]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kernel/setup_64.c
Merge tag 'riscv-for-linus-5.7-rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / arch / powerpc / kernel / setup_64.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33
34 #include <asm/debugfs.h>
35 #include <asm/io.h>
36 #include <asm/kdump.h>
37 #include <asm/prom.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69
70 #include "setup.h"
71
72 int spinning_secondaries;
73 u64 ppc64_pft_size;
74
75 struct ppc64_caches ppc64_caches = {
76 .l1d = {
77 .block_size = 0x40,
78 .log_block_size = 6,
79 },
80 .l1i = {
81 .block_size = 0x40,
82 .log_block_size = 6
83 },
84 };
85 EXPORT_SYMBOL_GPL(ppc64_caches);
86
87 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
88 void __init setup_tlb_core_data(void)
89 {
90 int cpu;
91
92 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
93
94 for_each_possible_cpu(cpu) {
95 int first = cpu_first_thread_sibling(cpu);
96
97 /*
98 * If we boot via kdump on a non-primary thread,
99 * make sure we point at the thread that actually
100 * set up this TLB.
101 */
102 if (cpu_first_thread_sibling(boot_cpuid) == first)
103 first = boot_cpuid;
104
105 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
106
107 /*
108 * If we have threads, we need either tlbsrx.
109 * or e6500 tablewalk mode, or else TLB handlers
110 * will be racy and could produce duplicate entries.
111 * Should we panic instead?
112 */
113 WARN_ONCE(smt_enabled_at_boot >= 2 &&
114 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
115 book3e_htw_mode != PPC_HTW_E6500,
116 "%s: unsupported MMU configuration\n", __func__);
117 }
118 }
119 #endif
120
121 #ifdef CONFIG_SMP
122
123 static char *smt_enabled_cmdline;
124
125 /* Look for ibm,smt-enabled OF option */
126 void __init check_smt_enabled(void)
127 {
128 struct device_node *dn;
129 const char *smt_option;
130
131 /* Default to enabling all threads */
132 smt_enabled_at_boot = threads_per_core;
133
134 /* Allow the command line to overrule the OF option */
135 if (smt_enabled_cmdline) {
136 if (!strcmp(smt_enabled_cmdline, "on"))
137 smt_enabled_at_boot = threads_per_core;
138 else if (!strcmp(smt_enabled_cmdline, "off"))
139 smt_enabled_at_boot = 0;
140 else {
141 int smt;
142 int rc;
143
144 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
145 if (!rc)
146 smt_enabled_at_boot =
147 min(threads_per_core, smt);
148 }
149 } else {
150 dn = of_find_node_by_path("/options");
151 if (dn) {
152 smt_option = of_get_property(dn, "ibm,smt-enabled",
153 NULL);
154
155 if (smt_option) {
156 if (!strcmp(smt_option, "on"))
157 smt_enabled_at_boot = threads_per_core;
158 else if (!strcmp(smt_option, "off"))
159 smt_enabled_at_boot = 0;
160 }
161
162 of_node_put(dn);
163 }
164 }
165 }
166
167 /* Look for smt-enabled= cmdline option */
168 static int __init early_smt_enabled(char *p)
169 {
170 smt_enabled_cmdline = p;
171 return 0;
172 }
173 early_param("smt-enabled", early_smt_enabled);
174
175 #endif /* CONFIG_SMP */
176
177 /** Fix up paca fields required for the boot cpu */
178 static void __init fixup_boot_paca(void)
179 {
180 /* The boot cpu is started */
181 get_paca()->cpu_start = 1;
182 /* Allow percpu accesses to work until we setup percpu data */
183 get_paca()->data_offset = 0;
184 /* Mark interrupts disabled in PACA */
185 irq_soft_mask_set(IRQS_DISABLED);
186 }
187
188 static void __init configure_exceptions(void)
189 {
190 /*
191 * Setup the trampolines from the lowmem exception vectors
192 * to the kdump kernel when not using a relocatable kernel.
193 */
194 setup_kdump_trampoline();
195
196 /* Under a PAPR hypervisor, we need hypercalls */
197 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
198 /* Enable AIL if possible */
199 pseries_enable_reloc_on_exc();
200
201 /*
202 * Tell the hypervisor that we want our exceptions to
203 * be taken in little endian mode.
204 *
205 * We don't call this for big endian as our calling convention
206 * makes us always enter in BE, and the call may fail under
207 * some circumstances with kdump.
208 */
209 #ifdef __LITTLE_ENDIAN__
210 pseries_little_endian_exceptions();
211 #endif
212 } else {
213 /* Set endian mode using OPAL */
214 if (firmware_has_feature(FW_FEATURE_OPAL))
215 opal_configure_cores();
216
217 /* AIL on native is done in cpu_ready_for_interrupts() */
218 }
219 }
220
221 static void cpu_ready_for_interrupts(void)
222 {
223 /*
224 * Enable AIL if supported, and we are in hypervisor mode. This
225 * is called once for every processor.
226 *
227 * If we are not in hypervisor mode the job is done once for
228 * the whole partition in configure_exceptions().
229 */
230 if (cpu_has_feature(CPU_FTR_HVMODE) &&
231 cpu_has_feature(CPU_FTR_ARCH_207S)) {
232 unsigned long lpcr = mfspr(SPRN_LPCR);
233 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
234 }
235
236 /*
237 * Set HFSCR:TM based on CPU features:
238 * In the special case of TM no suspend (P9N DD2.1), Linux is
239 * told TM is off via the dt-ftrs but told to (partially) use
240 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
241 * will be off from dt-ftrs but we need to turn it on for the
242 * no suspend case.
243 */
244 if (cpu_has_feature(CPU_FTR_HVMODE)) {
245 if (cpu_has_feature(CPU_FTR_TM_COMP))
246 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
247 else
248 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
249 }
250
251 /* Set IR and DR in PACA MSR */
252 get_paca()->kernel_msr = MSR_KERNEL;
253 }
254
255 unsigned long spr_default_dscr = 0;
256
257 void __init record_spr_defaults(void)
258 {
259 if (early_cpu_has_feature(CPU_FTR_DSCR))
260 spr_default_dscr = mfspr(SPRN_DSCR);
261 }
262
263 /*
264 * Early initialization entry point. This is called by head.S
265 * with MMU translation disabled. We rely on the "feature" of
266 * the CPU that ignores the top 2 bits of the address in real
267 * mode so we can access kernel globals normally provided we
268 * only toy with things in the RMO region. From here, we do
269 * some early parsing of the device-tree to setup out MEMBLOCK
270 * data structures, and allocate & initialize the hash table
271 * and segment tables so we can start running with translation
272 * enabled.
273 *
274 * It is this function which will call the probe() callback of
275 * the various platform types and copy the matching one to the
276 * global ppc_md structure. Your platform can eventually do
277 * some very early initializations from the probe() routine, but
278 * this is not recommended, be very careful as, for example, the
279 * device-tree is not accessible via normal means at this point.
280 */
281
282 void __init __nostackprotector early_setup(unsigned long dt_ptr)
283 {
284 static __initdata struct paca_struct boot_paca;
285
286 /* -------- printk is _NOT_ safe to use here ! ------- */
287
288 /*
289 * Assume we're on cpu 0 for now.
290 *
291 * We need to load a PACA very early for a few reasons.
292 *
293 * The stack protector canary is stored in the paca, so as soon as we
294 * call any stack protected code we need r13 pointing somewhere valid.
295 *
296 * If we are using kcov it will call in_task() in its instrumentation,
297 * which relies on the current task from the PACA.
298 *
299 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
300 * printk(), which can trigger both stack protector and kcov.
301 *
302 * percpu variables and spin locks also use the paca.
303 *
304 * So set up a temporary paca. It will be replaced below once we know
305 * what CPU we are on.
306 */
307 initialise_paca(&boot_paca, 0);
308 setup_paca(&boot_paca);
309 fixup_boot_paca();
310
311 /* -------- printk is now safe to use ------- */
312
313 /* Try new device tree based feature discovery ... */
314 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
315 /* Otherwise use the old style CPU table */
316 identify_cpu(0, mfspr(SPRN_PVR));
317
318 /* Enable early debugging if any specified (see udbg.h) */
319 udbg_early_init();
320
321 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
322
323 /*
324 * Do early initialization using the flattened device
325 * tree, such as retrieving the physical memory map or
326 * calculating/retrieving the hash table size.
327 */
328 early_init_devtree(__va(dt_ptr));
329
330 /* Now we know the logical id of our boot cpu, setup the paca. */
331 if (boot_cpuid != 0) {
332 /* Poison paca_ptrs[0] again if it's not the boot cpu */
333 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
334 }
335 setup_paca(paca_ptrs[boot_cpuid]);
336 fixup_boot_paca();
337
338 /*
339 * Configure exception handlers. This include setting up trampolines
340 * if needed, setting exception endian mode, etc...
341 */
342 configure_exceptions();
343
344 /*
345 * Configure Kernel Userspace Protection. This needs to happen before
346 * feature fixups for platforms that implement this using features.
347 */
348 setup_kup();
349
350 /* Apply all the dynamic patching */
351 apply_feature_fixups();
352 setup_feature_keys();
353
354 early_ioremap_setup();
355
356 /* Initialize the hash table or TLB handling */
357 early_init_mmu();
358
359 /*
360 * After firmware and early platform setup code has set things up,
361 * we note the SPR values for configurable control/performance
362 * registers, and use those as initial defaults.
363 */
364 record_spr_defaults();
365
366 /*
367 * At this point, we can let interrupts switch to virtual mode
368 * (the MMU has been setup), so adjust the MSR in the PACA to
369 * have IR and DR set and enable AIL if it exists
370 */
371 cpu_ready_for_interrupts();
372
373 /*
374 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
375 * will only actually get enabled on the boot cpu much later once
376 * ftrace itself has been initialized.
377 */
378 this_cpu_enable_ftrace();
379
380 udbg_printf(" <- %s()\n", __func__);
381
382 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
383 /*
384 * This needs to be done *last* (after the above udbg_printf() even)
385 *
386 * Right after we return from this function, we turn on the MMU
387 * which means the real-mode access trick that btext does will
388 * no longer work, it needs to switch to using a real MMU
389 * mapping. This call will ensure that it does
390 */
391 btext_map();
392 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
393 }
394
395 #ifdef CONFIG_SMP
396 void early_setup_secondary(void)
397 {
398 /* Mark interrupts disabled in PACA */
399 irq_soft_mask_set(IRQS_DISABLED);
400
401 /* Initialize the hash table or TLB handling */
402 early_init_mmu_secondary();
403
404 /* Perform any KUP setup that is per-cpu */
405 setup_kup();
406
407 /*
408 * At this point, we can let interrupts switch to virtual mode
409 * (the MMU has been setup), so adjust the MSR in the PACA to
410 * have IR and DR set.
411 */
412 cpu_ready_for_interrupts();
413 }
414
415 #endif /* CONFIG_SMP */
416
417 void panic_smp_self_stop(void)
418 {
419 hard_irq_disable();
420 spin_begin();
421 while (1)
422 spin_cpu_relax();
423 }
424
425 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
426 static bool use_spinloop(void)
427 {
428 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
429 /*
430 * See comments in head_64.S -- not all platforms insert
431 * secondaries at __secondary_hold and wait at the spin
432 * loop.
433 */
434 if (firmware_has_feature(FW_FEATURE_OPAL))
435 return false;
436 return true;
437 }
438
439 /*
440 * When book3e boots from kexec, the ePAPR spin table does
441 * not get used.
442 */
443 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
444 }
445
446 void smp_release_cpus(void)
447 {
448 unsigned long *ptr;
449 int i;
450
451 if (!use_spinloop())
452 return;
453
454 /* All secondary cpus are spinning on a common spinloop, release them
455 * all now so they can start to spin on their individual paca
456 * spinloops. For non SMP kernels, the secondary cpus never get out
457 * of the common spinloop.
458 */
459
460 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
461 - PHYSICAL_START);
462 *ptr = ppc_function_entry(generic_secondary_smp_init);
463
464 /* And wait a bit for them to catch up */
465 for (i = 0; i < 100000; i++) {
466 mb();
467 HMT_low();
468 if (spinning_secondaries == 0)
469 break;
470 udelay(1);
471 }
472 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
473 }
474 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
475
476 /*
477 * Initialize some remaining members of the ppc64_caches and systemcfg
478 * structures
479 * (at least until we get rid of them completely). This is mostly some
480 * cache informations about the CPU that will be used by cache flush
481 * routines and/or provided to userland
482 */
483
484 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
485 u32 bsize, u32 sets)
486 {
487 info->size = size;
488 info->sets = sets;
489 info->line_size = lsize;
490 info->block_size = bsize;
491 info->log_block_size = __ilog2(bsize);
492 if (bsize)
493 info->blocks_per_page = PAGE_SIZE / bsize;
494 else
495 info->blocks_per_page = 0;
496
497 if (sets == 0)
498 info->assoc = 0xffff;
499 else
500 info->assoc = size / (sets * lsize);
501 }
502
503 static bool __init parse_cache_info(struct device_node *np,
504 bool icache,
505 struct ppc_cache_info *info)
506 {
507 static const char *ipropnames[] __initdata = {
508 "i-cache-size",
509 "i-cache-sets",
510 "i-cache-block-size",
511 "i-cache-line-size",
512 };
513 static const char *dpropnames[] __initdata = {
514 "d-cache-size",
515 "d-cache-sets",
516 "d-cache-block-size",
517 "d-cache-line-size",
518 };
519 const char **propnames = icache ? ipropnames : dpropnames;
520 const __be32 *sizep, *lsizep, *bsizep, *setsp;
521 u32 size, lsize, bsize, sets;
522 bool success = true;
523
524 size = 0;
525 sets = -1u;
526 lsize = bsize = cur_cpu_spec->dcache_bsize;
527 sizep = of_get_property(np, propnames[0], NULL);
528 if (sizep != NULL)
529 size = be32_to_cpu(*sizep);
530 setsp = of_get_property(np, propnames[1], NULL);
531 if (setsp != NULL)
532 sets = be32_to_cpu(*setsp);
533 bsizep = of_get_property(np, propnames[2], NULL);
534 lsizep = of_get_property(np, propnames[3], NULL);
535 if (bsizep == NULL)
536 bsizep = lsizep;
537 if (lsizep == NULL)
538 lsizep = bsizep;
539 if (lsizep != NULL)
540 lsize = be32_to_cpu(*lsizep);
541 if (bsizep != NULL)
542 bsize = be32_to_cpu(*bsizep);
543 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
544 success = false;
545
546 /*
547 * OF is weird .. it represents fully associative caches
548 * as "1 way" which doesn't make much sense and doesn't
549 * leave room for direct mapped. We'll assume that 0
550 * in OF means direct mapped for that reason.
551 */
552 if (sets == 1)
553 sets = 0;
554 else if (sets == 0)
555 sets = 1;
556
557 init_cache_info(info, size, lsize, bsize, sets);
558
559 return success;
560 }
561
562 void __init initialize_cache_info(void)
563 {
564 struct device_node *cpu = NULL, *l2, *l3 = NULL;
565 u32 pvr;
566
567 /*
568 * All shipping POWER8 machines have a firmware bug that
569 * puts incorrect information in the device-tree. This will
570 * be (hopefully) fixed for future chips but for now hard
571 * code the values if we are running on one of these
572 */
573 pvr = PVR_VER(mfspr(SPRN_PVR));
574 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
575 pvr == PVR_POWER8NVL) {
576 /* size lsize blk sets */
577 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
578 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
579 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
580 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
581 } else
582 cpu = of_find_node_by_type(NULL, "cpu");
583
584 /*
585 * We're assuming *all* of the CPUs have the same
586 * d-cache and i-cache sizes... -Peter
587 */
588 if (cpu) {
589 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
590 pr_warn("Argh, can't find dcache properties !\n");
591
592 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
593 pr_warn("Argh, can't find icache properties !\n");
594
595 /*
596 * Try to find the L2 and L3 if any. Assume they are
597 * unified and use the D-side properties.
598 */
599 l2 = of_find_next_cache_node(cpu);
600 of_node_put(cpu);
601 if (l2) {
602 parse_cache_info(l2, false, &ppc64_caches.l2);
603 l3 = of_find_next_cache_node(l2);
604 of_node_put(l2);
605 }
606 if (l3) {
607 parse_cache_info(l3, false, &ppc64_caches.l3);
608 of_node_put(l3);
609 }
610 }
611
612 /* For use by binfmt_elf */
613 dcache_bsize = ppc64_caches.l1d.block_size;
614 icache_bsize = ppc64_caches.l1i.block_size;
615
616 cur_cpu_spec->dcache_bsize = dcache_bsize;
617 cur_cpu_spec->icache_bsize = icache_bsize;
618 }
619
620 /*
621 * This returns the limit below which memory accesses to the linear
622 * mapping are guarnateed not to cause an architectural exception (e.g.,
623 * TLB or SLB miss fault).
624 *
625 * This is used to allocate PACAs and various interrupt stacks that
626 * that are accessed early in interrupt handlers that must not cause
627 * re-entrant interrupts.
628 */
629 __init u64 ppc64_bolted_size(void)
630 {
631 #ifdef CONFIG_PPC_BOOK3E
632 /* Freescale BookE bolts the entire linear mapping */
633 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
634 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
635 return linear_map_top;
636 /* Other BookE, we assume the first GB is bolted */
637 return 1ul << 30;
638 #else
639 /* BookS radix, does not take faults on linear mapping */
640 if (early_radix_enabled())
641 return ULONG_MAX;
642
643 /* BookS hash, the first segment is bolted */
644 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
645 return 1UL << SID_SHIFT_1T;
646 return 1UL << SID_SHIFT;
647 #endif
648 }
649
650 static void *__init alloc_stack(unsigned long limit, int cpu)
651 {
652 void *ptr;
653
654 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
655
656 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
657 MEMBLOCK_LOW_LIMIT, limit,
658 early_cpu_to_node(cpu));
659 if (!ptr)
660 panic("cannot allocate stacks");
661
662 return ptr;
663 }
664
665 void __init irqstack_early_init(void)
666 {
667 u64 limit = ppc64_bolted_size();
668 unsigned int i;
669
670 /*
671 * Interrupt stacks must be in the first segment since we
672 * cannot afford to take SLB misses on them. They are not
673 * accessed in realmode.
674 */
675 for_each_possible_cpu(i) {
676 softirq_ctx[i] = alloc_stack(limit, i);
677 hardirq_ctx[i] = alloc_stack(limit, i);
678 }
679 }
680
681 #ifdef CONFIG_PPC_BOOK3E
682 void __init exc_lvl_early_init(void)
683 {
684 unsigned int i;
685
686 for_each_possible_cpu(i) {
687 void *sp;
688
689 sp = alloc_stack(ULONG_MAX, i);
690 critirq_ctx[i] = sp;
691 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
692
693 sp = alloc_stack(ULONG_MAX, i);
694 dbgirq_ctx[i] = sp;
695 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
696
697 sp = alloc_stack(ULONG_MAX, i);
698 mcheckirq_ctx[i] = sp;
699 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
700 }
701
702 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
703 patch_exception(0x040, exc_debug_debug_book3e);
704 }
705 #endif
706
707 /*
708 * Stack space used when we detect a bad kernel stack pointer, and
709 * early in SMP boots before relocation is enabled. Exclusive emergency
710 * stack for machine checks.
711 */
712 void __init emergency_stack_init(void)
713 {
714 u64 limit;
715 unsigned int i;
716
717 /*
718 * Emergency stacks must be under 256MB, we cannot afford to take
719 * SLB misses on them. The ABI also requires them to be 128-byte
720 * aligned.
721 *
722 * Since we use these as temporary stacks during secondary CPU
723 * bringup, machine check, system reset, and HMI, we need to get
724 * at them in real mode. This means they must also be within the RMO
725 * region.
726 *
727 * The IRQ stacks allocated elsewhere in this file are zeroed and
728 * initialized in kernel/irq.c. These are initialized here in order
729 * to have emergency stacks available as early as possible.
730 */
731 limit = min(ppc64_bolted_size(), ppc64_rma_size);
732
733 for_each_possible_cpu(i) {
734 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
735
736 #ifdef CONFIG_PPC_BOOK3S_64
737 /* emergency stack for NMI exception handling. */
738 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
739
740 /* emergency stack for machine check exception handling. */
741 paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
742 #endif
743 }
744 }
745
746 #ifdef CONFIG_SMP
747 #define PCPU_DYN_SIZE ()
748
749 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
750 {
751 return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
752 MEMBLOCK_ALLOC_ACCESSIBLE,
753 early_cpu_to_node(cpu));
754
755 }
756
757 static void __init pcpu_fc_free(void *ptr, size_t size)
758 {
759 memblock_free(__pa(ptr), size);
760 }
761
762 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
763 {
764 if (early_cpu_to_node(from) == early_cpu_to_node(to))
765 return LOCAL_DISTANCE;
766 else
767 return REMOTE_DISTANCE;
768 }
769
770 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
771 EXPORT_SYMBOL(__per_cpu_offset);
772
773 void __init setup_per_cpu_areas(void)
774 {
775 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
776 size_t atom_size;
777 unsigned long delta;
778 unsigned int cpu;
779 int rc;
780
781 /*
782 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
783 * to group units. For larger mappings, use 1M atom which
784 * should be large enough to contain a number of units.
785 */
786 if (mmu_linear_psize == MMU_PAGE_4K)
787 atom_size = PAGE_SIZE;
788 else
789 atom_size = 1 << 20;
790
791 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
792 pcpu_fc_alloc, pcpu_fc_free);
793 if (rc < 0)
794 panic("cannot initialize percpu area (err=%d)", rc);
795
796 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
797 for_each_possible_cpu(cpu) {
798 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
799 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
800 }
801 }
802 #endif
803
804 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
805 unsigned long memory_block_size_bytes(void)
806 {
807 if (ppc_md.memory_block_size)
808 return ppc_md.memory_block_size();
809
810 return MIN_MEMORY_BLOCK_SIZE;
811 }
812 #endif
813
814 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
815 struct ppc_pci_io ppc_pci_io;
816 EXPORT_SYMBOL(ppc_pci_io);
817 #endif
818
819 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
820 u64 hw_nmi_get_sample_period(int watchdog_thresh)
821 {
822 return ppc_proc_freq * watchdog_thresh;
823 }
824 #endif
825
826 /*
827 * The perf based hardlockup detector breaks PMU event based branches, so
828 * disable it by default. Book3S has a soft-nmi hardlockup detector based
829 * on the decrementer interrupt, so it does not suffer from this problem.
830 *
831 * It is likely to get false positives in VM guests, so disable it there
832 * by default too.
833 */
834 static int __init disable_hardlockup_detector(void)
835 {
836 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
837 hardlockup_detector_disable();
838 #else
839 if (firmware_has_feature(FW_FEATURE_LPAR))
840 hardlockup_detector_disable();
841 #endif
842
843 return 0;
844 }
845 early_initcall(disable_hardlockup_detector);
846
847 #ifdef CONFIG_PPC_BOOK3S_64
848 static enum l1d_flush_type enabled_flush_types;
849 static void *l1d_flush_fallback_area;
850 static bool no_rfi_flush;
851 bool rfi_flush;
852
853 static int __init handle_no_rfi_flush(char *p)
854 {
855 pr_info("rfi-flush: disabled on command line.");
856 no_rfi_flush = true;
857 return 0;
858 }
859 early_param("no_rfi_flush", handle_no_rfi_flush);
860
861 /*
862 * The RFI flush is not KPTI, but because users will see doco that says to use
863 * nopti we hijack that option here to also disable the RFI flush.
864 */
865 static int __init handle_no_pti(char *p)
866 {
867 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
868 handle_no_rfi_flush(NULL);
869 return 0;
870 }
871 early_param("nopti", handle_no_pti);
872
873 static void do_nothing(void *unused)
874 {
875 /*
876 * We don't need to do the flush explicitly, just enter+exit kernel is
877 * sufficient, the RFI exit handlers will do the right thing.
878 */
879 }
880
881 void rfi_flush_enable(bool enable)
882 {
883 if (enable) {
884 do_rfi_flush_fixups(enabled_flush_types);
885 on_each_cpu(do_nothing, NULL, 1);
886 } else
887 do_rfi_flush_fixups(L1D_FLUSH_NONE);
888
889 rfi_flush = enable;
890 }
891
892 static void __ref init_fallback_flush(void)
893 {
894 u64 l1d_size, limit;
895 int cpu;
896
897 /* Only allocate the fallback flush area once (at boot time). */
898 if (l1d_flush_fallback_area)
899 return;
900
901 l1d_size = ppc64_caches.l1d.size;
902
903 /*
904 * If there is no d-cache-size property in the device tree, l1d_size
905 * could be zero. That leads to the loop in the asm wrapping around to
906 * 2^64-1, and then walking off the end of the fallback area and
907 * eventually causing a page fault which is fatal. Just default to
908 * something vaguely sane.
909 */
910 if (!l1d_size)
911 l1d_size = (64 * 1024);
912
913 limit = min(ppc64_bolted_size(), ppc64_rma_size);
914
915 /*
916 * Align to L1d size, and size it at 2x L1d size, to catch possible
917 * hardware prefetch runoff. We don't have a recipe for load patterns to
918 * reliably avoid the prefetcher.
919 */
920 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
921 l1d_size, MEMBLOCK_LOW_LIMIT,
922 limit, NUMA_NO_NODE);
923 if (!l1d_flush_fallback_area)
924 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
925 __func__, l1d_size * 2, l1d_size, &limit);
926
927
928 for_each_possible_cpu(cpu) {
929 struct paca_struct *paca = paca_ptrs[cpu];
930 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
931 paca->l1d_flush_size = l1d_size;
932 }
933 }
934
935 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
936 {
937 if (types & L1D_FLUSH_FALLBACK) {
938 pr_info("rfi-flush: fallback displacement flush available\n");
939 init_fallback_flush();
940 }
941
942 if (types & L1D_FLUSH_ORI)
943 pr_info("rfi-flush: ori type flush available\n");
944
945 if (types & L1D_FLUSH_MTTRIG)
946 pr_info("rfi-flush: mttrig type flush available\n");
947
948 enabled_flush_types = types;
949
950 if (!no_rfi_flush && !cpu_mitigations_off())
951 rfi_flush_enable(enable);
952 }
953
954 #ifdef CONFIG_DEBUG_FS
955 static int rfi_flush_set(void *data, u64 val)
956 {
957 bool enable;
958
959 if (val == 1)
960 enable = true;
961 else if (val == 0)
962 enable = false;
963 else
964 return -EINVAL;
965
966 /* Only do anything if we're changing state */
967 if (enable != rfi_flush)
968 rfi_flush_enable(enable);
969
970 return 0;
971 }
972
973 static int rfi_flush_get(void *data, u64 *val)
974 {
975 *val = rfi_flush ? 1 : 0;
976 return 0;
977 }
978
979 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
980
981 static __init int rfi_flush_debugfs_init(void)
982 {
983 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
984 return 0;
985 }
986 device_initcall(rfi_flush_debugfs_init);
987 #endif
988 #endif /* CONFIG_PPC_BOOK3S_64 */