]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/include/asm/book3s/64/pgtable.h
powerpc/mm: Fix missing page attributes in page table dump
[thirdparty/kernel/stable.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
4 #include <asm-generic/5level-fixup.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/mmdebug.h>
8 #endif
9
10 /*
11 * Common bits between hash and Radix page table
12 */
13 #define _PAGE_BIT_SWAP_TYPE 0
14
15 #define _PAGE_RO 0
16 #define _PAGE_SHARED 0
17
18 #define _PAGE_EXEC 0x00001 /* execute permission */
19 #define _PAGE_WRITE 0x00002 /* write access allowed */
20 #define _PAGE_READ 0x00004 /* read access allowed */
21 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
22 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
24 #define _PAGE_SAO 0x00010 /* Strong access order */
25 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
26 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
27 #define _PAGE_DIRTY 0x00080 /* C: page changed */
28 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
29 /*
30 * Software bits
31 */
32 #define _RPAGE_SW0 0x2000000000000000UL
33 #define _RPAGE_SW1 0x00800
34 #define _RPAGE_SW2 0x00400
35 #define _RPAGE_SW3 0x00200
36 #define _RPAGE_RSV1 0x1000000000000000UL
37 #define _RPAGE_RSV2 0x0800000000000000UL
38 #define _RPAGE_RSV3 0x0400000000000000UL
39 #define _RPAGE_RSV4 0x0200000000000000UL
40
41 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
42 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
43
44 /*
45 * Top and bottom bits of RPN which can be used by hash
46 * translation mode, because we expect them to be zero
47 * otherwise.
48 */
49 #define _RPAGE_RPN0 0x01000
50 #define _RPAGE_RPN1 0x02000
51 #define _RPAGE_RPN44 0x0100000000000000UL
52 #define _RPAGE_RPN43 0x0080000000000000UL
53 #define _RPAGE_RPN42 0x0040000000000000UL
54 #define _RPAGE_RPN41 0x0020000000000000UL
55
56 /* Max physical address bit as per radix table */
57 #define _RPAGE_PA_MAX 57
58
59 /*
60 * Max physical address bit we will use for now.
61 *
62 * This is mostly a hardware limitation and for now Power9 has
63 * a 51 bit limit.
64 *
65 * This is different from the number of physical bit required to address
66 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
67 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
68 * number of sections we can support (SECTIONS_SHIFT).
69 *
70 * This is different from Radix page table limitation above and
71 * should always be less than that. The limit is done such that
72 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
73 * for hash linux page table specific bits.
74 *
75 * In order to be compatible with future hardware generations we keep
76 * some offsets and limit this for now to 53
77 */
78 #define _PAGE_PA_MAX 53
79
80 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
81 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
82 /*
83 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
84 * Instead of fixing all of them, add an alternate define which
85 * maps CI pte mapping.
86 */
87 #define _PAGE_NO_CACHE _PAGE_TOLERANT
88 /*
89 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
90 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
91 * and every thing below PAGE_SHIFT;
92 */
93 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
94 /*
95 * set of bits not changed in pmd_modify. Even though we have hash specific bits
96 * in here, on radix we expect them to be zero.
97 */
98 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
99 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
100 _PAGE_SOFT_DIRTY)
101 /*
102 * user access blocked by key
103 */
104 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
105 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
106 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
107 _PAGE_RW | _PAGE_EXEC)
108 /*
109 * No page size encoding in the linux PTE
110 */
111 #define _PAGE_PSIZE 0
112 /*
113 * _PAGE_CHG_MASK masks of bits that are to be preserved across
114 * pgprot changes
115 */
116 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
117 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
118 _PAGE_SOFT_DIRTY)
119 /*
120 * Mask of bits returned by pte_pgprot()
121 */
122 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
123 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
124 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
125 _PAGE_SOFT_DIRTY)
126 /*
127 * We define 2 sets of base prot bits, one for basic pages (ie,
128 * cacheable kernel and user pages) and one for non cacheable
129 * pages. We always set _PAGE_COHERENT when SMP is enabled or
130 * the processor might need it for DMA coherency.
