]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/include/asm/book3s/64/pgtable.h
fb8380a2d8d551d60a7974a9340065cc65033b19
[thirdparty/kernel/stable.git] / arch / powerpc / include / asm / book3s / 64 / pgtable.h
1 #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
2 #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3
4 #include <asm-generic/5level-fixup.h>
5
6 #ifndef __ASSEMBLY__
7 #include <linux/mmdebug.h>
8 #endif
9
10 /*
11 * Common bits between hash and Radix page table
12 */
13 #define _PAGE_BIT_SWAP_TYPE 0
14
15 #define _PAGE_RO 0
16
17 #define _PAGE_EXEC 0x00001 /* execute permission */
18 #define _PAGE_WRITE 0x00002 /* write access allowed */
19 #define _PAGE_READ 0x00004 /* read access allowed */
20 #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE)
21 #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22 #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */
23 #define _PAGE_SAO 0x00010 /* Strong access order */
24 #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */
25 #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */
26 #define _PAGE_DIRTY 0x00080 /* C: page changed */
27 #define _PAGE_ACCESSED 0x00100 /* R: page referenced */
28 /*
29 * Software bits
30 */
31 #define _RPAGE_SW0 0x2000000000000000UL
32 #define _RPAGE_SW1 0x00800
33 #define _RPAGE_SW2 0x00400
34 #define _RPAGE_SW3 0x00200
35 #define _RPAGE_RSV1 0x1000000000000000UL
36 #define _RPAGE_RSV2 0x0800000000000000UL
37 #define _RPAGE_RSV3 0x0400000000000000UL
38 #define _RPAGE_RSV4 0x0200000000000000UL
39
40 #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */
41 #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */
42
43 /*
44 * Top and bottom bits of RPN which can be used by hash
45 * translation mode, because we expect them to be zero
46 * otherwise.
47 */
48 #define _RPAGE_RPN0 0x01000
49 #define _RPAGE_RPN1 0x02000
50 #define _RPAGE_RPN44 0x0100000000000000UL
51 #define _RPAGE_RPN43 0x0080000000000000UL
52 #define _RPAGE_RPN42 0x0040000000000000UL
53 #define _RPAGE_RPN41 0x0020000000000000UL
54
55 /* Max physical address bit as per radix table */
56 #define _RPAGE_PA_MAX 57
57
58 /*
59 * Max physical address bit we will use for now.
60 *
61 * This is mostly a hardware limitation and for now Power9 has
62 * a 51 bit limit.
63 *
64 * This is different from the number of physical bit required to address
65 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
66 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
67 * number of sections we can support (SECTIONS_SHIFT).
68 *
69 * This is different from Radix page table limitation above and
70 * should always be less than that. The limit is done such that
71 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
72 * for hash linux page table specific bits.
73 *
74 * In order to be compatible with future hardware generations we keep
75 * some offsets and limit this for now to 53
76 */
77 #define _PAGE_PA_MAX 53
78
79 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */
80 #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */
81 /*
82 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
83 * Instead of fixing all of them, add an alternate define which
84 * maps CI pte mapping.
85 */
86 #define _PAGE_NO_CACHE _PAGE_TOLERANT
87 /*
88 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
89 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
90 * and every thing below PAGE_SHIFT;
91 */
92 #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
93 /*
94 * set of bits not changed in pmd_modify. Even though we have hash specific bits
95 * in here, on radix we expect them to be zero.
96 */
97 #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
98 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
99 _PAGE_SOFT_DIRTY)
100 /*
101 * user access blocked by key
102 */
103 #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
104 #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ)
105 #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \
106 _PAGE_RW | _PAGE_EXEC)
107 /*
108 * No page size encoding in the linux PTE
109 */
110 #define _PAGE_PSIZE 0
111 /*
112 * _PAGE_CHG_MASK masks of bits that are to be preserved across
113 * pgprot changes
114 */
115 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
116 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \
117 _PAGE_SOFT_DIRTY)
118 /*
119 * Mask of bits returned by pte_pgprot()
120 */
121 #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \
122 H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \
123 _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \
124 _PAGE_SOFT_DIRTY)
125 /*
126 * We define 2 sets of base prot bits, one for basic pages (ie,
127 * cacheable kernel and user pages) and one for non cacheable
128 * pages. We always set _PAGE_COHERENT when SMP is enabled or
129 * the processor might need it for DMA coherency.
