]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/powerpc/kernel/signal_32.c
Remove 'type' argument from access_ok() function
[thirdparty/kernel/linux.git] / arch / powerpc / kernel / signal_32.c
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
3 *
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
9 *
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
13 *
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
18 */
19
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/pagemap.h>
29 #include <linux/ratelimit.h>
30 #include <linux/syscalls.h>
31 #ifdef CONFIG_PPC64
32 #include <linux/compat.h>
33 #else
34 #include <linux/wait.h>
35 #include <linux/unistd.h>
36 #include <linux/stddef.h>
37 #include <linux/tty.h>
38 #include <linux/binfmts.h>
39 #endif
40
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/syscalls.h>
44 #include <asm/sigcontext.h>
45 #include <asm/vdso.h>
46 #include <asm/switch_to.h>
47 #include <asm/tm.h>
48 #include <asm/asm-prototypes.h>
49 #ifdef CONFIG_PPC64
50 #include "ppc32.h"
51 #include <asm/unistd.h>
52 #else
53 #include <asm/ucontext.h>
54 #include <asm/pgtable.h>
55 #endif
56
57 #include "signal.h"
58
59
60 #ifdef CONFIG_PPC64
61 #define old_sigaction old_sigaction32
62 #define sigcontext sigcontext32
63 #define mcontext mcontext32
64 #define ucontext ucontext32
65
66 #define __save_altstack __compat_save_altstack
67
68 /*
69 * Userspace code may pass a ucontext which doesn't include VSX added
70 * at the end. We need to check for this case.
71 */
72 #define UCONTEXTSIZEWITHOUTVSX \
73 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
74
75 /*
76 * Returning 0 means we return to userspace via
77 * ret_from_except and thus restore all user
78 * registers from *regs. This is what we need
79 * to do when a signal has been delivered.
80 */
81
82 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
83 #undef __SIGNAL_FRAMESIZE
84 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
85 #undef ELF_NVRREG
86 #define ELF_NVRREG ELF_NVRREG32
87
88 /*
89 * Functions for flipping sigsets (thanks to brain dead generic
90 * implementation that makes things simple for little endian only)
91 */
92 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
93 {
94 return put_compat_sigset(uset, set, sizeof(*uset));
95 }
96
97 static inline int get_sigset_t(sigset_t *set,
98 const compat_sigset_t __user *uset)
99 {
100 return get_compat_sigset(set, uset);
101 }
102
103 #define to_user_ptr(p) ptr_to_compat(p)
104 #define from_user_ptr(p) compat_ptr(p)
105
106 static inline int save_general_regs(struct pt_regs *regs,
107 struct mcontext __user *frame)
108 {
109 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
110 int i;
111 /* Force usr to alway see softe as 1 (interrupts enabled) */
112 elf_greg_t64 softe = 0x1;
113
114 WARN_ON(!FULL_REGS(regs));
115
116 for (i = 0; i <= PT_RESULT; i ++) {
117 if (i == 14 && !FULL_REGS(regs))
118 i = 32;
119 if ( i == PT_SOFTE) {
120 if(__put_user((unsigned int)softe, &frame->mc_gregs[i]))
121 return -EFAULT;
122 else
123 continue;
124 }
125 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
126 return -EFAULT;
127 }
128 return 0;
129 }
130
131 static inline int restore_general_regs(struct pt_regs *regs,
132 struct mcontext __user *sr)
133 {
134 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
135 int i;
136
137 for (i = 0; i <= PT_RESULT; i++) {
138 if ((i == PT_MSR) || (i == PT_SOFTE))
139 continue;
140 if (__get_user(gregs[i], &sr->mc_gregs[i]))
141 return -EFAULT;
142 }
143 return 0;
144 }
145
146 #else /* CONFIG_PPC64 */
147
148 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
149
150 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
151 {
152 return copy_to_user(uset, set, sizeof(*uset));
153 }
154
155 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
156 {
157 return copy_from_user(set, uset, sizeof(*uset));
158 }
159
160 #define to_user_ptr(p) ((unsigned long)(p))
161 #define from_user_ptr(p) ((void __user *)(p))
162
163 static inline int save_general_regs(struct pt_regs *regs,
164 struct mcontext __user *frame)
165 {
166 WARN_ON(!FULL_REGS(regs));
167 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
168 }
169
170 static inline int restore_general_regs(struct pt_regs *regs,
171 struct mcontext __user *sr)
172 {
173 /* copy up to but not including MSR */
174 if (__copy_from_user(regs, &sr->mc_gregs,
175 PT_MSR * sizeof(elf_greg_t)))
176 return -EFAULT;
177 /* copy from orig_r3 (the word after the MSR) up to the end */
178 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
179 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
180 return -EFAULT;
181 return 0;
182 }
183 #endif
184
185 /*
186 * When we have signals to deliver, we set up on the
187 * user stack, going down from the original stack pointer:
188 * an ABI gap of 56 words
189 * an mcontext struct
190 * a sigcontext struct
191 * a gap of __SIGNAL_FRAMESIZE bytes
192 *
193 * Each of these things must be a multiple of 16 bytes in size. The following
194 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
195 *
196 */
197 struct sigframe {
198 struct sigcontext sctx; /* the sigcontext */
199 struct mcontext mctx; /* all the register values */
200 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
201 struct sigcontext sctx_transact;
202 struct mcontext mctx_transact;
203 #endif
204 /*
205 * Programs using the rs6000/xcoff abi can save up to 19 gp
206 * regs and 18 fp regs below sp before decrementing it.
207 */
208 int abigap[56];
209 };
210
211 /* We use the mc_pad field for the signal return trampoline. */
212 #define tramp mc_pad
213
214 /*
215 * When we have rt signals to deliver, we set up on the
216 * user stack, going down from the original stack pointer:
217 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
218 * a gap of __SIGNAL_FRAMESIZE+16 bytes
219 * (the +16 is to get the siginfo and ucontext in the same
220 * positions as in older kernels).
221 *
222 * Each of these things must be a multiple of 16 bytes in size.
223 *
224 */
225 struct rt_sigframe {
226 #ifdef CONFIG_PPC64
227 compat_siginfo_t info;
228 #else
229 struct siginfo info;
230 #endif
231 struct ucontext uc;
232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
233 struct ucontext uc_transact;
234 #endif
235 /*
236 * Programs using the rs6000/xcoff abi can save up to 19 gp
237 * regs and 18 fp regs below sp before decrementing it.
238 */
239 int abigap[56];
240 };
241
242 #ifdef CONFIG_VSX
243 unsigned long copy_fpr_to_user(void __user *to,
244 struct task_struct *task)
245 {
246 u64 buf[ELF_NFPREG];
247 int i;
248
249 /* save FPR copy to local buffer then write to the thread_struct */
250 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
251 buf[i] = task->thread.TS_FPR(i);
252 buf[i] = task->thread.fp_state.fpscr;
253 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
254 }
255
256 unsigned long copy_fpr_from_user(struct task_struct *task,
257 void __user *from)
258 {
259 u64 buf[ELF_NFPREG];
260 int i;
261
262 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
263 return 1;
264 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
265 task->thread.TS_FPR(i) = buf[i];
266 task->thread.fp_state.fpscr = buf[i];
267
268 return 0;
269 }
270
271 unsigned long copy_vsx_to_user(void __user *to,
272 struct task_struct *task)
273 {
274 u64 buf[ELF_NVSRHALFREG];
275 int i;
276
277 /* save FPR copy to local buffer then write to the thread_struct */
278 for (i = 0; i < ELF_NVSRHALFREG; i++)
279 buf[i] = task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
280 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
281 }
282
283 unsigned long copy_vsx_from_user(struct task_struct *task,
284 void __user *from)
285 {
286 u64 buf[ELF_NVSRHALFREG];
287 int i;
288
289 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
290 return 1;
291 for (i = 0; i < ELF_NVSRHALFREG ; i++)
292 task->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
293 return 0;
294 }
295
296 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
297 unsigned long copy_ckfpr_to_user(void __user *to,
298 struct task_struct *task)
299 {
300 u64 buf[ELF_NFPREG];
301 int i;
302
303 /* save FPR copy to local buffer then write to the thread_struct */
304 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
305 buf[i] = task->thread.TS_CKFPR(i);
306 buf[i] = task->thread.ckfp_state.fpscr;
307 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
308 }
309
310 unsigned long copy_ckfpr_from_user(struct task_struct *task,
311 void __user *from)
312 {
313 u64 buf[ELF_NFPREG];
314 int i;
315
316 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
317 return 1;
318 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
319 task->thread.TS_CKFPR(i) = buf[i];
320 task->thread.ckfp_state.fpscr = buf[i];
321
322 return 0;
323 }
324
325 unsigned long copy_ckvsx_to_user(void __user *to,
326 struct task_struct *task)
327 {
328 u64 buf[ELF_NVSRHALFREG];
329 int i;
330
331 /* save FPR copy to local buffer then write to the thread_struct */
332 for (i = 0; i < ELF_NVSRHALFREG; i++)
333 buf[i] = task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET];
334 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
335 }
336
337 unsigned long copy_ckvsx_from_user(struct task_struct *task,
338 void __user *from)
339 {
340 u64 buf[ELF_NVSRHALFREG];
341 int i;
342
343 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
344 return 1;
345 for (i = 0; i < ELF_NVSRHALFREG ; i++)
346 task->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
347 return 0;
348 }
349 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
350 #else
351 inline unsigned long copy_fpr_to_user(void __user *to,
352 struct task_struct *task)
353 {
354 return __copy_to_user(to, task->thread.fp_state.fpr,
355 ELF_NFPREG * sizeof(double));
356 }
357
358 inline unsigned long copy_fpr_from_user(struct task_struct *task,
359 void __user *from)
360 {
361 return __copy_from_user(task->thread.fp_state.fpr, from,
362 ELF_NFPREG * sizeof(double));
363 }
364
365 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
366 inline unsigned long copy_ckfpr_to_user(void __user *to,
367 struct task_struct *task)
368 {
369 return __copy_to_user(to, task->thread.ckfp_state.fpr,
370 ELF_NFPREG * sizeof(double));
371 }
372
373 inline unsigned long copy_ckfpr_from_user(struct task_struct *task,
374 void __user *from)
375 {
376 return __copy_from_user(task->thread.ckfp_state.fpr, from,
377 ELF_NFPREG * sizeof(double));
378 }
379 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
380 #endif
381
382 /*
383 * Save the current user registers on the user stack.
384 * We only save the altivec/spe registers if the process has used
385 * altivec/spe instructions at some point.
386 */
387 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
388 struct mcontext __user *tm_frame, int sigret,
389 int ctx_has_vsx_region)
390 {
391 unsigned long msr = regs->msr;
392
393 /* Make sure floating point registers are stored in regs */
394 flush_fp_to_thread(current);
395
396 /* save general registers */
397 if (save_general_regs(regs, frame))
398 return 1;
399
400 #ifdef CONFIG_ALTIVEC
401 /* save altivec registers */
402 if (current->thread.used_vr) {
403 flush_altivec_to_thread(current);
404 if (__copy_to_user(&frame->mc_vregs, &current->thread.vr_state,
405 ELF_NVRREG * sizeof(vector128)))
406 return 1;
407 /* set MSR_VEC in the saved MSR value to indicate that
408 frame->mc_vregs contains valid data */
409 msr |= MSR_VEC;
410 }
411 /* else assert((regs->msr & MSR_VEC) == 0) */
412
413 /* We always copy to/from vrsave, it's 0 if we don't have or don't
414 * use altivec. Since VSCR only contains 32 bits saved in the least
415 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
416 * most significant bits of that same vector. --BenH
417 * Note that the current VRSAVE value is in the SPR at this point.
418 */
419 if (cpu_has_feature(CPU_FTR_ALTIVEC))
420 current->thread.vrsave = mfspr(SPRN_VRSAVE);
421 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
422 return 1;
423 #endif /* CONFIG_ALTIVEC */
424 if (copy_fpr_to_user(&frame->mc_fregs, current))
425 return 1;
426
427 /*
428 * Clear the MSR VSX bit to indicate there is no valid state attached
429 * to this context, except in the specific case below where we set it.
430 */
431 msr &= ~MSR_VSX;
432 #ifdef CONFIG_VSX
433 /*
434 * Copy VSR 0-31 upper half from thread_struct to local
435 * buffer, then write that to userspace. Also set MSR_VSX in
436 * the saved MSR value to indicate that frame->mc_vregs
437 * contains valid data
438 */
439 if (current->thread.used_vsr && ctx_has_vsx_region) {
440 flush_vsx_to_thread(current);
441 if (copy_vsx_to_user(&frame->mc_vsregs, current))
442 return 1;
443 msr |= MSR_VSX;
444 }
445 #endif /* CONFIG_VSX */
446 #ifdef CONFIG_SPE
447 /* save spe registers */
448 if (current->thread.used_spe) {
449 flush_spe_to_thread(current);
450 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
451 ELF_NEVRREG * sizeof(u32)))
452 return 1;
453 /* set MSR_SPE in the saved MSR value to indicate that
454 frame->mc_vregs contains valid data */
455 msr |= MSR_SPE;
456 }
457 /* else assert((regs->msr & MSR_SPE) == 0) */
458
459 /* We always copy to/from spefscr */
460 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
461 return 1;
462 #endif /* CONFIG_SPE */
463
464 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
465 return 1;
466 /* We need to write 0 the MSR top 32 bits in the tm frame so that we
467 * can check it on the restore to see if TM is active
468 */
469 if (tm_frame && __put_user(0, &tm_frame->mc_gregs[PT_MSR]))
470 return 1;
471
472 if (sigret) {
473 /* Set up the sigreturn trampoline: li 0,sigret; sc */
474 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
475 || __put_user(PPC_INST_SC, &frame->tramp[1]))
476 return 1;
477 flush_icache_range((unsigned long) &frame->tramp[0],
478 (unsigned long) &frame->tramp[2]);
479 }
480
481 return 0;
482 }
483
484 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
485 /*
486 * Save the current user registers on the user stack.
487 * We only save the altivec/spe registers if the process has used
488 * altivec/spe instructions at some point.
489 * We also save the transactional registers to a second ucontext in the
490 * frame.
491 *
492 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
493 */
494 static int save_tm_user_regs(struct pt_regs *regs,
495 struct mcontext __user *frame,
496 struct mcontext __user *tm_frame, int sigret)
497 {
498 unsigned long msr = regs->msr;
499
500 WARN_ON(tm_suspend_disabled);
501
502 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
503 * just indicates to userland that we were doing a transaction, but we
504 * don't want to return in transactional state. This also ensures
505 * that flush_fp_to_thread won't set TIF_RESTORE_TM again.
506 */
507 regs->msr &= ~MSR_TS_MASK;
508
509 /* Save both sets of general registers */
510 if (save_general_regs(&current->thread.ckpt_regs, frame)
511 || save_general_regs(regs, tm_frame))
512 return 1;
513
514 /* Stash the top half of the 64bit MSR into the 32bit MSR word
515 * of the transactional mcontext. This way we have a backward-compatible
516 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
517 * also look at what type of transaction (T or S) was active at the
518 * time of the signal.
519 */
520 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
521 return 1;
522
523 #ifdef CONFIG_ALTIVEC
524 /* save altivec registers */
525 if (current->thread.used_vr) {
526 if (__copy_to_user(&frame->mc_vregs, &current->thread.ckvr_state,
527 ELF_NVRREG * sizeof(vector128)))
528 return 1;
529 if (msr & MSR_VEC) {
530 if (__copy_to_user(&tm_frame->mc_vregs,
531 &current->thread.vr_state,
532 ELF_NVRREG * sizeof(vector128)))
533 return 1;
534 } else {
535 if (__copy_to_user(&tm_frame->mc_vregs,
536 &current->thread.ckvr_state,
537 ELF_NVRREG * sizeof(vector128)))
538 return 1;
539 }
540
541 /* set MSR_VEC in the saved MSR value to indicate that
542 * frame->mc_vregs contains valid data
543 */
544 msr |= MSR_VEC;
545 }
546
547 /* We always copy to/from vrsave, it's 0 if we don't have or don't
548 * use altivec. Since VSCR only contains 32 bits saved in the least
549 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
550 * most significant bits of that same vector. --BenH
551 */
552 if (cpu_has_feature(CPU_FTR_ALTIVEC))
553 current->thread.ckvrsave = mfspr(SPRN_VRSAVE);
554 if (__put_user(current->thread.ckvrsave,
555 (u32 __user *)&frame->mc_vregs[32]))
556 return 1;
557 if (msr & MSR_VEC) {
558 if (__put_user(current->thread.vrsave,
559 (u32 __user *)&tm_frame->mc_vregs[32]))
560 return 1;
561 } else {
562 if (__put_user(current->thread.ckvrsave,
563 (u32 __user *)&tm_frame->mc_vregs[32]))
564 return 1;
565 }
566 #endif /* CONFIG_ALTIVEC */
567
568 if (copy_ckfpr_to_user(&frame->mc_fregs, current))
569 return 1;
570 if (msr & MSR_FP) {
571 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
572 return 1;
573 } else {
574 if (copy_ckfpr_to_user(&tm_frame->mc_fregs, current))
575 return 1;
576 }
577
578 #ifdef CONFIG_VSX
579 /*
580 * Copy VSR 0-31 upper half from thread_struct to local
581 * buffer, then write that to userspace. Also set MSR_VSX in
582 * the saved MSR value to indicate that frame->mc_vregs
583 * contains valid data
584 */
585 if (current->thread.used_vsr) {
586 if (copy_ckvsx_to_user(&frame->mc_vsregs, current))
587 return 1;
588 if (msr & MSR_VSX) {
589 if (copy_vsx_to_user(&tm_frame->mc_vsregs,
590 current))
591 return 1;
592 } else {
593 if (copy_ckvsx_to_user(&tm_frame->mc_vsregs, current))
594 return 1;
595 }
596
597 msr |= MSR_VSX;
598 }
599 #endif /* CONFIG_VSX */
600 #ifdef CONFIG_SPE
601 /* SPE regs are not checkpointed with TM, so this section is
602 * simply the same as in save_user_regs().
603 */
604 if (current->thread.used_spe) {
605 flush_spe_to_thread(current);
606 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
607 ELF_NEVRREG * sizeof(u32)))
608 return 1;
609 /* set MSR_SPE in the saved MSR value to indicate that
610 * frame->mc_vregs contains valid data */
611 msr |= MSR_SPE;
612 }
613
614 /* We always copy to/from spefscr */
615 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
616 return 1;
617 #endif /* CONFIG_SPE */
618
619 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
620 return 1;
621 if (sigret) {
622 /* Set up the sigreturn trampoline: li 0,sigret; sc */
623 if (__put_user(PPC_INST_ADDI + sigret, &frame->tramp[0])
624 || __put_user(PPC_INST_SC, &frame->tramp[1]))
625 return 1;
626 flush_icache_range((unsigned long) &frame->tramp[0],
627 (unsigned long) &frame->tramp[2]);
628 }
629
630 return 0;
631 }
632 #endif
633
634 /*
635 * Restore the current user register values from the user stack,
636 * (except for MSR).
637 */
638 static long restore_user_regs(struct pt_regs *regs,
639 struct mcontext __user *sr, int sig)
640 {
641 long err;
642 unsigned int save_r2 = 0;
643 unsigned long msr;
644 #ifdef CONFIG_VSX
645 int i;
646 #endif
647
648 /*
649 * restore general registers but not including MSR or SOFTE. Also
650 * take care of keeping r2 (TLS) intact if not a signal
651 */
652 if (!sig)
653 save_r2 = (unsigned int)regs->gpr[2];
654 err = restore_general_regs(regs, sr);
655 regs->trap = 0;
656 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
657 if (!sig)
658 regs->gpr[2] = (unsigned long) save_r2;
659 if (err)
660 return 1;
661
662 /* if doing signal return, restore the previous little-endian mode */
663 if (sig)
664 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
665
666 #ifdef CONFIG_ALTIVEC
667 /*
668 * Force the process to reload the altivec registers from
669 * current->thread when it next does altivec instructions
670 */
671 regs->msr &= ~MSR_VEC;
672 if (msr & MSR_VEC) {
673 /* restore altivec registers from the stack */
674 if (__copy_from_user(&current->thread.vr_state, &sr->mc_vregs,
675 sizeof(sr->mc_vregs)))
676 return 1;
677 current->thread.used_vr = true;
678 } else if (current->thread.used_vr)
679 memset(&current->thread.vr_state, 0,
680 ELF_NVRREG * sizeof(vector128));
681
682 /* Always get VRSAVE back */
683 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
684 return 1;
685 if (cpu_has_feature(CPU_FTR_ALTIVEC))
686 mtspr(SPRN_VRSAVE, current->thread.vrsave);
687 #endif /* CONFIG_ALTIVEC */
688 if (copy_fpr_from_user(current, &sr->mc_fregs))
689 return 1;
690
691 #ifdef CONFIG_VSX
692 /*
693 * Force the process to reload the VSX registers from
694 * current->thread when it next does VSX instruction.
695 */
696 regs->msr &= ~MSR_VSX;
697 if (msr & MSR_VSX) {
698 /*
699 * Restore altivec registers from the stack to a local
700 * buffer, then write this out to the thread_struct
701 */
702 if (copy_vsx_from_user(current, &sr->mc_vsregs))
703 return 1;
704 current->thread.used_vsr = true;
705 } else if (current->thread.used_vsr)
706 for (i = 0; i < 32 ; i++)
707 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
708 #endif /* CONFIG_VSX */
709 /*
710 * force the process to reload the FP registers from
711 * current->thread when it next does FP instructions
712 */
713 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
714
715 #ifdef CONFIG_SPE
716 /* force the process to reload the spe registers from
717 current->thread when it next does spe instructions */
718 regs->msr &= ~MSR_SPE;
719 if (msr & MSR_SPE) {
720 /* restore spe registers from the stack */
721 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
722 ELF_NEVRREG * sizeof(u32)))
723 return 1;
724 current->thread.used_spe = true;
725 } else if (current->thread.used_spe)
726 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
727
728 /* Always get SPEFSCR back */
729 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
730 return 1;
731 #endif /* CONFIG_SPE */
732
733 return 0;
734 }
735
736 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
737 /*
738 * Restore the current user register values from the user stack, except for
739 * MSR, and recheckpoint the original checkpointed register state for processes
740 * in transactions.
741 */
742 static long restore_tm_user_regs(struct pt_regs *regs,
743 struct mcontext __user *sr,
744 struct mcontext __user *tm_sr)
745 {
746 long err;
747 unsigned long msr, msr_hi;
748 #ifdef CONFIG_VSX
749 int i;
750 #endif
751
752 if (tm_suspend_disabled)
753 return 1;
754 /*
755 * restore general registers but not including MSR or SOFTE. Also
756 * take care of keeping r2 (TLS) intact if not a signal.
757 * See comment in signal_64.c:restore_tm_sigcontexts();
758 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
759 * were set by the signal delivery.
760 */
761 err = restore_general_regs(regs, tm_sr);
762 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
763
764 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
765
766 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
767 if (err)
768 return 1;
769
770 /* Restore the previous little-endian mode */
771 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
772
773 #ifdef CONFIG_ALTIVEC
774 regs->msr &= ~MSR_VEC;
775 if (msr & MSR_VEC) {
776 /* restore altivec registers from the stack */
777 if (__copy_from_user(&current->thread.ckvr_state, &sr->mc_vregs,
778 sizeof(sr->mc_vregs)) ||
779 __copy_from_user(&current->thread.vr_state,
780 &tm_sr->mc_vregs,
781 sizeof(sr->mc_vregs)))
782 return 1;
783 current->thread.used_vr = true;
784 } else if (current->thread.used_vr) {
785 memset(&current->thread.vr_state, 0,
786 ELF_NVRREG * sizeof(vector128));
787 memset(&current->thread.ckvr_state, 0,
788 ELF_NVRREG * sizeof(vector128));
789 }
790
791 /* Always get VRSAVE back */
792 if (__get_user(current->thread.ckvrsave,
793 (u32 __user *)&sr->mc_vregs[32]) ||
794 __get_user(current->thread.vrsave,
795 (u32 __user *)&tm_sr->mc_vregs[32]))
796 return 1;
797 if (cpu_has_feature(CPU_FTR_ALTIVEC))
798 mtspr(SPRN_VRSAVE, current->thread.ckvrsave);
799 #endif /* CONFIG_ALTIVEC */
800
801 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
802
803 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
804 copy_ckfpr_from_user(current, &tm_sr->mc_fregs))
805 return 1;
806
807 #ifdef CONFIG_VSX
808 regs->msr &= ~MSR_VSX;
809 if (msr & MSR_VSX) {
810 /*
811 * Restore altivec registers from the stack to a local
812 * buffer, then write this out to the thread_struct
813 */
814 if (copy_vsx_from_user(current, &tm_sr->mc_vsregs) ||
815 copy_ckvsx_from_user(current, &sr->mc_vsregs))
816 return 1;
817 current->thread.used_vsr = true;
818 } else if (current->thread.used_vsr)
819 for (i = 0; i < 32 ; i++) {
820 current->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
821 current->thread.ckfp_state.fpr[i][TS_VSRLOWOFFSET] = 0;
822 }
823 #endif /* CONFIG_VSX */
824
825 #ifdef CONFIG_SPE
826 /* SPE regs are not checkpointed with TM, so this section is
827 * simply the same as in restore_user_regs().
828 */
829 regs->msr &= ~MSR_SPE;
830 if (msr & MSR_SPE) {
831 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
832 ELF_NEVRREG * sizeof(u32)))
833 return 1;
834 current->thread.used_spe = true;
835 } else if (current->thread.used_spe)
836 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
837
838 /* Always get SPEFSCR back */
839 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
840 + ELF_NEVRREG))
841 return 1;
842 #endif /* CONFIG_SPE */
843
844 /* Get the top half of the MSR from the user context */
845 if (__get_user(msr_hi, &tm_sr->mc_gregs[PT_MSR]))
846 return 1;
847 msr_hi <<= 32;
848 /* If TM bits are set to the reserved value, it's an invalid context */
849 if (MSR_TM_RESV(msr_hi))
850 return 1;
851
852 /*
853 * Disabling preemption, since it is unsafe to be preempted
854 * with MSR[TS] set without recheckpointing.
855 */
856 preempt_disable();
857
858 /*
859 * CAUTION:
860 * After regs->MSR[TS] being updated, make sure that get_user(),
861 * put_user() or similar functions are *not* called. These
862 * functions can generate page faults which will cause the process
863 * to be de-scheduled with MSR[TS] set but without calling
864 * tm_recheckpoint(). This can cause a bug.
865 *
866 * Pull in the MSR TM bits from the user context
867 */
868 regs->msr = (regs->msr & ~MSR_TS_MASK) | (msr_hi & MSR_TS_MASK);
869 /* Now, recheckpoint. This loads up all of the checkpointed (older)
870 * registers, including FP and V[S]Rs. After recheckpointing, the
871 * transactional versions should be loaded.
872 */
873 tm_enable();
874 /* Make sure the transaction is marked as failed */
875 current->thread.tm_texasr |= TEXASR_FS;
876 /* This loads the checkpointed FP/VEC state, if used */
877 tm_recheckpoint(&current->thread);
878
879 /* This loads the speculative FP/VEC state, if used */
880 msr_check_and_set(msr & (MSR_FP | MSR_VEC));
881 if (msr & MSR_FP) {
882 load_fp_state(&current->thread.fp_state);
883 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
884 }
885 #ifdef CONFIG_ALTIVEC
886 if (msr & MSR_VEC) {
887 load_vr_state(&current->thread.vr_state);
888 regs->msr |= MSR_VEC;
889 }
890 #endif
891
892 preempt_enable();
893
894 return 0;
895 }
896 #endif
897
898 #ifdef CONFIG_PPC64
899
900 #define copy_siginfo_to_user copy_siginfo_to_user32
901
902 #endif /* CONFIG_PPC64 */
903
904 /*
905 * Set up a signal frame for a "real-time" signal handler
906 * (one which gets siginfo).
907 */
908 int handle_rt_signal32(struct ksignal *ksig, sigset_t *oldset,
909 struct task_struct *tsk)
910 {
911 struct rt_sigframe __user *rt_sf;
912 struct mcontext __user *frame;
913 struct mcontext __user *tm_frame = NULL;
914 void __user *addr;
915 unsigned long newsp = 0;
916 int sigret;
917 unsigned long tramp;
918 struct pt_regs *regs = tsk->thread.regs;
919
920 BUG_ON(tsk != current);
921
922 /* Set up Signal Frame */
923 /* Put a Real Time Context onto stack */
924 rt_sf = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*rt_sf), 1);
925 addr = rt_sf;
926 if (unlikely(rt_sf == NULL))
927 goto badframe;
928
929 /* Put the siginfo & fill in most of the ucontext */
930 if (copy_siginfo_to_user(&rt_sf->info, &ksig->info)
931 || __put_user(0, &rt_sf->uc.uc_flags)
932 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
933 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
934 &rt_sf->uc.uc_regs)
935 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
936 goto badframe;
937
938 /* Save user registers on the stack */
939 frame = &rt_sf->uc.uc_mcontext;
940 addr = frame;
941 if (vdso32_rt_sigtramp && tsk->mm->context.vdso_base) {
942 sigret = 0;
943 tramp = tsk->mm->context.vdso_base + vdso32_rt_sigtramp;
944 } else {
945 sigret = __NR_rt_sigreturn;
946 tramp = (unsigned long) frame->tramp;
947 }
948
949 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
950 tm_frame = &rt_sf->uc_transact.uc_mcontext;
951 if (MSR_TM_ACTIVE(regs->msr)) {
952 if (__put_user((unsigned long)&rt_sf->uc_transact,
953 &rt_sf->uc.uc_link) ||
954 __put_user((unsigned long)tm_frame,
955 &rt_sf->uc_transact.uc_regs))
956 goto badframe;
957 if (save_tm_user_regs(regs, frame, tm_frame, sigret))
958 goto badframe;
959 }
960 else
961 #endif
962 {
963 if (__put_user(0, &rt_sf->uc.uc_link))
964 goto badframe;
965 if (save_user_regs(regs, frame, tm_frame, sigret, 1))
966 goto badframe;
967 }
968 regs->link = tramp;
969
970 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
971
972 /* create a stack frame for the caller of the handler */
973 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
974 addr = (void __user *)regs->gpr[1];
975 if (put_user(regs->gpr[1], (u32 __user *)newsp))
976 goto badframe;
977
978 /* Fill registers for signal handler */
979 regs->gpr[1] = newsp;
980 regs->gpr[3] = ksig->sig;
981 regs->gpr[4] = (unsigned long) &rt_sf->info;
982 regs->gpr[5] = (unsigned long) &rt_sf->uc;
983 regs->gpr[6] = (unsigned long) rt_sf;
984 regs->nip = (unsigned long) ksig->ka.sa.sa_handler;
985 /* enter the signal handler in native-endian mode */
986 regs->msr &= ~MSR_LE;
987 regs->msr |= (MSR_KERNEL & MSR_LE);
988 return 0;
989
990 badframe:
991 if (show_unhandled_signals)
992 printk_ratelimited(KERN_INFO
993 "%s[%d]: bad frame in handle_rt_signal32: "
994 "%p nip %08lx lr %08lx\n",
995 tsk->comm, tsk->pid,
996 addr, regs->nip, regs->link);
997
998 return 1;
999 }
1000
1001 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1002 {
1003 sigset_t set;
1004 struct mcontext __user *mcp;
1005
1006 if (get_sigset_t(&set, &ucp->uc_sigmask))
1007 return -EFAULT;
1008 #ifdef CONFIG_PPC64
1009 {
1010 u32 cmcp;
1011
1012 if (__get_user(cmcp, &ucp->uc_regs))
1013 return -EFAULT;
1014 mcp = (struct mcontext __user *)(u64)cmcp;
1015 /* no need to check access_ok(mcp), since mcp < 4GB */
1016 }
1017 #else
1018 if (__get_user(mcp, &ucp->uc_regs))
1019 return -EFAULT;
1020 if (!access_ok(mcp, sizeof(*mcp)))
1021 return -EFAULT;
1022 #endif
1023 set_current_blocked(&set);
1024 if (restore_user_regs(regs, mcp, sig))
1025 return -EFAULT;
1026
1027 return 0;
1028 }
1029
1030 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1031 static int do_setcontext_tm(struct ucontext __user *ucp,
1032 struct ucontext __user *tm_ucp,
1033 struct pt_regs *regs)
1034 {
1035 sigset_t set;
1036 struct mcontext __user *mcp;
1037 struct mcontext __user *tm_mcp;
1038 u32 cmcp;
1039 u32 tm_cmcp;
1040
1041 if (get_sigset_t(&set, &ucp->uc_sigmask))
1042 return -EFAULT;
1043
1044 if (__get_user(cmcp, &ucp->uc_regs) ||
1045 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1046 return -EFAULT;
1047 mcp = (struct mcontext __user *)(u64)cmcp;
1048 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1049 /* no need to check access_ok(mcp), since mcp < 4GB */
1050
1051 set_current_blocked(&set);
1052 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1053 return -EFAULT;
1054
1055 return 0;
1056 }
1057 #endif
1058
1059 #ifdef CONFIG_PPC64
1060 COMPAT_SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1061 struct ucontext __user *, new_ctx, int, ctx_size)
1062 #else
1063 SYSCALL_DEFINE3(swapcontext, struct ucontext __user *, old_ctx,
1064 struct ucontext __user *, new_ctx, long, ctx_size)
1065 #endif
1066 {
1067 struct pt_regs *regs = current_pt_regs();
1068 int ctx_has_vsx_region = 0;
1069
1070 #ifdef CONFIG_PPC64
1071 unsigned long new_msr = 0;
1072
1073 if (new_ctx) {
1074 struct mcontext __user *mcp;
1075 u32 cmcp;
1076
1077 /*
1078 * Get pointer to the real mcontext. No need for
1079 * access_ok since we are dealing with compat
1080 * pointers.
1081 */
1082 if (__get_user(cmcp, &new_ctx->uc_regs))
1083 return -EFAULT;
1084 mcp = (struct mcontext __user *)(u64)cmcp;
1085 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1086 return -EFAULT;
1087 }
1088 /*
1089 * Check that the context is not smaller than the original
1090 * size (with VMX but without VSX)
1091 */
1092 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1093 return -EINVAL;
1094 /*
1095 * If the new context state sets the MSR VSX bits but
1096 * it doesn't provide VSX state.
1097 */
1098 if ((ctx_size < sizeof(struct ucontext)) &&
1099 (new_msr & MSR_VSX))
1100 return -EINVAL;
1101 /* Does the context have enough room to store VSX data? */
1102 if (ctx_size >= sizeof(struct ucontext))
1103 ctx_has_vsx_region = 1;
1104 #else
1105 /* Context size is for future use. Right now, we only make sure
1106 * we are passed something we understand
1107 */
1108 if (ctx_size < sizeof(struct ucontext))
1109 return -EINVAL;
1110 #endif
1111 if (old_ctx != NULL) {
1112 struct mcontext __user *mctx;
1113
1114 /*
1115 * old_ctx might not be 16-byte aligned, in which
1116 * case old_ctx->uc_mcontext won't be either.
1117 * Because we have the old_ctx->uc_pad2 field
1118 * before old_ctx->uc_mcontext, we need to round down
1119 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1120 */
1121 mctx = (struct mcontext __user *)
1122 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1123 if (!access_ok(old_ctx, ctx_size)
1124 || save_user_regs(regs, mctx, NULL, 0, ctx_has_vsx_region)
1125 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1126 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1127 return -EFAULT;
1128 }
1129 if (new_ctx == NULL)
1130 return 0;
1131 if (!access_ok(new_ctx, ctx_size) ||
1132 fault_in_pages_readable((u8 __user *)new_ctx, ctx_size))
1133 return -EFAULT;
1134
1135 /*
1136 * If we get a fault copying the context into the kernel's
1137 * image of the user's registers, we can't just return -EFAULT
1138 * because the user's registers will be corrupted. For instance
1139 * the NIP value may have been updated but not some of the
1140 * other registers. Given that we have done the access_ok
1141 * and successfully read the first and last bytes of the region
1142 * above, this should only happen in an out-of-memory situation
1143 * or if another thread unmaps the region containing the context.
1144 * We kill the task with a SIGSEGV in this situation.
1145 */
1146 if (do_setcontext(new_ctx, regs, 0))
1147 do_exit(SIGSEGV);
1148
1149 set_thread_flag(TIF_RESTOREALL);
1150 return 0;
1151 }
1152
1153 #ifdef CONFIG_PPC64
1154 COMPAT_SYSCALL_DEFINE0(rt_sigreturn)
1155 #else
1156 SYSCALL_DEFINE0(rt_sigreturn)
1157 #endif
1158 {
1159 struct rt_sigframe __user *rt_sf;
1160 struct pt_regs *regs = current_pt_regs();
1161 int tm_restore = 0;
1162 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1163 struct ucontext __user *uc_transact;
1164 unsigned long msr_hi;
1165 unsigned long tmp;
1166 #endif
1167 /* Always make any pending restarted system calls return -EINTR */
1168 current->restart_block.fn = do_no_restart_syscall;
1169
1170 rt_sf = (struct rt_sigframe __user *)
1171 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1172 if (!access_ok(rt_sf, sizeof(*rt_sf)))
1173 goto bad;
1174
1175 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1176 /*
1177 * If there is a transactional state then throw it away.
1178 * The purpose of a sigreturn is to destroy all traces of the
1179 * signal frame, this includes any transactional state created
1180 * within in. We only check for suspended as we can never be
1181 * active in the kernel, we are active, there is nothing better to
1182 * do than go ahead and Bad Thing later.
1183 * The cause is not important as there will never be a
1184 * recheckpoint so it's not user visible.
1185 */
1186 if (MSR_TM_SUSPENDED(mfmsr()))
1187 tm_reclaim_current(0);
1188
1189 if (__get_user(tmp, &rt_sf->uc.uc_link))
1190 goto bad;
1191 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1192 if (uc_transact) {
1193 u32 cmcp;
1194 struct mcontext __user *mcp;
1195
1196 if (__get_user(cmcp, &uc_transact->uc_regs))
1197 return -EFAULT;
1198 mcp = (struct mcontext __user *)(u64)cmcp;
1199 /* The top 32 bits of the MSR are stashed in the transactional
1200 * ucontext. */
1201 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1202 goto bad;
1203
1204 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1205 /* We only recheckpoint on return if we're
1206 * transaction.
1207 */
1208 tm_restore = 1;
1209 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1210 goto bad;
1211 }
1212 }
1213 if (!tm_restore) {
1214 /*
1215 * Unset regs->msr because ucontext MSR TS is not
1216 * set, and recheckpoint was not called. This avoid
1217 * hitting a TM Bad thing at RFID
1218 */
1219 regs->msr &= ~MSR_TS_MASK;
1220 }
1221 /* Fall through, for non-TM restore */
1222 #endif
1223 if (!tm_restore)
1224 if (do_setcontext(&rt_sf->uc, regs, 1))
1225 goto bad;
1226
1227 /*
1228 * It's not clear whether or why it is desirable to save the
1229 * sigaltstack setting on signal delivery and restore it on
1230 * signal return. But other architectures do this and we have
1231 * always done it up until now so it is probably better not to
1232 * change it. -- paulus
1233 */
1234 #ifdef CONFIG_PPC64
1235 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1236 goto bad;
1237 #else
1238 if (restore_altstack(&rt_sf->uc.uc_stack))
1239 goto bad;
1240 #endif
1241 set_thread_flag(TIF_RESTOREALL);
1242 return 0;
1243
1244 bad:
1245 if (show_unhandled_signals)
1246 printk_ratelimited(KERN_INFO
1247 "%s[%d]: bad frame in sys_rt_sigreturn: "
1248 "%p nip %08lx lr %08lx\n",
1249 current->comm, current->pid,
1250 rt_sf, regs->nip, regs->link);
1251
1252 force_sig(SIGSEGV, current);
1253 return 0;
1254 }
1255
1256 #ifdef CONFIG_PPC32
1257 SYSCALL_DEFINE3(debug_setcontext, struct ucontext __user *, ctx,
1258 int, ndbg, struct sig_dbg_op __user *, dbg)
1259 {
1260 struct pt_regs *regs = current_pt_regs();
1261 struct sig_dbg_op op;
1262 int i;
1263 unsigned long new_msr = regs->msr;
1264 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1265 unsigned long new_dbcr0 = current->thread.debug.dbcr0;
1266 #endif
1267
1268 for (i=0; i<ndbg; i++) {
1269 if (copy_from_user(&op, dbg + i, sizeof(op)))
1270 return -EFAULT;
1271 switch (op.dbg_type) {
1272 case SIG_DBG_SINGLE_STEPPING:
1273 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1274 if (op.dbg_value) {
1275 new_msr |= MSR_DE;
1276 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1277 } else {
1278 new_dbcr0 &= ~DBCR0_IC;
1279 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1280 current->thread.debug.dbcr1)) {
1281 new_msr &= ~MSR_DE;
1282 new_dbcr0 &= ~DBCR0_IDM;
1283 }
1284 }
1285 #else
1286 if (op.dbg_value)
1287 new_msr |= MSR_SE;
1288 else
1289 new_msr &= ~MSR_SE;
1290 #endif
1291 break;
1292 case SIG_DBG_BRANCH_TRACING:
1293 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1294 return -EINVAL;
1295 #else
1296 if (op.dbg_value)
1297 new_msr |= MSR_BE;
1298 else
1299 new_msr &= ~MSR_BE;
1300 #endif
1301 break;
1302
1303 default:
1304 return -EINVAL;
1305 }
1306 }
1307
1308 /* We wait until here to actually install the values in the
1309 registers so if we fail in the above loop, it will not
1310 affect the contents of these registers. After this point,
1311 failure is a problem, anyway, and it's very unlikely unless
1312 the user is really doing something wrong. */
1313 regs->msr = new_msr;
1314 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1315 current->thread.debug.dbcr0 = new_dbcr0;
1316 #endif
1317
1318 if (!access_ok(ctx, sizeof(*ctx)) ||
1319 fault_in_pages_readable((u8 __user *)ctx, sizeof(*ctx)))
1320 return -EFAULT;
1321
1322 /*
1323 * If we get a fault copying the context into the kernel's
1324 * image of the user's registers, we can't just return -EFAULT
1325 * because the user's registers will be corrupted. For instance
1326 * the NIP value may have been updated but not some of the
1327 * other registers. Given that we have done the access_ok
1328 * and successfully read the first and last bytes of the region
1329 * above, this should only happen in an out-of-memory situation
1330 * or if another thread unmaps the region containing the context.
1331 * We kill the task with a SIGSEGV in this situation.
1332 */
1333 if (do_setcontext(ctx, regs, 1)) {
1334 if (show_unhandled_signals)
1335 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1336 "sys_debug_setcontext: %p nip %08lx "
1337 "lr %08lx\n",
1338 current->comm, current->pid,
1339 ctx, regs->nip, regs->link);
1340
1341 force_sig(SIGSEGV, current);
1342 goto out;
1343 }
1344
1345 /*
1346 * It's not clear whether or why it is desirable to save the
1347 * sigaltstack setting on signal delivery and restore it on
1348 * signal return. But other architectures do this and we have
1349 * always done it up until now so it is probably better not to
1350 * change it. -- paulus
1351 */
1352 restore_altstack(&ctx->uc_stack);
1353
1354 set_thread_flag(TIF_RESTOREALL);
1355 out:
1356 return 0;
1357 }
1358 #endif
1359
1360 /*
1361 * OK, we're invoking a handler
1362 */
1363 int handle_signal32(struct ksignal *ksig, sigset_t *oldset,
1364 struct task_struct *tsk)
1365 {
1366 struct sigcontext __user *sc;
1367 struct sigframe __user *frame;
1368 struct mcontext __user *tm_mctx = NULL;
1369 unsigned long newsp = 0;
1370 int sigret;
1371 unsigned long tramp;
1372 struct pt_regs *regs = tsk->thread.regs;
1373
1374 BUG_ON(tsk != current);
1375
1376 /* Set up Signal Frame */
1377 frame = get_sigframe(ksig, get_tm_stackpointer(tsk), sizeof(*frame), 1);
1378 if (unlikely(frame == NULL))
1379 goto badframe;
1380 sc = (struct sigcontext __user *) &frame->sctx;
1381
1382 #if _NSIG != 64
1383 #error "Please adjust handle_signal()"
1384 #endif
1385 if (__put_user(to_user_ptr(ksig->ka.sa.sa_handler), &sc->handler)
1386 || __put_user(oldset->sig[0], &sc->oldmask)
1387 #ifdef CONFIG_PPC64
1388 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1389 #else
1390 || __put_user(oldset->sig[1], &sc->_unused[3])
1391 #endif
1392 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1393 || __put_user(ksig->sig, &sc->signal))
1394 goto badframe;
1395
1396 if (vdso32_sigtramp && tsk->mm->context.vdso_base) {
1397 sigret = 0;
1398 tramp = tsk->mm->context.vdso_base + vdso32_sigtramp;
1399 } else {
1400 sigret = __NR_sigreturn;
1401 tramp = (unsigned long) frame->mctx.tramp;
1402 }
1403
1404 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1405 tm_mctx = &frame->mctx_transact;
1406 if (MSR_TM_ACTIVE(regs->msr)) {
1407 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1408 sigret))
1409 goto badframe;
1410 }
1411 else
1412 #endif
1413 {
1414 if (save_user_regs(regs, &frame->mctx, tm_mctx, sigret, 1))
1415 goto badframe;
1416 }
1417
1418 regs->link = tramp;
1419
1420 tsk->thread.fp_state.fpscr = 0; /* turn off all fp exceptions */
1421
1422 /* create a stack frame for the caller of the handler */
1423 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1424 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1425 goto badframe;
1426
1427 regs->gpr[1] = newsp;
1428 regs->gpr[3] = ksig->sig;
1429 regs->gpr[4] = (unsigned long) sc;
1430 regs->nip = (unsigned long) (unsigned long)ksig->ka.sa.sa_handler;
1431 /* enter the signal handler in big-endian mode */
1432 regs->msr &= ~MSR_LE;
1433 return 0;
1434
1435 badframe:
1436 if (show_unhandled_signals)
1437 printk_ratelimited(KERN_INFO
1438 "%s[%d]: bad frame in handle_signal32: "
1439 "%p nip %08lx lr %08lx\n",
1440 tsk->comm, tsk->pid,
1441 frame, regs->nip, regs->link);
1442
1443 return 1;
1444 }
1445
1446 /*
1447 * Do a signal return; undo the signal stack.
1448 */
1449 #ifdef CONFIG_PPC64
1450 COMPAT_SYSCALL_DEFINE0(sigreturn)
1451 #else
1452 SYSCALL_DEFINE0(sigreturn)
1453 #endif
1454 {
1455 struct pt_regs *regs = current_pt_regs();
1456 struct sigframe __user *sf;
1457 struct sigcontext __user *sc;
1458 struct sigcontext sigctx;
1459 struct mcontext __user *sr;
1460 void __user *addr;
1461 sigset_t set;
1462 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1463 struct mcontext __user *mcp, *tm_mcp;
1464 unsigned long msr_hi;
1465 #endif
1466
1467 /* Always make any pending restarted system calls return -EINTR */
1468 current->restart_block.fn = do_no_restart_syscall;
1469
1470 sf = (struct sigframe __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1471 sc = &sf->sctx;
1472 addr = sc;
1473 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1474 goto badframe;
1475
1476 #ifdef CONFIG_PPC64
1477 /*
1478 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1479 * unused part of the signal stackframe
1480 */
1481 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1482 #else
1483 set.sig[0] = sigctx.oldmask;
1484 set.sig[1] = sigctx._unused[3];
1485 #endif
1486 set_current_blocked(&set);
1487
1488 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1489 mcp = (struct mcontext __user *)&sf->mctx;
1490 tm_mcp = (struct mcontext __user *)&sf->mctx_transact;
1491 if (__get_user(msr_hi, &tm_mcp->mc_gregs[PT_MSR]))
1492 goto badframe;
1493 if (MSR_TM_ACTIVE(msr_hi<<32)) {
1494 if (!cpu_has_feature(CPU_FTR_TM))
1495 goto badframe;
1496 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1497 goto badframe;
1498 } else
1499 #endif
1500 {
1501 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1502 addr = sr;
1503 if (!access_ok(sr, sizeof(*sr))
1504 || restore_user_regs(regs, sr, 1))
1505 goto badframe;
1506 }
1507
1508 set_thread_flag(TIF_RESTOREALL);
1509 return 0;
1510
1511 badframe:
1512 if (show_unhandled_signals)
1513 printk_ratelimited(KERN_INFO
1514 "%s[%d]: bad frame in sys_sigreturn: "
1515 "%p nip %08lx lr %08lx\n",
1516 current->comm, current->pid,
1517 addr, regs->nip, regs->link);
1518
1519 force_sig(SIGSEGV, current);
1520 return 0;
1521 }