131 */
132 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
133 #define _PAGE_BASE (_PAGE_BASE_NC)
134
135 /* Permission masks used to generate the __P and __S table,
136 *
137 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
138 *
139 * Write permissions imply read permissions for now (we could make write-only
140 * pages on BookE but we don't bother for now). Execute permission control is
141 * possible on platforms that define _PAGE_EXEC
142 *
143 * Note due to the way vm flags are laid out, the bits are XWR
144 */
145 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
146 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
147 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
148 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
149 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
150 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
151 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152
153 #define __P000 PAGE_NONE
154 #define __P001 PAGE_READONLY
155 #define __P010 PAGE_COPY
156 #define __P011 PAGE_COPY
157 #define __P100 PAGE_READONLY_X
158 #define __P101 PAGE_READONLY_X
159 #define __P110 PAGE_COPY_X
160 #define __P111 PAGE_COPY_X
161
162 #define __S000 PAGE_NONE
163 #define __S001 PAGE_READONLY
164 #define __S010 PAGE_SHARED
165 #define __S011 PAGE_SHARED
166 #define __S100 PAGE_READONLY_X
167 #define __S101 PAGE_READONLY_X
168 #define __S110 PAGE_SHARED_X
169 #define __S111 PAGE_SHARED_X
170
171 /* Permission masks used for kernel mappings */
172 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
173 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
174 _PAGE_TOLERANT)
175 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
176 _PAGE_NON_IDEMPOTENT)
177 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
178 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
179 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
180
181 /*
182 * Protection used for kernel text. We want the debuggers to be able to
183 * set breakpoints anywhere, so don't write protect the kernel text
184 * on platforms where such control is possible.
185 */
186 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
187 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
188 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
189 #else
190 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
191 #endif
192
193 /* Make modules code happy. We don't set RO yet */
194 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
195 #define PAGE_AGP (PAGE_KERNEL_NC)
196
197 #ifndef __ASSEMBLY__
198 /*
199 * page table defines
200 */
201 extern unsigned long __pte_index_size;
202 extern unsigned long __pmd_index_size;
203 extern unsigned long __pud_index_size;
204 extern unsigned long __pgd_index_size;
205 extern unsigned long __pmd_cache_index;
206 #define PTE_INDEX_SIZE __pte_index_size
207 #define PMD_INDEX_SIZE __pmd_index_size
208 #define PUD_INDEX_SIZE __pud_index_size
209 #define PGD_INDEX_SIZE __pgd_index_size
210 #define PMD_CACHE_INDEX __pmd_cache_index
211 /*
212 * Because of use of pte fragments and THP, size of page table
213 * are not always derived out of index size above.