130 */
131 #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE)
132 #define _PAGE_BASE (_PAGE_BASE_NC)
133
134 /* Permission masks used to generate the __P and __S table,
135 *
136 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
137 *
138 * Write permissions imply read permissions for now (we could make write-only
139 * pages on BookE but we don't bother for now). Execute permission control is
140 * possible on platforms that define _PAGE_EXEC
141 *
142 * Note due to the way vm flags are laid out, the bits are XWR
143 */
144 #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
145 #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW)
146 #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
147 #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ)
148 #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
149 #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ)
150 #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
151
152 #define __P000 PAGE_NONE
153 #define __P001 PAGE_READONLY
154 #define __P010 PAGE_COPY
155 #define __P011 PAGE_COPY
156 #define __P100 PAGE_READONLY_X
157 #define __P101 PAGE_READONLY_X
158 #define __P110 PAGE_COPY_X
159 #define __P111 PAGE_COPY_X
160
161 #define __S000 PAGE_NONE
162 #define __S001 PAGE_READONLY
163 #define __S010 PAGE_SHARED
164 #define __S011 PAGE_SHARED
165 #define __S100 PAGE_READONLY_X
166 #define __S101 PAGE_READONLY_X
167 #define __S110 PAGE_SHARED_X
168 #define __S111 PAGE_SHARED_X
169
170 /* Permission masks used for kernel mappings */
171 #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
172 #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
173 _PAGE_TOLERANT)
174 #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
175 _PAGE_NON_IDEMPOTENT)
176 #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
177 #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
178 #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
179
180 /*
181 * Protection used for kernel text. We want the debuggers to be able to
182 * set breakpoints anywhere, so don't write protect the kernel text
183 * on platforms where such control is possible.
184 */
185 #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
186 defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
187 #define PAGE_KERNEL_TEXT PAGE_KERNEL_X
188 #else
189 #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX
190 #endif
191
192 /* Make modules code happy. We don't set RO yet */
193 #define PAGE_KERNEL_EXEC PAGE_KERNEL_X
194 #define PAGE_AGP (PAGE_KERNEL_NC)
195
196 #ifndef __ASSEMBLY__
197 /*
198 * page table defines
199 */
200 extern unsigned long __pte_index_size;
201 extern unsigned long __pmd_index_size;
202 extern unsigned long __pud_index_size;
203 extern unsigned long __pgd_index_size;
204 extern unsigned long __pmd_cache_index;
205 #define PTE_INDEX_SIZE __pte_index_size
206 #define PMD_INDEX_SIZE __pmd_index_size
207 #define PUD_INDEX_SIZE __pud_index_size
208 #define PGD_INDEX_SIZE __pgd_index_size
209 #define PMD_CACHE_INDEX __pmd_cache_index
210 /*
211 * Because of use of pte fragments and THP, size of page table
212 * are not always derived out of index size above.
