]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kernel/exceptions-64s.S
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / powerpc / kernel / exceptions-64s.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16 #include <asm/hw_irq.h>
17 #include <asm/exception-64s.h>
18 #include <asm/ptrace.h>
19 #include <asm/cpuidle.h>
20 #include <asm/head-64.h>
21 #include <asm/feature-fixups.h>
22 #include <asm/kup.h>
23
24 /* PACA save area offsets (exgen, exmc, etc) */
25 #define EX_R9 0
26 #define EX_R10 8
27 #define EX_R11 16
28 #define EX_R12 24
29 #define EX_R13 32
30 #define EX_DAR 40
31 #define EX_DSISR 48
32 #define EX_CCR 52
33 #define EX_CFAR 56
34 #define EX_PPR 64
35 #define EX_CTR 72
36 .if EX_SIZE != 10
37 .error "EX_SIZE is wrong"
38 .endif
39
40 /*
41 * Following are fixed section helper macros.
42 *
43 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors
44 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
45 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
46 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
47 * EXC_COMMON - After switching to virtual, relocated mode.
48 */
49
50 #define EXC_REAL_BEGIN(name, start, size) \
51 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
52
53 #define EXC_REAL_END(name, start, size) \
54 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
55
56 #define EXC_VIRT_BEGIN(name, start, size) \
57 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
58
59 #define EXC_VIRT_END(name, start, size) \
60 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
61
62 #define EXC_COMMON_BEGIN(name) \
63 USE_TEXT_SECTION(); \
64 .balign IFETCH_ALIGN_BYTES; \
65 .global name; \
66 _ASM_NOKPROBE_SYMBOL(name); \
67 DEFINE_FIXED_SYMBOL(name); \
68 name:
69
70 #define TRAMP_REAL_BEGIN(name) \
71 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
72
73 #define TRAMP_VIRT_BEGIN(name) \
74 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
75
76 #define EXC_REAL_NONE(start, size) \
77 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
78 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
79
80 #define EXC_VIRT_NONE(start, size) \
81 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
82 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
83
84 /*
85 * We're short on space and time in the exception prolog, so we can't
86 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
87 * Instead we get the base of the kernel from paca->kernelbase and or in the low
88 * part of label. This requires that the label be within 64KB of kernelbase, and
89 * that kernelbase be 64K aligned.
90 */
91 #define LOAD_HANDLER(reg, label) \
92 ld reg,PACAKBASE(r13); /* get high part of &label */ \
93 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
94
95 #define __LOAD_HANDLER(reg, label) \
96 ld reg,PACAKBASE(r13); \
97 ori reg,reg,(ABS_ADDR(label))@l
98
99 /*
100 * Branches from unrelocated code (e.g., interrupts) to labels outside
101 * head-y require >64K offsets.
102 */
103 #define __LOAD_FAR_HANDLER(reg, label) \
104 ld reg,PACAKBASE(r13); \
105 ori reg,reg,(ABS_ADDR(label))@l; \
106 addis reg,reg,(ABS_ADDR(label))@h
107
108 /*
109 * Branch to label using its 0xC000 address. This results in instruction
110 * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
111 * on using mtmsr rather than rfid.
112 *
113 * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
114 * load KBASE for a slight optimisation.
115 */
116 #define BRANCH_TO_C000(reg, label) \
117 __LOAD_FAR_HANDLER(reg, label); \
118 mtctr reg; \
119 bctr
120
121 /*
122 * Interrupt code generation macros
123 */
124 #define IVEC .L_IVEC_\name\() /* Interrupt vector address */
125 #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
126 #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
127 #define IAREA .L_IAREA_\name\() /* PACA save area */
128 #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
129 #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
130 #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
131 #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
132 #define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
133 #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
134 #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
135 #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
136 #define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
137 #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
138 #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
139 #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
140 #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
141 #define __ISTACK(name) .L_ISTACK_ ## name
142 #define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
143 #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
144
145 #define INT_DEFINE_BEGIN(n) \
146 .macro int_define_ ## n name
147
148 #define INT_DEFINE_END(n) \
149 .endm ; \
150 int_define_ ## n n ; \
151 do_define_int n
152
153 .macro do_define_int name
154 .ifndef IVEC
155 .error "IVEC not defined"
156 .endif
157 .ifndef IHSRR
158 IHSRR=0
159 .endif
160 .ifndef IHSRR_IF_HVMODE
161 IHSRR_IF_HVMODE=0
162 .endif
163 .ifndef IAREA
164 IAREA=PACA_EXGEN
165 .endif
166 .ifndef IVIRT
167 IVIRT=1
168 .endif
169 .ifndef IISIDE
170 IISIDE=0
171 .endif
172 .ifndef IDAR
173 IDAR=0
174 .endif
175 .ifndef IDSISR
176 IDSISR=0
177 .endif
178 .ifndef ISET_RI
179 ISET_RI=1
180 .endif
181 .ifndef IBRANCH_TO_COMMON
182 IBRANCH_TO_COMMON=1
183 .endif
184 .ifndef IREALMODE_COMMON
185 IREALMODE_COMMON=0
186 .else
187 .if ! IBRANCH_TO_COMMON
188 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
189 .endif
190 .endif
191 .ifndef IMASK
192 IMASK=0
193 .endif
194 .ifndef IKVM_SKIP
195 IKVM_SKIP=0
196 .endif
197 .ifndef IKVM_REAL
198 IKVM_REAL=0
199 .endif
200 .ifndef IKVM_VIRT
201 IKVM_VIRT=0
202 .endif
203 .ifndef ISTACK
204 ISTACK=1
205 .endif
206 .ifndef IRECONCILE
207 IRECONCILE=1
208 .endif
209 .ifndef IKUAP
210 IKUAP=1
211 .endif
212 .endm
213
214 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
216 /*
217 * All interrupts which set HSRR registers, as well as SRESET and MCE and
218 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
219 * so they all generally need to test whether they were taken in guest context.
220 *
221 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
222 * taken with MSR[HV]=0.
223 *
224 * Interrupts which set SRR registers (with the above exceptions) do not
225 * elevate to MSR[HV]=1 mode, though most can be taken when running with
226 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
227 * not need to test whether a guest is running because they get delivered to
228 * the guest directly, including nested HV KVM guests.
229 *
230 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
231 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
232 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
233 * delivered to the real-mode entry point, therefore such interrupts only test
234 * KVM in their real mode handlers, and only when PR KVM is possible.
235 *
236 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
237 * delivered in real-mode when the MMU is in hash mode because the MMU
238 * registers are not set appropriately to translate host addresses. In nested
239 * radix mode these can be delivered in virt-mode as the host translations are
240 * used implicitly (see: effective LPID, effective PID).
241 */
242
243 /*
244 * If an interrupt is taken while a guest is running, it is immediately routed
245 * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
246 * to kvmppc_interrupt_hv, which handles the PR guest case.
247 */
248 #define kvmppc_interrupt kvmppc_interrupt_hv
249 #else
250 #define kvmppc_interrupt kvmppc_interrupt_pr
251 #endif
252
253 .macro KVMTEST name
254 lbz r10,HSTATE_IN_GUEST(r13)
255 cmpwi r10,0
256 bne \name\()_kvm
257 .endm
258
259 .macro GEN_KVM name
260 .balign IFETCH_ALIGN_BYTES
261 \name\()_kvm:
262
263 .if IKVM_SKIP
264 cmpwi r10,KVM_GUEST_MODE_SKIP
265 beq 89f
266 .else
267 BEGIN_FTR_SECTION
268 ld r10,IAREA+EX_CFAR(r13)
269 std r10,HSTATE_CFAR(r13)
270 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
271 .endif
272
273 ld r10,PACA_EXGEN+EX_CTR(r13)
274 mtctr r10
275 BEGIN_FTR_SECTION
276 ld r10,IAREA+EX_PPR(r13)
277 std r10,HSTATE_PPR(r13)
278 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
279 ld r11,IAREA+EX_R11(r13)
280 ld r12,IAREA+EX_R12(r13)
281 std r12,HSTATE_SCRATCH0(r13)
282 sldi r12,r9,32
283 ld r9,IAREA+EX_R9(r13)
284 ld r10,IAREA+EX_R10(r13)
285 /* HSRR variants have the 0x2 bit added to their trap number */
286 .if IHSRR_IF_HVMODE
287 BEGIN_FTR_SECTION
288 ori r12,r12,(IVEC + 0x2)
289 FTR_SECTION_ELSE
290 ori r12,r12,(IVEC)
291 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
292 .elseif IHSRR
293 ori r12,r12,(IVEC+ 0x2)
294 .else
295 ori r12,r12,(IVEC)
296 .endif
297 b kvmppc_interrupt
298
299 .if IKVM_SKIP
300 89: mtocrf 0x80,r9
301 ld r10,PACA_EXGEN+EX_CTR(r13)
302 mtctr r10
303 ld r9,IAREA+EX_R9(r13)
304 ld r10,IAREA+EX_R10(r13)
305 ld r11,IAREA+EX_R11(r13)
306 ld r12,IAREA+EX_R12(r13)
307 .if IHSRR_IF_HVMODE
308 BEGIN_FTR_SECTION
309 b kvmppc_skip_Hinterrupt
310 FTR_SECTION_ELSE
311 b kvmppc_skip_interrupt
312 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
313 .elseif IHSRR
314 b kvmppc_skip_Hinterrupt
315 .else
316 b kvmppc_skip_interrupt
317 .endif
318 .endif
319 .endm
320
321 #else
322 .macro KVMTEST name
323 .endm
324 .macro GEN_KVM name
325 .endm
326 #endif
327
328 /*
329 * This is the BOOK3S interrupt entry code macro.
330 *
331 * This can result in one of several things happening:
332 * - Branch to the _common handler, relocated, in virtual mode.
333 * These are normal interrupts (synchronous and asynchronous) handled by
334 * the kernel.
335 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
336 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
337 * / intended for host or guest kernel, but KVM must always be involved
338 * because the machine state is set for guest execution.
339 * - Branch to the masked handler, unrelocated.
340 * These occur when maskable asynchronous interrupts are taken with the
341 * irq_soft_mask set.
342 * - Branch to an "early" handler in real mode but relocated.
343 * This is done if early=1. MCE and HMI use these to handle errors in real
344 * mode.
345 * - Fall through and continue executing in real, unrelocated mode.
346 * This is done if early=2.
347 */
348
349 .macro GEN_BRANCH_TO_COMMON name, virt
350 .if IREALMODE_COMMON
351 LOAD_HANDLER(r10, \name\()_common)
352 mtctr r10
353 bctr
354 .else
355 .if \virt
356 #ifndef CONFIG_RELOCATABLE
357 b \name\()_common_virt
358 #else
359 LOAD_HANDLER(r10, \name\()_common_virt)
360 mtctr r10
361 bctr
362 #endif
363 .else
364 LOAD_HANDLER(r10, \name\()_common_real)
365 mtctr r10
366 bctr
367 .endif
368 .endif
369 .endm
370
371 .macro GEN_INT_ENTRY name, virt, ool=0
372 SET_SCRATCH0(r13) /* save r13 */
373 GET_PACA(r13)
374 std r9,IAREA+EX_R9(r13) /* save r9 */
375 BEGIN_FTR_SECTION
376 mfspr r9,SPRN_PPR
377 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
378 HMT_MEDIUM
379 std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
380 BEGIN_FTR_SECTION
381 mfspr r10,SPRN_CFAR
382 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
383 .if \ool
384 .if !\virt
385 b tramp_real_\name
386 .pushsection .text
387 TRAMP_REAL_BEGIN(tramp_real_\name)
388 .else
389 b tramp_virt_\name
390 .pushsection .text
391 TRAMP_VIRT_BEGIN(tramp_virt_\name)
392 .endif
393 .endif
394
395 BEGIN_FTR_SECTION
396 std r9,IAREA+EX_PPR(r13)
397 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
398 BEGIN_FTR_SECTION
399 std r10,IAREA+EX_CFAR(r13)
400 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
401 INTERRUPT_TO_KERNEL
402 mfctr r10
403 std r10,IAREA+EX_CTR(r13)
404 mfcr r9
405 std r11,IAREA+EX_R11(r13)
406 std r12,IAREA+EX_R12(r13)
407
408 /*
409 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
410 * because a d-side MCE will clobber those registers so is
411 * not recoverable if they are live.
412 */
413 GET_SCRATCH0(r10)
414 std r10,IAREA+EX_R13(r13)
415 .if IDAR && !IISIDE
416 .if IHSRR
417 mfspr r10,SPRN_HDAR
418 .else
419 mfspr r10,SPRN_DAR
420 .endif
421 std r10,IAREA+EX_DAR(r13)
422 .endif
423 .if IDSISR && !IISIDE
424 .if IHSRR
425 mfspr r10,SPRN_HDSISR
426 .else
427 mfspr r10,SPRN_DSISR
428 .endif
429 stw r10,IAREA+EX_DSISR(r13)
430 .endif
431
432 .if IHSRR_IF_HVMODE
433 BEGIN_FTR_SECTION
434 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
435 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
436 FTR_SECTION_ELSE
437 mfspr r11,SPRN_SRR0 /* save SRR0 */
438 mfspr r12,SPRN_SRR1 /* and SRR1 */
439 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
440 .elseif IHSRR
441 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
442 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
443 .else
444 mfspr r11,SPRN_SRR0 /* save SRR0 */
445 mfspr r12,SPRN_SRR1 /* and SRR1 */
446 .endif
447
448 .if IBRANCH_TO_COMMON
449 GEN_BRANCH_TO_COMMON \name \virt
450 .endif
451
452 .if \ool
453 .popsection
454 .endif
455 .endm
456
457 /*
458 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
459 * entry, except in the case of the real-mode handlers which require
460 * __GEN_REALMODE_COMMON_ENTRY.