214 */
215 extern unsigned long __pte_table_size;
216 extern unsigned long __pmd_table_size;
217 extern unsigned long __pud_table_size;
218 extern unsigned long __pgd_table_size;
219 #define PTE_TABLE_SIZE __pte_table_size
220 #define PMD_TABLE_SIZE __pmd_table_size
221 #define PUD_TABLE_SIZE __pud_table_size
222 #define PGD_TABLE_SIZE __pgd_table_size
223
224 extern unsigned long __pmd_val_bits;
225 extern unsigned long __pud_val_bits;
226 extern unsigned long __pgd_val_bits;
227 #define PMD_VAL_BITS __pmd_val_bits
228 #define PUD_VAL_BITS __pud_val_bits
229 #define PGD_VAL_BITS __pgd_val_bits
230
231 extern unsigned long __pte_frag_nr;
232 #define PTE_FRAG_NR __pte_frag_nr
233 extern unsigned long __pte_frag_size_shift;
234 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
235 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
236
237 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
238 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
239 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
240 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
241
242 /* PMD_SHIFT determines what a second-level page table entry can map */
243 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
244 #define PMD_SIZE (1UL << PMD_SHIFT)
245 #define PMD_MASK (~(PMD_SIZE-1))
246
247 /* PUD_SHIFT determines what a third-level page table entry can map */
248 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
249 #define PUD_SIZE (1UL << PUD_SHIFT)
250 #define PUD_MASK (~(PUD_SIZE-1))
251
252 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
253 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
254 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
255 #define PGDIR_MASK (~(PGDIR_SIZE-1))
256
257 /* Bits to mask out from a PMD to get to the PTE page */
258 #define PMD_MASKED_BITS 0xc0000000000000ffUL
259 /* Bits to mask out from a PUD to get to the PMD page */
260 #define PUD_MASKED_BITS 0xc0000000000000ffUL
261 /* Bits to mask out from a PGD to get to the PUD page */
262 #define PGD_MASKED_BITS 0xc0000000000000ffUL
263
264 extern unsigned long __vmalloc_start;
265 extern unsigned long __vmalloc_end;
266 #define VMALLOC_START __vmalloc_start
267 #define VMALLOC_END __vmalloc_end
268
269 extern unsigned long __kernel_virt_start;
270 extern unsigned long __kernel_virt_size;
271 #define KERN_VIRT_START __kernel_virt_start
272 #define KERN_VIRT_SIZE __kernel_virt_size
273 extern struct page *vmemmap;
274 extern unsigned long ioremap_bot;
275 extern unsigned long pci_io_base;
276 #endif /* __ASSEMBLY__ */
277
278 #include <asm/book3s/64/hash.h>
279 #include <asm/book3s/64/radix.h>
280
281 #ifdef CONFIG_PPC_64K_PAGES
282 #include <asm/book3s/64/pgtable-64k.h>
283 #else
284 #include <asm/book3s/64/pgtable-4k.h>
285 #endif
286
287 #include <asm/barrier.h>
288 /*
289 * The second half of the kernel virtual space is used for IO mappings,
290 * it's itself carved into the PIO region (ISA and PHB IO space) and
291 * the ioremap space
292 *
293 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
294 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
295 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
296 */
297 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
298 #define FULL_IO_SIZE 0x80000000ul
299 #define ISA_IO_BASE (KERN_IO_START)
300 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
301 #define PHB_IO_BASE (ISA_IO_END)
302 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
303 #define IOREMAP_BASE (PHB_IO_END)
304 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
305
306 /* Advertise special mapping type for AGP */
307 #define HAVE_PAGE_AGP
308
309 /* Advertise support for _PAGE_SPECIAL */
310 #define __HAVE_ARCH_PTE_SPECIAL
311
312 #ifndef __ASSEMBLY__
313
314 /*
315 * This is the default implementation of various PTE accessors, it's
316 * used in all cases except Book3S with 64K pages where we have a
317 * concept of sub-pages
318 */
319 #ifndef __real_pte
320
321 #define __real_pte(e,p) ((real_pte_t){(e)})
322 #define __rpte_to_pte(r) ((r).pte)
323 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
324
325 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
326 do { \
327 index = 0; \
328 shift = mmu_psize_defs[psize].shift; \
329
330 #define pte_iterate_hashed_end() } while(0)
331
332 /*
333 * We expect this to be called only for user addresses or kernel virtual
334 * addresses other than the linear mapping.
335 */
336 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
337
338 #endif /* __real_pte */
339
340 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
341 pte_t *ptep, unsigned long clr,
342 unsigned long set, int huge)
343 {
344 if (radix_enabled())
345 return radix__pte_update(mm, addr, ptep, clr, set, huge);
346 return hash__pte_update(mm, addr, ptep, clr, set, huge);
347 }
348 /*
349 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
350 * We currently remove entries from the hashtable regardless of whether
351 * the entry was young or dirty.