213 */
214 extern unsigned long __pte_table_size;
215 extern unsigned long __pmd_table_size;
216 extern unsigned long __pud_table_size;
217 extern unsigned long __pgd_table_size;
218 #define PTE_TABLE_SIZE __pte_table_size
219 #define PMD_TABLE_SIZE __pmd_table_size
220 #define PUD_TABLE_SIZE __pud_table_size
221 #define PGD_TABLE_SIZE __pgd_table_size
222
223 extern unsigned long __pmd_val_bits;
224 extern unsigned long __pud_val_bits;
225 extern unsigned long __pgd_val_bits;
226 #define PMD_VAL_BITS __pmd_val_bits
227 #define PUD_VAL_BITS __pud_val_bits
228 #define PGD_VAL_BITS __pgd_val_bits
229
230 extern unsigned long __pte_frag_nr;
231 #define PTE_FRAG_NR __pte_frag_nr
232 extern unsigned long __pte_frag_size_shift;
233 #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
234 #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
235
236 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
237 #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE)
238 #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE)
239 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
240
241 /* PMD_SHIFT determines what a second-level page table entry can map */
242 #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
243 #define PMD_SIZE (1UL << PMD_SHIFT)
244 #define PMD_MASK (~(PMD_SIZE-1))
245
246 /* PUD_SHIFT determines what a third-level page table entry can map */
247 #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE)
248 #define PUD_SIZE (1UL << PUD_SHIFT)
249 #define PUD_MASK (~(PUD_SIZE-1))
250
251 /* PGDIR_SHIFT determines what a fourth-level page table entry can map */
252 #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE)
253 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
254 #define PGDIR_MASK (~(PGDIR_SIZE-1))
255
256 /* Bits to mask out from a PMD to get to the PTE page */
257 #define PMD_MASKED_BITS 0xc0000000000000ffUL
258 /* Bits to mask out from a PUD to get to the PMD page */
259 #define PUD_MASKED_BITS 0xc0000000000000ffUL
260 /* Bits to mask out from a PGD to get to the PUD page */
261 #define PGD_MASKED_BITS 0xc0000000000000ffUL
262
263 extern unsigned long __vmalloc_start;
264 extern unsigned long __vmalloc_end;
265 #define VMALLOC_START __vmalloc_start
266 #define VMALLOC_END __vmalloc_end
267
268 extern unsigned long __kernel_virt_start;
269 extern unsigned long __kernel_virt_size;
270 #define KERN_VIRT_START __kernel_virt_start
271 #define KERN_VIRT_SIZE __kernel_virt_size
272 extern struct page *vmemmap;
273 extern unsigned long ioremap_bot;
274 extern unsigned long pci_io_base;
275 #endif /* __ASSEMBLY__ */
276
277 #include <asm/book3s/64/hash.h>
278 #include <asm/book3s/64/radix.h>
279
280 #ifdef CONFIG_PPC_64K_PAGES
281 #include <asm/book3s/64/pgtable-64k.h>
282 #else
283 #include <asm/book3s/64/pgtable-4k.h>
284 #endif
285
286 #include <asm/barrier.h>
287 /*
288 * The second half of the kernel virtual space is used for IO mappings,
289 * it's itself carved into the PIO region (ISA and PHB IO space) and
290 * the ioremap space
291 *
292 * ISA_IO_BASE = KERN_IO_START, 64K reserved area
293 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
294 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
295 */
296 #define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
297 #define FULL_IO_SIZE 0x80000000ul
298 #define ISA_IO_BASE (KERN_IO_START)
299 #define ISA_IO_END (KERN_IO_START + 0x10000ul)
300 #define PHB_IO_BASE (ISA_IO_END)
301 #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE)
302 #define IOREMAP_BASE (PHB_IO_END)
303 #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE)
304
305 /* Advertise special mapping type for AGP */
306 #define HAVE_PAGE_AGP
307
308 /* Advertise support for _PAGE_SPECIAL */
309 #define __HAVE_ARCH_PTE_SPECIAL
310
311 #ifndef __ASSEMBLY__
312
313 /*
314 * This is the default implementation of various PTE accessors, it's
315 * used in all cases except Book3S with 64K pages where we have a
316 * concept of sub-pages
317 */
318 #ifndef __real_pte
319
320 #define __real_pte(e,p) ((real_pte_t){(e)})
321 #define __rpte_to_pte(r) ((r).pte)
322 #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
323
324 #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \
325 do { \
326 index = 0; \
327 shift = mmu_psize_defs[psize].shift; \
328
329 #define pte_iterate_hashed_end() } while(0)
330
331 /*
332 * We expect this to be called only for user addresses or kernel virtual
333 * addresses other than the linear mapping.
334 */
335 #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K
336
337 #endif /* __real_pte */
338
339 static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
340 pte_t *ptep, unsigned long clr,
341 unsigned long set, int huge)
342 {
343 if (radix_enabled())
344 return radix__pte_update(mm, addr, ptep, clr, set, huge);
345 return hash__pte_update(mm, addr, ptep, clr, set, huge);
346 }
347 /*
348 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
349 * We currently remove entries from the hashtable regardless of whether
350 * the entry was young or dirty.
351 *
352 * We should be more intelligent about this but for the moment we override
353 * these functions and force a tlb flush unconditionally
354 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
355 * function for both hash and radix.