461 *
462 * This switches to virtual mode and sets MSR[RI].
463 */
464 .macro __GEN_COMMON_ENTRY name
465 DEFINE_FIXED_SYMBOL(\name\()_common_real)
466 \name\()_common_real:
467 .if IKVM_REAL
468 KVMTEST \name
469 .endif
470
471 ld r10,PACAKMSR(r13) /* get MSR value for kernel */
472 /* MSR[RI] is clear iff using SRR regs */
473 .if IHSRR == EXC_HV_OR_STD
474 BEGIN_FTR_SECTION
475 xori r10,r10,MSR_RI
476 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
477 .elseif ! IHSRR
478 xori r10,r10,MSR_RI
479 .endif
480 mtmsrd r10
481
482 .if IVIRT
483 .if IKVM_VIRT
484 b 1f /* skip the virt test coming from real */
485 .endif
486
487 .balign IFETCH_ALIGN_BYTES
488 DEFINE_FIXED_SYMBOL(\name\()_common_virt)
489 \name\()_common_virt:
490 .if IKVM_VIRT
491 KVMTEST \name
492 1:
493 .endif
494 .endif /* IVIRT */
495 .endm
496
497 /*
498 * Don't switch to virt mode. Used for early MCE and HMI handlers that
499 * want to run in real mode.
500 */
501 .macro __GEN_REALMODE_COMMON_ENTRY name
502 DEFINE_FIXED_SYMBOL(\name\()_common_real)
503 \name\()_common_real:
504 .if IKVM_REAL
505 KVMTEST \name
506 .endif
507 .endm
508
509 .macro __GEN_COMMON_BODY name
510 .if IMASK
511 lbz r10,PACAIRQSOFTMASK(r13)
512 andi. r10,r10,IMASK
513 /* Associate vector numbers with bits in paca->irq_happened */
514 .if IVEC == 0x500 || IVEC == 0xea0
515 li r10,PACA_IRQ_EE
516 .elseif IVEC == 0x900
517 li r10,PACA_IRQ_DEC
518 .elseif IVEC == 0xa00 || IVEC == 0xe80
519 li r10,PACA_IRQ_DBELL
520 .elseif IVEC == 0xe60
521 li r10,PACA_IRQ_HMI
522 .elseif IVEC == 0xf00
523 li r10,PACA_IRQ_PMI
524 .else
525 .abort "Bad maskable vector"
526 .endif
527
528 .if IHSRR_IF_HVMODE
529 BEGIN_FTR_SECTION
530 bne masked_Hinterrupt
531 FTR_SECTION_ELSE
532 bne masked_interrupt
533 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
534 .elseif IHSRR
535 bne masked_Hinterrupt
536 .else
537 bne masked_interrupt
538 .endif
539 .endif
540
541 .if ISTACK
542 andi. r10,r12,MSR_PR /* See if coming from user */
543 mr r10,r1 /* Save r1 */
544 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
545 beq- 100f
546 ld r1,PACAKSAVE(r13) /* kernel stack to use */
547 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
548 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
549 .endif
550
551 std r9,_CCR(r1) /* save CR in stackframe */
552 std r11,_NIP(r1) /* save SRR0 in stackframe */
553 std r12,_MSR(r1) /* save SRR1 in stackframe */
554 std r10,0(r1) /* make stack chain pointer */
555 std r0,GPR0(r1) /* save r0 in stackframe */
556 std r10,GPR1(r1) /* save r1 in stackframe */
557
558 .if ISET_RI
559 li r10,MSR_RI
560 mtmsrd r10,1 /* Set MSR_RI */
561 .endif
562
563 .if ISTACK
564 .if IKUAP
565 kuap_save_amr_and_lock r9, r10, cr1, cr0
566 .endif
567 beq 101f /* if from kernel mode */
568 ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
569 BEGIN_FTR_SECTION
570 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
571 std r9,_PPR(r1)
572 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
573 101:
574 .else
575 .if IKUAP
576 kuap_save_amr_and_lock r9, r10, cr1
577 .endif
578 .endif
579
580 /* Save original regs values from save area to stack frame. */
581 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
582 ld r10,IAREA+EX_R10(r13)
583 std r9,GPR9(r1)
584 std r10,GPR10(r1)
585 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
586 ld r10,IAREA+EX_R12(r13)
587 ld r11,IAREA+EX_R13(r13)
588 std r9,GPR11(r1)
589 std r10,GPR12(r1)
590 std r11,GPR13(r1)
591
592 SAVE_NVGPRS(r1)
593
594 .if IDAR
595 .if IISIDE
596 ld r10,_NIP(r1)
597 .else
598 ld r10,IAREA+EX_DAR(r13)
599 .endif
600 std r10,_DAR(r1)
601 .endif
602
603 .if IDSISR
604 .if IISIDE
605 ld r10,_MSR(r1)
606 lis r11,DSISR_SRR1_MATCH_64S@h
607 and r10,r10,r11
608 .else
609 lwz r10,IAREA+EX_DSISR(r13)
610 .endif
611 std r10,_DSISR(r1)
612 .endif
613
614 BEGIN_FTR_SECTION
615 ld r10,IAREA+EX_CFAR(r13)
616 std r10,ORIG_GPR3(r1)
617 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
618 ld r10,IAREA+EX_CTR(r13)
619 std r10,_CTR(r1)
620 std r2,GPR2(r1) /* save r2 in stackframe */
621 SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
622 SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
623 mflr r9 /* Get LR, later save to stack */
624 ld r2,PACATOC(r13) /* get kernel TOC into r2 */
625 std r9,_LINK(r1)
626 lbz r10,PACAIRQSOFTMASK(r13)
627 mfspr r11,SPRN_XER /* save XER in stackframe */
628 std r10,SOFTE(r1)
629 std r11,_XER(r1)
630 li r9,IVEC
631 std r9,_TRAP(r1) /* set trap number */
632 li r10,0
633 ld r11,exception_marker@toc(r2)
634 std r10,RESULT(r1) /* clear regs->result */
635 std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
636
637 .if ISTACK
638 ACCOUNT_STOLEN_TIME
639 .endif
640
641 .if IRECONCILE
642 RECONCILE_IRQ_STATE(r10, r11)
643 .endif
644 .endm
645
646 /*
647 * On entry r13 points to the paca, r9-r13 are saved in the paca,
648 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
649 * SRR1, and relocation is on.
650 *
651 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
652 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
653 */
654 .macro GEN_COMMON name
655 __GEN_COMMON_ENTRY \name
656 __GEN_COMMON_BODY \name
657 .endm
658
659 /*
660 * Restore all registers including H/SRR0/1 saved in a stack frame of a
661 * standard exception.
662 */
663 .macro EXCEPTION_RESTORE_REGS hsrr=0
664 /* Move original SRR0 and SRR1 into the respective regs */
665 ld r9,_MSR(r1)
666 .if \hsrr
667 mtspr SPRN_HSRR1,r9
668 .else
669 mtspr SPRN_SRR1,r9
670 .endif
671 ld r9,_NIP(r1)
672 .if \hsrr
673 mtspr SPRN_HSRR0,r9
674 .else
675 mtspr SPRN_SRR0,r9
676 .endif
677 ld r9,_CTR(r1)
678 mtctr r9
679 ld r9,_XER(r1)
680 mtxer r9
681 ld r9,_LINK(r1)
682 mtlr r9
683 ld r9,_CCR(r1)
684 mtcr r9
685 REST_8GPRS(2, r1)
686 REST_4GPRS(10, r1)
687 REST_GPR(0, r1)
688 /* restore original r1. */
689 ld r1,GPR1(r1)
690 .endm
691
692 #define RUNLATCH_ON \
693 BEGIN_FTR_SECTION \
694 ld r3, PACA_THREAD_INFO(r13); \
695 ld r4,TI_LOCAL_FLAGS(r3); \
696 andi. r0,r4,_TLF_RUNLATCH; \
697 beql ppc64_runlatch_on_trampoline; \
698 END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
699
700 /*
701 * When the idle code in power4_idle puts the CPU into NAP mode,
702 * it has to do so in a loop, and relies on the external interrupt
703 * and decrementer interrupt entry code to get it out of the loop.
704 * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
705 * to signal that it is in the loop and needs help to get out.
706 */
707 #ifdef CONFIG_PPC_970_NAP
708 #define FINISH_NAP \
709 BEGIN_FTR_SECTION \
710 ld r11, PACA_THREAD_INFO(r13); \
711 ld r9,TI_LOCAL_FLAGS(r11); \
712 andi. r10,r9,_TLF_NAPPING; \
713 bnel power4_fixup_nap; \
714 END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
715 #else
716 #define FINISH_NAP
717 #endif
718
719 /*
720 * There are a few constraints to be concerned with.
721 * - Real mode exceptions code/data must be located at their physical location.
722 * - Virtual mode exceptions must be mapped at their 0xc000... location.
723 * - Fixed location code must not call directly beyond the __end_interrupts
724 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
725 * must be used.
726 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
727 * virtual 0xc00...
728 * - Conditional branch targets must be within +/-32K of caller.
729 *
730 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
731 * therefore don't have to run in physically located code or rfid to
732 * virtual mode kernel code. However on relocatable kernels they do have
733 * to branch to KERNELBASE offset because the rest of the kernel (outside
734 * the exception vectors) may be located elsewhere.
735 *
736 * Virtual exceptions correspond with physical, except their entry points
737 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
738 * offset applied. Virtual exceptions are enabled with the Alternate
739 * Interrupt Location (AIL) bit set in the LPCR. However this does not
740 * guarantee they will be delivered virtually. Some conditions (see the ISA)
741 * cause exceptions to be delivered in real mode.
742 *
743 * It's impossible to receive interrupts below 0x300 via AIL.
744 *
745 * KVM: None of the virtual exceptions are from the guest. Anything that
746 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
747 *
748 *
749 * We layout physical memory as follows:
750 * 0x0000 - 0x00ff : Secondary processor spin code
751 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
752 * 0x1900 - 0x3fff : Real mode trampolines
753 * 0x4000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
754 * 0x5900 - 0x6fff : Relon mode trampolines
755 * 0x7000 - 0x7fff : FWNMI data area
756 * 0x8000 - .... : Common interrupt handlers, remaining early
757 * setup code, rest of kernel.
758 *
759 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
760 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
761 * vectors there.
762 */
763 OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
764 OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x4000)
765 OPEN_FIXED_SECTION(virt_vectors, 0x4000, 0x5900)
766 OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
767
768 #ifdef CONFIG_PPC_POWERNV
769 .globl start_real_trampolines
770 .globl end_real_trampolines
771 .globl start_virt_trampolines
772 .globl end_virt_trampolines
773 #endif
774
775 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
776 /*
777 * Data area reserved for FWNMI option.
778 * This address (0x7000) is fixed by the RPA.
779 * pseries and powernv need to keep the whole page from
780 * 0x7000 to 0x8000 free for use by the firmware
781 */
782 ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
783 OPEN_TEXT_SECTION(0x8000)
784 #else
785 OPEN_TEXT_SECTION(0x7000)
786 #endif
787
788 USE_FIXED_SECTION(real_vectors)
789
790 /*
791 * This is the start of the interrupt handlers for pSeries
792 * This code runs with relocation off.
793 * Code from here to __end_interrupts gets copied down to real
794 * address 0x100 when we are running a relocatable kernel.
795 * Therefore any relative branches in this section must only
796 * branch to labels in this section.
797 */
798 .globl __start_interrupts
799 __start_interrupts:
800
801 /* No virt vectors corresponding with 0x0..0x100 */
802 EXC_VIRT_NONE(0x4000, 0x100)
803
804
805 /**
806 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
807 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
808 * It is caused by:
809 * - Wake from power-saving state, on powernv.
810 * - An NMI from another CPU, triggered by firmware or hypercall.
811 * - As crash/debug signal injected from BMC, firmware or hypervisor.
812 *
813 * Handling:
814 * Power-save wakeup is the only performance critical path, so this is
815 * determined quickly as possible first. In this case volatile registers
816 * can be discarded and SPRs like CFAR don't need to be read.
817 *
818 * If not a powersave wakeup, then it's run as a regular interrupt, however
819 * it uses its own stack and PACA save area to preserve the regular kernel
820 * environment for debugging.
821 *
822 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
823 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
824 * correct to switch to virtual mode to run the regular interrupt handler
825 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
826 * is clear).
827 *
828 * FWNMI:
829 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
830 * entry point with a different register set up. Some hypervisors will
831 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
832 *
833 * KVM:
834 * Unlike most SRR interrupts, this may be taken by the host while executing
835 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
836 * mode and then raise the sreset.
837 */
838 INT_DEFINE_BEGIN(system_reset)
839 IVEC=0x100
840 IAREA=PACA_EXNMI
841 IVIRT=0 /* no virt entry point */
842 /*
843 * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
844 * being used, so a nested NMI exception would corrupt it.