352 *
353 * We should be more intelligent about this but for the moment we override
354 * these functions and force a tlb flush unconditionally
355 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
356 * function for both hash and radix.
357 */
358 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
359 unsigned long addr, pte_t *ptep)
360 {
361 unsigned long old;
362
363 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
364 return 0;
365 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
366 return (old & _PAGE_ACCESSED) != 0;
367 }
368
369 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
370 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
371 ({ \
372 int __r; \
373 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
374 __r; \
375 })
376
377 static inline int __pte_write(pte_t pte)
378 {
379 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
380 }
381
382 #ifdef CONFIG_NUMA_BALANCING
383 #define pte_savedwrite pte_savedwrite
384 static inline bool pte_savedwrite(pte_t pte)
385 {
386 /*
387 * Saved write ptes are prot none ptes that doesn't have
388 * privileged bit sit. We mark prot none as one which has
389 * present and pviliged bit set and RWX cleared. To mark
390 * protnone which used to have _PAGE_WRITE set we clear
391 * the privileged bit.
392 */
393 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
394 }
395 #else
396 #define pte_savedwrite pte_savedwrite
397 static inline bool pte_savedwrite(pte_t pte)
398 {
399 return false;
400 }
401 #endif
402
403 static inline int pte_write(pte_t pte)
404 {
405 return __pte_write(pte) || pte_savedwrite(pte);
406 }
407
408 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
409 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
410 pte_t *ptep)
411 {
412 if (__pte_write(*ptep))
413 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
414 else if (unlikely(pte_savedwrite(*ptep)))
415 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
416 }
417
418 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
419 unsigned long addr, pte_t *ptep)
420 {
421 /*
422 * We should not find protnone for hugetlb, but this complete the
423 * interface.
424 */
425 if (__pte_write(*ptep))
426 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
427 else if (unlikely(pte_savedwrite(*ptep)))
428 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
429 }
430
431 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
432 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
433 unsigned long addr, pte_t *ptep)
434 {
435 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
436 return __pte(old);
437 }
438
439 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
440 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
441 unsigned long addr,
442 pte_t *ptep, int full)
443 {
444 if (full && radix_enabled()) {
445 /*
446 * Let's skip the DD1 style pte update here. We know that
447 * this is a full mm pte clear and hence can be sure there is
448 * no parallel set_pte.
449 */
450 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
451 }
452 return ptep_get_and_clear(mm, addr, ptep);
453 }
454
455
456 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
457 pte_t * ptep)
458 {
459 pte_update(mm, addr, ptep, ~0UL, 0, 0);
460 }
461
462 static inline int pte_dirty(pte_t pte)
463 {
464 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
465 }
466
467 static inline int pte_young(pte_t pte)
468 {
469 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
470 }
471
472 static inline int pte_special(pte_t pte)
473 {
474 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
475 }
476
477 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
478
479 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
480 static inline bool pte_soft_dirty(pte_t pte)
481 {
482 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
483 }
484
485 static inline pte_t pte_mksoft_dirty(pte_t pte)
486 {
487 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
488 }
489
490 static inline pte_t pte_clear_soft_dirty(pte_t pte)
491 {
492 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
493 }
494 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
495
496 #ifdef CONFIG_NUMA_BALANCING
497 static inline int pte_protnone(pte_t pte)
498 {
499 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
500 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
501 }
502
503 #define pte_mk_savedwrite pte_mk_savedwrite
504 static inline pte_t pte_mk_savedwrite(pte_t pte)
505 {
506 /*
507 * Used by Autonuma subsystem to preserve the write bit
508 * while marking the pte PROT_NONE. Only allow this
509 * on PROT_NONE pte
510 */
511 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
512 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
513 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
514 }
515
516 #define pte_clear_savedwrite pte_clear_savedwrite
517 static inline pte_t pte_clear_savedwrite(pte_t pte)
518 {
519 /*
520 * Used by KSM subsystem to make a protnone pte readonly.