356 */
357 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
358 unsigned long addr, pte_t *ptep)
359 {
360 unsigned long old;
361
362 if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
363 return 0;
364 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
365 return (old & _PAGE_ACCESSED) != 0;
366 }
367
368 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
369 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
370 ({ \
371 int __r; \
372 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
373 __r; \
374 })
375
376 static inline int __pte_write(pte_t pte)
377 {
378 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
379 }
380
381 #ifdef CONFIG_NUMA_BALANCING
382 #define pte_savedwrite pte_savedwrite
383 static inline bool pte_savedwrite(pte_t pte)
384 {
385 /*
386 * Saved write ptes are prot none ptes that doesn't have
387 * privileged bit sit. We mark prot none as one which has
388 * present and pviliged bit set and RWX cleared. To mark
389 * protnone which used to have _PAGE_WRITE set we clear
390 * the privileged bit.
391 */
392 return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
393 }
394 #else
395 #define pte_savedwrite pte_savedwrite
396 static inline bool pte_savedwrite(pte_t pte)
397 {
398 return false;
399 }
400 #endif
401
402 static inline int pte_write(pte_t pte)
403 {
404 return __pte_write(pte) || pte_savedwrite(pte);
405 }
406
407 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
408 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
409 pte_t *ptep)
410 {
411 if (__pte_write(*ptep))
412 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
413 else if (unlikely(pte_savedwrite(*ptep)))
414 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
415 }
416
417 static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
418 unsigned long addr, pte_t *ptep)
419 {
420 /*
421 * We should not find protnone for hugetlb, but this complete the
422 * interface.
423 */
424 if (__pte_write(*ptep))
425 pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
426 else if (unlikely(pte_savedwrite(*ptep)))
427 pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
428 }
429
430 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
431 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
432 unsigned long addr, pte_t *ptep)
433 {
434 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
435 return __pte(old);
436 }
437
438 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
439 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
440 unsigned long addr,
441 pte_t *ptep, int full)
442 {
443 if (full && radix_enabled()) {
444 /*
445 * Let's skip the DD1 style pte update here. We know that
446 * this is a full mm pte clear and hence can be sure there is
447 * no parallel set_pte.
448 */
449 return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
450 }
451 return ptep_get_and_clear(mm, addr, ptep);
452 }
453
454
455 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
456 pte_t * ptep)
457 {
458 pte_update(mm, addr, ptep, ~0UL, 0, 0);
459 }
460
461 static inline int pte_dirty(pte_t pte)
462 {
463 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
464 }
465
466 static inline int pte_young(pte_t pte)
467 {
468 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
469 }
470
471 static inline int pte_special(pte_t pte)
472 {
473 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
474 }
475
476 static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); }
477
478 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
479 static inline bool pte_soft_dirty(pte_t pte)
480 {
481 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
482 }
483
484 static inline pte_t pte_mksoft_dirty(pte_t pte)
485 {
486 return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY);
487 }
488
489 static inline pte_t pte_clear_soft_dirty(pte_t pte)
490 {
491 return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY);
492 }
493 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
494
495 #ifdef CONFIG_NUMA_BALANCING
496 static inline int pte_protnone(pte_t pte)
497 {
498 return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
499 cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
500 }
501
502 #define pte_mk_savedwrite pte_mk_savedwrite
503 static inline pte_t pte_mk_savedwrite(pte_t pte)
504 {
505 /*
506 * Used by Autonuma subsystem to preserve the write bit
507 * while marking the pte PROT_NONE. Only allow this
508 * on PROT_NONE pte
509 */
510 VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
511 cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
512 return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED);
513 }
514
515 #define pte_clear_savedwrite pte_clear_savedwrite
516 static inline pte_t pte_clear_savedwrite(pte_t pte)
517 {
518 /*
519 * Used by KSM subsystem to make a protnone pte readonly.
520 */
521 VM_BUG_ON(!pte_protnone(pte));
522 return __pte(pte_val(pte) | _PAGE_PRIVILEGED);
523 }
524 #else
525 #define pte_clear_savedwrite pte_clear_savedwrite
526 static inline pte_t pte_clear_savedwrite(pte_t pte)
527 {
528 VM_WARN_ON(1);
529 return __pte(pte_val(pte) & ~_PAGE_WRITE);
530 }
531 #endif /* CONFIG_NUMA_BALANCING */
532
533 static inline int pte_present(pte_t pte)
534 {
535 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT));
536 }
537 /*
538 * Conversion functions: convert a page and protection to a page entry,
539 * and a page entry and page directory to the page they refer to.