845 */
846 ISET_RI=0
847 ISTACK=0
848 IRECONCILE=0
849 IKVM_REAL=1
850 INT_DEFINE_END(system_reset)
851
852 EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
853 #ifdef CONFIG_PPC_P7_NAP
854 /*
855 * If running native on arch 2.06 or later, check if we are waking up
856 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
857 * bits 46:47. A non-0 value indicates that we are coming from a power
858 * saving state. The idle wakeup handler initially runs in real mode,
859 * but we branch to the 0xc000... address so we can turn on relocation
860 * with mtmsrd later, after SPRs are restored.
861 *
862 * Careful to minimise cost for the fast path (idle wakeup) while
863 * also avoiding clobbering CFAR for the debug path (non-idle).
864 *
865 * For the idle wake case volatile registers can be clobbered, which
866 * is why we use those initially. If it turns out to not be an idle
867 * wake, carefully put everything back the way it was, so we can use
868 * common exception macros to handle it.
869 */
870 BEGIN_FTR_SECTION
871 SET_SCRATCH0(r13)
872 GET_PACA(r13)
873 std r3,PACA_EXNMI+0*8(r13)
874 std r4,PACA_EXNMI+1*8(r13)
875 std r5,PACA_EXNMI+2*8(r13)
876 mfspr r3,SPRN_SRR1
877 mfocrf r4,0x80
878 rlwinm. r5,r3,47-31,30,31
879 bne+ system_reset_idle_wake
880 /* Not powersave wakeup. Restore regs for regular interrupt handler. */
881 mtocrf 0x80,r4
882 ld r3,PACA_EXNMI+0*8(r13)
883 ld r4,PACA_EXNMI+1*8(r13)
884 ld r5,PACA_EXNMI+2*8(r13)
885 GET_SCRATCH0(r13)
886 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
887 #endif
888
889 GEN_INT_ENTRY system_reset, virt=0
890 /*
891 * In theory, we should not enable relocation here if it was disabled
892 * in SRR1, because the MMU may not be configured to support it (e.g.,
893 * SLB may have been cleared). In practice, there should only be a few
894 * small windows where that's the case, and sreset is considered to
895 * be dangerous anyway.
896 */
897 EXC_REAL_END(system_reset, 0x100, 0x100)
898 EXC_VIRT_NONE(0x4100, 0x100)
899
900 #ifdef CONFIG_PPC_P7_NAP
901 TRAMP_REAL_BEGIN(system_reset_idle_wake)
902 /* We are waking up from idle, so may clobber any volatile register */
903 cmpwi cr1,r5,2
904 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
905 BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
906 #endif
907
908 #ifdef CONFIG_PPC_PSERIES
909 /*
910 * Vectors for the FWNMI option. Share common code.
911 */
912 TRAMP_REAL_BEGIN(system_reset_fwnmi)
913 /* XXX: fwnmi guest could run a nested/PR guest, so why no test? */
914 __IKVM_REAL(system_reset)=0
915 GEN_INT_ENTRY system_reset, virt=0
916
917 #endif /* CONFIG_PPC_PSERIES */
918
919 EXC_COMMON_BEGIN(system_reset_common)
920 __GEN_COMMON_ENTRY system_reset
921 /*
922 * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
923 * to recover, but nested NMI will notice in_nmi and not recover
924 * because of the use of the NMI stack. in_nmi reentrancy is tested in
925 * system_reset_exception.
926 */
927 lhz r10,PACA_IN_NMI(r13)
928 addi r10,r10,1
929 sth r10,PACA_IN_NMI(r13)
930 li r10,MSR_RI
931 mtmsrd r10,1
932
933 mr r10,r1
934 ld r1,PACA_NMI_EMERG_SP(r13)
935 subi r1,r1,INT_FRAME_SIZE
936 __GEN_COMMON_BODY system_reset
937 /*
938 * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
939 * the right thing. We do not want to reconcile because that goes
940 * through irq tracing which we don't want in NMI.
941 *
942 * Save PACAIRQHAPPENED to _DAR (otherwise unused), and set HARD_DIS
943 * as we are running with MSR[EE]=0.
944 */
945 li r10,IRQS_ALL_DISABLED
946 stb r10,PACAIRQSOFTMASK(r13)
947 lbz r10,PACAIRQHAPPENED(r13)
948 std r10,_DAR(r1)
949 ori r10,r10,PACA_IRQ_HARD_DIS
950 stb r10,PACAIRQHAPPENED(r13)
951
952 addi r3,r1,STACK_FRAME_OVERHEAD
953 bl system_reset_exception
954
955 /* Clear MSR_RI before setting SRR0 and SRR1. */
956 li r9,0
957 mtmsrd r9,1
958
959 /*
960 * MSR_RI is clear, now we can decrement paca->in_nmi.
961 */
962 lhz r10,PACA_IN_NMI(r13)
963 subi r10,r10,1
964 sth r10,PACA_IN_NMI(r13)
965
966 /*
967 * Restore soft mask settings.
968 */
969 ld r10,_DAR(r1)
970 stb r10,PACAIRQHAPPENED(r13)
971 ld r10,SOFTE(r1)
972 stb r10,PACAIRQSOFTMASK(r13)
973
974 EXCEPTION_RESTORE_REGS
975 RFI_TO_USER_OR_KERNEL
976
977 GEN_KVM system_reset
978
979
980 /**
981 * Interrupt 0x200 - Machine Check Interrupt (MCE).
982 * This is a non-maskable interrupt always taken in real-mode. It can be
983 * synchronous or asynchronous, caused by hardware or software, and it may be
984 * taken in a power-saving state.
985 *
986 * Handling:
987 * Similarly to system reset, this uses its own stack and PACA save area,
988 * the difference is re-entrancy is allowed on the machine check stack.
989 *
990 * machine_check_early is run in real mode, and carefully decodes the
991 * machine check and tries to handle it (e.g., flush the SLB if there was an
992 * error detected there), determines if it was recoverable and logs the
993 * event.
994 *
995 * This early code does not "reconcile" irq soft-mask state like SRESET or
996 * regular interrupts do, so irqs_disabled() among other things may not work
997 * properly (irq disable/enable already doesn't work because irq tracing can
998 * not work in real mode).
999 *
1000 * Then, depending on the execution context when the interrupt is taken, there
1001 * are 3 main actions:
1002 * - Executing in kernel mode. The event is queued with irq_work, which means
1003 * it is handled when it is next safe to do so (i.e., the kernel has enabled
1004 * interrupts), which could be immediately when the interrupt returns. This
1005 * avoids nasty issues like switching to virtual mode when the MMU is in a
1006 * bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1007 * but it has different priorities). Check to see if the CPU was in power
1008 * save, and return via the wake up code if it was.
1009 *
1010 * - Executing in user mode. machine_check_exception is run like a normal
1011 * interrupt handler, which processes the data generated by the early handler.
1012 *
1013 * - Executing in guest mode. The interrupt is run with its KVM test, and
1014 * branches to KVM to deal with. KVM may queue the event for the host
1015 * to report later.
1016 *
1017 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1018 * or SCRATCH0 is in use, it may cause a crash.
1019 *
1020 * KVM:
1021 * See SRESET.
1022 */
1023 INT_DEFINE_BEGIN(machine_check_early)
1024 IVEC=0x200
1025 IAREA=PACA_EXMC
1026 IVIRT=0 /* no virt entry point */
1027 IREALMODE_COMMON=1
1028 /*
1029 * MSR_RI is not enabled, because PACA_EXMC is being used, so a
1030 * nested machine check corrupts it. machine_check_common enables
1031 * MSR_RI.
1032 */
1033 ISET_RI=0
1034 ISTACK=0
1035 IDAR=1
1036 IDSISR=1
1037 IRECONCILE=0
1038 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1039 INT_DEFINE_END(machine_check_early)
1040
1041 INT_DEFINE_BEGIN(machine_check)
1042 IVEC=0x200
1043 IAREA=PACA_EXMC
1044 IVIRT=0 /* no virt entry point */
1045 ISET_RI=0
1046 IDAR=1
1047 IDSISR=1
1048 IKVM_SKIP=1
1049 IKVM_REAL=1
1050 INT_DEFINE_END(machine_check)
1051
1052 EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1053 GEN_INT_ENTRY machine_check_early, virt=0
1054 EXC_REAL_END(machine_check, 0x200, 0x100)
1055 EXC_VIRT_NONE(0x4200, 0x100)
1056
1057 #ifdef CONFIG_PPC_PSERIES
1058 TRAMP_REAL_BEGIN(machine_check_fwnmi)
1059 /* See comment at machine_check exception, don't turn on RI */
1060 GEN_INT_ENTRY machine_check_early, virt=0
1061 #endif
1062
1063 #define MACHINE_CHECK_HANDLER_WINDUP \
1064 /* Clear MSR_RI before setting SRR0 and SRR1. */\
1065 li r9,0; \
1066 mtmsrd r9,1; /* Clear MSR_RI */ \
1067 /* Decrement paca->in_mce now RI is clear. */ \
1068 lhz r12,PACA_IN_MCE(r13); \
1069 subi r12,r12,1; \
1070 sth r12,PACA_IN_MCE(r13); \
1071 EXCEPTION_RESTORE_REGS
1072
1073 EXC_COMMON_BEGIN(machine_check_early_common)
1074 __GEN_REALMODE_COMMON_ENTRY machine_check_early
1075
1076 /*
1077 * Switch to mc_emergency stack and handle re-entrancy (we limit
1078 * the nested MCE upto level 4 to avoid stack overflow).
1079 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1080 *
1081 * We use paca->in_mce to check whether this is the first entry or
1082 * nested machine check. We increment paca->in_mce to track nested
1083 * machine checks.
1084 *
1085 * If this is the first entry then set stack pointer to
1086 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1087 * stack frame on mc_emergency stack.
1088 *
1089 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1090 * checkstop if we get another machine check exception before we do
1091 * rfid with MSR_ME=1.
1092 *
1093 * This interrupt can wake directly from idle. If that is the case,
1094 * the machine check is handled then the idle wakeup code is called
1095 * to restore state.
1096 */
1097 lhz r10,PACA_IN_MCE(r13)
1098 cmpwi r10,0 /* Are we in nested machine check */
1099 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
1100 addi r10,r10,1 /* increment paca->in_mce */
1101 sth r10,PACA_IN_MCE(r13)
1102
1103 mr r10,r1 /* Save r1 */
1104 bne 1f
1105 /* First machine check entry */
1106 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1107 1: /* Limit nested MCE to level 4 to avoid stack overflow */
1108 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
1109 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1110
1111 __GEN_COMMON_BODY machine_check_early
1112
1113 BEGIN_FTR_SECTION
1114 bl enable_machine_check
1115 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1116 li r10,MSR_RI
1117 mtmsrd r10,1
1118
1119 addi r3,r1,STACK_FRAME_OVERHEAD
1120 bl machine_check_early
1121 std r3,RESULT(r1) /* Save result */
1122 ld r12,_MSR(r1)
1123
1124 #ifdef CONFIG_PPC_P7_NAP
1125 /*
1126 * Check if thread was in power saving mode. We come here when any
1127 * of the following is true:
1128 * a. thread wasn't in power saving mode
1129 * b. thread was in power saving mode with no state loss,
1130 * supervisor state loss or hypervisor state loss.
1131 *
1132 * Go back to nap/sleep/winkle mode again if (b) is true.
1133 */
1134 BEGIN_FTR_SECTION
1135 rlwinm. r11,r12,47-31,30,31
1136 bne machine_check_idle_common
1137 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1138 #endif
1139
1140 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1141 /*
1142 * Check if we are coming from guest. If yes, then run the normal
1143 * exception handler which will take the
1144 * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
1145 * to guest.
1146 */
1147 lbz r11,HSTATE_IN_GUEST(r13)
1148 cmpwi r11,0 /* Check if coming from guest */
1149 bne mce_deliver /* continue if we are. */
1150 #endif
1151
1152 /*
1153 * Check if we are coming from userspace. If yes, then run the normal
1154 * exception handler which will deliver the MC event to this kernel.
1155 */
1156 andi. r11,r12,MSR_PR /* See if coming from user. */
1157 bne mce_deliver /* continue in V mode if we are. */
1158
1159 /*
1160 * At this point we are coming from kernel context.
1161 * Queue up the MCE event and return from the interrupt.
1162 * But before that, check if this is an un-recoverable exception.
1163 * If yes, then stay on emergency stack and panic.
1164 */
1165 andi. r11,r12,MSR_RI
1166 beq unrecoverable_mce
1167
1168 /*
1169 * Check if we have successfully handled/recovered from error, if not
1170 * then stay on emergency stack and panic.
1171 */
1172 ld r3,RESULT(r1) /* Load result */
1173 cmpdi r3,0 /* see if we handled MCE successfully */
1174 beq unrecoverable_mce /* if !handled then panic */
1175
1176 /*
1177 * Return from MC interrupt.
1178 * Queue up the MCE event so that we can log it later, while
1179 * returning from kernel or opal call.
1180 */
1181 bl machine_check_queue_event
1182 MACHINE_CHECK_HANDLER_WINDUP
1183 RFI_TO_KERNEL
1184
1185 mce_deliver:
1186 /*
1187 * This is a host user or guest MCE. Restore all registers, then
1188 * run the "late" handler. For host user, this will run the
1189 * machine_check_exception handler in virtual mode like a normal
1190 * interrupt handler. For guest, this will trigger the KVM test
1191 * and branch to the KVM interrupt similarly to other interrupts.