521 */
522 VM_BUG_ON(!pte_protnone(pte));
523 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
524 }
525 #else
526 #define pte_clear_savedwrite pte_clear_savedwrite
527 static inline pte_t pte_clear_savedwrite(pte_t pte)
528 {
529 VM_WARN_ON(1);
530 return __pte(pte_val(pte) & ~_PAGE_WRITE);
531 }
532 #endif /* CONFIG_NUMA_BALANCING */
533
534 static inline int pte_present(pte_t pte)
535 {
536 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
537 }
538 /*
539 * Conversion functions: convert a page and protection to a page entry,
540 * and a page entry and page directory to the page they refer to.
541 *
542 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
543 * long for now.
544 */
545 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
546 {
547 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
548 pgprot_val(pgprot));
549 }
550
551 static inline unsigned long pte_pfn(pte_t pte)
552 {
553 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
554 }
555
556 /* Generic modifiers for PTE bits */
557 static inline pte_t pte_wrprotect(pte_t pte)
558 {
559 if (unlikely(pte_savedwrite(pte)))
560 return pte_clear_savedwrite(pte);
561 return __pte(pte_val(pte) & ~_PAGE_WRITE);
562 }
563
564 static inline pte_t pte_mkclean(pte_t pte)
565 {
566 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
567 }
568
569 static inline pte_t pte_mkold(pte_t pte)
570 {
571 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
572 }
573
574 static inline pte_t pte_mkwrite(pte_t pte)
575 {
576 /*
577 * write implies read, hence set both
578 */
579 return __pte(pte_val(pte) | _PAGE_RW);
580 }
581
582 static inline pte_t pte_mkdirty(pte_t pte)
583 {
584 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
585 }
586
587 static inline pte_t pte_mkyoung(pte_t pte)
588 {
589 return __pte(pte_val(pte) | _PAGE_ACCESSED);
590 }
591
592 static inline pte_t pte_mkspecial(pte_t pte)
593 {
594 return __pte(pte_val(pte) | _PAGE_SPECIAL);
595 }
596
597 static inline pte_t pte_mkhuge(pte_t pte)
598 {
599 return pte;
600 }
601
602 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
603 {
604 /* FIXME!! check whether this need to be a conditional */
605 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
606 }
607
608 static inline bool pte_user(pte_t pte)
609 {
610 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
611 }
612
613 /* Encode and de-code a swap entry */
614 #define MAX_SWAPFILES_CHECK() do { \
615 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
616 /* \
617 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
618 * We filter HPTEFLAGS on set_pte. \
619 */ \
620 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
621 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
622 } while (0)
623 /*
624 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
625 */
626 #define SWP_TYPE_BITS 5
627 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
628 & ((1UL << SWP_TYPE_BITS) - 1))
629 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
630 #define __swp_entry(type, offset) ((swp_entry_t) { \
631 ((type) << _PAGE_BIT_SWAP_TYPE) \
632 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
633 /*
634 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
635 * swap type and offset we get from swap and convert that to pte to find a
636 * matching pte in linux page table.
637 * Clear bits not found in swap entries here.