540 *
541 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
542 * long for now.
543 */
544 static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
545 {
546 return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) |
547 pgprot_val(pgprot));
548 }
549
550 static inline unsigned long pte_pfn(pte_t pte)
551 {
552 return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
553 }
554
555 /* Generic modifiers for PTE bits */
556 static inline pte_t pte_wrprotect(pte_t pte)
557 {
558 if (unlikely(pte_savedwrite(pte)))
559 return pte_clear_savedwrite(pte);
560 return __pte(pte_val(pte) & ~_PAGE_WRITE);
561 }
562
563 static inline pte_t pte_mkclean(pte_t pte)
564 {
565 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
566 }
567
568 static inline pte_t pte_mkold(pte_t pte)
569 {
570 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
571 }
572
573 static inline pte_t pte_mkwrite(pte_t pte)
574 {
575 /*
576 * write implies read, hence set both
577 */
578 return __pte(pte_val(pte) | _PAGE_RW);
579 }
580
581 static inline pte_t pte_mkdirty(pte_t pte)
582 {
583 return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
584 }
585
586 static inline pte_t pte_mkyoung(pte_t pte)
587 {
588 return __pte(pte_val(pte) | _PAGE_ACCESSED);
589 }
590
591 static inline pte_t pte_mkspecial(pte_t pte)
592 {
593 return __pte(pte_val(pte) | _PAGE_SPECIAL);
594 }
595
596 static inline pte_t pte_mkhuge(pte_t pte)
597 {
598 return pte;
599 }
600
601 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
602 {
603 /* FIXME!! check whether this need to be a conditional */
604 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
605 }
606
607 static inline bool pte_user(pte_t pte)
608 {
609 return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
610 }
611
612 /* Encode and de-code a swap entry */
613 #define MAX_SWAPFILES_CHECK() do { \
614 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
615 /* \
616 * Don't have overlapping bits with _PAGE_HPTEFLAGS \
617 * We filter HPTEFLAGS on set_pte. \
618 */ \
619 BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
620 BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \
621 } while (0)
622 /*
623 * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT;
624 */
625 #define SWP_TYPE_BITS 5
626 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \
627 & ((1UL << SWP_TYPE_BITS) - 1))
628 #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
629 #define __swp_entry(type, offset) ((swp_entry_t) { \
630 ((type) << _PAGE_BIT_SWAP_TYPE) \
631 | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
632 /*
633 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
634 * swap type and offset we get from swap and convert that to pte to find a
635 * matching pte in linux page table.
636 * Clear bits not found in swap entries here.
637 */
638 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
639 #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE)
640
641 #ifdef CONFIG_MEM_SOFT_DIRTY
642 #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
643 #else
644 #define _PAGE_SWP_SOFT_DIRTY 0UL
645 #endif /* CONFIG_MEM_SOFT_DIRTY */
646
647 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
648 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
649 {
650 return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY);
651 }
652
653 static inline bool pte_swp_soft_dirty(pte_t pte)
654 {
655 return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
656 }
657
658 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
659 {
660 return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY);
661 }
662 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
663
664 static inline bool check_pte_access(unsigned long access, unsigned long ptev)
665 {
666 /*
667 * This check for _PAGE_RWX and _PAGE_PRESENT bits
668 */
669 if (access & ~ptev)
670 return false;
671 /*
672 * This check for access to privilege space
673 */
674 if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
675 return false;
676
677 return true;
678 }
679 /*
680 * Generic functions with hash/radix callbacks
681 */
682
683 static inline void __ptep_set_access_flags(struct mm_struct *mm,
684 pte_t *ptep, pte_t entry,
685 unsigned long address)
686 {
687 if (radix_enabled())
688 return radix__ptep_set_access_flags(mm, ptep, entry, address);
689 return hash__ptep_set_access_flags(ptep, entry);
690 }
691
692 #define __HAVE_ARCH_PTE_SAME
693 static inline int pte_same(pte_t pte_a, pte_t pte_b)
694 {
695 if (radix_enabled())
696 return radix__pte_same(pte_a, pte_b);