1192 */
1193 BEGIN_FTR_SECTION
1194 ld r10,ORIG_GPR3(r1)
1195 mtspr SPRN_CFAR,r10
1196 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1197 MACHINE_CHECK_HANDLER_WINDUP
1198 GEN_INT_ENTRY machine_check, virt=0
1199
1200 EXC_COMMON_BEGIN(machine_check_common)
1201 /*
1202 * Machine check is different because we use a different
1203 * save area: PACA_EXMC instead of PACA_EXGEN.
1204 */
1205 GEN_COMMON machine_check
1206
1207 FINISH_NAP
1208 /* Enable MSR_RI when finished with PACA_EXMC */
1209 li r10,MSR_RI
1210 mtmsrd r10,1
1211 addi r3,r1,STACK_FRAME_OVERHEAD
1212 bl machine_check_exception
1213 b interrupt_return
1214
1215 GEN_KVM machine_check
1216
1217
1218 #ifdef CONFIG_PPC_P7_NAP
1219 /*
1220 * This is an idle wakeup. Low level machine check has already been
1221 * done. Queue the event then call the idle code to do the wake up.
1222 */
1223 EXC_COMMON_BEGIN(machine_check_idle_common)
1224 bl machine_check_queue_event
1225
1226 /*
1227 * We have not used any non-volatile GPRs here, and as a rule
1228 * most exception code including machine check does not.
1229 * Therefore PACA_NAPSTATELOST does not need to be set. Idle
1230 * wakeup will restore volatile registers.
1231 *
1232 * Load the original SRR1 into r3 for pnv_powersave_wakeup_mce.
1233 *
1234 * Then decrement MCE nesting after finishing with the stack.
1235 */
1236 ld r3,_MSR(r1)
1237 ld r4,_LINK(r1)
1238
1239 lhz r11,PACA_IN_MCE(r13)
1240 subi r11,r11,1
1241 sth r11,PACA_IN_MCE(r13)
1242
1243 mtlr r4
1244 rlwinm r10,r3,47-31,30,31
1245 cmpwi cr1,r10,2
1246 bltlr cr1 /* no state loss, return to idle caller */
1247 b idle_return_gpr_loss
1248 #endif
1249
1250 EXC_COMMON_BEGIN(unrecoverable_mce)
1251 /*
1252 * We are going down. But there are chances that we might get hit by
1253 * another MCE during panic path and we may run into unstable state
1254 * with no way out. Hence, turn ME bit off while going down, so that
1255 * when another MCE is hit during panic path, system will checkstop
1256 * and hypervisor will get restarted cleanly by SP.
1257 */
1258 BEGIN_FTR_SECTION
1259 li r10,0 /* clear MSR_RI */
1260 mtmsrd r10,1
1261 bl disable_machine_check
1262 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1263 ld r10,PACAKMSR(r13)
1264 li r3,MSR_ME
1265 andc r10,r10,r3
1266 mtmsrd r10
1267
1268 /* Invoke machine_check_exception to print MCE event and panic. */
1269 addi r3,r1,STACK_FRAME_OVERHEAD
1270 bl machine_check_exception
1271
1272 /*
1273 * We will not reach here. Even if we did, there is no way out.
1274 * Call unrecoverable_exception and die.
1275 */
1276 addi r3,r1,STACK_FRAME_OVERHEAD
1277 bl unrecoverable_exception
1278 b .
1279
1280
1281 /**
1282 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1283 * This is a synchronous interrupt generated due to a data access exception,
1284 * e.g., a load orstore which does not have a valid page table entry with
1285 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1286 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1287 *
1288 * Handling:
1289 * - Hash MMU
1290 * Go to do_hash_page first to see if the HPT can be filled from an entry in
1291 * the Linux page table. Hash faults can hit in kernel mode in a fairly
1292 * arbitrary state (e.g., interrupts disabled, locks held) when accessing
1293 * "non-bolted" regions, e.g., vmalloc space. However these should always be
1294 * backed by Linux page tables.
1295 *
1296 * If none is found, do a Linux page fault. Linux page faults can happen in
1297 * kernel mode due to user copy operations of course.
1298 *
1299 * - Radix MMU
1300 * The hardware loads from the Linux page table directly, so a fault goes
1301 * immediately to Linux page fault.
1302 *
1303 * Conditions like DAWR match are handled on the way in to Linux page fault.
1304 */
1305 INT_DEFINE_BEGIN(data_access)
1306 IVEC=0x300
1307 IDAR=1
1308 IDSISR=1
1309 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1310 IKVM_SKIP=1
1311 IKVM_REAL=1
1312 #endif
1313 INT_DEFINE_END(data_access)
1314
1315 EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1316 GEN_INT_ENTRY data_access, virt=0
1317 EXC_REAL_END(data_access, 0x300, 0x80)
1318 EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1319 GEN_INT_ENTRY data_access, virt=1
1320 EXC_VIRT_END(data_access, 0x4300, 0x80)
1321 EXC_COMMON_BEGIN(data_access_common)
1322 GEN_COMMON data_access
1323 ld r4,_DAR(r1)
1324 ld r5,_DSISR(r1)
1325 BEGIN_MMU_FTR_SECTION
1326 ld r6,_MSR(r1)
1327 li r3,0x300
1328 b do_hash_page /* Try to handle as hpte fault */
1329 MMU_FTR_SECTION_ELSE
1330 b handle_page_fault
1331 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1332
1333 GEN_KVM data_access
1334
1335
1336 /**
1337 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1338 * This is a synchronous interrupt in response to an MMU fault missing SLB
1339 * entry for HPT, or an address outside RPT translation range.
1340 *
1341 * Handling:
1342 * - HPT:
1343 * This refills the SLB, or reports an access fault similarly to a bad page
1344 * fault. When coming from user-mode, the SLB handler may access any kernel
1345 * data, though it may itself take a DSLB. When coming from kernel mode,
1346 * recursive faults must be avoided so access is restricted to the kernel
1347 * image text/data, kernel stack, and any data allocated below
1348 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1349 * on user-handler data structures.
1350 *
1351 * A dedicated save area EXSLB is used (XXX: but it actually need not be
1352 * these days, we could use EXGEN).
1353 */
1354 INT_DEFINE_BEGIN(data_access_slb)
1355 IVEC=0x380
1356 IAREA=PACA_EXSLB
1357 IRECONCILE=0
1358 IDAR=1
1359 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1360 IKVM_SKIP=1
1361 IKVM_REAL=1
1362 #endif
1363 INT_DEFINE_END(data_access_slb)
1364
1365 EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1366 GEN_INT_ENTRY data_access_slb, virt=0
1367 EXC_REAL_END(data_access_slb, 0x380, 0x80)
1368 EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1369 GEN_INT_ENTRY data_access_slb, virt=1
1370 EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1371 EXC_COMMON_BEGIN(data_access_slb_common)
1372 GEN_COMMON data_access_slb
1373 ld r4,_DAR(r1)
1374 addi r3,r1,STACK_FRAME_OVERHEAD
1375 BEGIN_MMU_FTR_SECTION
1376 /* HPT case, do SLB fault */
1377 bl do_slb_fault
1378 cmpdi r3,0
1379 bne- 1f
1380 b fast_interrupt_return
1381 1: /* Error case */
1382 MMU_FTR_SECTION_ELSE
1383 /* Radix case, access is outside page table range */
1384 li r3,-EFAULT
1385 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1386 std r3,RESULT(r1)
1387 RECONCILE_IRQ_STATE(r10, r11)
1388 ld r4,_DAR(r1)
1389 ld r5,RESULT(r1)
1390 addi r3,r1,STACK_FRAME_OVERHEAD
1391 bl do_bad_slb_fault
1392 b interrupt_return
1393
1394 GEN_KVM data_access_slb
1395
1396
1397 /**
1398 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1399 * This is a synchronous interrupt in response to an MMU fault due to an
1400 * instruction fetch.
1401 *
1402 * Handling:
1403 * Similar to DSI, though in response to fetch. The faulting address is found
1404 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1405 */
1406 INT_DEFINE_BEGIN(instruction_access)
1407 IVEC=0x400
1408 IISIDE=1
1409 IDAR=1
1410 IDSISR=1
1411 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1412 IKVM_REAL=1
1413 #endif
1414 INT_DEFINE_END(instruction_access)
1415
1416 EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1417 GEN_INT_ENTRY instruction_access, virt=0
1418 EXC_REAL_END(instruction_access, 0x400, 0x80)
1419 EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1420 GEN_INT_ENTRY instruction_access, virt=1
1421 EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1422 EXC_COMMON_BEGIN(instruction_access_common)
1423 GEN_COMMON instruction_access
1424 ld r4,_DAR(r1)
1425 ld r5,_DSISR(r1)
1426 BEGIN_MMU_FTR_SECTION
1427 ld r6,_MSR(r1)
1428 li r3,0x400
1429 b do_hash_page /* Try to handle as hpte fault */
1430 MMU_FTR_SECTION_ELSE
1431 b handle_page_fault
1432 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1433
1434 GEN_KVM instruction_access
1435
1436
1437 /**
1438 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1439 * This is a synchronous interrupt in response to an MMU fault due to an
1440 * instruction fetch.
1441 *
1442 * Handling:
1443 * Similar to DSLB, though in response to fetch. The faulting address is found
1444 * in SRR0 (rather than DAR).
1445 */
1446 INT_DEFINE_BEGIN(instruction_access_slb)
1447 IVEC=0x480
1448 IAREA=PACA_EXSLB
1449 IRECONCILE=0
1450 IISIDE=1
1451 IDAR=1
1452 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1453 IKVM_REAL=1
1454 #endif
1455 INT_DEFINE_END(instruction_access_slb)
1456
1457 EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1458 GEN_INT_ENTRY instruction_access_slb, virt=0
1459 EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1460 EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1461 GEN_INT_ENTRY instruction_access_slb, virt=1
1462 EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1463 EXC_COMMON_BEGIN(instruction_access_slb_common)
1464 GEN_COMMON instruction_access_slb
1465 ld r4,_DAR(r1)
1466 addi r3,r1,STACK_FRAME_OVERHEAD
1467 BEGIN_MMU_FTR_SECTION
1468 /* HPT case, do SLB fault */
1469 bl do_slb_fault
1470 cmpdi r3,0
1471 bne- 1f
1472 b fast_interrupt_return
1473 1: /* Error case */
1474 MMU_FTR_SECTION_ELSE
1475 /* Radix case, access is outside page table range */
1476 li r3,-EFAULT
1477 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1478 std r3,RESULT(r1)
1479 RECONCILE_IRQ_STATE(r10, r11)
1480 ld r4,_DAR(r1)
1481 ld r5,RESULT(r1)
1482 addi r3,r1,STACK_FRAME_OVERHEAD
1483 bl do_bad_slb_fault
1484 b interrupt_return
1485
1486 GEN_KVM instruction_access_slb
1487
1488
1489 /**
1490 * Interrupt 0x500 - External Interrupt.
1491 * This is an asynchronous maskable interrupt in response to an "external
1492 * exception" from the interrupt controller or hypervisor (e.g., device
1493 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1494 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1495 *
1496 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1497 * interrupts are delivered with HSRR registers, guests use SRRs, which
1498 * reqiures IHSRR_IF_HVMODE.
1499 *
1500 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1501 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1502 * rather than External Interrupts.
1503 *
1504 * Handling:
1505 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1506 * because registers at the time of the interrupt are not so important as it is
1507 * asynchronous.
1508 *
1509 * If soft masked, the masked handler will note the pending interrupt for
1510 * replay, and clear MSR[EE] in the interrupted context.
1511 */
1512 INT_DEFINE_BEGIN(hardware_interrupt)
1513 IVEC=0x500
1514 IHSRR_IF_HVMODE=1
1515 IMASK=IRQS_DISABLED
1516 IKVM_REAL=1
1517 IKVM_VIRT=1
1518 INT_DEFINE_END(hardware_interrupt)
1519
1520 EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1521 GEN_INT_ENTRY hardware_interrupt, virt=0
1522 EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1523 EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1524 GEN_INT_ENTRY hardware_interrupt, virt=1
1525 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1526 EXC_COMMON_BEGIN(hardware_interrupt_common)
1527 GEN_COMMON hardware_interrupt
1528 FINISH_NAP
1529 RUNLATCH_ON
1530 addi r3,r1,STACK_FRAME_OVERHEAD
1531 bl do_IRQ
1532 b interrupt_return
1533
1534 GEN_KVM hardware_interrupt
1535
1536
1537 /**
1538 * Interrupt 0x600 - Alignment Interrupt
1539 * This is a synchronous interrupt in response to data alignment fault.
1540 */
1541 INT_DEFINE_BEGIN(alignment)
1542 IVEC=0x600
1543 IDAR=1
1544 IDSISR=1
1545 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1546 IKVM_REAL=1
1547 #endif
1548 INT_DEFINE_END(alignment)
1549
1550 EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1551 GEN_INT_ENTRY alignment, virt=0
1552 EXC_REAL_END(alignment, 0x600, 0x100)
1553 EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1554 GEN_INT_ENTRY alignment, virt=1
1555 EXC_VIRT_END(alignment, 0x4600, 0x100)
1556 EXC_COMMON_BEGIN(alignment_common)
1557 GEN_COMMON alignment
1558 addi r3,r1,STACK_FRAME_OVERHEAD
1559 bl alignment_exception
1560 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1561 b interrupt_return
1562
1563 GEN_KVM alignment
1564
1565
1566 /**
1567 * Interrupt 0x700 - Program Interrupt (program check).