638 */
639 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
640 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
641
642 #ifdef CONFIG_MEM_SOFT_DIRTY
643 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
644 #else
645 #define _PAGE_SWP_SOFT_DIRTY 0UL
646 #endif /* CONFIG_MEM_SOFT_DIRTY */
647
648 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
649 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
650 {
651 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
652 }
653
654 static inline bool pte_swp_soft_dirty(pte_t pte)
655 {
656 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
657 }
658
659 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
660 {
661 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
662 }
663 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
664
665 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
666 {
667 /*
668 * This check for _PAGE_RWX and _PAGE_PRESENT bits
669 */
670 if (access & ~ptev)
671 return false;
672 /*
673 * This check for access to privilege space
674 */
675 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
676 return false;
677
678 return true;
679 }
680 /*
681 * Generic functions with hash/radix callbacks
682 */
683
684 static inline void __ptep_set_access_flags(struct mm_struct *mm,
685 pte_t *ptep, pte_t entry,
686 unsigned long address)
687 {
688 if (radix_enabled())
689 return radix__ptep_set_access_flags(mm, ptep, entry, address);
690 return hash__ptep_set_access_flags(ptep, entry);
691 }
692
693 #define __HAVE_ARCH_PTE_SAME
694 static inline int pte_same(pte_t pte_a, pte_t pte_b)
695 {
696 if (radix_enabled())
697 return radix__pte_same(pte_a, pte_b);
698 return hash__pte_same(pte_a, pte_b);
699 }
700
701 static inline int pte_none(pte_t pte)
702 {
703 if (radix_enabled())
704 return radix__pte_none(pte);
705 return hash__pte_none(pte);
706 }
707
708 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
709 pte_t *ptep, pte_t pte, int percpu)
710 {
711 if (radix_enabled())
712 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
713 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
714 }
715
716 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
717
718 #define pgprot_noncached pgprot_noncached
719 static inline pgprot_t pgprot_noncached(pgprot_t prot)
720 {
721 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
722 _PAGE_NON_IDEMPOTENT);
723 }
724
725 #define pgprot_noncached_wc pgprot_noncached_wc
726 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
727 {
728 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
729 _PAGE_TOLERANT);
730 }
731
732 #define pgprot_cached pgprot_cached
733 static inline pgprot_t pgprot_cached(pgprot_t prot)
734 {
735 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
736 }
737
738 #define pgprot_writecombine pgprot_writecombine
739 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
740 {
741 return pgprot_noncached_wc(prot);
742 }
743 /*
744 * check a pte mapping have cache inhibited property
745 */
746 static inline bool pte_ci(pte_t pte)
747 {
748 unsigned long pte_v = pte_val(pte);
749
750 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
751 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
752 return true;
753 return false;
754 }
755
756 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
757 {
758 *pmdp = __pmd(val);
759 }
760
761 static inline void pmd_clear(pmd_t *pmdp)
762 {
763 *pmdp = __pmd(0);
764 }
765
766 static inline int pmd_none(pmd_t pmd)
767 {
768 return !pmd_raw(pmd);
769 }
770
771 static inline int pmd_present(pmd_t pmd)
772 {
773
774 return !pmd_none(pmd);
775 }
776
777 static inline int pmd_bad(pmd_t pmd)
778 {
779 if (radix_enabled())
780 return radix__pmd_bad(pmd);
781 return hash__pmd_bad(pmd);
782 }
783
784 static inline void pud_set(pud_t *pudp, unsigned long val)
785 {
786 *pudp = __pud(val);
787 }
788
789 static inline void pud_clear(pud_t *pudp)
790 {
791 *pudp = __pud(0);
792 }
793
794 static inline int pud_none(pud_t pud)
795 {
796 return !pud_raw(pud);
797 }
798
799 static inline int pud_present(pud_t pud)
800 {
801 return !pud_none(pud);
802 }
803
804 extern struct page *pud_page(pud_t pud);
805 extern struct page *pmd_page(pmd_t pmd);
806 static inline pte_t pud_pte(pud_t pud)
807 {
808 return __pte_raw(pud_raw(pud));
809 }
810
811 static inline pud_t pte_pud(pte_t pte)
812 {
813 return __pud_raw(pte_raw(pte));
814 }
815 #define pud_write(pud) pte_write(pud_pte(pud))
816
817 static inline int pud_bad(pud_t pud)
818 {
819 if (radix_enabled())
820 return radix__pud_bad(pud);
821 return hash__pud_bad(pud);
822 }
823
824
825 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
826 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
827 {
828 *pgdp = __pgd(val);
829 }
830
831 static inline void pgd_clear(pgd_t *pgdp)
832 {
833 *pgdp = __pgd(0);
834 }
835
836 static inline int pgd_none(pgd_t pgd)
837 {
838 return !pgd_raw(pgd);
839 }
840
841 static inline int pgd_present(pgd_t pgd)
842 {
843 return !pgd_none(pgd);
844 }
845
846 static inline pte_t pgd_pte(pgd_t pgd)
847 {
848 return __pte_raw(pgd_raw(pgd));
849 }
850
851 static inline pgd_t pte_pgd(pte_t pte)
852 {
853 return __pgd_raw(pte_raw(pte));
854 }
855
856 static inline int pgd_bad(pgd_t pgd)
857 {
858 if (radix_enabled())
859 return radix__pgd_bad(pgd);
860 return hash__pgd_bad(pgd);
861 }
862
863 extern struct page *pgd_page(pgd_t pgd);
864
865 /* Pointers in the page table tree are physical addresses */
866 #define __pgtable_ptr_val(ptr) __pa(ptr)
867
868 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
869 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
870 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
871
872 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
873 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
874 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
875 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
876
877 /*
878 * Find an entry in a page-table-directory. We combine the address region
879 * (the high order N bits) and the pgd portion of the address.
