rxbd = ((I2C_BD*)state->rxbd) - 1;
502
503 debug("[I2C] Receiving...(rxbd=0x%08lx)\n",
504 (ulong)rxbd);
505
506 while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) {
507 if (ctrlc())
508 return (-1);
509
510 __asm__ __volatile__("eieio");
511 }
512 }
513
514 /* Turn off I2C */
515 i2c->i2c_i2mod &= ~0x01;
516
517 if (state->err_cb != NULL) {
518 int n, i, b;
519
520 /*
521 * if we have an error callback function, look at the
522 * error bits in the bd status and pass them back
523 */
524
525 if ((n = state->tx_idx) > 0) {
526 for (i = 0; i < n; i++) {
527 txbd = ((I2C_BD *) state->txbd) - (n - i);
528 if ((b = txbd->status & BD_I2C_TX_ERR) != 0)
529 (*state->err_cb) (I2CECB_TX_ERR | b,
530 i);
531 }
532 }
533
534 if ((n = state->rx_idx) > 0) {
535 for (i = 0; i < n; i++) {
536 rxbd = ((I2C_BD *) state->rxbd) - (n - i);
537 if ((b = rxbd->status & BD_I2C_RX_ERR) != 0)
538 (*state->err_cb) (I2CECB_RX_ERR | b,
539 i);
540 }
541 }
542
543 if (j >= TOUT_LOOP)
544 (*state->err_cb) (I2CECB_TIMEOUT, 0);
545 }
546
547 return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0;
548 }
549
550 static int had_tx_nak;
551
552 static void i2c_test_callback(int flags, int xnum)
553 {
554 if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK))
555 had_tx_nak = 1;
556 }
557
558 int i2c_probe(uchar chip)
559 {
560 i2c_state_t state;
561 int rc;
562 uchar buf[1];
563
564 i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
565
566 i2c_newio(&state);
567
568 state.err_cb = i2c_test_callback;
569 had_tx_nak = 0;
570
571 rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1,
572 buf);
573
574 if (rc != 0)
575 return (rc);
576
577 rc = i2c_doio(&state);
578
579 if ((rc != 0) && (rc != I2CERR_TIMEOUT))
580 return (rc);
581
582 return (had_tx_nak);
583 }
584
585 int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
586 {
587 i2c_state_t state;
588 uchar xaddr[4];
589 int rc;
590
591 xaddr[0] = (addr >> 24) & 0xFF;
592 xaddr[1] = (addr >> 16) & 0xFF;
593 xaddr[2] = (addr >> 8) & 0xFF;
594 xaddr[3] = addr & 0xFF;
595
596 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
597 /*
598 * EEPROM chips that implement "address overflow" are ones like
599 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
600 * extra bits end up in the "chip address" bit slots. This makes
601 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
602 *
603 * Note that we consider the length of the address field to still
604 * be one byte because the extra address bits are hidden in the
605 * chip address.
606 */
607 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
608 #endif
609
610 i2c_newio(&state);
611
612 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
613 &xaddr[4 - alen]);
614 if (rc != 0) {
615 printf("i2c_read: i2c_send failed (%d)\n", rc);
616 return 1;
617 }
618
619 rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer);
620 if (rc != 0) {
621 printf("i2c_read: i2c_receive failed (%d)\n", rc);
622 return 1;
623 }
624
625 rc = i2c_doio(&state);
626 if (rc != 0) {
627 printf("i2c_read: i2c_doio failed (%d)\n", rc);
628 return 1;
629 }
630 return 0;
631 }
632
633 int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
634 {
635 i2c_state_t state;
636 uchar xaddr[4];
637 int rc;
638
639 xaddr[0] = (addr >> 24) & 0xFF;
640 xaddr[1] = (addr >> 16) & 0xFF;
641 xaddr[2] = (addr >> 8) & 0xFF;
642 xaddr[3] = addr & 0xFF;
643
644 #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
645 /*
646 * EEPROM chips that implement "address overflow" are ones like
647 * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the
648 * extra bits end up in the "chip address" bit slots. This makes
649 * a 24WC08 (1Kbyte) chip look like four 256 byte chips.
650 *
651 * Note that we consider the length of the address field to still
652 * be one byte because the extra address bits are hidden in the
653 * chip address.
654 */
655 chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
656 #endif
657
658 i2c_newio(&state);
659
660 rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen,
661 &xaddr[4 - alen]);
662 if (rc != 0) {
663 printf("i2c_write: first i2c_send failed (%d)\n", rc);
664 return 1;
665 }
666
667 rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer);
668 if (rc != 0) {
669 printf("i2c_write: second i2c_send failed (%d)\n", rc);
670 return 1;
671 }
672
673 rc = i2c_doio(&state);
674 if (rc != 0) {
675 printf("i2c_write: i2c_doio failed (%d)\n", rc);
676 return 1;
677 }
678 return 0;
679 }
680
681 #endif /* CONFIG_HARD_I2C */