1568 * This is a synchronous interrupt in response to various instruction faults:
1569 * traps, privilege errors, TM errors, floating point exceptions.
1570 *
1571 * Handling:
1572 * This interrupt may use the "emergency stack" in some cases when being taken
1573 * from kernel context, which complicates handling.
1574 */
1575 INT_DEFINE_BEGIN(program_check)
1576 IVEC=0x700
1577 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1578 IKVM_REAL=1
1579 #endif
1580 INT_DEFINE_END(program_check)
1581
1582 EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1583 GEN_INT_ENTRY program_check, virt=0
1584 EXC_REAL_END(program_check, 0x700, 0x100)
1585 EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1586 GEN_INT_ENTRY program_check, virt=1
1587 EXC_VIRT_END(program_check, 0x4700, 0x100)
1588 EXC_COMMON_BEGIN(program_check_common)
1589 __GEN_COMMON_ENTRY program_check
1590
1591 /*
1592 * It's possible to receive a TM Bad Thing type program check with
1593 * userspace register values (in particular r1), but with SRR1 reporting
1594 * that we came from the kernel. Normally that would confuse the bad
1595 * stack logic, and we would report a bad kernel stack pointer. Instead
1596 * we switch to the emergency stack if we're taking a TM Bad Thing from
1597 * the kernel.
1598 */
1599
1600 andi. r10,r12,MSR_PR
1601 bne 2f /* If userspace, go normal path */
1602
1603 andis. r10,r12,(SRR1_PROGTM)@h
1604 bne 1f /* If TM, emergency */
1605
1606 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
1607 blt 2f /* normal path if not */
1608
1609 /* Use the emergency stack */
1610 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
1611 /* 3 in EXCEPTION_PROLOG_COMMON */
1612 mr r10,r1 /* Save r1 */
1613 ld r1,PACAEMERGSP(r13) /* Use emergency stack */
1614 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1615 __ISTACK(program_check)=0
1616 __GEN_COMMON_BODY program_check
1617 b 3f
1618 2:
1619 __ISTACK(program_check)=1
1620 __GEN_COMMON_BODY program_check
1621 3:
1622 addi r3,r1,STACK_FRAME_OVERHEAD
1623 bl program_check_exception
1624 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1625 b interrupt_return
1626
1627 GEN_KVM program_check
1628
1629
1630 /*
1631 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1632 * This is a synchronous interrupt in response to executing an fp instruction
1633 * with MSR[FP]=0.
1634 *
1635 * Handling:
1636 * This will load FP registers and enable the FP bit if coming from userspace,
1637 * otherwise report a bad kernel use of FP.
1638 */
1639 INT_DEFINE_BEGIN(fp_unavailable)
1640 IVEC=0x800
1641 IRECONCILE=0
1642 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1643 IKVM_REAL=1
1644 #endif
1645 INT_DEFINE_END(fp_unavailable)
1646
1647 EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1648 GEN_INT_ENTRY fp_unavailable, virt=0
1649 EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1650 EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1651 GEN_INT_ENTRY fp_unavailable, virt=1
1652 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1653 EXC_COMMON_BEGIN(fp_unavailable_common)
1654 GEN_COMMON fp_unavailable
1655 bne 1f /* if from user, just load it up */
1656 RECONCILE_IRQ_STATE(r10, r11)
1657 addi r3,r1,STACK_FRAME_OVERHEAD
1658 bl kernel_fp_unavailable_exception
1659 0: trap
1660 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1661 1:
1662 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1663 BEGIN_FTR_SECTION
1664 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
1665 * transaction), go do TM stuff
1666 */
1667 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
1668 bne- 2f
1669 END_FTR_SECTION_IFSET(CPU_FTR_TM)
1670 #endif
1671 bl load_up_fpu
1672 b fast_interrupt_return
1673 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1674 2: /* User process was in a transaction */
1675 RECONCILE_IRQ_STATE(r10, r11)
1676 addi r3,r1,STACK_FRAME_OVERHEAD
1677 bl fp_unavailable_tm
1678 b interrupt_return
1679 #endif
1680
1681 GEN_KVM fp_unavailable
1682
1683
1684 /**
1685 * Interrupt 0x900 - Decrementer Interrupt.
1686 * This is an asynchronous interrupt in response to a decrementer exception
1687 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1688 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1689 * local_irq_disable()).
1690 *
1691 * Handling:
1692 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1693 *
1694 * If soft masked, the masked handler will note the pending interrupt for
1695 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1696 * in the interrupted context.
1697 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1698 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1699 * on the emergency stack.
1700 */
1701 INT_DEFINE_BEGIN(decrementer)
1702 IVEC=0x900
1703 IMASK=IRQS_DISABLED
1704 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1705 IKVM_REAL=1
1706 #endif
1707 INT_DEFINE_END(decrementer)
1708
1709 EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1710 GEN_INT_ENTRY decrementer, virt=0
1711 EXC_REAL_END(decrementer, 0x900, 0x80)
1712 EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1713 GEN_INT_ENTRY decrementer, virt=1
1714 EXC_VIRT_END(decrementer, 0x4900, 0x80)
1715 EXC_COMMON_BEGIN(decrementer_common)
1716 GEN_COMMON decrementer
1717 FINISH_NAP
1718 RUNLATCH_ON
1719 addi r3,r1,STACK_FRAME_OVERHEAD
1720 bl timer_interrupt
1721 b interrupt_return
1722
1723 GEN_KVM decrementer
1724
1725
1726 /**
1727 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1728 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1729 * register.
1730 *
1731 * Handling:
1732 * Linux does not use this outside KVM where it's used to keep a host timer
1733 * while the guest is given control of DEC. It should normally be caught by
1734 * the KVM test and routed there.
1735 */
1736 INT_DEFINE_BEGIN(hdecrementer)
1737 IVEC=0x980
1738 IHSRR=1
1739 ISTACK=0
1740 IRECONCILE=0
1741 IKVM_REAL=1
1742 IKVM_VIRT=1
1743 INT_DEFINE_END(hdecrementer)
1744
1745 EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1746 GEN_INT_ENTRY hdecrementer, virt=0
1747 EXC_REAL_END(hdecrementer, 0x980, 0x80)
1748 EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1749 GEN_INT_ENTRY hdecrementer, virt=1
1750 EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1751 EXC_COMMON_BEGIN(hdecrementer_common)
1752 __GEN_COMMON_ENTRY hdecrementer
1753 /*
1754 * Hypervisor decrementer interrupts not caught by the KVM test
1755 * shouldn't occur but are sometimes left pending on exit from a KVM
1756 * guest. We don't need to do anything to clear them, as they are
1757 * edge-triggered.
1758 *
1759 * Be careful to avoid touching the kernel stack.
1760 */
1761 ld r10,PACA_EXGEN+EX_CTR(r13)
1762 mtctr r10
1763 mtcrf 0x80,r9
1764 ld r9,PACA_EXGEN+EX_R9(r13)
1765 ld r10,PACA_EXGEN+EX_R10(r13)
1766 ld r11,PACA_EXGEN+EX_R11(r13)
1767 ld r12,PACA_EXGEN+EX_R12(r13)
1768 ld r13,PACA_EXGEN+EX_R13(r13)
1769 HRFI_TO_KERNEL
1770
1771 GEN_KVM hdecrementer
1772
1773
1774 /**
1775 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1776 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1777 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1778 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1779 *
1780 * Handling:
1781 * Guests may use this for IPIs between threads in a core if the
1782 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1783 *
1784 * If soft masked, the masked handler will note the pending interrupt for
1785 * replay, leaving MSR[EE] enabled in the interrupted context because the
1786 * doorbells are edge triggered.
1787 */
1788 INT_DEFINE_BEGIN(doorbell_super)
1789 IVEC=0xa00
1790 IMASK=IRQS_DISABLED
1791 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1792 IKVM_REAL=1
1793 #endif
1794 INT_DEFINE_END(doorbell_super)
1795
1796 EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1797 GEN_INT_ENTRY doorbell_super, virt=0
1798 EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1799 EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1800 GEN_INT_ENTRY doorbell_super, virt=1
1801 EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1802 EXC_COMMON_BEGIN(doorbell_super_common)
1803 GEN_COMMON doorbell_super
1804 FINISH_NAP
1805 RUNLATCH_ON
1806 addi r3,r1,STACK_FRAME_OVERHEAD
1807 #ifdef CONFIG_PPC_DOORBELL
1808 bl doorbell_exception
1809 #else
1810 bl unknown_exception
1811 #endif
1812 b interrupt_return
1813
1814 GEN_KVM doorbell_super
1815
1816
1817 EXC_REAL_NONE(0xb00, 0x100)
1818 EXC_VIRT_NONE(0x4b00, 0x100)
1819
1820 /**
1821 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1822 * This is a synchronous interrupt invoked with the "sc" instruction. The
1823 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1824 * is directed to the currently running OS. The hypercall is invoked with
1825 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1826 *
1827 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1828 * 0x4c00 virtual mode.
1829 *
1830 * Handling:
1831 * If the KVM test fires then it was due to a hypercall and is accordingly
1832 * routed to KVM. Otherwise this executes a normal Linux system call.
1833 *
1834 * Call convention:
1835 *
1836 * syscall and hypercalls register conventions are documented in
1837 * Documentation/powerpc/syscall64-abi.rst and
1838 * Documentation/powerpc/papr_hcalls.rst respectively.
1839 *
1840 * The intersection of volatile registers that don't contain possible
1841 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1842 * without saving, though xer is not a good idea to use, as hardware may
1843 * interpret some bits so it may be costly to change them.
1844 */
1845 INT_DEFINE_BEGIN(system_call)
1846 IVEC=0xc00
1847 IKVM_REAL=1
1848 IKVM_VIRT=1
1849 INT_DEFINE_END(system_call)
1850
1851 .macro SYSTEM_CALL virt
1852 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1853 /*
1854 * There is a little bit of juggling to get syscall and hcall
1855 * working well. Save r13 in ctr to avoid using SPRG scratch
1856 * register.
1857 *
1858 * Userspace syscalls have already saved the PPR, hcalls must save
1859 * it before setting HMT_MEDIUM.
1860 */
1861 mtctr r13
1862 GET_PACA(r13)
1863 std r10,PACA_EXGEN+EX_R10(r13)
1864 INTERRUPT_TO_KERNEL
1865 KVMTEST system_call /* uses r10, branch to system_call_kvm */
1866 mfctr r9
1867 #else
1868 mr r9,r13
1869 GET_PACA(r13)
1870 INTERRUPT_TO_KERNEL
1871 #endif
1872
1873 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1874 BEGIN_FTR_SECTION
1875 cmpdi r0,0x1ebe
1876 beq- 1f
1877 END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1878 #endif
1879
1880 /* We reach here with PACA in r13, r13 in r9. */
1881 mfspr r11,SPRN_SRR0
1882 mfspr r12,SPRN_SRR1
1883
1884 HMT_MEDIUM
1885
1886 .if ! \virt
1887 __LOAD_HANDLER(r10, system_call_common)
1888 mtspr SPRN_SRR0,r10
1889 ld r10,PACAKMSR(r13)
1890 mtspr SPRN_SRR1,r10
1891 RFI_TO_KERNEL
1892 b . /* prevent speculative execution */
1893 .else
1894 li r10,MSR_RI
1895 mtmsrd r10,1 /* Set RI (EE=0) */
1896 #ifdef CONFIG_RELOCATABLE
1897 __LOAD_HANDLER(r10, system_call_common)
1898 mtctr r10
1899 bctr
1900 #else
1901 b system_call_common
1902 #endif
1903 .endif
1904
1905 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1906 /* Fast LE/BE switch system call */
1907 1: mfspr r12,SPRN_SRR1
1908 xori r12,r12,MSR_LE
1909 mtspr SPRN_SRR1,r12
1910 mr r13,r9
1911 RFI_TO_USER /* return to userspace */
1912 b . /* prevent speculative execution */
1913 #endif
1914 .endm
1915
1916 EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
1917 SYSTEM_CALL 0
1918 EXC_REAL_END(system_call, 0xc00, 0x100)
1919 EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
1920 SYSTEM_CALL 1
1921 EXC_VIRT_END(system_call, 0x4c00, 0x100)
1922
1923 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1924 TRAMP_REAL_BEGIN(system_call_kvm)
1925 /*
1926 * This is a hcall, so register convention is as above, with these
1927 * differences:
1928 * r13 = PACA
1929 * ctr = orig r13
1930 * orig r10 saved in PACA
1931 */
1932 /*
1933 * Save the PPR (on systems that support it) before changing to
1934 * HMT_MEDIUM. That allows the KVM code to save that value into the
1935 * guest state (it is the guest's PPR value).
1936 */
1937 BEGIN_FTR_SECTION
1938 mfspr r10,SPRN_PPR
1939 std r10,HSTATE_PPR(r13)
1940 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
1941 HMT_MEDIUM
1942 mfctr r10
1943 SET_SCRATCH0(r10)
1944 mfcr r10
1945 std r12,HSTATE_SCRATCH0(r13)
1946 sldi r12,r10,32
1947 ori r12,r12,0xc00
1948 #ifdef CONFIG_RELOCATABLE
1949 /*
1950 * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
1951 * outside the head section.
1952 */
1953 __LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
1954 mtctr r10
1955 ld r10,PACA_EXGEN+EX_R10(r13)
1956 bctr
1957 #else
1958 ld r10,PACA_EXGEN+EX_R10(r13)
1959 b kvmppc_interrupt
1960 #endif
1961 #endif
1962
1963
1964 /**
1965 * Interrupt 0xd00 - Trace Interrupt.