697 return hash__pte_same(pte_a, pte_b);
698 }
699
700 static inline int pte_none(pte_t pte)
701 {
702 if (radix_enabled())
703 return radix__pte_none(pte);
704 return hash__pte_none(pte);
705 }
706
707 static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
708 pte_t *ptep, pte_t pte, int percpu)
709 {
710 if (radix_enabled())
711 return radix__set_pte_at(mm, addr, ptep, pte, percpu);
712 return hash__set_pte_at(mm, addr, ptep, pte, percpu);
713 }
714
715 #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
716
717 #define pgprot_noncached pgprot_noncached
718 static inline pgprot_t pgprot_noncached(pgprot_t prot)
719 {
720 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
721 _PAGE_NON_IDEMPOTENT);
722 }
723
724 #define pgprot_noncached_wc pgprot_noncached_wc
725 static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
726 {
727 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
728 _PAGE_TOLERANT);
729 }
730
731 #define pgprot_cached pgprot_cached
732 static inline pgprot_t pgprot_cached(pgprot_t prot)
733 {
734 return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
735 }
736
737 #define pgprot_writecombine pgprot_writecombine
738 static inline pgprot_t pgprot_writecombine(pgprot_t prot)
739 {
740 return pgprot_noncached_wc(prot);
741 }
742 /*
743 * check a pte mapping have cache inhibited property
744 */
745 static inline bool pte_ci(pte_t pte)
746 {
747 unsigned long pte_v = pte_val(pte);
748
749 if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) ||
750 ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT))
751 return true;
752 return false;
753 }
754
755 static inline void pmd_set(pmd_t *pmdp, unsigned long val)
756 {
757 *pmdp = __pmd(val);
758 }
759
760 static inline void pmd_clear(pmd_t *pmdp)
761 {
762 *pmdp = __pmd(0);
763 }
764
765 static inline int pmd_none(pmd_t pmd)
766 {
767 return !pmd_raw(pmd);
768 }
769
770 static inline int pmd_present(pmd_t pmd)
771 {
772
773 return !pmd_none(pmd);
774 }
775
776 static inline int pmd_bad(pmd_t pmd)
777 {
778 if (radix_enabled())
779 return radix__pmd_bad(pmd);
780 return hash__pmd_bad(pmd);
781 }
782
783 static inline void pud_set(pud_t *pudp, unsigned long val)
784 {
785 *pudp = __pud(val);
786 }
787
788 static inline void pud_clear(pud_t *pudp)
789 {
790 *pudp = __pud(0);
791 }
792
793 static inline int pud_none(pud_t pud)
794 {
795 return !pud_raw(pud);
796 }
797
798 static inline int pud_present(pud_t pud)
799 {
800 return !pud_none(pud);
801 }
802
803 extern struct page *pud_page(pud_t pud);
804 extern struct page *pmd_page(pmd_t pmd);
805 static inline pte_t pud_pte(pud_t pud)
806 {
807 return __pte_raw(pud_raw(pud));
808 }
809
810 static inline pud_t pte_pud(pte_t pte)
811 {
812 return __pud_raw(pte_raw(pte));
813 }
814 #define pud_write(pud) pte_write(pud_pte(pud))
815
816 static inline int pud_bad(pud_t pud)
817 {
818 if (radix_enabled())
819 return radix__pud_bad(pud);
820 return hash__pud_bad(pud);
821 }
822
823
824 #define pgd_write(pgd) pte_write(pgd_pte(pgd))
825 static inline void pgd_set(pgd_t *pgdp, unsigned long val)
826 {
827 *pgdp = __pgd(val);
828 }
829
830 static inline void pgd_clear(pgd_t *pgdp)
831 {
832 *pgdp = __pgd(0);
833 }
834
835 static inline int pgd_none(pgd_t pgd)
836 {
837 return !pgd_raw(pgd);
838 }
839
840 static inline int pgd_present(pgd_t pgd)
841 {
842 return !pgd_none(pgd);
843 }
844
845 static inline pte_t pgd_pte(pgd_t pgd)
846 {
847 return __pte_raw(pgd_raw(pgd));
848 }
849
850 static inline pgd_t pte_pgd(pte_t pte)
851 {
852 return __pgd_raw(pte_raw(pte));
853 }
854
855 static inline int pgd_bad(pgd_t pgd)
856 {
857 if (radix_enabled())
858 return radix__pgd_bad(pgd);
859 return hash__pgd_bad(pgd);
860 }
861
862 extern struct page *pgd_page(pgd_t pgd);
863
864 /* Pointers in the page table tree are physical addresses */
865 #define __pgtable_ptr_val(ptr) __pa(ptr)
866
867 #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS)
868 #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS)
869 #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS)
870
871 #define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
872 #define pud_index(address) (((address) >> (PUD_SHIFT)) & (PTRS_PER_PUD - 1))
873 #define pmd_index(address) (((address) >> (PMD_SHIFT)) & (PTRS_PER_PMD - 1))
874 #define pte_index(address) (((address) >> (PAGE_SHIFT)) & (PTRS_PER_PTE - 1))
875
876 /*
877 * Find an entry in a page-table-directory. We combine the address region
878 * (the high order N bits) and the pgd portion of the address.
879 */
880
881 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
882
883 #define pud_offset(pgdp, addr) \
884 (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr))
885 #define pmd_offset(pudp,addr) \
886 (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr))
887 #define pte_offset_kernel(dir,addr) \
888 (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr))
889
890 #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr))
891 #define pte_unmap(pte) do { } while(0)
892
893 /* to find an entry in a kernel page-table-directory */
894 /* This now only contains the vmalloc pages */
895 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
896
897 #define pte_ERROR(e) \
898 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
899 #define pmd_ERROR(e) \
900 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
901 #define pud_ERROR(e) \
902 pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
903 #define pgd_ERROR(e) \
904 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
905
906 static inline int map_kernel_page(unsigned long ea, unsigned long pa,
907 unsigned long flags)
908 {
909 if (radix_enabled()) {
910 #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
911 unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
912 WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
913 #endif
914 return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE);
915 }
916 return hash__map_kernel_page(ea, pa, flags);
917 }
918
919 static inline int __meminit vmemmap_create_mapping(unsigned long start,
920 unsigned long page_size,
921 unsigned long phys)
922 {
923 if (radix_enabled())
924 return radix__vmemmap_create_mapping(start, page_size, phys);
925 return hash__vmemmap_create_mapping(start, page_size, phys);
926 }
927
928 #ifdef CONFIG_MEMORY_HOTPLUG
929 static inline void vmemmap_remove_mapping(unsigned long start,
930 unsigned long page_size)
931 {
932 if (radix_enabled())
933 return radix__vmemmap_remove_mapping(start, page_size);
934 return hash__vmemmap_remove_mapping(start, page_size);
935 }
936 #endif
937 struct page *realmode_pfn_to_page(unsigned long pfn);
938
939 static inline pte_t pmd_pte(pmd_t pmd)
940 {
941 return __pte_raw(pmd_raw(pmd));
942 }
943
944 static inline pmd_t pte_pmd(pte_t pte)
945 {
946 return __pmd_raw(pte_raw(pte));
947 }
948
949 static inline pte_t *pmdp_ptep(pmd_t *pmd)
950 {
951 return (pte_t *)pmd;
952 }
953 #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd))
954 #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd))
955 #define pmd_young(pmd) pte_young(pmd_pte(pmd))
956 #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd)))
957 #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd)))
958 #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd)))
959 #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd)))
960 #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd)))
961 #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd)))
962 #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
963 #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
964
965 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
966 #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd))
967 #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
968 #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
969 #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
970
971 #ifdef CONFIG_NUMA_BALANCING
972 static inline int pmd_protnone(pmd_t pmd)
973 {
974 return pte_protnone(pmd_pte(pmd));
975 }
976 #endif /* CONFIG_NUMA_BALANCING */
977
978 #define __HAVE_ARCH_PMD_WRITE
979 #define pmd_write(pmd) pte_write(pmd_pte(pmd))
980 #define __pmd_write(pmd) __pte_write(pmd_pte(pmd))
981 #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd))
982
983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
984 extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
985 extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
986 extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
987 extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
988 pmd_t *pmdp, pmd_t pmd);
989 extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
990 pmd_t *pmd);
991 extern int hash__has_transparent_hugepage(void);
992 static inline int has_transparent_hugepage(void)
993 {
994 if (radix_enabled())
995 return radix__has_transparent_hugepage();
996 return hash__has_transparent_hugepage();
997 }
998 #define has_transparent_hugepage has_transparent_hugepage
999
1000 static inline unsigned long
1001 pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1002 unsigned long clr, unsigned long set)
1003 {
1004 if (radix_enabled())