880 */
881
882 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
883
884 #define pud_offset(pgdp, addr) \
885 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
886 #define pmd_offset(pudp,addr) \
887 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
888 #define pte_offset_kernel(dir,addr) \
889 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
890
891 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
892 #define pte_unmap(pte) do { } while(0)
893
894 /* to find an entry in a kernel page-table-directory */
895 /* This now only contains the vmalloc pages */
896 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
897
898 #define pte_ERROR(e) \
899 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
900 #define pmd_ERROR(e) \
901 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
902 #define pud_ERROR(e) \
903 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
904 #define pgd_ERROR(e) \
905 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
906
907 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
908 unsigned long flags)
909 {
910 if (radix_enabled()) {
911 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
912 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
913 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
914 #endif
915 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
916 }
917 return hash__map_kernel_page(ea, pa, flags);
918 }
919
920 static inline int __meminit vmemmap_create_mapping(unsigned long start,
921 unsigned long page_size,
922 unsigned long phys)
923 {
924 if (radix_enabled())
925 return radix__vmemmap_create_mapping(start, page_size, phys);
926 return hash__vmemmap_create_mapping(start, page_size, phys);
927 }
928
929 #ifdef CONFIG_MEMORY_HOTPLUG
930 static inline void vmemmap_remove_mapping(unsigned long start,
931 unsigned long page_size)
932 {
933 if (radix_enabled())
934 return radix__vmemmap_remove_mapping(start, page_size);
935 return hash__vmemmap_remove_mapping(start, page_size);
936 }
937 #endif
938 struct page *realmode_pfn_to_page(unsigned long pfn);
939
940 static inline pte_t pmd_pte(pmd_t pmd)
941 {
942 return __pte_raw(pmd_raw(pmd));
943 }
944
945 static inline pmd_t pte_pmd(pte_t pte)
946 {
947 return __pmd_raw(pte_raw(pte));
948 }
949
950 static inline pte_t *pmdp_ptep(pmd_t *pmd)
951 {
952 return (pte_t *)pmd;
953 }
954 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
955 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
956 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
957 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
958 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
959 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
960 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
961 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
962 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
963 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
964 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
965
966 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
967 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
968 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
969 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
970 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
971
972 #ifdef CONFIG_NUMA_BALANCING
973 static inline int pmd_protnone(pmd_t pmd)
974 {
975 return pte_protnone(pmd_pte(pmd));
976 }
977 #endif /* CONFIG_NUMA_BALANCING */
978
979 #define __HAVE_ARCH_PMD_WRITE
980 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
981 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
982 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
983
984 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
985 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
986 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
987 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
988 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
989 pmd_t *pmdp, pmd_t pmd);
990 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
991 pmd_t *pmd);
992 extern int hash__has_transparent_hugepage(void);
993 static inline int has_transparent_hugepage(void)
994 {
995 if (radix_enabled())
996 return radix__has_transparent_hugepage();
997 return hash__has_transparent_hugepage();
998 }
999 #define has_transparent_hugepage has_transparent_hugepage
1000
1001 static inline unsigned long
1002 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1003 unsigned long clr, unsigned long set)
1004 {
1005 if (radix_enabled())