1966 * This is a synchronous interrupt in response to instruction step or
1967 * breakpoint faults.
1968 */
1969 INT_DEFINE_BEGIN(single_step)
1970 IVEC=0xd00
1971 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1972 IKVM_REAL=1
1973 #endif
1974 INT_DEFINE_END(single_step)
1975
1976 EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
1977 GEN_INT_ENTRY single_step, virt=0
1978 EXC_REAL_END(single_step, 0xd00, 0x100)
1979 EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
1980 GEN_INT_ENTRY single_step, virt=1
1981 EXC_VIRT_END(single_step, 0x4d00, 0x100)
1982 EXC_COMMON_BEGIN(single_step_common)
1983 GEN_COMMON single_step
1984 addi r3,r1,STACK_FRAME_OVERHEAD
1985 bl single_step_exception
1986 b interrupt_return
1987
1988 GEN_KVM single_step
1989
1990
1991 /**
1992 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
1993 * This is a synchronous interrupt in response to an MMU fault caused by a
1994 * guest data access.
1995 *
1996 * Handling:
1997 * This should always get routed to KVM. In radix MMU mode, this is caused
1998 * by a guest nested radix access that can't be performed due to the
1999 * partition scope page table. In hash mode, this can be caused by guests
2000 * running with translation disabled (virtual real mode) or with VPM enabled.
2001 * KVM will update the page table structures or disallow the access.
2002 */
2003 INT_DEFINE_BEGIN(h_data_storage)
2004 IVEC=0xe00
2005 IHSRR=1
2006 IDAR=1
2007 IDSISR=1
2008 IKVM_SKIP=1
2009 IKVM_REAL=1
2010 IKVM_VIRT=1
2011 INT_DEFINE_END(h_data_storage)
2012
2013 EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2014 GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2015 EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2016 EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2017 GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2018 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2019 EXC_COMMON_BEGIN(h_data_storage_common)
2020 GEN_COMMON h_data_storage
2021 addi r3,r1,STACK_FRAME_OVERHEAD
2022 BEGIN_MMU_FTR_SECTION
2023 ld r4,_DAR(r1)
2024 li r5,SIGSEGV
2025 bl bad_page_fault
2026 MMU_FTR_SECTION_ELSE
2027 bl unknown_exception
2028 ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2029 b interrupt_return
2030
2031 GEN_KVM h_data_storage
2032
2033
2034 /**
2035 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2036 * This is a synchronous interrupt in response to an MMU fault caused by a
2037 * guest instruction fetch, similar to HDSI.
2038 */
2039 INT_DEFINE_BEGIN(h_instr_storage)
2040 IVEC=0xe20
2041 IHSRR=1
2042 IKVM_REAL=1
2043 IKVM_VIRT=1
2044 INT_DEFINE_END(h_instr_storage)
2045
2046 EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2047 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2048 EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2049 EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2050 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2051 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2052 EXC_COMMON_BEGIN(h_instr_storage_common)
2053 GEN_COMMON h_instr_storage
2054 addi r3,r1,STACK_FRAME_OVERHEAD
2055 bl unknown_exception
2056 b interrupt_return
2057
2058 GEN_KVM h_instr_storage
2059
2060
2061 /**
2062 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2063 */
2064 INT_DEFINE_BEGIN(emulation_assist)
2065 IVEC=0xe40
2066 IHSRR=1
2067 IKVM_REAL=1
2068 IKVM_VIRT=1
2069 INT_DEFINE_END(emulation_assist)
2070
2071 EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2072 GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2073 EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2074 EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2075 GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2076 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2077 EXC_COMMON_BEGIN(emulation_assist_common)
2078 GEN_COMMON emulation_assist
2079 addi r3,r1,STACK_FRAME_OVERHEAD
2080 bl emulation_assist_interrupt
2081 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2082 b interrupt_return
2083
2084 GEN_KVM emulation_assist
2085
2086
2087 /**
2088 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2089 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2090 * Exception. It is always taken in real mode but uses HSRR registers
2091 * unlike SRESET and MCE.
2092 *
2093 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2094 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2095 *
2096 * Handling:
2097 * This is a special case, this is handled similarly to machine checks, with an
2098 * initial real mode handler that is not soft-masked, which attempts to fix the
2099 * problem. Then a regular handler which is soft-maskable and reports the
2100 * problem.
2101 *
2102 * The emergency stack is used for the early real mode handler.
2103 *
2104 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2105 * either use soft-masking for the MCE, or use irq_work for the HMI.
2106 *
2107 * KVM:
2108 * Unlike MCE, this calls into KVM without calling the real mode handler
2109 * first.
2110 */
2111 INT_DEFINE_BEGIN(hmi_exception_early)
2112 IVEC=0xe60
2113 IHSRR=1
2114 IREALMODE_COMMON=1
2115 ISTACK=0
2116 IRECONCILE=0
2117 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2118 IKVM_REAL=1
2119 INT_DEFINE_END(hmi_exception_early)
2120
2121 INT_DEFINE_BEGIN(hmi_exception)
2122 IVEC=0xe60
2123 IHSRR=1
2124 IMASK=IRQS_DISABLED
2125 IKVM_REAL=1
2126 INT_DEFINE_END(hmi_exception)
2127
2128 EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2129 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2130 EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2131 EXC_VIRT_NONE(0x4e60, 0x20)
2132
2133 EXC_COMMON_BEGIN(hmi_exception_early_common)
2134 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2135
2136 mr r10,r1 /* Save r1 */
2137 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
2138 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
2139
2140 __GEN_COMMON_BODY hmi_exception_early
2141
2142 addi r3,r1,STACK_FRAME_OVERHEAD
2143 bl hmi_exception_realmode
2144 cmpdi cr0,r3,0
2145 bne 1f
2146
2147 EXCEPTION_RESTORE_REGS hsrr=1
2148 HRFI_TO_USER_OR_KERNEL
2149
2150 1:
2151 /*
2152 * Go to virtual mode and pull the HMI event information from
2153 * firmware.
2154 */
2155 EXCEPTION_RESTORE_REGS hsrr=1
2156 GEN_INT_ENTRY hmi_exception, virt=0
2157
2158 GEN_KVM hmi_exception_early
2159
2160 EXC_COMMON_BEGIN(hmi_exception_common)
2161 GEN_COMMON hmi_exception
2162 FINISH_NAP
2163 RUNLATCH_ON
2164 addi r3,r1,STACK_FRAME_OVERHEAD
2165 bl handle_hmi_exception
2166 b interrupt_return
2167
2168 GEN_KVM hmi_exception
2169
2170
2171 /**
2172 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2173 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2174 * Similar to the 0xa00 doorbell but for host rather than guest.
2175 */
2176 INT_DEFINE_BEGIN(h_doorbell)
2177 IVEC=0xe80
2178 IHSRR=1
2179 IMASK=IRQS_DISABLED
2180 IKVM_REAL=1
2181 IKVM_VIRT=1
2182 INT_DEFINE_END(h_doorbell)
2183
2184 EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2185 GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2186 EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2187 EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2188 GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2189 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2190 EXC_COMMON_BEGIN(h_doorbell_common)
2191 GEN_COMMON h_doorbell
2192 FINISH_NAP
2193 RUNLATCH_ON
2194 addi r3,r1,STACK_FRAME_OVERHEAD
2195 #ifdef CONFIG_PPC_DOORBELL
2196 bl doorbell_exception
2197 #else
2198 bl unknown_exception
2199 #endif
2200 b interrupt_return
2201
2202 GEN_KVM h_doorbell
2203
2204
2205 /**
2206 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2207 * This is an asynchronous interrupt in response to an "external exception".
2208 * Similar to 0x500 but for host only.
2209 */
2210 INT_DEFINE_BEGIN(h_virt_irq)
2211 IVEC=0xea0
2212 IHSRR=1
2213 IMASK=IRQS_DISABLED
2214 IKVM_REAL=1
2215 IKVM_VIRT=1
2216 INT_DEFINE_END(h_virt_irq)
2217
2218 EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2219 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2220 EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2221 EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2222 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2223 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2224 EXC_COMMON_BEGIN(h_virt_irq_common)
2225 GEN_COMMON h_virt_irq
2226 FINISH_NAP
2227 RUNLATCH_ON
2228 addi r3,r1,STACK_FRAME_OVERHEAD
2229 bl do_IRQ
2230 b interrupt_return
2231
2232 GEN_KVM h_virt_irq
2233
2234
2235 EXC_REAL_NONE(0xec0, 0x20)
2236 EXC_VIRT_NONE(0x4ec0, 0x20)
2237 EXC_REAL_NONE(0xee0, 0x20)
2238 EXC_VIRT_NONE(0x4ee0, 0x20)
2239
2240
2241 /*
2242 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2243 * This is an asynchronous interrupt in response to a PMU exception.
2244 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2245 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2246 *
2247 * Handling:
2248 * This calls into the perf subsystem.
2249 *
2250 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2251 * runs under local_irq_disable. However it may be soft-masked in
2252 * powerpc-specific code.
2253 *
2254 * If soft masked, the masked handler will note the pending interrupt for
2255 * replay, and clear MSR[EE] in the interrupted context.
2256 */
2257 INT_DEFINE_BEGIN(performance_monitor)
2258 IVEC=0xf00
2259 IMASK=IRQS_PMI_DISABLED
2260 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2261 IKVM_REAL=1
2262 #endif
2263 INT_DEFINE_END(performance_monitor)
2264
2265 EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2266 GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2267 EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2268 EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2269 GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2270 EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2271 EXC_COMMON_BEGIN(performance_monitor_common)
2272 GEN_COMMON performance_monitor
2273 FINISH_NAP
2274 RUNLATCH_ON
2275 addi r3,r1,STACK_FRAME_OVERHEAD
2276 bl performance_monitor_exception
2277 b interrupt_return
2278
2279 GEN_KVM performance_monitor
2280
2281
2282 /**
2283 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2284 * This is a synchronous interrupt in response to
2285 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2286 * Similar to FP unavailable.
2287 */
2288 INT_DEFINE_BEGIN(altivec_unavailable)
2289 IVEC=0xf20
2290 IRECONCILE=0
2291 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2292 IKVM_REAL=1
2293 #endif
2294 INT_DEFINE_END(altivec_unavailable)
2295
2296 EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2297 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2298 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2299 EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2300 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2301 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2302 EXC_COMMON_BEGIN(altivec_unavailable_common)
2303 GEN_COMMON altivec_unavailable
2304 #ifdef CONFIG_ALTIVEC
2305 BEGIN_FTR_SECTION
2306 beq 1f
2307 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2308 BEGIN_FTR_SECTION_NESTED(69)
2309 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2310 * transaction), go do TM stuff
2311 */
2312 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2313 bne- 2f
2314 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2315 #endif
2316 bl load_up_altivec
2317 b fast_interrupt_return
2318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2319 2: /* User process was in a transaction */
2320 RECONCILE_IRQ_STATE(r10, r11)
2321 addi r3,r1,STACK_FRAME_OVERHEAD
2322 bl altivec_unavailable_tm
2323 b interrupt_return
2324 #endif
2325 1:
2326 END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2327 #endif
2328 RECONCILE_IRQ_STATE(r10, r11)
2329 addi r3,r1,STACK_FRAME_OVERHEAD
2330 bl altivec_unavailable_exception
2331 b interrupt_return
2332
2333 GEN_KVM altivec_unavailable
2334
2335
2336 /**
2337 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2338 * This is a synchronous interrupt in response to
2339 * executing a VSX instruction with MSR[VSX]=0.
2340 * Similar to FP unavailable.
2341 */
2342 INT_DEFINE_BEGIN(vsx_unavailable)
2343 IVEC=0xf40
2344 IRECONCILE=0
2345 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2346 IKVM_REAL=1
2347 #endif
2348 INT_DEFINE_END(vsx_unavailable)
2349
2350 EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2351 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2352 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2353 EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2354 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2355 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2356 EXC_COMMON_BEGIN(vsx_unavailable_common)
2357 GEN_COMMON vsx_unavailable
2358 #ifdef CONFIG_VSX
2359 BEGIN_FTR_SECTION
2360 beq 1f
2361 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2362 BEGIN_FTR_SECTION_NESTED(69)
2363 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2364 * transaction), go do TM stuff
2365 */
2366 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2367 bne- 2f
2368 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2369 #endif
2370 b load_up_vsx
2371 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2372 2: /* User process was in a transaction */
2373 RECONCILE_IRQ_STATE(r10, r11)
2374 addi r3,r1,STACK_FRAME_OVERHEAD
2375 bl vsx_unavailable_tm
2376 b interrupt_return
2377 #endif
2378 1:
2379 END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2380 #endif
2381 RECONCILE_IRQ_STATE(r10, r11)
2382 addi r3,r1,STACK_FRAME_OVERHEAD
2383 bl vsx_unavailable_exception
2384 b interrupt_return
2385
2386 GEN_KVM vsx_unavailable
2387
2388
2389 /**
2390 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2391 * This is a synchronous interrupt in response to
2392 * executing an instruction without access to the facility that can be
2393 * resolved by the OS (e.g., FSCR, MSR).
2394 * Similar to FP unavailable.
2395 */
2396 INT_DEFINE_BEGIN(facility_unavailable)
2397 IVEC=0xf60
2398 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2399 IKVM_REAL=1
2400 #endif
2401 INT_DEFINE_END(facility_unavailable)
2402
2403 EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2404 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2405 EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2406 EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2407 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2408 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2409 EXC_COMMON_BEGIN(facility_unavailable_common)
2410 GEN_COMMON facility_unavailable
2411 addi r3,r1,STACK_FRAME_OVERHEAD
2412 bl facility_unavailable_exception
2413 b interrupt_return
2414
2415 GEN_KVM facility_unavailable
2416
2417
2418 /**
2419 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2420 * This is a synchronous interrupt in response to
2421 * executing an instruction without access to the facility that can only
2422 * be resolved in HV mode (e.g., HFSCR).
2423 * Similar to FP unavailable.
2424 */
2425 INT_DEFINE_BEGIN(h_facility_unavailable)
2426 IVEC=0xf80
2427 IHSRR=1
2428 IKVM_REAL=1
2429 IKVM_VIRT=1
2430 INT_DEFINE_END(h_facility_unavailable)
2431
2432 EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2433 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2434 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2435 EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2436 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2437 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2438 EXC_COMMON_BEGIN(h_facility_unavailable_common)
2439 GEN_COMMON h_facility_unavailable
2440 addi r3,r1,STACK_FRAME_OVERHEAD
2441 bl facility_unavailable_exception
2442 b interrupt_return
2443
2444 GEN_KVM h_facility_unavailable
2445
2446
2447 EXC_REAL_NONE(0xfa0, 0x20)
2448 EXC_VIRT_NONE(0x4fa0, 0x20)
2449 EXC_REAL_NONE(0xfc0, 0x20)
2450 EXC_VIRT_NONE(0x4fc0, 0x20)
2451 EXC_REAL_NONE(0xfe0, 0x20)
2452 EXC_VIRT_NONE(0x4fe0, 0x20)
2453
2454 EXC_REAL_NONE(0x1000, 0x100)
2455 EXC_VIRT_NONE(0x5000, 0x100)
2456 EXC_REAL_NONE(0x1100, 0x100)
2457 EXC_VIRT_NONE(0x5100, 0x100)
2458
2459 #ifdef CONFIG_CBE_RAS
2460 INT_DEFINE_BEGIN(cbe_system_error)
2461 IVEC=0x1200
2462 IHSRR=1
2463 IKVM_SKIP=1
2464 IKVM_REAL=1
2465 INT_DEFINE_END(cbe_system_error)
2466
2467 EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2468 GEN_INT_ENTRY cbe_system_error, virt=0
2469 EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2470 EXC_VIRT_NONE(0x5200, 0x100)
2471 EXC_COMMON_BEGIN(cbe_system_error_common)
2472 GEN_COMMON cbe_system_error
2473 addi r3,r1,STACK_FRAME_OVERHEAD
2474 bl cbe_system_error_exception
2475 b interrupt_return
2476
2477 GEN_KVM cbe_system_error
2478
2479 #else /* CONFIG_CBE_RAS */
2480 EXC_REAL_NONE(0x1200, 0x100)
2481 EXC_VIRT_NONE(0x5200, 0x100)
2482 #endif
2483
2484
2485 INT_DEFINE_BEGIN(instruction_breakpoint)
2486 IVEC=0x1300
2487 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2488 IKVM_SKIP=1
2489 IKVM_REAL=1
2490 #endif
2491 INT_DEFINE_END(instruction_breakpoint)
2492
2493 EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2494 GEN_INT_ENTRY instruction_breakpoint, virt=0
2495 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2496 EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2497 GEN_INT_ENTRY instruction_breakpoint, virt=1
2498 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2499 EXC_COMMON_BEGIN(instruction_breakpoint_common)
2500 GEN_COMMON instruction_breakpoint
2501 addi r3,r1,STACK_FRAME_OVERHEAD
2502 bl instruction_breakpoint_exception
2503 b interrupt_return
2504
2505 GEN_KVM instruction_breakpoint
2506
2507
2508 EXC_REAL_NONE(0x1400, 0x100)
2509 EXC_VIRT_NONE(0x5400, 0x100)
2510
2511 /**
2512 * Interrupt 0x1500 - Soft Patch Interrupt
2513 *
2514 * Handling:
2515 * This is an implementation specific interrupt which can be used for a
2516 * range of exceptions.
2517 *
2518 * This interrupt handler is unique in that it runs the denormal assist
2519 * code even for guests (and even in guest context) without going to KVM,
2520 * for speed. POWER9 does not raise denorm exceptions, so this special case
2521 * could be phased out in future to reduce special cases.
2522 */
2523 INT_DEFINE_BEGIN(denorm_exception)
2524 IVEC=0x1500
2525 IHSRR=1
2526 IBRANCH_COMMON=0
2527 IKVM_REAL=1
2528 INT_DEFINE_END(denorm_exception)
2529
2530 EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2531 GEN_INT_ENTRY denorm_exception, virt=0
2532 #ifdef CONFIG_PPC_DENORMALISATION
2533 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2534 bne+ denorm_assist
2535 #endif
2536 GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2537 EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2538 #ifdef CONFIG_PPC_DENORMALISATION
2539 EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2540 GEN_INT_ENTRY denorm_exception, virt=1
2541 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2542 bne+ denorm_assist
2543 GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2544 EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2545 #else
2546 EXC_VIRT_NONE(0x5500, 0x100)
2547 #endif
2548
2549 #ifdef CONFIG_PPC_DENORMALISATION
2550 TRAMP_REAL_BEGIN(denorm_assist)
2551 BEGIN_FTR_SECTION
2552 /*
2553 * To denormalise we need to move a copy of the register to itself.
2554 * For POWER6 do that here for all FP regs.
2555 */
2556 mfmsr r10
2557 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2558 xori r10,r10,(MSR_FE0|MSR_FE1)
2559 mtmsrd r10
2560 sync
2561
2562 .Lreg=0
2563 .rept 32
2564 fmr .Lreg,.Lreg
2565 .Lreg=.Lreg+1
2566 .endr
2567
2568 FTR_SECTION_ELSE
2569 /*
2570 * To denormalise we need to move a copy of the register to itself.
2571 * For POWER7 do that here for the first 32 VSX registers only.
2572 */
2573 mfmsr r10
2574 oris r10,r10,MSR_VSX@h
2575 mtmsrd r10
2576 sync
2577
2578 .Lreg=0
2579 .rept 32
2580 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2581 .Lreg=.Lreg+1
2582 .endr
2583
2584 ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2585
2586 BEGIN_FTR_SECTION
2587 b denorm_done
2588 END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2589 /*
2590 * To denormalise we need to move a copy of the register to itself.
2591 * For POWER8 we need to do that for all 64 VSX registers
2592 */
2593 .Lreg=32
2594 .rept 32
2595 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2596 .Lreg=.Lreg+1
2597 .endr
2598
2599 denorm_done:
2600 mfspr r11,SPRN_HSRR0
2601 subi r11,r11,4
2602 mtspr SPRN_HSRR0,r11
2603 mtcrf 0x80,r9
2604 ld r9,PACA_EXGEN+EX_R9(r13)
2605 BEGIN_FTR_SECTION
2606 ld r10,PACA_EXGEN+EX_PPR(r13)
2607 mtspr SPRN_PPR,r10
2608 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2609 BEGIN_FTR_SECTION
2610 ld r10,PACA_EXGEN+EX_CFAR(r13)
2611 mtspr SPRN_CFAR,r10
2612 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2613 ld r10,PACA_EXGEN+EX_R10(r13)
2614 ld r11,PACA_EXGEN+EX_R11(r13)
2615 ld r12,PACA_EXGEN+EX_R12(r13)
2616 ld r13,PACA_EXGEN+EX_R13(r13)
2617 HRFI_TO_UNKNOWN
2618 b .
2619 #endif
2620
2621 EXC_COMMON_BEGIN(denorm_exception_common)
2622 GEN_COMMON denorm_exception
2623 addi r3,r1,STACK_FRAME_OVERHEAD
2624 bl unknown_exception
2625 b interrupt_return
2626
2627 GEN_KVM denorm_exception
2628
2629
2630 #ifdef CONFIG_CBE_RAS
2631 INT_DEFINE_BEGIN(cbe_maintenance)
2632 IVEC=0x1600
2633 IHSRR=1
2634 IKVM_SKIP=1
2635 IKVM_REAL=1
2636 INT_DEFINE_END(cbe_maintenance)
2637
2638 EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2639 GEN_INT_ENTRY cbe_maintenance, virt=0
2640 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2641 EXC_VIRT_NONE(0x5600, 0x100)
2642 EXC_COMMON_BEGIN(cbe_maintenance_common)
2643 GEN_COMMON cbe_maintenance
2644 addi r3,r1,STACK_FRAME_OVERHEAD
2645 bl cbe_maintenance_exception
2646 b interrupt_return
2647
2648 GEN_KVM cbe_maintenance
2649
2650 #else /* CONFIG_CBE_RAS */
2651 EXC_REAL_NONE(0x1600, 0x100)
2652 EXC_VIRT_NONE(0x5600, 0x100)
2653 #endif
2654
2655
2656 INT_DEFINE_BEGIN(altivec_assist)
2657 IVEC=0x1700
2658 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2659 IKVM_REAL=1
2660 #endif
2661 INT_DEFINE_END(altivec_assist)
2662
2663 EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2664 GEN_INT_ENTRY altivec_assist, virt=0
2665 EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2666 EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2667 GEN_INT_ENTRY altivec_assist, virt=1
2668 EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2669 EXC_COMMON_BEGIN(altivec_assist_common)
2670 GEN_COMMON altivec_assist
2671 addi r3,r1,STACK_FRAME_OVERHEAD
2672 #ifdef CONFIG_ALTIVEC
2673 bl altivec_assist_exception
2674 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2675 #else
2676 bl unknown_exception
2677 #endif
2678 b interrupt_return
2679
2680 GEN_KVM altivec_assist
2681
2682
2683 #ifdef CONFIG_CBE_RAS
2684 INT_DEFINE_BEGIN(cbe_thermal)
2685 IVEC=0x1800
2686 IHSRR=1
2687 IKVM_SKIP=1
2688 IKVM_REAL=1
2689 INT_DEFINE_END(cbe_thermal)
2690
2691 EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2692 GEN_INT_ENTRY cbe_thermal, virt=0
2693 EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2694 EXC_VIRT_NONE(0x5800, 0x100)
2695 EXC_COMMON_BEGIN(cbe_thermal_common)
2696 GEN_COMMON cbe_thermal
2697 addi r3,r1,STACK_FRAME_OVERHEAD
2698 bl cbe_thermal_exception
2699 b interrupt_return
2700
2701 GEN_KVM cbe_thermal
2702
2703 #else /* CONFIG_CBE_RAS */
2704 EXC_REAL_NONE(0x1800, 0x100)
2705 EXC_VIRT_NONE(0x5800, 0x100)
2706 #endif
2707
2708
2709 #ifdef CONFIG_PPC_WATCHDOG
2710
2711 INT_DEFINE_BEGIN(soft_nmi)
2712 IVEC=0x900
2713 ISTACK=0
2714 IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
2715 INT_DEFINE_END(soft_nmi)
2716
2717 /*
2718 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2719 * stack is one that is usable by maskable interrupts so long as MSR_EE
2720 * remains off. It is used for recovery when something has corrupted the
2721 * normal kernel stack, for example. The "soft NMI" must not use the process
2722 * stack because we want irq disabled sections to avoid touching the stack
2723 * at all (other than PMU interrupts), so use the emergency stack for this,
2724 * and run it entirely with interrupts hard disabled.
2725 */
2726 EXC_COMMON_BEGIN(soft_nmi_common)
2727 mfspr r11,SPRN_SRR0
2728 mr r10,r1
2729 ld r1,PACAEMERGSP(r13)
2730 subi r1,r1,INT_FRAME_SIZE
2731 __GEN_COMMON_BODY soft_nmi
2732
2733 /*
2734 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
2735 * system_reset_common)
2736 */
2737 li r10,IRQS_ALL_DISABLED
2738 stb r10,PACAIRQSOFTMASK(r13)
2739 lbz r10,PACAIRQHAPPENED(r13)
2740 std r10,_DAR(r1)
2741 ori r10,r10,PACA_IRQ_HARD_DIS
2742 stb r10,PACAIRQHAPPENED(r13)
2743
2744 addi r3,r1,STACK_FRAME_OVERHEAD
2745 bl soft_nmi_interrupt
2746
2747 /* Clear MSR_RI before setting SRR0 and SRR1. */
2748 li r9,0
2749 mtmsrd r9,1
2750
2751 /*
2752 * Restore soft mask settings.
2753 */
2754 ld r10,_DAR(r1)
2755 stb r10,PACAIRQHAPPENED(r13)
2756 ld r10,SOFTE(r1)
2757 stb r10,PACAIRQSOFTMASK(r13)
2758
2759 kuap_restore_amr r10
2760 EXCEPTION_RESTORE_REGS hsrr=0
2761 RFI_TO_KERNEL
2762
2763 #endif /* CONFIG_PPC_WATCHDOG */
2764
2765 /*
2766 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2767 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2768 * - If it was a doorbell we return immediately since doorbells are edge
2769 * triggered and won't automatically refire.
2770 * - If it was a HMI we return immediately since we handled it in realmode
2771 * and it won't refire.
2772 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2773 * This is called with r10 containing the value to OR to the paca field.
2774 */
2775 .macro MASKED_INTERRUPT hsrr=0
2776 .if \hsrr
2777 masked_Hinterrupt:
2778 .else
2779 masked_interrupt:
2780 .endif
2781 lbz r11,PACAIRQHAPPENED(r13)
2782 or r11,r11,r10
2783 stb r11,PACAIRQHAPPENED(r13)
2784 cmpwi r10,PACA_IRQ_DEC
2785 bne 1f
2786 lis r10,0x7fff
2787 ori r10,r10,0xffff
2788 mtspr SPRN_DEC,r10
2789 #ifdef CONFIG_PPC_WATCHDOG
2790 b soft_nmi_common
2791 #else
2792 b 2f
2793 #endif
2794 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
2795 beq 2f
2796 xori r12,r12,MSR_EE /* clear MSR_EE */
2797 .if \hsrr
2798 mtspr SPRN_HSRR1,r12
2799 .else
2800 mtspr SPRN_SRR1,r12
2801 .endif
2802 ori r11,r11,PACA_IRQ_HARD_DIS
2803 stb r11,PACAIRQHAPPENED(r13)
2804 2: /* done */
2805 ld r10,PACA_EXGEN+EX_CTR(r13)
2806 mtctr r10
2807 mtcrf 0x80,r9
2808 std r1,PACAR1(r13)
2809 ld r9,PACA_EXGEN+EX_R9(r13)
2810 ld r10,PACA_EXGEN+EX_R10(r13)
2811 ld r11,PACA_EXGEN+EX_R11(r13)
2812 ld r12,PACA_EXGEN+EX_R12(r13)
2813 /* returns to kernel where r13 must be set up, so don't restore it */
2814 .if \hsrr
2815 HRFI_TO_KERNEL
2816 .else
2817 RFI_TO_KERNEL
2818 .endif
2819 b .
2820 .endm
2821
2822 TRAMP_REAL_BEGIN(stf_barrier_fallback)
2823 std r9,PACA_EXRFI+EX_R9(r13)
2824 std r10,PACA_EXRFI+EX_R10(r13)
2825 sync
2826 ld r9,PACA_EXRFI+EX_R9(r13)
2827 ld r10,PACA_EXRFI+EX_R10(r13)
2828 ori 31,31,0
2829 .rept 14
2830 b 1f
2831 1:
2832 .endr
2833 blr
2834
2835 TRAMP_REAL_BEGIN(rfi_flush_fallback)
2836 SET_SCRATCH0(r13);
2837 GET_PACA(r13);
2838 std r1,PACA_EXRFI+EX_R12(r13)
2839 ld r1,PACAKSAVE(r13)
2840 std r9,PACA_EXRFI+EX_R9(r13)
2841 std r10,PACA_EXRFI+EX_R10(r13)
2842 std r11,PACA_EXRFI+EX_R11(r13)
2843 mfctr r9
2844 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2845 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2846 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2847 mtctr r11
2848 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2849
2850 /* order ld/st prior to dcbt stop all streams with flushing */
2851 sync
2852
2853 /*
2854 * The load adresses are at staggered offsets within cachelines,
2855 * which suits some pipelines better (on others it should not
2856 * hurt).
2857 */
2858 1:
2859 ld r11,(0x80 + 8)*0(r10)
2860 ld r11,(0x80 + 8)*1(r10)
2861 ld r11,(0x80 + 8)*2(r10)
2862 ld r11,(0x80 + 8)*3(r10)
2863 ld r11,(0x80 + 8)*4(r10)
2864 ld r11,(0x80 + 8)*5(r10)
2865 ld r11,(0x80 + 8)*6(r10)
2866 ld r11,(0x80 + 8)*7(r10)
2867 addi r10,r10,0x80*8
2868 bdnz 1b
2869
2870 mtctr r9
2871 ld r9,PACA_EXRFI+EX_R9(r13)
2872 ld r10,PACA_EXRFI+EX_R10(r13)
2873 ld r11,PACA_EXRFI+EX_R11(r13)
2874 ld r1,PACA_EXRFI+EX_R12(r13)
2875 GET_SCRATCH0(r13);
2876 rfid
2877
2878 TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2879 SET_SCRATCH0(r13);
2880 GET_PACA(r13);
2881 std r1,PACA_EXRFI+EX_R12(r13)
2882 ld r1,PACAKSAVE(r13)
2883 std r9,PACA_EXRFI+EX_R9(r13)
2884 std r10,PACA_EXRFI+EX_R10(r13)
2885 std r11,PACA_EXRFI+EX_R11(r13)
2886 mfctr r9
2887 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2888 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2889 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2890 mtctr r11
2891 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2892
2893 /* order ld/st prior to dcbt stop all streams with flushing */
2894 sync
2895
2896 /*
2897 * The load adresses are at staggered offsets within cachelines,
2898 * which suits some pipelines better (on others it should not
2899 * hurt).
2900 */
2901 1:
2902 ld r11,(0x80 + 8)*0(r10)
2903 ld r11,(0x80 + 8)*1(r10)
2904 ld r11,(0x80 + 8)*2(r10)
2905 ld r11,(0x80 + 8)*3(r10)
2906 ld r11,(0x80 + 8)*4(r10)
2907 ld r11,(0x80 + 8)*5(r10)
2908 ld r11,(0x80 + 8)*6(r10)
2909 ld r11,(0x80 + 8)*7(r10)
2910 addi r10,r10,0x80*8
2911 bdnz 1b
2912
2913 mtctr r9
2914 ld r9,PACA_EXRFI+EX_R9(r13)
2915 ld r10,PACA_EXRFI+EX_R10(r13)
2916 ld r11,PACA_EXRFI+EX_R11(r13)
2917 ld r1,PACA_EXRFI+EX_R12(r13)
2918 GET_SCRATCH0(r13);
2919 hrfid
2920
2921 USE_TEXT_SECTION()
2922 MASKED_INTERRUPT
2923 MASKED_INTERRUPT hsrr=1
2924
2925 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2926 kvmppc_skip_interrupt:
2927 /*
2928 * Here all GPRs are unchanged from when the interrupt happened
2929 * except for r13, which is saved in SPRG_SCRATCH0.
2930 */
2931 mfspr r13, SPRN_SRR0
2932 addi r13, r13, 4
2933 mtspr SPRN_SRR0, r13
2934 GET_SCRATCH0(r13)
2935 RFI_TO_KERNEL
2936 b .
2937
2938 kvmppc_skip_Hinterrupt:
2939 /*
2940 * Here all GPRs are unchanged from when the interrupt happened
2941 * except for r13, which is saved in SPRG_SCRATCH0.
2942 */
2943 mfspr r13, SPRN_HSRR0
2944 addi r13, r13, 4
2945 mtspr SPRN_HSRR0, r13
2946 GET_SCRATCH0(r13)
2947 HRFI_TO_KERNEL
2948 b .
2949 #endif
2950
2951 /*
2952 * Relocation-on interrupts: A subset of the interrupts can be delivered
2953 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
2954 * it. Addresses are the same as the original interrupt addresses, but
2955 * offset by 0xc000000000004000.
2956 * It's impossible to receive interrupts below 0x300 via this mechanism.
2957 * KVM: None of these traps are from the guest ; anything that escalated
2958 * to HV=1 from HV=0 is delivered via real mode handlers.
2959 */
2960
2961 /*
2962 * This uses the standard macro, since the original 0x300 vector
2963 * only has extra guff for STAB-based processors -- which never
2964 * come here.
2965 */
2966
2967 EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
2968 b __ppc64_runlatch_on
2969
2970 USE_FIXED_SECTION(virt_trampolines)
2971 /*
2972 * The __end_interrupts marker must be past the out-of-line (OOL)
2973 * handlers, so that they are copied to real address 0x100 when running
2974 * a relocatable kernel. This ensures they can be reached from the short
2975 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
2976 * directly, without using LOAD_HANDLER().
2977 */
2978 .align 7
2979 .globl __end_interrupts
2980 __end_interrupts:
2981 DEFINE_FIXED_SYMBOL(__end_interrupts)
2982
2983 #ifdef CONFIG_PPC_970_NAP
2984 /*
2985 * Called by exception entry code if _TLF_NAPPING was set, this clears
2986 * the NAPPING flag, and redirects the exception exit to
2987 * power4_fixup_nap_return.
2988 */
2989 .globl power4_fixup_nap
2990 EXC_COMMON_BEGIN(power4_fixup_nap)
2991 andc r9,r9,r10
2992 std r9,TI_LOCAL_FLAGS(r11)
2993 LOAD_REG_ADDR(r10, power4_idle_nap_return)
2994 std r10,_NIP(r1)
2995 blr
2996
2997 power4_idle_nap_return:
2998 blr
2999 #endif
3000
3001 CLOSE_FIXED_SECTION(real_vectors);
3002 CLOSE_FIXED_SECTION(real_trampolines);
3003 CLOSE_FIXED_SECTION(virt_vectors);
3004 CLOSE_FIXED_SECTION(virt_trampolines);
3005
3006 USE_TEXT_SECTION()
3007
3008 /* MSR[RI] should be clear because this uses SRR[01] */
3009 enable_machine_check:
3010 mflr r0
3011 bcl 20,31,$+4
3012 0: mflr r3
3013 addi r3,r3,(1f - 0b)
3014 mtspr SPRN_SRR0,r3
3015 mfmsr r3
3016 ori r3,r3,MSR_ME
3017 mtspr SPRN_SRR1,r3
3018 RFI_TO_KERNEL
3019 1: mtlr r0
3020 blr
3021
3022 /* MSR[RI] should be clear because this uses SRR[01] */
3023 disable_machine_check:
3024 mflr r0
3025 bcl 20,31,$+4
3026 0: mflr r3
3027 addi r3,r3,(1f - 0b)
3028 mtspr SPRN_SRR0,r3
3029 mfmsr r3
3030 li r4,MSR_ME
3031 andc r3,r3,r4
3032 mtspr SPRN_SRR1,r3
3033 RFI_TO_KERNEL
3034 1: mtlr r0
3035 blr
3036
3037 /*
3038 * Hash table stuff
3039 */
3040 .balign IFETCH_ALIGN_BYTES
3041 do_hash_page:
3042 #ifdef CONFIG_PPC_BOOK3S_64
3043 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
3044 ori r0,r0,DSISR_BAD_FAULT_64S@l
3045 and. r0,r5,r0 /* weird error? */
3046 bne- handle_page_fault /* if not, try to insert a HPTE */
3047 ld r11, PACA_THREAD_INFO(r13)
3048 lwz r0,TI_PREEMPT(r11) /* If we're in an "NMI" */
3049 andis. r0,r0,NMI_MASK@h /* (i.e. an irq when soft-disabled) */
3050 bne 77f /* then don't call hash_page now */
3051
3052 /*
3053 * r3 contains the trap number
3054 * r4 contains the faulting address
3055 * r5 contains dsisr
3056 * r6 msr
3057 *
3058 * at return r3 = 0 for success, 1 for page fault, negative for error
3059 */
3060 bl __hash_page /* build HPTE if possible */
3061 cmpdi r3,0 /* see if __hash_page succeeded */
3062
3063 /* Success */
3064 beq interrupt_return /* Return from exception on success */
3065
3066 /* Error */
3067 blt- 13f
3068
3069 /* Reload DAR/DSISR into r4/r5 for the DABR check below */
3070 ld r4,_DAR(r1)
3071 ld r5,_DSISR(r1)
3072 #endif /* CONFIG_PPC_BOOK3S_64 */
3073
3074 /* Here we have a page fault that hash_page can't handle. */
3075 handle_page_fault:
3076 11: andis. r0,r5,DSISR_DABRMATCH@h
3077 bne- handle_dabr_fault
3078 addi r3,r1,STACK_FRAME_OVERHEAD
3079 bl do_page_fault
3080 cmpdi r3,0
3081 beq+ interrupt_return
3082 mr r5,r3
3083 addi r3,r1,STACK_FRAME_OVERHEAD
3084 ld r4,_DAR(r1)
3085 bl bad_page_fault
3086 b interrupt_return
3087
3088 /* We have a data breakpoint exception - handle it */
3089 handle_dabr_fault:
3090 ld r4,_DAR(r1)
3091 ld r5,_DSISR(r1)
3092 addi r3,r1,STACK_FRAME_OVERHEAD
3093 bl do_break
3094 /*
3095 * do_break() may have changed the NV GPRS while handling a breakpoint.
3096 * If so, we need to restore them with their updated values.
3097 */
3098 REST_NVGPRS(r1)
3099 b interrupt_return
3100
3101
3102 #ifdef CONFIG_PPC_BOOK3S_64
3103 /* We have a page fault that hash_page could handle but HV refused
3104 * the PTE insertion
3105 */
3106 13: mr r5,r3
3107 addi r3,r1,STACK_FRAME_OVERHEAD
3108 ld r4,_DAR(r1)
3109 bl low_hash_fault
3110 b interrupt_return
3111 #endif
3112
3113 /*
3114 * We come here as a result of a DSI at a point where we don't want
3115 * to call hash_page, such as when we are accessing memory (possibly
3116 * user memory) inside a PMU interrupt that occurred while interrupts
3117 * were soft-disabled. We want to invoke the exception handler for
3118 * the access, or panic if there isn't a handler.
3119 */
3120 77: addi r3,r1,STACK_FRAME_OVERHEAD
3121 li r5,SIGSEGV
3122 bl bad_page_fault
3123 b interrupt_return