1005 return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1006 return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1007 }
1008
1009 static inline int pmd_large(pmd_t pmd)
1010 {
1011 return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1012 }
1013
1014 static inline pmd_t pmd_mknotpresent(pmd_t pmd)
1015 {
1016 return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT);
1017 }
1018 /*
1019 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1020 * the below will work for radix too
1021 */
1022 static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1023 unsigned long addr, pmd_t *pmdp)
1024 {
1025 unsigned long old;
1026
1027 if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1028 return 0;
1029 old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1030 return ((old & _PAGE_ACCESSED) != 0);
1031 }
1032
1033 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1034 static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1035 pmd_t *pmdp)
1036 {
1037 if (__pmd_write((*pmdp)))
1038 pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1039 else if (unlikely(pmd_savedwrite(*pmdp)))
1040 pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1041 }
1042
1043 static inline int pmd_trans_huge(pmd_t pmd)
1044 {
1045 if (radix_enabled())
1046 return radix__pmd_trans_huge(pmd);
1047 return hash__pmd_trans_huge(pmd);
1048 }
1049
1050 #define __HAVE_ARCH_PMD_SAME
1051 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1052 {
1053 if (radix_enabled())
1054 return radix__pmd_same(pmd_a, pmd_b);
1055 return hash__pmd_same(pmd_a, pmd_b);
1056 }
1057
1058 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1059 {
1060 if (radix_enabled())
1061 return radix__pmd_mkhuge(pmd);
1062 return hash__pmd_mkhuge(pmd);
1063 }
1064
1065 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1066 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1067 unsigned long address, pmd_t *pmdp,
1068 pmd_t entry, int dirty);
1069
1070 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1071 extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1072 unsigned long address, pmd_t *pmdp);
1073
1074 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1075 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1076 unsigned long addr, pmd_t *pmdp)
1077 {
1078 if (radix_enabled())
1079 return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1080 return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1081 }
1082
1083 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1084 unsigned long address, pmd_t *pmdp)
1085 {
1086 if (radix_enabled())
1087 return radix__pmdp_collapse_flush(vma, address, pmdp);
1088 return hash__pmdp_collapse_flush(vma, address, pmdp);
1089 }
1090 #define pmdp_collapse_flush pmdp_collapse_flush
1091
1092 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1093 static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1094 pmd_t *pmdp, pgtable_t pgtable)
1095 {
1096 if (radix_enabled())
1097 return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1098 return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1099 }
1100
1101 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1102 static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1103 pmd_t *pmdp)
1104 {
1105 if (radix_enabled())
1106 return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1107 return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1108 }
1109
1110 #define __HAVE_ARCH_PMDP_INVALIDATE
1111 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1112 pmd_t *pmdp);
1113
1114 #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
1115 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
1116 unsigned long address, pmd_t *pmdp)
1117 {
1118 if (radix_enabled())
1119 return radix__pmdp_huge_split_prepare(vma, address, pmdp);
1120 return hash__pmdp_huge_split_prepare(vma, address, pmdp);
1121 }
1122
1123 #define pmd_move_must_withdraw pmd_move_must_withdraw
1124 struct spinlock;
1125 static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1126 struct spinlock *old_pmd_ptl,
1127 struct vm_area_struct *vma)
1128 {
1129 if (radix_enabled())
1130 return false;
1131 /*
1132 * Archs like ppc64 use pgtable to store per pmd
1133 * specific information. So when we switch the pmd,
1134 * we should also withdraw and deposit the pgtable
1135 */
1136 return true;
1137 }
1138
1139
1140 #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1141 static inline bool arch_needs_pgtable_deposit(void)
1142 {
1143 if (radix_enabled())
1144 return false;
1145 return true;
1146 }
1147
1148 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1149 #endif /* __ASSEMBLY__ */
1150 #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */