]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kernel/exceptions-64s.S
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / powerpc / kernel / exceptions-64s.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * This file contains the 64-bit "server" PowerPC variant
4 * of the low level exception handling including exception
5 * vectors, exception return, part of the slb and stab
6 * handling and other fixed offset specific things.
7 *
8 * This file is meant to be #included from head_64.S due to
9 * position dependent assembly.
10 *
11 * Most of this originates from head_64.S and thus has the same
12 * copyright history.
13 *
14 */
15
16 #include <asm/hw_irq.h>
17 #include <asm/exception-64s.h>
18 #include <asm/ptrace.h>
19 #include <asm/cpuidle.h>
20 #include <asm/head-64.h>
21 #include <asm/feature-fixups.h>
22 #include <asm/kup.h>
23
24 /* PACA save area offsets (exgen, exmc, etc) */
25 #define EX_R9 0
26 #define EX_R10 8
27 #define EX_R11 16
28 #define EX_R12 24
29 #define EX_R13 32
30 #define EX_DAR 40
31 #define EX_DSISR 48
32 #define EX_CCR 52
33 #define EX_CFAR 56
34 #define EX_PPR 64
35 #define EX_CTR 72
36 .if EX_SIZE != 10
37 .error "EX_SIZE is wrong"
38 .endif
39
40 /*
41 * Following are fixed section helper macros.
42 *
43 * EXC_REAL_BEGIN/END - real, unrelocated exception vectors
44 * EXC_VIRT_BEGIN/END - virt (AIL), unrelocated exception vectors
45 * TRAMP_REAL_BEGIN - real, unrelocated helpers (virt may call these)
46 * TRAMP_VIRT_BEGIN - virt, unreloc helpers (in practice, real can use)
47 * EXC_COMMON - After switching to virtual, relocated mode.
48 */
49
50 #define EXC_REAL_BEGIN(name, start, size) \
51 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
52
53 #define EXC_REAL_END(name, start, size) \
54 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##name, start, size)
55
56 #define EXC_VIRT_BEGIN(name, start, size) \
57 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
58
59 #define EXC_VIRT_END(name, start, size) \
60 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##name, start, size)
61
62 #define EXC_COMMON_BEGIN(name) \
63 USE_TEXT_SECTION(); \
64 .balign IFETCH_ALIGN_BYTES; \
65 .global name; \
66 _ASM_NOKPROBE_SYMBOL(name); \
67 DEFINE_FIXED_SYMBOL(name); \
68 name:
69
70 #define TRAMP_REAL_BEGIN(name) \
71 FIXED_SECTION_ENTRY_BEGIN(real_trampolines, name)
72
73 #define TRAMP_VIRT_BEGIN(name) \
74 FIXED_SECTION_ENTRY_BEGIN(virt_trampolines, name)
75
76 #define EXC_REAL_NONE(start, size) \
77 FIXED_SECTION_ENTRY_BEGIN_LOCATION(real_vectors, exc_real_##start##_##unused, start, size); \
78 FIXED_SECTION_ENTRY_END_LOCATION(real_vectors, exc_real_##start##_##unused, start, size)
79
80 #define EXC_VIRT_NONE(start, size) \
81 FIXED_SECTION_ENTRY_BEGIN_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size); \
82 FIXED_SECTION_ENTRY_END_LOCATION(virt_vectors, exc_virt_##start##_##unused, start, size)
83
84 /*
85 * We're short on space and time in the exception prolog, so we can't
86 * use the normal LOAD_REG_IMMEDIATE macro to load the address of label.
87 * Instead we get the base of the kernel from paca->kernelbase and or in the low
88 * part of label. This requires that the label be within 64KB of kernelbase, and
89 * that kernelbase be 64K aligned.
90 */
91 #define LOAD_HANDLER(reg, label) \
92 ld reg,PACAKBASE(r13); /* get high part of &label */ \
93 ori reg,reg,FIXED_SYMBOL_ABS_ADDR(label)
94
95 #define __LOAD_HANDLER(reg, label) \
96 ld reg,PACAKBASE(r13); \
97 ori reg,reg,(ABS_ADDR(label))@l
98
99 /*
100 * Branches from unrelocated code (e.g., interrupts) to labels outside
101 * head-y require >64K offsets.
102 */
103 #define __LOAD_FAR_HANDLER(reg, label) \
104 ld reg,PACAKBASE(r13); \
105 ori reg,reg,(ABS_ADDR(label))@l; \
106 addis reg,reg,(ABS_ADDR(label))@h
107
108 /*
109 * Branch to label using its 0xC000 address. This results in instruction
110 * address suitable for MSR[IR]=0 or 1, which allows relocation to be turned
111 * on using mtmsr rather than rfid.
112 *
113 * This could set the 0xc bits for !RELOCATABLE as an immediate, rather than
114 * load KBASE for a slight optimisation.
115 */
116 #define BRANCH_TO_C000(reg, label) \
117 __LOAD_FAR_HANDLER(reg, label); \
118 mtctr reg; \
119 bctr
120
121 /*
122 * Interrupt code generation macros
123 */
124 #define IVEC .L_IVEC_\name\() /* Interrupt vector address */
125 #define IHSRR .L_IHSRR_\name\() /* Sets SRR or HSRR registers */
126 #define IHSRR_IF_HVMODE .L_IHSRR_IF_HVMODE_\name\() /* HSRR if HV else SRR */
127 #define IAREA .L_IAREA_\name\() /* PACA save area */
128 #define IVIRT .L_IVIRT_\name\() /* Has virt mode entry point */
129 #define IISIDE .L_IISIDE_\name\() /* Uses SRR0/1 not DAR/DSISR */
130 #define IDAR .L_IDAR_\name\() /* Uses DAR (or SRR0) */
131 #define IDSISR .L_IDSISR_\name\() /* Uses DSISR (or SRR1) */
132 #define ISET_RI .L_ISET_RI_\name\() /* Run common code w/ MSR[RI]=1 */
133 #define IBRANCH_TO_COMMON .L_IBRANCH_TO_COMMON_\name\() /* ENTRY branch to common */
134 #define IREALMODE_COMMON .L_IREALMODE_COMMON_\name\() /* Common runs in realmode */
135 #define IMASK .L_IMASK_\name\() /* IRQ soft-mask bit */
136 #define IKVM_SKIP .L_IKVM_SKIP_\name\() /* Generate KVM skip handler */
137 #define IKVM_REAL .L_IKVM_REAL_\name\() /* Real entry tests KVM */
138 #define __IKVM_REAL(name) .L_IKVM_REAL_ ## name
139 #define IKVM_VIRT .L_IKVM_VIRT_\name\() /* Virt entry tests KVM */
140 #define ISTACK .L_ISTACK_\name\() /* Set regular kernel stack */
141 #define __ISTACK(name) .L_ISTACK_ ## name
142 #define IRECONCILE .L_IRECONCILE_\name\() /* Do RECONCILE_IRQ_STATE */
143 #define IKUAP .L_IKUAP_\name\() /* Do KUAP lock */
144
145 #define INT_DEFINE_BEGIN(n) \
146 .macro int_define_ ## n name
147
148 #define INT_DEFINE_END(n) \
149 .endm ; \
150 int_define_ ## n n ; \
151 do_define_int n
152
153 .macro do_define_int name
154 .ifndef IVEC
155 .error "IVEC not defined"
156 .endif
157 .ifndef IHSRR
158 IHSRR=0
159 .endif
160 .ifndef IHSRR_IF_HVMODE
161 IHSRR_IF_HVMODE=0
162 .endif
163 .ifndef IAREA
164 IAREA=PACA_EXGEN
165 .endif
166 .ifndef IVIRT
167 IVIRT=1
168 .endif
169 .ifndef IISIDE
170 IISIDE=0
171 .endif
172 .ifndef IDAR
173 IDAR=0
174 .endif
175 .ifndef IDSISR
176 IDSISR=0
177 .endif
178 .ifndef ISET_RI
179 ISET_RI=1
180 .endif
181 .ifndef IBRANCH_TO_COMMON
182 IBRANCH_TO_COMMON=1
183 .endif
184 .ifndef IREALMODE_COMMON
185 IREALMODE_COMMON=0
186 .else
187 .if ! IBRANCH_TO_COMMON
188 .error "IREALMODE_COMMON=1 but IBRANCH_TO_COMMON=0"
189 .endif
190 .endif
191 .ifndef IMASK
192 IMASK=0
193 .endif
194 .ifndef IKVM_SKIP
195 IKVM_SKIP=0
196 .endif
197 .ifndef IKVM_REAL
198 IKVM_REAL=0
199 .endif
200 .ifndef IKVM_VIRT
201 IKVM_VIRT=0
202 .endif
203 .ifndef ISTACK
204 ISTACK=1
205 .endif
206 .ifndef IRECONCILE
207 IRECONCILE=1
208 .endif
209 .ifndef IKUAP
210 IKUAP=1
211 .endif
212 .endm
213
214 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
215 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
216 /*
217 * All interrupts which set HSRR registers, as well as SRESET and MCE and
218 * syscall when invoked with "sc 1" switch to MSR[HV]=1 (HVMODE) to be taken,
219 * so they all generally need to test whether they were taken in guest context.
220 *
221 * Note: SRESET and MCE may also be sent to the guest by the hypervisor, and be
222 * taken with MSR[HV]=0.
223 *
224 * Interrupts which set SRR registers (with the above exceptions) do not
225 * elevate to MSR[HV]=1 mode, though most can be taken when running with
226 * MSR[HV]=1 (e.g., bare metal kernel and userspace). So these interrupts do
227 * not need to test whether a guest is running because they get delivered to
228 * the guest directly, including nested HV KVM guests.
229 *
230 * The exception is PR KVM, where the guest runs with MSR[PR]=1 and the host
231 * runs with MSR[HV]=0, so the host takes all interrupts on behalf of the
232 * guest. PR KVM runs with LPCR[AIL]=0 which causes interrupts to always be
233 * delivered to the real-mode entry point, therefore such interrupts only test
234 * KVM in their real mode handlers, and only when PR KVM is possible.
235 *
236 * Interrupts that are taken in MSR[HV]=0 and escalate to MSR[HV]=1 are always
237 * delivered in real-mode when the MMU is in hash mode because the MMU
238 * registers are not set appropriately to translate host addresses. In nested
239 * radix mode these can be delivered in virt-mode as the host translations are
240 * used implicitly (see: effective LPID, effective PID).
241 */
242
243 /*
244 * If an interrupt is taken while a guest is running, it is immediately routed
245 * to KVM to handle. If both HV and PR KVM arepossible, KVM interrupts go first
246 * to kvmppc_interrupt_hv, which handles the PR guest case.
247 */
248 #define kvmppc_interrupt kvmppc_interrupt_hv
249 #else
250 #define kvmppc_interrupt kvmppc_interrupt_pr
251 #endif
252
253 .macro KVMTEST name
254 lbz r10,HSTATE_IN_GUEST(r13)
255 cmpwi r10,0
256 bne \name\()_kvm
257 .endm
258
259 .macro GEN_KVM name
260 .balign IFETCH_ALIGN_BYTES
261 \name\()_kvm:
262
263 .if IKVM_SKIP
264 cmpwi r10,KVM_GUEST_MODE_SKIP
265 beq 89f
266 .else
267 BEGIN_FTR_SECTION
268 ld r10,IAREA+EX_CFAR(r13)
269 std r10,HSTATE_CFAR(r13)
270 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
271 .endif
272
273 ld r10,PACA_EXGEN+EX_CTR(r13)
274 mtctr r10
275 BEGIN_FTR_SECTION
276 ld r10,IAREA+EX_PPR(r13)
277 std r10,HSTATE_PPR(r13)
278 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
279 ld r11,IAREA+EX_R11(r13)
280 ld r12,IAREA+EX_R12(r13)
281 std r12,HSTATE_SCRATCH0(r13)
282 sldi r12,r9,32
283 ld r9,IAREA+EX_R9(r13)
284 ld r10,IAREA+EX_R10(r13)
285 /* HSRR variants have the 0x2 bit added to their trap number */
286 .if IHSRR_IF_HVMODE
287 BEGIN_FTR_SECTION
288 ori r12,r12,(IVEC + 0x2)
289 FTR_SECTION_ELSE
290 ori r12,r12,(IVEC)
291 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
292 .elseif IHSRR
293 ori r12,r12,(IVEC+ 0x2)
294 .else
295 ori r12,r12,(IVEC)
296 .endif
297 b kvmppc_interrupt
298
299 .if IKVM_SKIP
300 89: mtocrf 0x80,r9
301 ld r10,PACA_EXGEN+EX_CTR(r13)
302 mtctr r10
303 ld r9,IAREA+EX_R9(r13)
304 ld r10,IAREA+EX_R10(r13)
305 ld r11,IAREA+EX_R11(r13)
306 ld r12,IAREA+EX_R12(r13)
307 .if IHSRR_IF_HVMODE
308 BEGIN_FTR_SECTION
309 b kvmppc_skip_Hinterrupt
310 FTR_SECTION_ELSE
311 b kvmppc_skip_interrupt
312 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
313 .elseif IHSRR
314 b kvmppc_skip_Hinterrupt
315 .else
316 b kvmppc_skip_interrupt
317 .endif
318 .endif
319 .endm
320
321 #else
322 .macro KVMTEST name
323 .endm
324 .macro GEN_KVM name
325 .endm
326 #endif
327
328 /*
329 * This is the BOOK3S interrupt entry code macro.
330 *
331 * This can result in one of several things happening:
332 * - Branch to the _common handler, relocated, in virtual mode.
333 * These are normal interrupts (synchronous and asynchronous) handled by
334 * the kernel.
335 * - Branch to KVM, relocated but real mode interrupts remain in real mode.
336 * These occur when HSTATE_IN_GUEST is set. The interrupt may be caused by
337 * / intended for host or guest kernel, but KVM must always be involved
338 * because the machine state is set for guest execution.
339 * - Branch to the masked handler, unrelocated.
340 * These occur when maskable asynchronous interrupts are taken with the
341 * irq_soft_mask set.
342 * - Branch to an "early" handler in real mode but relocated.
343 * This is done if early=1. MCE and HMI use these to handle errors in real
344 * mode.
345 * - Fall through and continue executing in real, unrelocated mode.
346 * This is done if early=2.
347 */
348
349 .macro GEN_BRANCH_TO_COMMON name, virt
350 .if IREALMODE_COMMON
351 LOAD_HANDLER(r10, \name\()_common)
352 mtctr r10
353 bctr
354 .else
355 .if \virt
356 #ifndef CONFIG_RELOCATABLE
357 b \name\()_common_virt
358 #else
359 LOAD_HANDLER(r10, \name\()_common_virt)
360 mtctr r10
361 bctr
362 #endif
363 .else
364 LOAD_HANDLER(r10, \name\()_common_real)
365 mtctr r10
366 bctr
367 .endif
368 .endif
369 .endm
370
371 .macro GEN_INT_ENTRY name, virt, ool=0
372 SET_SCRATCH0(r13) /* save r13 */
373 GET_PACA(r13)
374 std r9,IAREA+EX_R9(r13) /* save r9 */
375 BEGIN_FTR_SECTION
376 mfspr r9,SPRN_PPR
377 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
378 HMT_MEDIUM
379 std r10,IAREA+EX_R10(r13) /* save r10 - r12 */
380 BEGIN_FTR_SECTION
381 mfspr r10,SPRN_CFAR
382 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
383 .if \ool
384 .if !\virt
385 b tramp_real_\name
386 .pushsection .text
387 TRAMP_REAL_BEGIN(tramp_real_\name)
388 .else
389 b tramp_virt_\name
390 .pushsection .text
391 TRAMP_VIRT_BEGIN(tramp_virt_\name)
392 .endif
393 .endif
394
395 BEGIN_FTR_SECTION
396 std r9,IAREA+EX_PPR(r13)
397 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
398 BEGIN_FTR_SECTION
399 std r10,IAREA+EX_CFAR(r13)
400 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
401 INTERRUPT_TO_KERNEL
402 mfctr r10
403 std r10,IAREA+EX_CTR(r13)
404 mfcr r9
405 std r11,IAREA+EX_R11(r13)
406 std r12,IAREA+EX_R12(r13)
407
408 /*
409 * DAR/DSISR, SCRATCH0 must be read before setting MSR[RI],
410 * because a d-side MCE will clobber those registers so is
411 * not recoverable if they are live.
412 */
413 GET_SCRATCH0(r10)
414 std r10,IAREA+EX_R13(r13)
415 .if IDAR && !IISIDE
416 .if IHSRR
417 mfspr r10,SPRN_HDAR
418 .else
419 mfspr r10,SPRN_DAR
420 .endif
421 std r10,IAREA+EX_DAR(r13)
422 .endif
423 .if IDSISR && !IISIDE
424 .if IHSRR
425 mfspr r10,SPRN_HDSISR
426 .else
427 mfspr r10,SPRN_DSISR
428 .endif
429 stw r10,IAREA+EX_DSISR(r13)
430 .endif
431
432 .if IHSRR_IF_HVMODE
433 BEGIN_FTR_SECTION
434 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
435 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
436 FTR_SECTION_ELSE
437 mfspr r11,SPRN_SRR0 /* save SRR0 */
438 mfspr r12,SPRN_SRR1 /* and SRR1 */
439 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
440 .elseif IHSRR
441 mfspr r11,SPRN_HSRR0 /* save HSRR0 */
442 mfspr r12,SPRN_HSRR1 /* and HSRR1 */
443 .else
444 mfspr r11,SPRN_SRR0 /* save SRR0 */
445 mfspr r12,SPRN_SRR1 /* and SRR1 */
446 .endif
447
448 .if IBRANCH_TO_COMMON
449 GEN_BRANCH_TO_COMMON \name \virt
450 .endif
451
452 .if \ool
453 .popsection
454 .endif
455 .endm
456
457 /*
458 * __GEN_COMMON_ENTRY is required to receive the branch from interrupt
459 * entry, except in the case of the real-mode handlers which require
460 * __GEN_REALMODE_COMMON_ENTRY.
461 *
462 * This switches to virtual mode and sets MSR[RI].
463 */
464 .macro __GEN_COMMON_ENTRY name
465 DEFINE_FIXED_SYMBOL(\name\()_common_real)
466 \name\()_common_real:
467 .if IKVM_REAL
468 KVMTEST \name
469 .endif
470
471 ld r10,PACAKMSR(r13) /* get MSR value for kernel */
472 /* MSR[RI] is clear iff using SRR regs */
473 .if IHSRR == EXC_HV_OR_STD
474 BEGIN_FTR_SECTION
475 xori r10,r10,MSR_RI
476 END_FTR_SECTION_IFCLR(CPU_FTR_HVMODE)
477 .elseif ! IHSRR
478 xori r10,r10,MSR_RI
479 .endif
480 mtmsrd r10
481
482 .if IVIRT
483 .if IKVM_VIRT
484 b 1f /* skip the virt test coming from real */
485 .endif
486
487 .balign IFETCH_ALIGN_BYTES
488 DEFINE_FIXED_SYMBOL(\name\()_common_virt)
489 \name\()_common_virt:
490 .if IKVM_VIRT
491 KVMTEST \name
492 1:
493 .endif
494 .endif /* IVIRT */
495 .endm
496
497 /*
498 * Don't switch to virt mode. Used for early MCE and HMI handlers that
499 * want to run in real mode.
500 */
501 .macro __GEN_REALMODE_COMMON_ENTRY name
502 DEFINE_FIXED_SYMBOL(\name\()_common_real)
503 \name\()_common_real:
504 .if IKVM_REAL
505 KVMTEST \name
506 .endif
507 .endm
508
509 .macro __GEN_COMMON_BODY name
510 .if IMASK
511 lbz r10,PACAIRQSOFTMASK(r13)
512 andi. r10,r10,IMASK
513 /* Associate vector numbers with bits in paca->irq_happened */
514 .if IVEC == 0x500 || IVEC == 0xea0
515 li r10,PACA_IRQ_EE
516 .elseif IVEC == 0x900
517 li r10,PACA_IRQ_DEC
518 .elseif IVEC == 0xa00 || IVEC == 0xe80
519 li r10,PACA_IRQ_DBELL
520 .elseif IVEC == 0xe60
521 li r10,PACA_IRQ_HMI
522 .elseif IVEC == 0xf00
523 li r10,PACA_IRQ_PMI
524 .else
525 .abort "Bad maskable vector"
526 .endif
527
528 .if IHSRR_IF_HVMODE
529 BEGIN_FTR_SECTION
530 bne masked_Hinterrupt
531 FTR_SECTION_ELSE
532 bne masked_interrupt
533 ALT_FTR_SECTION_END_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
534 .elseif IHSRR
535 bne masked_Hinterrupt
536 .else
537 bne masked_interrupt
538 .endif
539 .endif
540
541 .if ISTACK
542 andi. r10,r12,MSR_PR /* See if coming from user */
543 mr r10,r1 /* Save r1 */
544 subi r1,r1,INT_FRAME_SIZE /* alloc frame on kernel stack */
545 beq- 100f
546 ld r1,PACAKSAVE(r13) /* kernel stack to use */
547 100: tdgei r1,-INT_FRAME_SIZE /* trap if r1 is in userspace */
548 EMIT_BUG_ENTRY 100b,__FILE__,__LINE__,0
549 .endif
550
551 std r9,_CCR(r1) /* save CR in stackframe */
552 std r11,_NIP(r1) /* save SRR0 in stackframe */
553 std r12,_MSR(r1) /* save SRR1 in stackframe */
554 std r10,0(r1) /* make stack chain pointer */
555 std r0,GPR0(r1) /* save r0 in stackframe */
556 std r10,GPR1(r1) /* save r1 in stackframe */
557
558 .if ISET_RI
559 li r10,MSR_RI
560 mtmsrd r10,1 /* Set MSR_RI */
561 .endif
562
563 .if ISTACK
564 .if IKUAP
565 kuap_save_amr_and_lock r9, r10, cr1, cr0
566 .endif
567 beq 101f /* if from kernel mode */
568 ACCOUNT_CPU_USER_ENTRY(r13, r9, r10)
569 BEGIN_FTR_SECTION
570 ld r9,IAREA+EX_PPR(r13) /* Read PPR from paca */
571 std r9,_PPR(r1)
572 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
573 101:
574 .else
575 .if IKUAP
576 kuap_save_amr_and_lock r9, r10, cr1
577 .endif
578 .endif
579
580 /* Save original regs values from save area to stack frame. */
581 ld r9,IAREA+EX_R9(r13) /* move r9, r10 to stackframe */
582 ld r10,IAREA+EX_R10(r13)
583 std r9,GPR9(r1)
584 std r10,GPR10(r1)
585 ld r9,IAREA+EX_R11(r13) /* move r11 - r13 to stackframe */
586 ld r10,IAREA+EX_R12(r13)
587 ld r11,IAREA+EX_R13(r13)
588 std r9,GPR11(r1)
589 std r10,GPR12(r1)
590 std r11,GPR13(r1)
591
592 SAVE_NVGPRS(r1)
593
594 .if IDAR
595 .if IISIDE
596 ld r10,_NIP(r1)
597 .else
598 ld r10,IAREA+EX_DAR(r13)
599 .endif
600 std r10,_DAR(r1)
601 .endif
602
603 .if IDSISR
604 .if IISIDE
605 ld r10,_MSR(r1)
606 lis r11,DSISR_SRR1_MATCH_64S@h
607 and r10,r10,r11
608 .else
609 lwz r10,IAREA+EX_DSISR(r13)
610 .endif
611 std r10,_DSISR(r1)
612 .endif
613
614 BEGIN_FTR_SECTION
615 ld r10,IAREA+EX_CFAR(r13)
616 std r10,ORIG_GPR3(r1)
617 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
618 ld r10,IAREA+EX_CTR(r13)
619 std r10,_CTR(r1)
620 std r2,GPR2(r1) /* save r2 in stackframe */
621 SAVE_4GPRS(3, r1) /* save r3 - r6 in stackframe */
622 SAVE_2GPRS(7, r1) /* save r7, r8 in stackframe */
623 mflr r9 /* Get LR, later save to stack */
624 ld r2,PACATOC(r13) /* get kernel TOC into r2 */
625 std r9,_LINK(r1)
626 lbz r10,PACAIRQSOFTMASK(r13)
627 mfspr r11,SPRN_XER /* save XER in stackframe */
628 std r10,SOFTE(r1)
629 std r11,_XER(r1)
630 li r9,IVEC
631 std r9,_TRAP(r1) /* set trap number */
632 li r10,0
633 ld r11,exception_marker@toc(r2)
634 std r10,RESULT(r1) /* clear regs->result */
635 std r11,STACK_FRAME_OVERHEAD-16(r1) /* mark the frame */
636
637 .if ISTACK
638 ACCOUNT_STOLEN_TIME
639 .endif
640
641 .if IRECONCILE
642 RECONCILE_IRQ_STATE(r10, r11)
643 .endif
644 .endm
645
646 /*
647 * On entry r13 points to the paca, r9-r13 are saved in the paca,
648 * r9 contains the saved CR, r11 and r12 contain the saved SRR0 and
649 * SRR1, and relocation is on.
650 *
651 * If stack=0, then the stack is already set in r1, and r1 is saved in r10.
652 * PPR save and CPU accounting is not done for the !stack case (XXX why not?)
653 */
654 .macro GEN_COMMON name
655 __GEN_COMMON_ENTRY \name
656 __GEN_COMMON_BODY \name
657 .endm
658
659 /*
660 * Restore all registers including H/SRR0/1 saved in a stack frame of a
661 * standard exception.
662 */
663 .macro EXCEPTION_RESTORE_REGS hsrr=0
664 /* Move original SRR0 and SRR1 into the respective regs */
665 ld r9,_MSR(r1)
666 .if \hsrr
667 mtspr SPRN_HSRR1,r9
668 .else
669 mtspr SPRN_SRR1,r9
670 .endif
671 ld r9,_NIP(r1)
672 .if \hsrr
673 mtspr SPRN_HSRR0,r9
674 .else
675 mtspr SPRN_SRR0,r9
676 .endif
677 ld r9,_CTR(r1)
678 mtctr r9
679 ld r9,_XER(r1)
680 mtxer r9
681 ld r9,_LINK(r1)
682 mtlr r9
683 ld r9,_CCR(r1)
684 mtcr r9
685 REST_8GPRS(2, r1)
686 REST_4GPRS(10, r1)
687 REST_GPR(0, r1)
688 /* restore original r1. */
689 ld r1,GPR1(r1)
690 .endm
691
692 #define RUNLATCH_ON \
693 BEGIN_FTR_SECTION \
694 ld r3, PACA_THREAD_INFO(r13); \
695 ld r4,TI_LOCAL_FLAGS(r3); \
696 andi. r0,r4,_TLF_RUNLATCH; \
697 beql ppc64_runlatch_on_trampoline; \
698 END_FTR_SECTION_IFSET(CPU_FTR_CTRL)
699
700 /*
701 * When the idle code in power4_idle puts the CPU into NAP mode,
702 * it has to do so in a loop, and relies on the external interrupt
703 * and decrementer interrupt entry code to get it out of the loop.
704 * It sets the _TLF_NAPPING bit in current_thread_info()->local_flags
705 * to signal that it is in the loop and needs help to get out.
706 */
707 #ifdef CONFIG_PPC_970_NAP
708 #define FINISH_NAP \
709 BEGIN_FTR_SECTION \
710 ld r11, PACA_THREAD_INFO(r13); \
711 ld r9,TI_LOCAL_FLAGS(r11); \
712 andi. r10,r9,_TLF_NAPPING; \
713 bnel power4_fixup_nap; \
714 END_FTR_SECTION_IFSET(CPU_FTR_CAN_NAP)
715 #else
716 #define FINISH_NAP
717 #endif
718
719 /*
720 * There are a few constraints to be concerned with.
721 * - Real mode exceptions code/data must be located at their physical location.
722 * - Virtual mode exceptions must be mapped at their 0xc000... location.
723 * - Fixed location code must not call directly beyond the __end_interrupts
724 * area when built with CONFIG_RELOCATABLE. LOAD_HANDLER / bctr sequence
725 * must be used.
726 * - LOAD_HANDLER targets must be within first 64K of physical 0 /
727 * virtual 0xc00...
728 * - Conditional branch targets must be within +/-32K of caller.
729 *
730 * "Virtual exceptions" run with relocation on (MSR_IR=1, MSR_DR=1), and
731 * therefore don't have to run in physically located code or rfid to
732 * virtual mode kernel code. However on relocatable kernels they do have
733 * to branch to KERNELBASE offset because the rest of the kernel (outside
734 * the exception vectors) may be located elsewhere.
735 *
736 * Virtual exceptions correspond with physical, except their entry points
737 * are offset by 0xc000000000000000 and also tend to get an added 0x4000
738 * offset applied. Virtual exceptions are enabled with the Alternate
739 * Interrupt Location (AIL) bit set in the LPCR. However this does not
740 * guarantee they will be delivered virtually. Some conditions (see the ISA)
741 * cause exceptions to be delivered in real mode.
742 *
743 * It's impossible to receive interrupts below 0x300 via AIL.
744 *
745 * KVM: None of the virtual exceptions are from the guest. Anything that
746 * escalated to HV=1 from HV=0 is delivered via real mode handlers.
747 *
748 *
749 * We layout physical memory as follows:
750 * 0x0000 - 0x00ff : Secondary processor spin code
751 * 0x0100 - 0x18ff : Real mode pSeries interrupt vectors
752 * 0x1900 - 0x3fff : Real mode trampolines
753 * 0x4000 - 0x58ff : Relon (IR=1,DR=1) mode pSeries interrupt vectors
754 * 0x5900 - 0x6fff : Relon mode trampolines
755 * 0x7000 - 0x7fff : FWNMI data area
756 * 0x8000 - .... : Common interrupt handlers, remaining early
757 * setup code, rest of kernel.
758 *
759 * We could reclaim 0x4000-0x42ff for real mode trampolines if the space
760 * is necessary. Until then it's more consistent to explicitly put VIRT_NONE
761 * vectors there.
762 */
763 OPEN_FIXED_SECTION(real_vectors, 0x0100, 0x1900)
764 OPEN_FIXED_SECTION(real_trampolines, 0x1900, 0x4000)
765 OPEN_FIXED_SECTION(virt_vectors, 0x4000, 0x5900)
766 OPEN_FIXED_SECTION(virt_trampolines, 0x5900, 0x7000)
767
768 #ifdef CONFIG_PPC_POWERNV
769 .globl start_real_trampolines
770 .globl end_real_trampolines
771 .globl start_virt_trampolines
772 .globl end_virt_trampolines
773 #endif
774
775 #if defined(CONFIG_PPC_PSERIES) || defined(CONFIG_PPC_POWERNV)
776 /*
777 * Data area reserved for FWNMI option.
778 * This address (0x7000) is fixed by the RPA.
779 * pseries and powernv need to keep the whole page from
780 * 0x7000 to 0x8000 free for use by the firmware
781 */
782 ZERO_FIXED_SECTION(fwnmi_page, 0x7000, 0x8000)
783 OPEN_TEXT_SECTION(0x8000)
784 #else
785 OPEN_TEXT_SECTION(0x7000)
786 #endif
787
788 USE_FIXED_SECTION(real_vectors)
789
790 /*
791 * This is the start of the interrupt handlers for pSeries
792 * This code runs with relocation off.
793 * Code from here to __end_interrupts gets copied down to real
794 * address 0x100 when we are running a relocatable kernel.
795 * Therefore any relative branches in this section must only
796 * branch to labels in this section.
797 */
798 .globl __start_interrupts
799 __start_interrupts:
800
801 /* No virt vectors corresponding with 0x0..0x100 */
802 EXC_VIRT_NONE(0x4000, 0x100)
803
804
805 /**
806 * Interrupt 0x100 - System Reset Interrupt (SRESET aka NMI).
807 * This is a non-maskable, asynchronous interrupt always taken in real-mode.
808 * It is caused by:
809 * - Wake from power-saving state, on powernv.
810 * - An NMI from another CPU, triggered by firmware or hypercall.
811 * - As crash/debug signal injected from BMC, firmware or hypervisor.
812 *
813 * Handling:
814 * Power-save wakeup is the only performance critical path, so this is
815 * determined quickly as possible first. In this case volatile registers
816 * can be discarded and SPRs like CFAR don't need to be read.
817 *
818 * If not a powersave wakeup, then it's run as a regular interrupt, however
819 * it uses its own stack and PACA save area to preserve the regular kernel
820 * environment for debugging.
821 *
822 * This interrupt is not maskable, so triggering it when MSR[RI] is clear,
823 * or SCRATCH0 is in use, etc. may cause a crash. It's also not entirely
824 * correct to switch to virtual mode to run the regular interrupt handler
825 * because it might be interrupted when the MMU is in a bad state (e.g., SLB
826 * is clear).
827 *
828 * FWNMI:
829 * PAPR specifies a "fwnmi" facility which sends the sreset to a different
830 * entry point with a different register set up. Some hypervisors will
831 * send the sreset to 0x100 in the guest if it is not fwnmi capable.
832 *
833 * KVM:
834 * Unlike most SRR interrupts, this may be taken by the host while executing
835 * in a guest, so a KVM test is required. KVM will pull the CPU out of guest
836 * mode and then raise the sreset.
837 */
838 INT_DEFINE_BEGIN(system_reset)
839 IVEC=0x100
840 IAREA=PACA_EXNMI
841 IVIRT=0 /* no virt entry point */
842 /*
843 * MSR_RI is not enabled, because PACA_EXNMI and nmi stack is
844 * being used, so a nested NMI exception would corrupt it.
845 */
846 ISET_RI=0
847 ISTACK=0
848 IRECONCILE=0
849 IKVM_REAL=1
850 INT_DEFINE_END(system_reset)
851
852 EXC_REAL_BEGIN(system_reset, 0x100, 0x100)
853 #ifdef CONFIG_PPC_P7_NAP
854 /*
855 * If running native on arch 2.06 or later, check if we are waking up
856 * from nap/sleep/winkle, and branch to idle handler. This tests SRR1
857 * bits 46:47. A non-0 value indicates that we are coming from a power
858 * saving state. The idle wakeup handler initially runs in real mode,
859 * but we branch to the 0xc000... address so we can turn on relocation
860 * with mtmsrd later, after SPRs are restored.
861 *
862 * Careful to minimise cost for the fast path (idle wakeup) while
863 * also avoiding clobbering CFAR for the debug path (non-idle).
864 *
865 * For the idle wake case volatile registers can be clobbered, which
866 * is why we use those initially. If it turns out to not be an idle
867 * wake, carefully put everything back the way it was, so we can use
868 * common exception macros to handle it.
869 */
870 BEGIN_FTR_SECTION
871 SET_SCRATCH0(r13)
872 GET_PACA(r13)
873 std r3,PACA_EXNMI+0*8(r13)
874 std r4,PACA_EXNMI+1*8(r13)
875 std r5,PACA_EXNMI+2*8(r13)
876 mfspr r3,SPRN_SRR1
877 mfocrf r4,0x80
878 rlwinm. r5,r3,47-31,30,31
879 bne+ system_reset_idle_wake
880 /* Not powersave wakeup. Restore regs for regular interrupt handler. */
881 mtocrf 0x80,r4
882 ld r3,PACA_EXNMI+0*8(r13)
883 ld r4,PACA_EXNMI+1*8(r13)
884 ld r5,PACA_EXNMI+2*8(r13)
885 GET_SCRATCH0(r13)
886 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
887 #endif
888
889 GEN_INT_ENTRY system_reset, virt=0
890 /*
891 * In theory, we should not enable relocation here if it was disabled
892 * in SRR1, because the MMU may not be configured to support it (e.g.,
893 * SLB may have been cleared). In practice, there should only be a few
894 * small windows where that's the case, and sreset is considered to
895 * be dangerous anyway.
896 */
897 EXC_REAL_END(system_reset, 0x100, 0x100)
898 EXC_VIRT_NONE(0x4100, 0x100)
899
900 #ifdef CONFIG_PPC_P7_NAP
901 TRAMP_REAL_BEGIN(system_reset_idle_wake)
902 /* We are waking up from idle, so may clobber any volatile register */
903 cmpwi cr1,r5,2
904 bltlr cr1 /* no state loss, return to idle caller with r3=SRR1 */
905 BRANCH_TO_C000(r12, DOTSYM(idle_return_gpr_loss))
906 #endif
907
908 #ifdef CONFIG_PPC_PSERIES
909 /*
910 * Vectors for the FWNMI option. Share common code.
911 */
912 TRAMP_REAL_BEGIN(system_reset_fwnmi)
913 /* XXX: fwnmi guest could run a nested/PR guest, so why no test? */
914 __IKVM_REAL(system_reset)=0
915 GEN_INT_ENTRY system_reset, virt=0
916
917 #endif /* CONFIG_PPC_PSERIES */
918
919 EXC_COMMON_BEGIN(system_reset_common)
920 __GEN_COMMON_ENTRY system_reset
921 /*
922 * Increment paca->in_nmi then enable MSR_RI. SLB or MCE will be able
923 * to recover, but nested NMI will notice in_nmi and not recover
924 * because of the use of the NMI stack. in_nmi reentrancy is tested in
925 * system_reset_exception.
926 */
927 lhz r10,PACA_IN_NMI(r13)
928 addi r10,r10,1
929 sth r10,PACA_IN_NMI(r13)
930 li r10,MSR_RI
931 mtmsrd r10,1
932
933 mr r10,r1
934 ld r1,PACA_NMI_EMERG_SP(r13)
935 subi r1,r1,INT_FRAME_SIZE
936 __GEN_COMMON_BODY system_reset
937 /*
938 * Set IRQS_ALL_DISABLED unconditionally so irqs_disabled() does
939 * the right thing. We do not want to reconcile because that goes
940 * through irq tracing which we don't want in NMI.
941 *
942 * Save PACAIRQHAPPENED to _DAR (otherwise unused), and set HARD_DIS
943 * as we are running with MSR[EE]=0.
944 */
945 li r10,IRQS_ALL_DISABLED
946 stb r10,PACAIRQSOFTMASK(r13)
947 lbz r10,PACAIRQHAPPENED(r13)
948 std r10,_DAR(r1)
949 ori r10,r10,PACA_IRQ_HARD_DIS
950 stb r10,PACAIRQHAPPENED(r13)
951
952 addi r3,r1,STACK_FRAME_OVERHEAD
953 bl system_reset_exception
954
955 /* Clear MSR_RI before setting SRR0 and SRR1. */
956 li r9,0
957 mtmsrd r9,1
958
959 /*
960 * MSR_RI is clear, now we can decrement paca->in_nmi.
961 */
962 lhz r10,PACA_IN_NMI(r13)
963 subi r10,r10,1
964 sth r10,PACA_IN_NMI(r13)
965
966 /*
967 * Restore soft mask settings.
968 */
969 ld r10,_DAR(r1)
970 stb r10,PACAIRQHAPPENED(r13)
971 ld r10,SOFTE(r1)
972 stb r10,PACAIRQSOFTMASK(r13)
973
974 kuap_restore_amr r10
975 EXCEPTION_RESTORE_REGS
976 RFI_TO_USER_OR_KERNEL
977
978 GEN_KVM system_reset
979
980
981 /**
982 * Interrupt 0x200 - Machine Check Interrupt (MCE).
983 * This is a non-maskable interrupt always taken in real-mode. It can be
984 * synchronous or asynchronous, caused by hardware or software, and it may be
985 * taken in a power-saving state.
986 *
987 * Handling:
988 * Similarly to system reset, this uses its own stack and PACA save area,
989 * the difference is re-entrancy is allowed on the machine check stack.
990 *
991 * machine_check_early is run in real mode, and carefully decodes the
992 * machine check and tries to handle it (e.g., flush the SLB if there was an
993 * error detected there), determines if it was recoverable and logs the
994 * event.
995 *
996 * This early code does not "reconcile" irq soft-mask state like SRESET or
997 * regular interrupts do, so irqs_disabled() among other things may not work
998 * properly (irq disable/enable already doesn't work because irq tracing can
999 * not work in real mode).
1000 *
1001 * Then, depending on the execution context when the interrupt is taken, there
1002 * are 3 main actions:
1003 * - Executing in kernel mode. The event is queued with irq_work, which means
1004 * it is handled when it is next safe to do so (i.e., the kernel has enabled
1005 * interrupts), which could be immediately when the interrupt returns. This
1006 * avoids nasty issues like switching to virtual mode when the MMU is in a
1007 * bad state, or when executing OPAL code. (SRESET is exposed to such issues,
1008 * but it has different priorities). Check to see if the CPU was in power
1009 * save, and return via the wake up code if it was.
1010 *
1011 * - Executing in user mode. machine_check_exception is run like a normal
1012 * interrupt handler, which processes the data generated by the early handler.
1013 *
1014 * - Executing in guest mode. The interrupt is run with its KVM test, and
1015 * branches to KVM to deal with. KVM may queue the event for the host
1016 * to report later.
1017 *
1018 * This interrupt is not maskable, so if it triggers when MSR[RI] is clear,
1019 * or SCRATCH0 is in use, it may cause a crash.
1020 *
1021 * KVM:
1022 * See SRESET.
1023 */
1024 INT_DEFINE_BEGIN(machine_check_early)
1025 IVEC=0x200
1026 IAREA=PACA_EXMC
1027 IVIRT=0 /* no virt entry point */
1028 IREALMODE_COMMON=1
1029 /*
1030 * MSR_RI is not enabled, because PACA_EXMC is being used, so a
1031 * nested machine check corrupts it. machine_check_common enables
1032 * MSR_RI.
1033 */
1034 ISET_RI=0
1035 ISTACK=0
1036 IDAR=1
1037 IDSISR=1
1038 IRECONCILE=0
1039 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
1040 INT_DEFINE_END(machine_check_early)
1041
1042 INT_DEFINE_BEGIN(machine_check)
1043 IVEC=0x200
1044 IAREA=PACA_EXMC
1045 IVIRT=0 /* no virt entry point */
1046 ISET_RI=0
1047 IDAR=1
1048 IDSISR=1
1049 IKVM_SKIP=1
1050 IKVM_REAL=1
1051 INT_DEFINE_END(machine_check)
1052
1053 EXC_REAL_BEGIN(machine_check, 0x200, 0x100)
1054 GEN_INT_ENTRY machine_check_early, virt=0
1055 EXC_REAL_END(machine_check, 0x200, 0x100)
1056 EXC_VIRT_NONE(0x4200, 0x100)
1057
1058 #ifdef CONFIG_PPC_PSERIES
1059 TRAMP_REAL_BEGIN(machine_check_fwnmi)
1060 /* See comment at machine_check exception, don't turn on RI */
1061 GEN_INT_ENTRY machine_check_early, virt=0
1062 #endif
1063
1064 #define MACHINE_CHECK_HANDLER_WINDUP \
1065 /* Clear MSR_RI before setting SRR0 and SRR1. */\
1066 li r9,0; \
1067 mtmsrd r9,1; /* Clear MSR_RI */ \
1068 /* Decrement paca->in_mce now RI is clear. */ \
1069 lhz r12,PACA_IN_MCE(r13); \
1070 subi r12,r12,1; \
1071 sth r12,PACA_IN_MCE(r13); \
1072 EXCEPTION_RESTORE_REGS
1073
1074 EXC_COMMON_BEGIN(machine_check_early_common)
1075 __GEN_REALMODE_COMMON_ENTRY machine_check_early
1076
1077 /*
1078 * Switch to mc_emergency stack and handle re-entrancy (we limit
1079 * the nested MCE upto level 4 to avoid stack overflow).
1080 * Save MCE registers srr1, srr0, dar and dsisr and then set ME=1
1081 *
1082 * We use paca->in_mce to check whether this is the first entry or
1083 * nested machine check. We increment paca->in_mce to track nested
1084 * machine checks.
1085 *
1086 * If this is the first entry then set stack pointer to
1087 * paca->mc_emergency_sp, otherwise r1 is already pointing to
1088 * stack frame on mc_emergency stack.
1089 *
1090 * NOTE: We are here with MSR_ME=0 (off), which means we risk a
1091 * checkstop if we get another machine check exception before we do
1092 * rfid with MSR_ME=1.
1093 *
1094 * This interrupt can wake directly from idle. If that is the case,
1095 * the machine check is handled then the idle wakeup code is called
1096 * to restore state.
1097 */
1098 lhz r10,PACA_IN_MCE(r13)
1099 cmpwi r10,0 /* Are we in nested machine check */
1100 cmpwi cr1,r10,MAX_MCE_DEPTH /* Are we at maximum nesting */
1101 addi r10,r10,1 /* increment paca->in_mce */
1102 sth r10,PACA_IN_MCE(r13)
1103
1104 mr r10,r1 /* Save r1 */
1105 bne 1f
1106 /* First machine check entry */
1107 ld r1,PACAMCEMERGSP(r13) /* Use MC emergency stack */
1108 1: /* Limit nested MCE to level 4 to avoid stack overflow */
1109 bgt cr1,unrecoverable_mce /* Check if we hit limit of 4 */
1110 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1111
1112 __GEN_COMMON_BODY machine_check_early
1113
1114 BEGIN_FTR_SECTION
1115 bl enable_machine_check
1116 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1117 li r10,MSR_RI
1118 mtmsrd r10,1
1119
1120 addi r3,r1,STACK_FRAME_OVERHEAD
1121 bl machine_check_early
1122 std r3,RESULT(r1) /* Save result */
1123 ld r12,_MSR(r1)
1124
1125 #ifdef CONFIG_PPC_P7_NAP
1126 /*
1127 * Check if thread was in power saving mode. We come here when any
1128 * of the following is true:
1129 * a. thread wasn't in power saving mode
1130 * b. thread was in power saving mode with no state loss,
1131 * supervisor state loss or hypervisor state loss.
1132 *
1133 * Go back to nap/sleep/winkle mode again if (b) is true.
1134 */
1135 BEGIN_FTR_SECTION
1136 rlwinm. r11,r12,47-31,30,31
1137 bne machine_check_idle_common
1138 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)
1139 #endif
1140
1141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1142 /*
1143 * Check if we are coming from guest. If yes, then run the normal
1144 * exception handler which will take the
1145 * machine_check_kvm->kvmppc_interrupt branch to deliver the MC event
1146 * to guest.
1147 */
1148 lbz r11,HSTATE_IN_GUEST(r13)
1149 cmpwi r11,0 /* Check if coming from guest */
1150 bne mce_deliver /* continue if we are. */
1151 #endif
1152
1153 /*
1154 * Check if we are coming from userspace. If yes, then run the normal
1155 * exception handler which will deliver the MC event to this kernel.
1156 */
1157 andi. r11,r12,MSR_PR /* See if coming from user. */
1158 bne mce_deliver /* continue in V mode if we are. */
1159
1160 /*
1161 * At this point we are coming from kernel context.
1162 * Queue up the MCE event and return from the interrupt.
1163 * But before that, check if this is an un-recoverable exception.
1164 * If yes, then stay on emergency stack and panic.
1165 */
1166 andi. r11,r12,MSR_RI
1167 beq unrecoverable_mce
1168
1169 /*
1170 * Check if we have successfully handled/recovered from error, if not
1171 * then stay on emergency stack and panic.
1172 */
1173 ld r3,RESULT(r1) /* Load result */
1174 cmpdi r3,0 /* see if we handled MCE successfully */
1175 beq unrecoverable_mce /* if !handled then panic */
1176
1177 /*
1178 * Return from MC interrupt.
1179 * Queue up the MCE event so that we can log it later, while
1180 * returning from kernel or opal call.
1181 */
1182 bl machine_check_queue_event
1183 MACHINE_CHECK_HANDLER_WINDUP
1184 RFI_TO_KERNEL
1185
1186 mce_deliver:
1187 /*
1188 * This is a host user or guest MCE. Restore all registers, then
1189 * run the "late" handler. For host user, this will run the
1190 * machine_check_exception handler in virtual mode like a normal
1191 * interrupt handler. For guest, this will trigger the KVM test
1192 * and branch to the KVM interrupt similarly to other interrupts.
1193 */
1194 BEGIN_FTR_SECTION
1195 ld r10,ORIG_GPR3(r1)
1196 mtspr SPRN_CFAR,r10
1197 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
1198 MACHINE_CHECK_HANDLER_WINDUP
1199 GEN_INT_ENTRY machine_check, virt=0
1200
1201 EXC_COMMON_BEGIN(machine_check_common)
1202 /*
1203 * Machine check is different because we use a different
1204 * save area: PACA_EXMC instead of PACA_EXGEN.
1205 */
1206 GEN_COMMON machine_check
1207
1208 FINISH_NAP
1209 /* Enable MSR_RI when finished with PACA_EXMC */
1210 li r10,MSR_RI
1211 mtmsrd r10,1
1212 addi r3,r1,STACK_FRAME_OVERHEAD
1213 bl machine_check_exception
1214 b interrupt_return
1215
1216 GEN_KVM machine_check
1217
1218
1219 #ifdef CONFIG_PPC_P7_NAP
1220 /*
1221 * This is an idle wakeup. Low level machine check has already been
1222 * done. Queue the event then call the idle code to do the wake up.
1223 */
1224 EXC_COMMON_BEGIN(machine_check_idle_common)
1225 bl machine_check_queue_event
1226
1227 /*
1228 * We have not used any non-volatile GPRs here, and as a rule
1229 * most exception code including machine check does not.
1230 * Therefore PACA_NAPSTATELOST does not need to be set. Idle
1231 * wakeup will restore volatile registers.
1232 *
1233 * Load the original SRR1 into r3 for pnv_powersave_wakeup_mce.
1234 *
1235 * Then decrement MCE nesting after finishing with the stack.
1236 */
1237 ld r3,_MSR(r1)
1238 ld r4,_LINK(r1)
1239
1240 lhz r11,PACA_IN_MCE(r13)
1241 subi r11,r11,1
1242 sth r11,PACA_IN_MCE(r13)
1243
1244 mtlr r4
1245 rlwinm r10,r3,47-31,30,31
1246 cmpwi cr1,r10,2
1247 bltlr cr1 /* no state loss, return to idle caller */
1248 b idle_return_gpr_loss
1249 #endif
1250
1251 EXC_COMMON_BEGIN(unrecoverable_mce)
1252 /*
1253 * We are going down. But there are chances that we might get hit by
1254 * another MCE during panic path and we may run into unstable state
1255 * with no way out. Hence, turn ME bit off while going down, so that
1256 * when another MCE is hit during panic path, system will checkstop
1257 * and hypervisor will get restarted cleanly by SP.
1258 */
1259 BEGIN_FTR_SECTION
1260 li r10,0 /* clear MSR_RI */
1261 mtmsrd r10,1
1262 bl disable_machine_check
1263 END_FTR_SECTION_IFSET(CPU_FTR_HVMODE)
1264 ld r10,PACAKMSR(r13)
1265 li r3,MSR_ME
1266 andc r10,r10,r3
1267 mtmsrd r10
1268
1269 /* Invoke machine_check_exception to print MCE event and panic. */
1270 addi r3,r1,STACK_FRAME_OVERHEAD
1271 bl machine_check_exception
1272
1273 /*
1274 * We will not reach here. Even if we did, there is no way out.
1275 * Call unrecoverable_exception and die.
1276 */
1277 addi r3,r1,STACK_FRAME_OVERHEAD
1278 bl unrecoverable_exception
1279 b .
1280
1281
1282 /**
1283 * Interrupt 0x300 - Data Storage Interrupt (DSI).
1284 * This is a synchronous interrupt generated due to a data access exception,
1285 * e.g., a load orstore which does not have a valid page table entry with
1286 * permissions. DAWR matches also fault here, as do RC updates, and minor misc
1287 * errors e.g., copy/paste, AMO, certain invalid CI accesses, etc.
1288 *
1289 * Handling:
1290 * - Hash MMU
1291 * Go to do_hash_page first to see if the HPT can be filled from an entry in
1292 * the Linux page table. Hash faults can hit in kernel mode in a fairly
1293 * arbitrary state (e.g., interrupts disabled, locks held) when accessing
1294 * "non-bolted" regions, e.g., vmalloc space. However these should always be
1295 * backed by Linux page tables.
1296 *
1297 * If none is found, do a Linux page fault. Linux page faults can happen in
1298 * kernel mode due to user copy operations of course.
1299 *
1300 * - Radix MMU
1301 * The hardware loads from the Linux page table directly, so a fault goes
1302 * immediately to Linux page fault.
1303 *
1304 * Conditions like DAWR match are handled on the way in to Linux page fault.
1305 */
1306 INT_DEFINE_BEGIN(data_access)
1307 IVEC=0x300
1308 IDAR=1
1309 IDSISR=1
1310 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1311 IKVM_SKIP=1
1312 IKVM_REAL=1
1313 #endif
1314 INT_DEFINE_END(data_access)
1315
1316 EXC_REAL_BEGIN(data_access, 0x300, 0x80)
1317 GEN_INT_ENTRY data_access, virt=0
1318 EXC_REAL_END(data_access, 0x300, 0x80)
1319 EXC_VIRT_BEGIN(data_access, 0x4300, 0x80)
1320 GEN_INT_ENTRY data_access, virt=1
1321 EXC_VIRT_END(data_access, 0x4300, 0x80)
1322 EXC_COMMON_BEGIN(data_access_common)
1323 GEN_COMMON data_access
1324 ld r4,_DAR(r1)
1325 ld r5,_DSISR(r1)
1326 BEGIN_MMU_FTR_SECTION
1327 ld r6,_MSR(r1)
1328 li r3,0x300
1329 b do_hash_page /* Try to handle as hpte fault */
1330 MMU_FTR_SECTION_ELSE
1331 b handle_page_fault
1332 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1333
1334 GEN_KVM data_access
1335
1336
1337 /**
1338 * Interrupt 0x380 - Data Segment Interrupt (DSLB).
1339 * This is a synchronous interrupt in response to an MMU fault missing SLB
1340 * entry for HPT, or an address outside RPT translation range.
1341 *
1342 * Handling:
1343 * - HPT:
1344 * This refills the SLB, or reports an access fault similarly to a bad page
1345 * fault. When coming from user-mode, the SLB handler may access any kernel
1346 * data, though it may itself take a DSLB. When coming from kernel mode,
1347 * recursive faults must be avoided so access is restricted to the kernel
1348 * image text/data, kernel stack, and any data allocated below
1349 * ppc64_bolted_size (first segment). The kernel handler must avoid stomping
1350 * on user-handler data structures.
1351 *
1352 * A dedicated save area EXSLB is used (XXX: but it actually need not be
1353 * these days, we could use EXGEN).
1354 */
1355 INT_DEFINE_BEGIN(data_access_slb)
1356 IVEC=0x380
1357 IAREA=PACA_EXSLB
1358 IRECONCILE=0
1359 IDAR=1
1360 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1361 IKVM_SKIP=1
1362 IKVM_REAL=1
1363 #endif
1364 INT_DEFINE_END(data_access_slb)
1365
1366 EXC_REAL_BEGIN(data_access_slb, 0x380, 0x80)
1367 GEN_INT_ENTRY data_access_slb, virt=0
1368 EXC_REAL_END(data_access_slb, 0x380, 0x80)
1369 EXC_VIRT_BEGIN(data_access_slb, 0x4380, 0x80)
1370 GEN_INT_ENTRY data_access_slb, virt=1
1371 EXC_VIRT_END(data_access_slb, 0x4380, 0x80)
1372 EXC_COMMON_BEGIN(data_access_slb_common)
1373 GEN_COMMON data_access_slb
1374 ld r4,_DAR(r1)
1375 addi r3,r1,STACK_FRAME_OVERHEAD
1376 BEGIN_MMU_FTR_SECTION
1377 /* HPT case, do SLB fault */
1378 bl do_slb_fault
1379 cmpdi r3,0
1380 bne- 1f
1381 b fast_interrupt_return
1382 1: /* Error case */
1383 MMU_FTR_SECTION_ELSE
1384 /* Radix case, access is outside page table range */
1385 li r3,-EFAULT
1386 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1387 std r3,RESULT(r1)
1388 RECONCILE_IRQ_STATE(r10, r11)
1389 ld r4,_DAR(r1)
1390 ld r5,RESULT(r1)
1391 addi r3,r1,STACK_FRAME_OVERHEAD
1392 bl do_bad_slb_fault
1393 b interrupt_return
1394
1395 GEN_KVM data_access_slb
1396
1397
1398 /**
1399 * Interrupt 0x400 - Instruction Storage Interrupt (ISI).
1400 * This is a synchronous interrupt in response to an MMU fault due to an
1401 * instruction fetch.
1402 *
1403 * Handling:
1404 * Similar to DSI, though in response to fetch. The faulting address is found
1405 * in SRR0 (rather than DAR), and status in SRR1 (rather than DSISR).
1406 */
1407 INT_DEFINE_BEGIN(instruction_access)
1408 IVEC=0x400
1409 IISIDE=1
1410 IDAR=1
1411 IDSISR=1
1412 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1413 IKVM_REAL=1
1414 #endif
1415 INT_DEFINE_END(instruction_access)
1416
1417 EXC_REAL_BEGIN(instruction_access, 0x400, 0x80)
1418 GEN_INT_ENTRY instruction_access, virt=0
1419 EXC_REAL_END(instruction_access, 0x400, 0x80)
1420 EXC_VIRT_BEGIN(instruction_access, 0x4400, 0x80)
1421 GEN_INT_ENTRY instruction_access, virt=1
1422 EXC_VIRT_END(instruction_access, 0x4400, 0x80)
1423 EXC_COMMON_BEGIN(instruction_access_common)
1424 GEN_COMMON instruction_access
1425 ld r4,_DAR(r1)
1426 ld r5,_DSISR(r1)
1427 BEGIN_MMU_FTR_SECTION
1428 ld r6,_MSR(r1)
1429 li r3,0x400
1430 b do_hash_page /* Try to handle as hpte fault */
1431 MMU_FTR_SECTION_ELSE
1432 b handle_page_fault
1433 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1434
1435 GEN_KVM instruction_access
1436
1437
1438 /**
1439 * Interrupt 0x480 - Instruction Segment Interrupt (ISLB).
1440 * This is a synchronous interrupt in response to an MMU fault due to an
1441 * instruction fetch.
1442 *
1443 * Handling:
1444 * Similar to DSLB, though in response to fetch. The faulting address is found
1445 * in SRR0 (rather than DAR).
1446 */
1447 INT_DEFINE_BEGIN(instruction_access_slb)
1448 IVEC=0x480
1449 IAREA=PACA_EXSLB
1450 IRECONCILE=0
1451 IISIDE=1
1452 IDAR=1
1453 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1454 IKVM_REAL=1
1455 #endif
1456 INT_DEFINE_END(instruction_access_slb)
1457
1458 EXC_REAL_BEGIN(instruction_access_slb, 0x480, 0x80)
1459 GEN_INT_ENTRY instruction_access_slb, virt=0
1460 EXC_REAL_END(instruction_access_slb, 0x480, 0x80)
1461 EXC_VIRT_BEGIN(instruction_access_slb, 0x4480, 0x80)
1462 GEN_INT_ENTRY instruction_access_slb, virt=1
1463 EXC_VIRT_END(instruction_access_slb, 0x4480, 0x80)
1464 EXC_COMMON_BEGIN(instruction_access_slb_common)
1465 GEN_COMMON instruction_access_slb
1466 ld r4,_DAR(r1)
1467 addi r3,r1,STACK_FRAME_OVERHEAD
1468 BEGIN_MMU_FTR_SECTION
1469 /* HPT case, do SLB fault */
1470 bl do_slb_fault
1471 cmpdi r3,0
1472 bne- 1f
1473 b fast_interrupt_return
1474 1: /* Error case */
1475 MMU_FTR_SECTION_ELSE
1476 /* Radix case, access is outside page table range */
1477 li r3,-EFAULT
1478 ALT_MMU_FTR_SECTION_END_IFCLR(MMU_FTR_TYPE_RADIX)
1479 std r3,RESULT(r1)
1480 RECONCILE_IRQ_STATE(r10, r11)
1481 ld r4,_DAR(r1)
1482 ld r5,RESULT(r1)
1483 addi r3,r1,STACK_FRAME_OVERHEAD
1484 bl do_bad_slb_fault
1485 b interrupt_return
1486
1487 GEN_KVM instruction_access_slb
1488
1489
1490 /**
1491 * Interrupt 0x500 - External Interrupt.
1492 * This is an asynchronous maskable interrupt in response to an "external
1493 * exception" from the interrupt controller or hypervisor (e.g., device
1494 * interrupt). It is maskable in hardware by clearing MSR[EE], and
1495 * soft-maskable with IRQS_DISABLED mask (i.e., local_irq_disable()).
1496 *
1497 * When running in HV mode, Linux sets up the LPCR[LPES] bit such that
1498 * interrupts are delivered with HSRR registers, guests use SRRs, which
1499 * reqiures IHSRR_IF_HVMODE.
1500 *
1501 * On bare metal POWER9 and later, Linux sets the LPCR[HVICE] bit such that
1502 * external interrupts are delivered as Hypervisor Virtualization Interrupts
1503 * rather than External Interrupts.
1504 *
1505 * Handling:
1506 * This calls into Linux IRQ handler. NVGPRs are not saved to reduce overhead,
1507 * because registers at the time of the interrupt are not so important as it is
1508 * asynchronous.
1509 *
1510 * If soft masked, the masked handler will note the pending interrupt for
1511 * replay, and clear MSR[EE] in the interrupted context.
1512 */
1513 INT_DEFINE_BEGIN(hardware_interrupt)
1514 IVEC=0x500
1515 IHSRR_IF_HVMODE=1
1516 IMASK=IRQS_DISABLED
1517 IKVM_REAL=1
1518 IKVM_VIRT=1
1519 INT_DEFINE_END(hardware_interrupt)
1520
1521 EXC_REAL_BEGIN(hardware_interrupt, 0x500, 0x100)
1522 GEN_INT_ENTRY hardware_interrupt, virt=0
1523 EXC_REAL_END(hardware_interrupt, 0x500, 0x100)
1524 EXC_VIRT_BEGIN(hardware_interrupt, 0x4500, 0x100)
1525 GEN_INT_ENTRY hardware_interrupt, virt=1
1526 EXC_VIRT_END(hardware_interrupt, 0x4500, 0x100)
1527 EXC_COMMON_BEGIN(hardware_interrupt_common)
1528 GEN_COMMON hardware_interrupt
1529 FINISH_NAP
1530 RUNLATCH_ON
1531 addi r3,r1,STACK_FRAME_OVERHEAD
1532 bl do_IRQ
1533 b interrupt_return
1534
1535 GEN_KVM hardware_interrupt
1536
1537
1538 /**
1539 * Interrupt 0x600 - Alignment Interrupt
1540 * This is a synchronous interrupt in response to data alignment fault.
1541 */
1542 INT_DEFINE_BEGIN(alignment)
1543 IVEC=0x600
1544 IDAR=1
1545 IDSISR=1
1546 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1547 IKVM_REAL=1
1548 #endif
1549 INT_DEFINE_END(alignment)
1550
1551 EXC_REAL_BEGIN(alignment, 0x600, 0x100)
1552 GEN_INT_ENTRY alignment, virt=0
1553 EXC_REAL_END(alignment, 0x600, 0x100)
1554 EXC_VIRT_BEGIN(alignment, 0x4600, 0x100)
1555 GEN_INT_ENTRY alignment, virt=1
1556 EXC_VIRT_END(alignment, 0x4600, 0x100)
1557 EXC_COMMON_BEGIN(alignment_common)
1558 GEN_COMMON alignment
1559 addi r3,r1,STACK_FRAME_OVERHEAD
1560 bl alignment_exception
1561 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1562 b interrupt_return
1563
1564 GEN_KVM alignment
1565
1566
1567 /**
1568 * Interrupt 0x700 - Program Interrupt (program check).
1569 * This is a synchronous interrupt in response to various instruction faults:
1570 * traps, privilege errors, TM errors, floating point exceptions.
1571 *
1572 * Handling:
1573 * This interrupt may use the "emergency stack" in some cases when being taken
1574 * from kernel context, which complicates handling.
1575 */
1576 INT_DEFINE_BEGIN(program_check)
1577 IVEC=0x700
1578 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1579 IKVM_REAL=1
1580 #endif
1581 INT_DEFINE_END(program_check)
1582
1583 EXC_REAL_BEGIN(program_check, 0x700, 0x100)
1584 GEN_INT_ENTRY program_check, virt=0
1585 EXC_REAL_END(program_check, 0x700, 0x100)
1586 EXC_VIRT_BEGIN(program_check, 0x4700, 0x100)
1587 GEN_INT_ENTRY program_check, virt=1
1588 EXC_VIRT_END(program_check, 0x4700, 0x100)
1589 EXC_COMMON_BEGIN(program_check_common)
1590 __GEN_COMMON_ENTRY program_check
1591
1592 /*
1593 * It's possible to receive a TM Bad Thing type program check with
1594 * userspace register values (in particular r1), but with SRR1 reporting
1595 * that we came from the kernel. Normally that would confuse the bad
1596 * stack logic, and we would report a bad kernel stack pointer. Instead
1597 * we switch to the emergency stack if we're taking a TM Bad Thing from
1598 * the kernel.
1599 */
1600
1601 andi. r10,r12,MSR_PR
1602 bne 2f /* If userspace, go normal path */
1603
1604 andis. r10,r12,(SRR1_PROGTM)@h
1605 bne 1f /* If TM, emergency */
1606
1607 cmpdi r1,-INT_FRAME_SIZE /* check if r1 is in userspace */
1608 blt 2f /* normal path if not */
1609
1610 /* Use the emergency stack */
1611 1: andi. r10,r12,MSR_PR /* Set CR0 correctly for label */
1612 /* 3 in EXCEPTION_PROLOG_COMMON */
1613 mr r10,r1 /* Save r1 */
1614 ld r1,PACAEMERGSP(r13) /* Use emergency stack */
1615 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
1616 __ISTACK(program_check)=0
1617 __GEN_COMMON_BODY program_check
1618 b 3f
1619 2:
1620 __ISTACK(program_check)=1
1621 __GEN_COMMON_BODY program_check
1622 3:
1623 addi r3,r1,STACK_FRAME_OVERHEAD
1624 bl program_check_exception
1625 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
1626 b interrupt_return
1627
1628 GEN_KVM program_check
1629
1630
1631 /*
1632 * Interrupt 0x800 - Floating-Point Unavailable Interrupt.
1633 * This is a synchronous interrupt in response to executing an fp instruction
1634 * with MSR[FP]=0.
1635 *
1636 * Handling:
1637 * This will load FP registers and enable the FP bit if coming from userspace,
1638 * otherwise report a bad kernel use of FP.
1639 */
1640 INT_DEFINE_BEGIN(fp_unavailable)
1641 IVEC=0x800
1642 IRECONCILE=0
1643 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1644 IKVM_REAL=1
1645 #endif
1646 INT_DEFINE_END(fp_unavailable)
1647
1648 EXC_REAL_BEGIN(fp_unavailable, 0x800, 0x100)
1649 GEN_INT_ENTRY fp_unavailable, virt=0
1650 EXC_REAL_END(fp_unavailable, 0x800, 0x100)
1651 EXC_VIRT_BEGIN(fp_unavailable, 0x4800, 0x100)
1652 GEN_INT_ENTRY fp_unavailable, virt=1
1653 EXC_VIRT_END(fp_unavailable, 0x4800, 0x100)
1654 EXC_COMMON_BEGIN(fp_unavailable_common)
1655 GEN_COMMON fp_unavailable
1656 bne 1f /* if from user, just load it up */
1657 RECONCILE_IRQ_STATE(r10, r11)
1658 addi r3,r1,STACK_FRAME_OVERHEAD
1659 bl kernel_fp_unavailable_exception
1660 0: trap
1661 EMIT_BUG_ENTRY 0b, __FILE__, __LINE__, 0
1662 1:
1663 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1664 BEGIN_FTR_SECTION
1665 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
1666 * transaction), go do TM stuff
1667 */
1668 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
1669 bne- 2f
1670 END_FTR_SECTION_IFSET(CPU_FTR_TM)
1671 #endif
1672 bl load_up_fpu
1673 b fast_interrupt_return
1674 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1675 2: /* User process was in a transaction */
1676 RECONCILE_IRQ_STATE(r10, r11)
1677 addi r3,r1,STACK_FRAME_OVERHEAD
1678 bl fp_unavailable_tm
1679 b interrupt_return
1680 #endif
1681
1682 GEN_KVM fp_unavailable
1683
1684
1685 /**
1686 * Interrupt 0x900 - Decrementer Interrupt.
1687 * This is an asynchronous interrupt in response to a decrementer exception
1688 * (e.g., DEC has wrapped below zero). It is maskable in hardware by clearing
1689 * MSR[EE], and soft-maskable with IRQS_DISABLED mask (i.e.,
1690 * local_irq_disable()).
1691 *
1692 * Handling:
1693 * This calls into Linux timer handler. NVGPRs are not saved (see 0x500).
1694 *
1695 * If soft masked, the masked handler will note the pending interrupt for
1696 * replay, and bump the decrementer to a high value, leaving MSR[EE] enabled
1697 * in the interrupted context.
1698 * If PPC_WATCHDOG is configured, the soft masked handler will actually set
1699 * things back up to run soft_nmi_interrupt as a regular interrupt handler
1700 * on the emergency stack.
1701 */
1702 INT_DEFINE_BEGIN(decrementer)
1703 IVEC=0x900
1704 IMASK=IRQS_DISABLED
1705 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1706 IKVM_REAL=1
1707 #endif
1708 INT_DEFINE_END(decrementer)
1709
1710 EXC_REAL_BEGIN(decrementer, 0x900, 0x80)
1711 GEN_INT_ENTRY decrementer, virt=0
1712 EXC_REAL_END(decrementer, 0x900, 0x80)
1713 EXC_VIRT_BEGIN(decrementer, 0x4900, 0x80)
1714 GEN_INT_ENTRY decrementer, virt=1
1715 EXC_VIRT_END(decrementer, 0x4900, 0x80)
1716 EXC_COMMON_BEGIN(decrementer_common)
1717 GEN_COMMON decrementer
1718 FINISH_NAP
1719 RUNLATCH_ON
1720 addi r3,r1,STACK_FRAME_OVERHEAD
1721 bl timer_interrupt
1722 b interrupt_return
1723
1724 GEN_KVM decrementer
1725
1726
1727 /**
1728 * Interrupt 0x980 - Hypervisor Decrementer Interrupt.
1729 * This is an asynchronous interrupt, similar to 0x900 but for the HDEC
1730 * register.
1731 *
1732 * Handling:
1733 * Linux does not use this outside KVM where it's used to keep a host timer
1734 * while the guest is given control of DEC. It should normally be caught by
1735 * the KVM test and routed there.
1736 */
1737 INT_DEFINE_BEGIN(hdecrementer)
1738 IVEC=0x980
1739 IHSRR=1
1740 ISTACK=0
1741 IRECONCILE=0
1742 IKVM_REAL=1
1743 IKVM_VIRT=1
1744 INT_DEFINE_END(hdecrementer)
1745
1746 EXC_REAL_BEGIN(hdecrementer, 0x980, 0x80)
1747 GEN_INT_ENTRY hdecrementer, virt=0
1748 EXC_REAL_END(hdecrementer, 0x980, 0x80)
1749 EXC_VIRT_BEGIN(hdecrementer, 0x4980, 0x80)
1750 GEN_INT_ENTRY hdecrementer, virt=1
1751 EXC_VIRT_END(hdecrementer, 0x4980, 0x80)
1752 EXC_COMMON_BEGIN(hdecrementer_common)
1753 __GEN_COMMON_ENTRY hdecrementer
1754 /*
1755 * Hypervisor decrementer interrupts not caught by the KVM test
1756 * shouldn't occur but are sometimes left pending on exit from a KVM
1757 * guest. We don't need to do anything to clear them, as they are
1758 * edge-triggered.
1759 *
1760 * Be careful to avoid touching the kernel stack.
1761 */
1762 ld r10,PACA_EXGEN+EX_CTR(r13)
1763 mtctr r10
1764 mtcrf 0x80,r9
1765 ld r9,PACA_EXGEN+EX_R9(r13)
1766 ld r10,PACA_EXGEN+EX_R10(r13)
1767 ld r11,PACA_EXGEN+EX_R11(r13)
1768 ld r12,PACA_EXGEN+EX_R12(r13)
1769 ld r13,PACA_EXGEN+EX_R13(r13)
1770 HRFI_TO_KERNEL
1771
1772 GEN_KVM hdecrementer
1773
1774
1775 /**
1776 * Interrupt 0xa00 - Directed Privileged Doorbell Interrupt.
1777 * This is an asynchronous interrupt in response to a msgsndp doorbell.
1778 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
1779 * IRQS_DISABLED mask (i.e., local_irq_disable()).
1780 *
1781 * Handling:
1782 * Guests may use this for IPIs between threads in a core if the
1783 * hypervisor supports it. NVGPRS are not saved (see 0x500).
1784 *
1785 * If soft masked, the masked handler will note the pending interrupt for
1786 * replay, leaving MSR[EE] enabled in the interrupted context because the
1787 * doorbells are edge triggered.
1788 */
1789 INT_DEFINE_BEGIN(doorbell_super)
1790 IVEC=0xa00
1791 IMASK=IRQS_DISABLED
1792 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1793 IKVM_REAL=1
1794 #endif
1795 INT_DEFINE_END(doorbell_super)
1796
1797 EXC_REAL_BEGIN(doorbell_super, 0xa00, 0x100)
1798 GEN_INT_ENTRY doorbell_super, virt=0
1799 EXC_REAL_END(doorbell_super, 0xa00, 0x100)
1800 EXC_VIRT_BEGIN(doorbell_super, 0x4a00, 0x100)
1801 GEN_INT_ENTRY doorbell_super, virt=1
1802 EXC_VIRT_END(doorbell_super, 0x4a00, 0x100)
1803 EXC_COMMON_BEGIN(doorbell_super_common)
1804 GEN_COMMON doorbell_super
1805 FINISH_NAP
1806 RUNLATCH_ON
1807 addi r3,r1,STACK_FRAME_OVERHEAD
1808 #ifdef CONFIG_PPC_DOORBELL
1809 bl doorbell_exception
1810 #else
1811 bl unknown_exception
1812 #endif
1813 b interrupt_return
1814
1815 GEN_KVM doorbell_super
1816
1817
1818 EXC_REAL_NONE(0xb00, 0x100)
1819 EXC_VIRT_NONE(0x4b00, 0x100)
1820
1821 /**
1822 * Interrupt 0xc00 - System Call Interrupt (syscall, hcall).
1823 * This is a synchronous interrupt invoked with the "sc" instruction. The
1824 * system call is invoked with "sc 0" and does not alter the HV bit, so it
1825 * is directed to the currently running OS. The hypercall is invoked with
1826 * "sc 1" and it sets HV=1, so it elevates to hypervisor.
1827 *
1828 * In HPT, sc 1 always goes to 0xc00 real mode. In RADIX, sc 1 can go to
1829 * 0x4c00 virtual mode.
1830 *
1831 * Handling:
1832 * If the KVM test fires then it was due to a hypercall and is accordingly
1833 * routed to KVM. Otherwise this executes a normal Linux system call.
1834 *
1835 * Call convention:
1836 *
1837 * syscall and hypercalls register conventions are documented in
1838 * Documentation/powerpc/syscall64-abi.rst and
1839 * Documentation/powerpc/papr_hcalls.rst respectively.
1840 *
1841 * The intersection of volatile registers that don't contain possible
1842 * inputs is: cr0, xer, ctr. We may use these as scratch regs upon entry
1843 * without saving, though xer is not a good idea to use, as hardware may
1844 * interpret some bits so it may be costly to change them.
1845 */
1846 INT_DEFINE_BEGIN(system_call)
1847 IVEC=0xc00
1848 IKVM_REAL=1
1849 IKVM_VIRT=1
1850 INT_DEFINE_END(system_call)
1851
1852 .macro SYSTEM_CALL virt
1853 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1854 /*
1855 * There is a little bit of juggling to get syscall and hcall
1856 * working well. Save r13 in ctr to avoid using SPRG scratch
1857 * register.
1858 *
1859 * Userspace syscalls have already saved the PPR, hcalls must save
1860 * it before setting HMT_MEDIUM.
1861 */
1862 mtctr r13
1863 GET_PACA(r13)
1864 std r10,PACA_EXGEN+EX_R10(r13)
1865 INTERRUPT_TO_KERNEL
1866 KVMTEST system_call /* uses r10, branch to system_call_kvm */
1867 mfctr r9
1868 #else
1869 mr r9,r13
1870 GET_PACA(r13)
1871 INTERRUPT_TO_KERNEL
1872 #endif
1873
1874 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1875 BEGIN_FTR_SECTION
1876 cmpdi r0,0x1ebe
1877 beq- 1f
1878 END_FTR_SECTION_IFSET(CPU_FTR_REAL_LE)
1879 #endif
1880
1881 /* We reach here with PACA in r13, r13 in r9. */
1882 mfspr r11,SPRN_SRR0
1883 mfspr r12,SPRN_SRR1
1884
1885 HMT_MEDIUM
1886
1887 .if ! \virt
1888 __LOAD_HANDLER(r10, system_call_common)
1889 mtspr SPRN_SRR0,r10
1890 ld r10,PACAKMSR(r13)
1891 mtspr SPRN_SRR1,r10
1892 RFI_TO_KERNEL
1893 b . /* prevent speculative execution */
1894 .else
1895 li r10,MSR_RI
1896 mtmsrd r10,1 /* Set RI (EE=0) */
1897 #ifdef CONFIG_RELOCATABLE
1898 __LOAD_HANDLER(r10, system_call_common)
1899 mtctr r10
1900 bctr
1901 #else
1902 b system_call_common
1903 #endif
1904 .endif
1905
1906 #ifdef CONFIG_PPC_FAST_ENDIAN_SWITCH
1907 /* Fast LE/BE switch system call */
1908 1: mfspr r12,SPRN_SRR1
1909 xori r12,r12,MSR_LE
1910 mtspr SPRN_SRR1,r12
1911 mr r13,r9
1912 RFI_TO_USER /* return to userspace */
1913 b . /* prevent speculative execution */
1914 #endif
1915 .endm
1916
1917 EXC_REAL_BEGIN(system_call, 0xc00, 0x100)
1918 SYSTEM_CALL 0
1919 EXC_REAL_END(system_call, 0xc00, 0x100)
1920 EXC_VIRT_BEGIN(system_call, 0x4c00, 0x100)
1921 SYSTEM_CALL 1
1922 EXC_VIRT_END(system_call, 0x4c00, 0x100)
1923
1924 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1925 TRAMP_REAL_BEGIN(system_call_kvm)
1926 /*
1927 * This is a hcall, so register convention is as above, with these
1928 * differences:
1929 * r13 = PACA
1930 * ctr = orig r13
1931 * orig r10 saved in PACA
1932 */
1933 /*
1934 * Save the PPR (on systems that support it) before changing to
1935 * HMT_MEDIUM. That allows the KVM code to save that value into the
1936 * guest state (it is the guest's PPR value).
1937 */
1938 BEGIN_FTR_SECTION
1939 mfspr r10,SPRN_PPR
1940 std r10,HSTATE_PPR(r13)
1941 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
1942 HMT_MEDIUM
1943 mfctr r10
1944 SET_SCRATCH0(r10)
1945 mfcr r10
1946 std r12,HSTATE_SCRATCH0(r13)
1947 sldi r12,r10,32
1948 ori r12,r12,0xc00
1949 #ifdef CONFIG_RELOCATABLE
1950 /*
1951 * Requires __LOAD_FAR_HANDLER beause kvmppc_interrupt lives
1952 * outside the head section.
1953 */
1954 __LOAD_FAR_HANDLER(r10, kvmppc_interrupt)
1955 mtctr r10
1956 ld r10,PACA_EXGEN+EX_R10(r13)
1957 bctr
1958 #else
1959 ld r10,PACA_EXGEN+EX_R10(r13)
1960 b kvmppc_interrupt
1961 #endif
1962 #endif
1963
1964
1965 /**
1966 * Interrupt 0xd00 - Trace Interrupt.
1967 * This is a synchronous interrupt in response to instruction step or
1968 * breakpoint faults.
1969 */
1970 INT_DEFINE_BEGIN(single_step)
1971 IVEC=0xd00
1972 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1973 IKVM_REAL=1
1974 #endif
1975 INT_DEFINE_END(single_step)
1976
1977 EXC_REAL_BEGIN(single_step, 0xd00, 0x100)
1978 GEN_INT_ENTRY single_step, virt=0
1979 EXC_REAL_END(single_step, 0xd00, 0x100)
1980 EXC_VIRT_BEGIN(single_step, 0x4d00, 0x100)
1981 GEN_INT_ENTRY single_step, virt=1
1982 EXC_VIRT_END(single_step, 0x4d00, 0x100)
1983 EXC_COMMON_BEGIN(single_step_common)
1984 GEN_COMMON single_step
1985 addi r3,r1,STACK_FRAME_OVERHEAD
1986 bl single_step_exception
1987 b interrupt_return
1988
1989 GEN_KVM single_step
1990
1991
1992 /**
1993 * Interrupt 0xe00 - Hypervisor Data Storage Interrupt (HDSI).
1994 * This is a synchronous interrupt in response to an MMU fault caused by a
1995 * guest data access.
1996 *
1997 * Handling:
1998 * This should always get routed to KVM. In radix MMU mode, this is caused
1999 * by a guest nested radix access that can't be performed due to the
2000 * partition scope page table. In hash mode, this can be caused by guests
2001 * running with translation disabled (virtual real mode) or with VPM enabled.
2002 * KVM will update the page table structures or disallow the access.
2003 */
2004 INT_DEFINE_BEGIN(h_data_storage)
2005 IVEC=0xe00
2006 IHSRR=1
2007 IDAR=1
2008 IDSISR=1
2009 IKVM_SKIP=1
2010 IKVM_REAL=1
2011 IKVM_VIRT=1
2012 INT_DEFINE_END(h_data_storage)
2013
2014 EXC_REAL_BEGIN(h_data_storage, 0xe00, 0x20)
2015 GEN_INT_ENTRY h_data_storage, virt=0, ool=1
2016 EXC_REAL_END(h_data_storage, 0xe00, 0x20)
2017 EXC_VIRT_BEGIN(h_data_storage, 0x4e00, 0x20)
2018 GEN_INT_ENTRY h_data_storage, virt=1, ool=1
2019 EXC_VIRT_END(h_data_storage, 0x4e00, 0x20)
2020 EXC_COMMON_BEGIN(h_data_storage_common)
2021 GEN_COMMON h_data_storage
2022 addi r3,r1,STACK_FRAME_OVERHEAD
2023 BEGIN_MMU_FTR_SECTION
2024 ld r4,_DAR(r1)
2025 li r5,SIGSEGV
2026 bl bad_page_fault
2027 MMU_FTR_SECTION_ELSE
2028 bl unknown_exception
2029 ALT_MMU_FTR_SECTION_END_IFSET(MMU_FTR_TYPE_RADIX)
2030 b interrupt_return
2031
2032 GEN_KVM h_data_storage
2033
2034
2035 /**
2036 * Interrupt 0xe20 - Hypervisor Instruction Storage Interrupt (HISI).
2037 * This is a synchronous interrupt in response to an MMU fault caused by a
2038 * guest instruction fetch, similar to HDSI.
2039 */
2040 INT_DEFINE_BEGIN(h_instr_storage)
2041 IVEC=0xe20
2042 IHSRR=1
2043 IKVM_REAL=1
2044 IKVM_VIRT=1
2045 INT_DEFINE_END(h_instr_storage)
2046
2047 EXC_REAL_BEGIN(h_instr_storage, 0xe20, 0x20)
2048 GEN_INT_ENTRY h_instr_storage, virt=0, ool=1
2049 EXC_REAL_END(h_instr_storage, 0xe20, 0x20)
2050 EXC_VIRT_BEGIN(h_instr_storage, 0x4e20, 0x20)
2051 GEN_INT_ENTRY h_instr_storage, virt=1, ool=1
2052 EXC_VIRT_END(h_instr_storage, 0x4e20, 0x20)
2053 EXC_COMMON_BEGIN(h_instr_storage_common)
2054 GEN_COMMON h_instr_storage
2055 addi r3,r1,STACK_FRAME_OVERHEAD
2056 bl unknown_exception
2057 b interrupt_return
2058
2059 GEN_KVM h_instr_storage
2060
2061
2062 /**
2063 * Interrupt 0xe40 - Hypervisor Emulation Assistance Interrupt.
2064 */
2065 INT_DEFINE_BEGIN(emulation_assist)
2066 IVEC=0xe40
2067 IHSRR=1
2068 IKVM_REAL=1
2069 IKVM_VIRT=1
2070 INT_DEFINE_END(emulation_assist)
2071
2072 EXC_REAL_BEGIN(emulation_assist, 0xe40, 0x20)
2073 GEN_INT_ENTRY emulation_assist, virt=0, ool=1
2074 EXC_REAL_END(emulation_assist, 0xe40, 0x20)
2075 EXC_VIRT_BEGIN(emulation_assist, 0x4e40, 0x20)
2076 GEN_INT_ENTRY emulation_assist, virt=1, ool=1
2077 EXC_VIRT_END(emulation_assist, 0x4e40, 0x20)
2078 EXC_COMMON_BEGIN(emulation_assist_common)
2079 GEN_COMMON emulation_assist
2080 addi r3,r1,STACK_FRAME_OVERHEAD
2081 bl emulation_assist_interrupt
2082 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2083 b interrupt_return
2084
2085 GEN_KVM emulation_assist
2086
2087
2088 /**
2089 * Interrupt 0xe60 - Hypervisor Maintenance Interrupt (HMI).
2090 * This is an asynchronous interrupt caused by a Hypervisor Maintenance
2091 * Exception. It is always taken in real mode but uses HSRR registers
2092 * unlike SRESET and MCE.
2093 *
2094 * It is maskable in hardware by clearing MSR[EE], and partially soft-maskable
2095 * with IRQS_DISABLED mask (i.e., local_irq_disable()).
2096 *
2097 * Handling:
2098 * This is a special case, this is handled similarly to machine checks, with an
2099 * initial real mode handler that is not soft-masked, which attempts to fix the
2100 * problem. Then a regular handler which is soft-maskable and reports the
2101 * problem.
2102 *
2103 * The emergency stack is used for the early real mode handler.
2104 *
2105 * XXX: unclear why MCE and HMI schemes could not be made common, e.g.,
2106 * either use soft-masking for the MCE, or use irq_work for the HMI.
2107 *
2108 * KVM:
2109 * Unlike MCE, this calls into KVM without calling the real mode handler
2110 * first.
2111 */
2112 INT_DEFINE_BEGIN(hmi_exception_early)
2113 IVEC=0xe60
2114 IHSRR=1
2115 IREALMODE_COMMON=1
2116 ISTACK=0
2117 IRECONCILE=0
2118 IKUAP=0 /* We don't touch AMR here, we never go to virtual mode */
2119 IKVM_REAL=1
2120 INT_DEFINE_END(hmi_exception_early)
2121
2122 INT_DEFINE_BEGIN(hmi_exception)
2123 IVEC=0xe60
2124 IHSRR=1
2125 IMASK=IRQS_DISABLED
2126 IKVM_REAL=1
2127 INT_DEFINE_END(hmi_exception)
2128
2129 EXC_REAL_BEGIN(hmi_exception, 0xe60, 0x20)
2130 GEN_INT_ENTRY hmi_exception_early, virt=0, ool=1
2131 EXC_REAL_END(hmi_exception, 0xe60, 0x20)
2132 EXC_VIRT_NONE(0x4e60, 0x20)
2133
2134 EXC_COMMON_BEGIN(hmi_exception_early_common)
2135 __GEN_REALMODE_COMMON_ENTRY hmi_exception_early
2136
2137 mr r10,r1 /* Save r1 */
2138 ld r1,PACAEMERGSP(r13) /* Use emergency stack for realmode */
2139 subi r1,r1,INT_FRAME_SIZE /* alloc stack frame */
2140
2141 __GEN_COMMON_BODY hmi_exception_early
2142
2143 addi r3,r1,STACK_FRAME_OVERHEAD
2144 bl hmi_exception_realmode
2145 cmpdi cr0,r3,0
2146 bne 1f
2147
2148 EXCEPTION_RESTORE_REGS hsrr=1
2149 HRFI_TO_USER_OR_KERNEL
2150
2151 1:
2152 /*
2153 * Go to virtual mode and pull the HMI event information from
2154 * firmware.
2155 */
2156 EXCEPTION_RESTORE_REGS hsrr=1
2157 GEN_INT_ENTRY hmi_exception, virt=0
2158
2159 GEN_KVM hmi_exception_early
2160
2161 EXC_COMMON_BEGIN(hmi_exception_common)
2162 GEN_COMMON hmi_exception
2163 FINISH_NAP
2164 RUNLATCH_ON
2165 addi r3,r1,STACK_FRAME_OVERHEAD
2166 bl handle_hmi_exception
2167 b interrupt_return
2168
2169 GEN_KVM hmi_exception
2170
2171
2172 /**
2173 * Interrupt 0xe80 - Directed Hypervisor Doorbell Interrupt.
2174 * This is an asynchronous interrupt in response to a msgsnd doorbell.
2175 * Similar to the 0xa00 doorbell but for host rather than guest.
2176 */
2177 INT_DEFINE_BEGIN(h_doorbell)
2178 IVEC=0xe80
2179 IHSRR=1
2180 IMASK=IRQS_DISABLED
2181 IKVM_REAL=1
2182 IKVM_VIRT=1
2183 INT_DEFINE_END(h_doorbell)
2184
2185 EXC_REAL_BEGIN(h_doorbell, 0xe80, 0x20)
2186 GEN_INT_ENTRY h_doorbell, virt=0, ool=1
2187 EXC_REAL_END(h_doorbell, 0xe80, 0x20)
2188 EXC_VIRT_BEGIN(h_doorbell, 0x4e80, 0x20)
2189 GEN_INT_ENTRY h_doorbell, virt=1, ool=1
2190 EXC_VIRT_END(h_doorbell, 0x4e80, 0x20)
2191 EXC_COMMON_BEGIN(h_doorbell_common)
2192 GEN_COMMON h_doorbell
2193 FINISH_NAP
2194 RUNLATCH_ON
2195 addi r3,r1,STACK_FRAME_OVERHEAD
2196 #ifdef CONFIG_PPC_DOORBELL
2197 bl doorbell_exception
2198 #else
2199 bl unknown_exception
2200 #endif
2201 b interrupt_return
2202
2203 GEN_KVM h_doorbell
2204
2205
2206 /**
2207 * Interrupt 0xea0 - Hypervisor Virtualization Interrupt.
2208 * This is an asynchronous interrupt in response to an "external exception".
2209 * Similar to 0x500 but for host only.
2210 */
2211 INT_DEFINE_BEGIN(h_virt_irq)
2212 IVEC=0xea0
2213 IHSRR=1
2214 IMASK=IRQS_DISABLED
2215 IKVM_REAL=1
2216 IKVM_VIRT=1
2217 INT_DEFINE_END(h_virt_irq)
2218
2219 EXC_REAL_BEGIN(h_virt_irq, 0xea0, 0x20)
2220 GEN_INT_ENTRY h_virt_irq, virt=0, ool=1
2221 EXC_REAL_END(h_virt_irq, 0xea0, 0x20)
2222 EXC_VIRT_BEGIN(h_virt_irq, 0x4ea0, 0x20)
2223 GEN_INT_ENTRY h_virt_irq, virt=1, ool=1
2224 EXC_VIRT_END(h_virt_irq, 0x4ea0, 0x20)
2225 EXC_COMMON_BEGIN(h_virt_irq_common)
2226 GEN_COMMON h_virt_irq
2227 FINISH_NAP
2228 RUNLATCH_ON
2229 addi r3,r1,STACK_FRAME_OVERHEAD
2230 bl do_IRQ
2231 b interrupt_return
2232
2233 GEN_KVM h_virt_irq
2234
2235
2236 EXC_REAL_NONE(0xec0, 0x20)
2237 EXC_VIRT_NONE(0x4ec0, 0x20)
2238 EXC_REAL_NONE(0xee0, 0x20)
2239 EXC_VIRT_NONE(0x4ee0, 0x20)
2240
2241
2242 /*
2243 * Interrupt 0xf00 - Performance Monitor Interrupt (PMI, PMU).
2244 * This is an asynchronous interrupt in response to a PMU exception.
2245 * It is maskable in hardware by clearing MSR[EE], and soft-maskable with
2246 * IRQS_PMI_DISABLED mask (NOTE: NOT local_irq_disable()).
2247 *
2248 * Handling:
2249 * This calls into the perf subsystem.
2250 *
2251 * Like the watchdog soft-nmi, it appears an NMI interrupt to Linux, in that it
2252 * runs under local_irq_disable. However it may be soft-masked in
2253 * powerpc-specific code.
2254 *
2255 * If soft masked, the masked handler will note the pending interrupt for
2256 * replay, and clear MSR[EE] in the interrupted context.
2257 */
2258 INT_DEFINE_BEGIN(performance_monitor)
2259 IVEC=0xf00
2260 IMASK=IRQS_PMI_DISABLED
2261 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2262 IKVM_REAL=1
2263 #endif
2264 INT_DEFINE_END(performance_monitor)
2265
2266 EXC_REAL_BEGIN(performance_monitor, 0xf00, 0x20)
2267 GEN_INT_ENTRY performance_monitor, virt=0, ool=1
2268 EXC_REAL_END(performance_monitor, 0xf00, 0x20)
2269 EXC_VIRT_BEGIN(performance_monitor, 0x4f00, 0x20)
2270 GEN_INT_ENTRY performance_monitor, virt=1, ool=1
2271 EXC_VIRT_END(performance_monitor, 0x4f00, 0x20)
2272 EXC_COMMON_BEGIN(performance_monitor_common)
2273 GEN_COMMON performance_monitor
2274 FINISH_NAP
2275 RUNLATCH_ON
2276 addi r3,r1,STACK_FRAME_OVERHEAD
2277 bl performance_monitor_exception
2278 b interrupt_return
2279
2280 GEN_KVM performance_monitor
2281
2282
2283 /**
2284 * Interrupt 0xf20 - Vector Unavailable Interrupt.
2285 * This is a synchronous interrupt in response to
2286 * executing a vector (or altivec) instruction with MSR[VEC]=0.
2287 * Similar to FP unavailable.
2288 */
2289 INT_DEFINE_BEGIN(altivec_unavailable)
2290 IVEC=0xf20
2291 IRECONCILE=0
2292 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2293 IKVM_REAL=1
2294 #endif
2295 INT_DEFINE_END(altivec_unavailable)
2296
2297 EXC_REAL_BEGIN(altivec_unavailable, 0xf20, 0x20)
2298 GEN_INT_ENTRY altivec_unavailable, virt=0, ool=1
2299 EXC_REAL_END(altivec_unavailable, 0xf20, 0x20)
2300 EXC_VIRT_BEGIN(altivec_unavailable, 0x4f20, 0x20)
2301 GEN_INT_ENTRY altivec_unavailable, virt=1, ool=1
2302 EXC_VIRT_END(altivec_unavailable, 0x4f20, 0x20)
2303 EXC_COMMON_BEGIN(altivec_unavailable_common)
2304 GEN_COMMON altivec_unavailable
2305 #ifdef CONFIG_ALTIVEC
2306 BEGIN_FTR_SECTION
2307 beq 1f
2308 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2309 BEGIN_FTR_SECTION_NESTED(69)
2310 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2311 * transaction), go do TM stuff
2312 */
2313 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2314 bne- 2f
2315 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2316 #endif
2317 bl load_up_altivec
2318 b fast_interrupt_return
2319 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2320 2: /* User process was in a transaction */
2321 RECONCILE_IRQ_STATE(r10, r11)
2322 addi r3,r1,STACK_FRAME_OVERHEAD
2323 bl altivec_unavailable_tm
2324 b interrupt_return
2325 #endif
2326 1:
2327 END_FTR_SECTION_IFSET(CPU_FTR_ALTIVEC)
2328 #endif
2329 RECONCILE_IRQ_STATE(r10, r11)
2330 addi r3,r1,STACK_FRAME_OVERHEAD
2331 bl altivec_unavailable_exception
2332 b interrupt_return
2333
2334 GEN_KVM altivec_unavailable
2335
2336
2337 /**
2338 * Interrupt 0xf40 - VSX Unavailable Interrupt.
2339 * This is a synchronous interrupt in response to
2340 * executing a VSX instruction with MSR[VSX]=0.
2341 * Similar to FP unavailable.
2342 */
2343 INT_DEFINE_BEGIN(vsx_unavailable)
2344 IVEC=0xf40
2345 IRECONCILE=0
2346 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2347 IKVM_REAL=1
2348 #endif
2349 INT_DEFINE_END(vsx_unavailable)
2350
2351 EXC_REAL_BEGIN(vsx_unavailable, 0xf40, 0x20)
2352 GEN_INT_ENTRY vsx_unavailable, virt=0, ool=1
2353 EXC_REAL_END(vsx_unavailable, 0xf40, 0x20)
2354 EXC_VIRT_BEGIN(vsx_unavailable, 0x4f40, 0x20)
2355 GEN_INT_ENTRY vsx_unavailable, virt=1, ool=1
2356 EXC_VIRT_END(vsx_unavailable, 0x4f40, 0x20)
2357 EXC_COMMON_BEGIN(vsx_unavailable_common)
2358 GEN_COMMON vsx_unavailable
2359 #ifdef CONFIG_VSX
2360 BEGIN_FTR_SECTION
2361 beq 1f
2362 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2363 BEGIN_FTR_SECTION_NESTED(69)
2364 /* Test if 2 TM state bits are zero. If non-zero (ie. userspace was in
2365 * transaction), go do TM stuff
2366 */
2367 rldicl. r0, r12, (64-MSR_TS_LG), (64-2)
2368 bne- 2f
2369 END_FTR_SECTION_NESTED(CPU_FTR_TM, CPU_FTR_TM, 69)
2370 #endif
2371 b load_up_vsx
2372 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2373 2: /* User process was in a transaction */
2374 RECONCILE_IRQ_STATE(r10, r11)
2375 addi r3,r1,STACK_FRAME_OVERHEAD
2376 bl vsx_unavailable_tm
2377 b interrupt_return
2378 #endif
2379 1:
2380 END_FTR_SECTION_IFSET(CPU_FTR_VSX)
2381 #endif
2382 RECONCILE_IRQ_STATE(r10, r11)
2383 addi r3,r1,STACK_FRAME_OVERHEAD
2384 bl vsx_unavailable_exception
2385 b interrupt_return
2386
2387 GEN_KVM vsx_unavailable
2388
2389
2390 /**
2391 * Interrupt 0xf60 - Facility Unavailable Interrupt.
2392 * This is a synchronous interrupt in response to
2393 * executing an instruction without access to the facility that can be
2394 * resolved by the OS (e.g., FSCR, MSR).
2395 * Similar to FP unavailable.
2396 */
2397 INT_DEFINE_BEGIN(facility_unavailable)
2398 IVEC=0xf60
2399 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2400 IKVM_REAL=1
2401 #endif
2402 INT_DEFINE_END(facility_unavailable)
2403
2404 EXC_REAL_BEGIN(facility_unavailable, 0xf60, 0x20)
2405 GEN_INT_ENTRY facility_unavailable, virt=0, ool=1
2406 EXC_REAL_END(facility_unavailable, 0xf60, 0x20)
2407 EXC_VIRT_BEGIN(facility_unavailable, 0x4f60, 0x20)
2408 GEN_INT_ENTRY facility_unavailable, virt=1, ool=1
2409 EXC_VIRT_END(facility_unavailable, 0x4f60, 0x20)
2410 EXC_COMMON_BEGIN(facility_unavailable_common)
2411 GEN_COMMON facility_unavailable
2412 addi r3,r1,STACK_FRAME_OVERHEAD
2413 bl facility_unavailable_exception
2414 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2415 b interrupt_return
2416
2417 GEN_KVM facility_unavailable
2418
2419
2420 /**
2421 * Interrupt 0xf60 - Hypervisor Facility Unavailable Interrupt.
2422 * This is a synchronous interrupt in response to
2423 * executing an instruction without access to the facility that can only
2424 * be resolved in HV mode (e.g., HFSCR).
2425 * Similar to FP unavailable.
2426 */
2427 INT_DEFINE_BEGIN(h_facility_unavailable)
2428 IVEC=0xf80
2429 IHSRR=1
2430 IKVM_REAL=1
2431 IKVM_VIRT=1
2432 INT_DEFINE_END(h_facility_unavailable)
2433
2434 EXC_REAL_BEGIN(h_facility_unavailable, 0xf80, 0x20)
2435 GEN_INT_ENTRY h_facility_unavailable, virt=0, ool=1
2436 EXC_REAL_END(h_facility_unavailable, 0xf80, 0x20)
2437 EXC_VIRT_BEGIN(h_facility_unavailable, 0x4f80, 0x20)
2438 GEN_INT_ENTRY h_facility_unavailable, virt=1, ool=1
2439 EXC_VIRT_END(h_facility_unavailable, 0x4f80, 0x20)
2440 EXC_COMMON_BEGIN(h_facility_unavailable_common)
2441 GEN_COMMON h_facility_unavailable
2442 addi r3,r1,STACK_FRAME_OVERHEAD
2443 bl facility_unavailable_exception
2444 REST_NVGPRS(r1) /* XXX Shouldn't be necessary in practice */
2445 b interrupt_return
2446
2447 GEN_KVM h_facility_unavailable
2448
2449
2450 EXC_REAL_NONE(0xfa0, 0x20)
2451 EXC_VIRT_NONE(0x4fa0, 0x20)
2452 EXC_REAL_NONE(0xfc0, 0x20)
2453 EXC_VIRT_NONE(0x4fc0, 0x20)
2454 EXC_REAL_NONE(0xfe0, 0x20)
2455 EXC_VIRT_NONE(0x4fe0, 0x20)
2456
2457 EXC_REAL_NONE(0x1000, 0x100)
2458 EXC_VIRT_NONE(0x5000, 0x100)
2459 EXC_REAL_NONE(0x1100, 0x100)
2460 EXC_VIRT_NONE(0x5100, 0x100)
2461
2462 #ifdef CONFIG_CBE_RAS
2463 INT_DEFINE_BEGIN(cbe_system_error)
2464 IVEC=0x1200
2465 IHSRR=1
2466 IKVM_SKIP=1
2467 IKVM_REAL=1
2468 INT_DEFINE_END(cbe_system_error)
2469
2470 EXC_REAL_BEGIN(cbe_system_error, 0x1200, 0x100)
2471 GEN_INT_ENTRY cbe_system_error, virt=0
2472 EXC_REAL_END(cbe_system_error, 0x1200, 0x100)
2473 EXC_VIRT_NONE(0x5200, 0x100)
2474 EXC_COMMON_BEGIN(cbe_system_error_common)
2475 GEN_COMMON cbe_system_error
2476 addi r3,r1,STACK_FRAME_OVERHEAD
2477 bl cbe_system_error_exception
2478 b interrupt_return
2479
2480 GEN_KVM cbe_system_error
2481
2482 #else /* CONFIG_CBE_RAS */
2483 EXC_REAL_NONE(0x1200, 0x100)
2484 EXC_VIRT_NONE(0x5200, 0x100)
2485 #endif
2486
2487
2488 INT_DEFINE_BEGIN(instruction_breakpoint)
2489 IVEC=0x1300
2490 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2491 IKVM_SKIP=1
2492 IKVM_REAL=1
2493 #endif
2494 INT_DEFINE_END(instruction_breakpoint)
2495
2496 EXC_REAL_BEGIN(instruction_breakpoint, 0x1300, 0x100)
2497 GEN_INT_ENTRY instruction_breakpoint, virt=0
2498 EXC_REAL_END(instruction_breakpoint, 0x1300, 0x100)
2499 EXC_VIRT_BEGIN(instruction_breakpoint, 0x5300, 0x100)
2500 GEN_INT_ENTRY instruction_breakpoint, virt=1
2501 EXC_VIRT_END(instruction_breakpoint, 0x5300, 0x100)
2502 EXC_COMMON_BEGIN(instruction_breakpoint_common)
2503 GEN_COMMON instruction_breakpoint
2504 addi r3,r1,STACK_FRAME_OVERHEAD
2505 bl instruction_breakpoint_exception
2506 b interrupt_return
2507
2508 GEN_KVM instruction_breakpoint
2509
2510
2511 EXC_REAL_NONE(0x1400, 0x100)
2512 EXC_VIRT_NONE(0x5400, 0x100)
2513
2514 /**
2515 * Interrupt 0x1500 - Soft Patch Interrupt
2516 *
2517 * Handling:
2518 * This is an implementation specific interrupt which can be used for a
2519 * range of exceptions.
2520 *
2521 * This interrupt handler is unique in that it runs the denormal assist
2522 * code even for guests (and even in guest context) without going to KVM,
2523 * for speed. POWER9 does not raise denorm exceptions, so this special case
2524 * could be phased out in future to reduce special cases.
2525 */
2526 INT_DEFINE_BEGIN(denorm_exception)
2527 IVEC=0x1500
2528 IHSRR=1
2529 IBRANCH_COMMON=0
2530 IKVM_REAL=1
2531 INT_DEFINE_END(denorm_exception)
2532
2533 EXC_REAL_BEGIN(denorm_exception, 0x1500, 0x100)
2534 GEN_INT_ENTRY denorm_exception, virt=0
2535 #ifdef CONFIG_PPC_DENORMALISATION
2536 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2537 bne+ denorm_assist
2538 #endif
2539 GEN_BRANCH_TO_COMMON denorm_exception, virt=0
2540 EXC_REAL_END(denorm_exception, 0x1500, 0x100)
2541 #ifdef CONFIG_PPC_DENORMALISATION
2542 EXC_VIRT_BEGIN(denorm_exception, 0x5500, 0x100)
2543 GEN_INT_ENTRY denorm_exception, virt=1
2544 andis. r10,r12,(HSRR1_DENORM)@h /* denorm? */
2545 bne+ denorm_assist
2546 GEN_BRANCH_TO_COMMON denorm_exception, virt=1
2547 EXC_VIRT_END(denorm_exception, 0x5500, 0x100)
2548 #else
2549 EXC_VIRT_NONE(0x5500, 0x100)
2550 #endif
2551
2552 #ifdef CONFIG_PPC_DENORMALISATION
2553 TRAMP_REAL_BEGIN(denorm_assist)
2554 BEGIN_FTR_SECTION
2555 /*
2556 * To denormalise we need to move a copy of the register to itself.
2557 * For POWER6 do that here for all FP regs.
2558 */
2559 mfmsr r10
2560 ori r10,r10,(MSR_FP|MSR_FE0|MSR_FE1)
2561 xori r10,r10,(MSR_FE0|MSR_FE1)
2562 mtmsrd r10
2563 sync
2564
2565 .Lreg=0
2566 .rept 32
2567 fmr .Lreg,.Lreg
2568 .Lreg=.Lreg+1
2569 .endr
2570
2571 FTR_SECTION_ELSE
2572 /*
2573 * To denormalise we need to move a copy of the register to itself.
2574 * For POWER7 do that here for the first 32 VSX registers only.
2575 */
2576 mfmsr r10
2577 oris r10,r10,MSR_VSX@h
2578 mtmsrd r10
2579 sync
2580
2581 .Lreg=0
2582 .rept 32
2583 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2584 .Lreg=.Lreg+1
2585 .endr
2586
2587 ALT_FTR_SECTION_END_IFCLR(CPU_FTR_ARCH_206)
2588
2589 BEGIN_FTR_SECTION
2590 b denorm_done
2591 END_FTR_SECTION_IFCLR(CPU_FTR_ARCH_207S)
2592 /*
2593 * To denormalise we need to move a copy of the register to itself.
2594 * For POWER8 we need to do that for all 64 VSX registers
2595 */
2596 .Lreg=32
2597 .rept 32
2598 XVCPSGNDP(.Lreg,.Lreg,.Lreg)
2599 .Lreg=.Lreg+1
2600 .endr
2601
2602 denorm_done:
2603 mfspr r11,SPRN_HSRR0
2604 subi r11,r11,4
2605 mtspr SPRN_HSRR0,r11
2606 mtcrf 0x80,r9
2607 ld r9,PACA_EXGEN+EX_R9(r13)
2608 BEGIN_FTR_SECTION
2609 ld r10,PACA_EXGEN+EX_PPR(r13)
2610 mtspr SPRN_PPR,r10
2611 END_FTR_SECTION_IFSET(CPU_FTR_HAS_PPR)
2612 BEGIN_FTR_SECTION
2613 ld r10,PACA_EXGEN+EX_CFAR(r13)
2614 mtspr SPRN_CFAR,r10
2615 END_FTR_SECTION_IFSET(CPU_FTR_CFAR)
2616 ld r10,PACA_EXGEN+EX_R10(r13)
2617 ld r11,PACA_EXGEN+EX_R11(r13)
2618 ld r12,PACA_EXGEN+EX_R12(r13)
2619 ld r13,PACA_EXGEN+EX_R13(r13)
2620 HRFI_TO_UNKNOWN
2621 b .
2622 #endif
2623
2624 EXC_COMMON_BEGIN(denorm_exception_common)
2625 GEN_COMMON denorm_exception
2626 addi r3,r1,STACK_FRAME_OVERHEAD
2627 bl unknown_exception
2628 b interrupt_return
2629
2630 GEN_KVM denorm_exception
2631
2632
2633 #ifdef CONFIG_CBE_RAS
2634 INT_DEFINE_BEGIN(cbe_maintenance)
2635 IVEC=0x1600
2636 IHSRR=1
2637 IKVM_SKIP=1
2638 IKVM_REAL=1
2639 INT_DEFINE_END(cbe_maintenance)
2640
2641 EXC_REAL_BEGIN(cbe_maintenance, 0x1600, 0x100)
2642 GEN_INT_ENTRY cbe_maintenance, virt=0
2643 EXC_REAL_END(cbe_maintenance, 0x1600, 0x100)
2644 EXC_VIRT_NONE(0x5600, 0x100)
2645 EXC_COMMON_BEGIN(cbe_maintenance_common)
2646 GEN_COMMON cbe_maintenance
2647 addi r3,r1,STACK_FRAME_OVERHEAD
2648 bl cbe_maintenance_exception
2649 b interrupt_return
2650
2651 GEN_KVM cbe_maintenance
2652
2653 #else /* CONFIG_CBE_RAS */
2654 EXC_REAL_NONE(0x1600, 0x100)
2655 EXC_VIRT_NONE(0x5600, 0x100)
2656 #endif
2657
2658
2659 INT_DEFINE_BEGIN(altivec_assist)
2660 IVEC=0x1700
2661 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2662 IKVM_REAL=1
2663 #endif
2664 INT_DEFINE_END(altivec_assist)
2665
2666 EXC_REAL_BEGIN(altivec_assist, 0x1700, 0x100)
2667 GEN_INT_ENTRY altivec_assist, virt=0
2668 EXC_REAL_END(altivec_assist, 0x1700, 0x100)
2669 EXC_VIRT_BEGIN(altivec_assist, 0x5700, 0x100)
2670 GEN_INT_ENTRY altivec_assist, virt=1
2671 EXC_VIRT_END(altivec_assist, 0x5700, 0x100)
2672 EXC_COMMON_BEGIN(altivec_assist_common)
2673 GEN_COMMON altivec_assist
2674 addi r3,r1,STACK_FRAME_OVERHEAD
2675 #ifdef CONFIG_ALTIVEC
2676 bl altivec_assist_exception
2677 REST_NVGPRS(r1) /* instruction emulation may change GPRs */
2678 #else
2679 bl unknown_exception
2680 #endif
2681 b interrupt_return
2682
2683 GEN_KVM altivec_assist
2684
2685
2686 #ifdef CONFIG_CBE_RAS
2687 INT_DEFINE_BEGIN(cbe_thermal)
2688 IVEC=0x1800
2689 IHSRR=1
2690 IKVM_SKIP=1
2691 IKVM_REAL=1
2692 INT_DEFINE_END(cbe_thermal)
2693
2694 EXC_REAL_BEGIN(cbe_thermal, 0x1800, 0x100)
2695 GEN_INT_ENTRY cbe_thermal, virt=0
2696 EXC_REAL_END(cbe_thermal, 0x1800, 0x100)
2697 EXC_VIRT_NONE(0x5800, 0x100)
2698 EXC_COMMON_BEGIN(cbe_thermal_common)
2699 GEN_COMMON cbe_thermal
2700 addi r3,r1,STACK_FRAME_OVERHEAD
2701 bl cbe_thermal_exception
2702 b interrupt_return
2703
2704 GEN_KVM cbe_thermal
2705
2706 #else /* CONFIG_CBE_RAS */
2707 EXC_REAL_NONE(0x1800, 0x100)
2708 EXC_VIRT_NONE(0x5800, 0x100)
2709 #endif
2710
2711
2712 #ifdef CONFIG_PPC_WATCHDOG
2713
2714 INT_DEFINE_BEGIN(soft_nmi)
2715 IVEC=0x900
2716 ISTACK=0
2717 IRECONCILE=0 /* Soft-NMI may fire under local_irq_disable */
2718 INT_DEFINE_END(soft_nmi)
2719
2720 /*
2721 * Branch to soft_nmi_interrupt using the emergency stack. The emergency
2722 * stack is one that is usable by maskable interrupts so long as MSR_EE
2723 * remains off. It is used for recovery when something has corrupted the
2724 * normal kernel stack, for example. The "soft NMI" must not use the process
2725 * stack because we want irq disabled sections to avoid touching the stack
2726 * at all (other than PMU interrupts), so use the emergency stack for this,
2727 * and run it entirely with interrupts hard disabled.
2728 */
2729 EXC_COMMON_BEGIN(soft_nmi_common)
2730 mfspr r11,SPRN_SRR0
2731 mr r10,r1
2732 ld r1,PACAEMERGSP(r13)
2733 subi r1,r1,INT_FRAME_SIZE
2734 __GEN_COMMON_BODY soft_nmi
2735
2736 /*
2737 * Set IRQS_ALL_DISABLED and save PACAIRQHAPPENED (see
2738 * system_reset_common)
2739 */
2740 li r10,IRQS_ALL_DISABLED
2741 stb r10,PACAIRQSOFTMASK(r13)
2742 lbz r10,PACAIRQHAPPENED(r13)
2743 std r10,_DAR(r1)
2744 ori r10,r10,PACA_IRQ_HARD_DIS
2745 stb r10,PACAIRQHAPPENED(r13)
2746
2747 addi r3,r1,STACK_FRAME_OVERHEAD
2748 bl soft_nmi_interrupt
2749
2750 /* Clear MSR_RI before setting SRR0 and SRR1. */
2751 li r9,0
2752 mtmsrd r9,1
2753
2754 /*
2755 * Restore soft mask settings.
2756 */
2757 ld r10,_DAR(r1)
2758 stb r10,PACAIRQHAPPENED(r13)
2759 ld r10,SOFTE(r1)
2760 stb r10,PACAIRQSOFTMASK(r13)
2761
2762 kuap_restore_amr r10
2763 EXCEPTION_RESTORE_REGS hsrr=0
2764 RFI_TO_KERNEL
2765
2766 #endif /* CONFIG_PPC_WATCHDOG */
2767
2768 /*
2769 * An interrupt came in while soft-disabled. We set paca->irq_happened, then:
2770 * - If it was a decrementer interrupt, we bump the dec to max and and return.
2771 * - If it was a doorbell we return immediately since doorbells are edge
2772 * triggered and won't automatically refire.
2773 * - If it was a HMI we return immediately since we handled it in realmode
2774 * and it won't refire.
2775 * - Else it is one of PACA_IRQ_MUST_HARD_MASK, so hard disable and return.
2776 * This is called with r10 containing the value to OR to the paca field.
2777 */
2778 .macro MASKED_INTERRUPT hsrr=0
2779 .if \hsrr
2780 masked_Hinterrupt:
2781 .else
2782 masked_interrupt:
2783 .endif
2784 lbz r11,PACAIRQHAPPENED(r13)
2785 or r11,r11,r10
2786 stb r11,PACAIRQHAPPENED(r13)
2787 cmpwi r10,PACA_IRQ_DEC
2788 bne 1f
2789 lis r10,0x7fff
2790 ori r10,r10,0xffff
2791 mtspr SPRN_DEC,r10
2792 #ifdef CONFIG_PPC_WATCHDOG
2793 b soft_nmi_common
2794 #else
2795 b 2f
2796 #endif
2797 1: andi. r10,r10,PACA_IRQ_MUST_HARD_MASK
2798 beq 2f
2799 xori r12,r12,MSR_EE /* clear MSR_EE */
2800 .if \hsrr
2801 mtspr SPRN_HSRR1,r12
2802 .else
2803 mtspr SPRN_SRR1,r12
2804 .endif
2805 ori r11,r11,PACA_IRQ_HARD_DIS
2806 stb r11,PACAIRQHAPPENED(r13)
2807 2: /* done */
2808 ld r10,PACA_EXGEN+EX_CTR(r13)
2809 mtctr r10
2810 mtcrf 0x80,r9
2811 std r1,PACAR1(r13)
2812 ld r9,PACA_EXGEN+EX_R9(r13)
2813 ld r10,PACA_EXGEN+EX_R10(r13)
2814 ld r11,PACA_EXGEN+EX_R11(r13)
2815 ld r12,PACA_EXGEN+EX_R12(r13)
2816 /* returns to kernel where r13 must be set up, so don't restore it */
2817 .if \hsrr
2818 HRFI_TO_KERNEL
2819 .else
2820 RFI_TO_KERNEL
2821 .endif
2822 b .
2823 .endm
2824
2825 TRAMP_REAL_BEGIN(stf_barrier_fallback)
2826 std r9,PACA_EXRFI+EX_R9(r13)
2827 std r10,PACA_EXRFI+EX_R10(r13)
2828 sync
2829 ld r9,PACA_EXRFI+EX_R9(r13)
2830 ld r10,PACA_EXRFI+EX_R10(r13)
2831 ori 31,31,0
2832 .rept 14
2833 b 1f
2834 1:
2835 .endr
2836 blr
2837
2838 TRAMP_REAL_BEGIN(rfi_flush_fallback)
2839 SET_SCRATCH0(r13);
2840 GET_PACA(r13);
2841 std r1,PACA_EXRFI+EX_R12(r13)
2842 ld r1,PACAKSAVE(r13)
2843 std r9,PACA_EXRFI+EX_R9(r13)
2844 std r10,PACA_EXRFI+EX_R10(r13)
2845 std r11,PACA_EXRFI+EX_R11(r13)
2846 mfctr r9
2847 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2848 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2849 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2850 mtctr r11
2851 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2852
2853 /* order ld/st prior to dcbt stop all streams with flushing */
2854 sync
2855
2856 /*
2857 * The load adresses are at staggered offsets within cachelines,
2858 * which suits some pipelines better (on others it should not
2859 * hurt).
2860 */
2861 1:
2862 ld r11,(0x80 + 8)*0(r10)
2863 ld r11,(0x80 + 8)*1(r10)
2864 ld r11,(0x80 + 8)*2(r10)
2865 ld r11,(0x80 + 8)*3(r10)
2866 ld r11,(0x80 + 8)*4(r10)
2867 ld r11,(0x80 + 8)*5(r10)
2868 ld r11,(0x80 + 8)*6(r10)
2869 ld r11,(0x80 + 8)*7(r10)
2870 addi r10,r10,0x80*8
2871 bdnz 1b
2872
2873 mtctr r9
2874 ld r9,PACA_EXRFI+EX_R9(r13)
2875 ld r10,PACA_EXRFI+EX_R10(r13)
2876 ld r11,PACA_EXRFI+EX_R11(r13)
2877 ld r1,PACA_EXRFI+EX_R12(r13)
2878 GET_SCRATCH0(r13);
2879 rfid
2880
2881 TRAMP_REAL_BEGIN(hrfi_flush_fallback)
2882 SET_SCRATCH0(r13);
2883 GET_PACA(r13);
2884 std r1,PACA_EXRFI+EX_R12(r13)
2885 ld r1,PACAKSAVE(r13)
2886 std r9,PACA_EXRFI+EX_R9(r13)
2887 std r10,PACA_EXRFI+EX_R10(r13)
2888 std r11,PACA_EXRFI+EX_R11(r13)
2889 mfctr r9
2890 ld r10,PACA_RFI_FLUSH_FALLBACK_AREA(r13)
2891 ld r11,PACA_L1D_FLUSH_SIZE(r13)
2892 srdi r11,r11,(7 + 3) /* 128 byte lines, unrolled 8x */
2893 mtctr r11
2894 DCBT_BOOK3S_STOP_ALL_STREAM_IDS(r11) /* Stop prefetch streams */
2895
2896 /* order ld/st prior to dcbt stop all streams with flushing */
2897 sync
2898
2899 /*
2900 * The load adresses are at staggered offsets within cachelines,
2901 * which suits some pipelines better (on others it should not
2902 * hurt).
2903 */
2904 1:
2905 ld r11,(0x80 + 8)*0(r10)
2906 ld r11,(0x80 + 8)*1(r10)
2907 ld r11,(0x80 + 8)*2(r10)
2908 ld r11,(0x80 + 8)*3(r10)
2909 ld r11,(0x80 + 8)*4(r10)
2910 ld r11,(0x80 + 8)*5(r10)
2911 ld r11,(0x80 + 8)*6(r10)
2912 ld r11,(0x80 + 8)*7(r10)
2913 addi r10,r10,0x80*8
2914 bdnz 1b
2915
2916 mtctr r9
2917 ld r9,PACA_EXRFI+EX_R9(r13)
2918 ld r10,PACA_EXRFI+EX_R10(r13)
2919 ld r11,PACA_EXRFI+EX_R11(r13)
2920 ld r1,PACA_EXRFI+EX_R12(r13)
2921 GET_SCRATCH0(r13);
2922 hrfid
2923
2924 USE_TEXT_SECTION()
2925 MASKED_INTERRUPT
2926 MASKED_INTERRUPT hsrr=1
2927
2928 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2929 kvmppc_skip_interrupt:
2930 /*
2931 * Here all GPRs are unchanged from when the interrupt happened
2932 * except for r13, which is saved in SPRG_SCRATCH0.
2933 */
2934 mfspr r13, SPRN_SRR0
2935 addi r13, r13, 4
2936 mtspr SPRN_SRR0, r13
2937 GET_SCRATCH0(r13)
2938 RFI_TO_KERNEL
2939 b .
2940
2941 kvmppc_skip_Hinterrupt:
2942 /*
2943 * Here all GPRs are unchanged from when the interrupt happened
2944 * except for r13, which is saved in SPRG_SCRATCH0.
2945 */
2946 mfspr r13, SPRN_HSRR0
2947 addi r13, r13, 4
2948 mtspr SPRN_HSRR0, r13
2949 GET_SCRATCH0(r13)
2950 HRFI_TO_KERNEL
2951 b .
2952 #endif
2953
2954 /*
2955 * Relocation-on interrupts: A subset of the interrupts can be delivered
2956 * with IR=1/DR=1, if AIL==2 and MSR.HV won't be changed by delivering
2957 * it. Addresses are the same as the original interrupt addresses, but
2958 * offset by 0xc000000000004000.
2959 * It's impossible to receive interrupts below 0x300 via this mechanism.
2960 * KVM: None of these traps are from the guest ; anything that escalated
2961 * to HV=1 from HV=0 is delivered via real mode handlers.
2962 */
2963
2964 /*
2965 * This uses the standard macro, since the original 0x300 vector
2966 * only has extra guff for STAB-based processors -- which never
2967 * come here.
2968 */
2969
2970 EXC_COMMON_BEGIN(ppc64_runlatch_on_trampoline)
2971 b __ppc64_runlatch_on
2972
2973 USE_FIXED_SECTION(virt_trampolines)
2974 /*
2975 * The __end_interrupts marker must be past the out-of-line (OOL)
2976 * handlers, so that they are copied to real address 0x100 when running
2977 * a relocatable kernel. This ensures they can be reached from the short
2978 * trampoline handlers (like 0x4f00, 0x4f20, etc.) which branch
2979 * directly, without using LOAD_HANDLER().
2980 */
2981 .align 7
2982 .globl __end_interrupts
2983 __end_interrupts:
2984 DEFINE_FIXED_SYMBOL(__end_interrupts)
2985
2986 #ifdef CONFIG_PPC_970_NAP
2987 /*
2988 * Called by exception entry code if _TLF_NAPPING was set, this clears
2989 * the NAPPING flag, and redirects the exception exit to
2990 * power4_fixup_nap_return.
2991 */
2992 .globl power4_fixup_nap
2993 EXC_COMMON_BEGIN(power4_fixup_nap)
2994 andc r9,r9,r10
2995 std r9,TI_LOCAL_FLAGS(r11)
2996 LOAD_REG_ADDR(r10, power4_idle_nap_return)
2997 std r10,_NIP(r1)
2998 blr
2999
3000 power4_idle_nap_return:
3001 blr
3002 #endif
3003
3004 CLOSE_FIXED_SECTION(real_vectors);
3005 CLOSE_FIXED_SECTION(real_trampolines);
3006 CLOSE_FIXED_SECTION(virt_vectors);
3007 CLOSE_FIXED_SECTION(virt_trampolines);
3008
3009 USE_TEXT_SECTION()
3010
3011 /* MSR[RI] should be clear because this uses SRR[01] */
3012 enable_machine_check:
3013 mflr r0
3014 bcl 20,31,$+4
3015 0: mflr r3
3016 addi r3,r3,(1f - 0b)
3017 mtspr SPRN_SRR0,r3
3018 mfmsr r3
3019 ori r3,r3,MSR_ME
3020 mtspr SPRN_SRR1,r3
3021 RFI_TO_KERNEL
3022 1: mtlr r0
3023 blr
3024
3025 /* MSR[RI] should be clear because this uses SRR[01] */
3026 disable_machine_check:
3027 mflr r0
3028 bcl 20,31,$+4
3029 0: mflr r3
3030 addi r3,r3,(1f - 0b)
3031 mtspr SPRN_SRR0,r3
3032 mfmsr r3
3033 li r4,MSR_ME
3034 andc r3,r3,r4
3035 mtspr SPRN_SRR1,r3
3036 RFI_TO_KERNEL
3037 1: mtlr r0
3038 blr
3039
3040 /*
3041 * Hash table stuff
3042 */
3043 .balign IFETCH_ALIGN_BYTES
3044 do_hash_page:
3045 #ifdef CONFIG_PPC_BOOK3S_64
3046 lis r0,(DSISR_BAD_FAULT_64S | DSISR_DABRMATCH | DSISR_KEYFAULT)@h
3047 ori r0,r0,DSISR_BAD_FAULT_64S@l
3048 and. r0,r5,r0 /* weird error? */
3049 bne- handle_page_fault /* if not, try to insert a HPTE */
3050 ld r11, PACA_THREAD_INFO(r13)
3051 lwz r0,TI_PREEMPT(r11) /* If we're in an "NMI" */
3052 andis. r0,r0,NMI_MASK@h /* (i.e. an irq when soft-disabled) */
3053 bne 77f /* then don't call hash_page now */
3054
3055 /*
3056 * r3 contains the trap number
3057 * r4 contains the faulting address
3058 * r5 contains dsisr
3059 * r6 msr
3060 *
3061 * at return r3 = 0 for success, 1 for page fault, negative for error
3062 */
3063 bl __hash_page /* build HPTE if possible */
3064 cmpdi r3,0 /* see if __hash_page succeeded */
3065
3066 /* Success */
3067 beq interrupt_return /* Return from exception on success */
3068
3069 /* Error */
3070 blt- 13f
3071
3072 /* Reload DAR/DSISR into r4/r5 for the DABR check below */
3073 ld r4,_DAR(r1)
3074 ld r5,_DSISR(r1)
3075 #endif /* CONFIG_PPC_BOOK3S_64 */
3076
3077 /* Here we have a page fault that hash_page can't handle. */
3078 handle_page_fault:
3079 11: andis. r0,r5,DSISR_DABRMATCH@h
3080 bne- handle_dabr_fault
3081 addi r3,r1,STACK_FRAME_OVERHEAD
3082 bl do_page_fault
3083 cmpdi r3,0
3084 beq+ interrupt_return
3085 mr r5,r3
3086 addi r3,r1,STACK_FRAME_OVERHEAD
3087 ld r4,_DAR(r1)
3088 bl bad_page_fault
3089 b interrupt_return
3090
3091 /* We have a data breakpoint exception - handle it */
3092 handle_dabr_fault:
3093 ld r4,_DAR(r1)
3094 ld r5,_DSISR(r1)
3095 addi r3,r1,STACK_FRAME_OVERHEAD
3096 bl do_break
3097 /*
3098 * do_break() may have changed the NV GPRS while handling a breakpoint.
3099 * If so, we need to restore them with their updated values.
3100 */
3101 REST_NVGPRS(r1)
3102 b interrupt_return
3103
3104
3105 #ifdef CONFIG_PPC_BOOK3S_64
3106 /* We have a page fault that hash_page could handle but HV refused
3107 * the PTE insertion
3108 */
3109 13: mr r5,r3
3110 addi r3,r1,STACK_FRAME_OVERHEAD
3111 ld r4,_DAR(r1)
3112 bl low_hash_fault
3113 b interrupt_return
3114 #endif
3115
3116 /*
3117 * We come here as a result of a DSI at a point where we don't want
3118 * to call hash_page, such as when we are accessing memory (possibly
3119 * user memory) inside a PMU interrupt that occurred while interrupts
3120 * were soft-disabled. We want to invoke the exception handler for
3121 * the access, or panic if there isn't a handler.
3122 */
3123 77: addi r3,r1,STACK_FRAME_OVERHEAD
3124 li r5,SIGSEGV
3125 bl bad_page_fault
3126 b interrupt_return