1006 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1007 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1008 }
1009
1010 static inline int pmd_large(pmd_t pmd)
1011 {
1012 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1013 }
1014
1015 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1016 {
1017 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1018 }
1019 /*
1020 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1021 * the below will work for radix too
1022 */
1023 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1024 unsigned long addr, pmd_t *pmdp)
1025 {
1026 unsigned long old;
1027
1028 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1029 return 0;
1030 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1031 return ((old & _PAGE_ACCESSED) != 0);
1032 }
1033
1034 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1035 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1036 pmd_t *pmdp)
1037 {
1038 if (__pmd_write((*pmdp)))
1039 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1040 else if (unlikely(pmd_savedwrite(*pmdp)))
1041 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1042 }
1043
1044 static inline int pmd_trans_huge(pmd_t pmd)
1045 {
1046 if (radix_enabled())
1047 return radix__pmd_trans_huge(pmd);
1048 return hash__pmd_trans_huge(pmd);
1049 }
1050
1051 #define __HAVE_ARCH_PMD_SAME
1052 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1053 {
1054 if (radix_enabled())
1055 return radix__pmd_same(pmd_a, pmd_b);
1056 return hash__pmd_same(pmd_a, pmd_b);
1057 }
1058
1059 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1060 {
1061 if (radix_enabled())
1062 return radix__pmd_mkhuge(pmd);
1063 return hash__pmd_mkhuge(pmd);
1064 }
1065
1066 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1067 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1068 unsigned long address, pmd_t *pmdp,
1069 pmd_t entry, int dirty);
1070
1071 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1072 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1073 unsigned long address, pmd_t *pmdp);
1074
1075 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1076 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1077 unsigned long addr, pmd_t *pmdp)
1078 {
1079 if (radix_enabled())
1080 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1081 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1082 }
1083
1084 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1085 unsigned long address, pmd_t *pmdp)
1086 {
1087 if (radix_enabled())
1088 return radix__pmdp_collapse_flush(vma, address, pmdp);
1089 return hash__pmdp_collapse_flush(vma, address, pmdp);
1090 }
1091 #define pmdp_collapse_flush pmdp_collapse_flush
1092
1093 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1094 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1095 pmd_t *pmdp, pgtable_t pgtable)
1096 {
1097 if (radix_enabled())
1098 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1099 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1100 }
1101
1102 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1103 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1104 pmd_t *pmdp)
1105 {
1106 if (radix_enabled())
1107 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1108 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1109 }
1110
1111 #define __HAVE_ARCH_PMDP_INVALIDATE
1112 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1113 pmd_t *pmdp);
1114
1115 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1116 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1117 unsigned long address, pmd_t *pmdp)
1118 {
1119 if (radix_enabled())
1120 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1121 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1122 }
1123
1124 #define pmd_move_must_withdraw pmd_move_must_withdraw
1125 struct spinlock;
1126 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1127 struct spinlock *old_pmd_ptl,
1128 struct vm_area_struct *vma)
1129 {
1130 if (radix_enabled())
1131 return false;
1132 /*
1133 * Archs like ppc64 use pgtable to store per pmd
1134 * specific information. So when we switch the pmd,
1135 * we should also withdraw and deposit the pgtable
1136 */
1137 return true;
1138 }
1139
1140
1141 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1142 static inline bool arch_needs_pgtable_deposit(void)
1143 {
1144 if (radix_enabled())
1145 return false;
1146 return true;
1147 }
1148
1149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1150 #endif /* __ASSEMBLY__ */
1151 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */