]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/powerpc/kernel/traps.c
powerpc: query dynamic DEBUG_PAGEALLOC setting
[people/arne_f/kernel.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/prctl.h>
30 #include <linux/delay.h>
31 #include <linux/kprobes.h>
32 #include <linux/kexec.h>
33 #include <linux/backlight.h>
34 #include <linux/bug.h>
35 #include <linux/kdebug.h>
36 #include <linux/debugfs.h>
37 #include <linux/ratelimit.h>
38 #include <linux/context_tracking.h>
39
40 #include <asm/emulated_ops.h>
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/rtas.h>
46 #include <asm/pmc.h>
47 #include <asm/reg.h>
48 #ifdef CONFIG_PMAC_BACKLIGHT
49 #include <asm/backlight.h>
50 #endif
51 #ifdef CONFIG_PPC64
52 #include <asm/firmware.h>
53 #include <asm/processor.h>
54 #include <asm/tm.h>
55 #endif
56 #include <asm/kexec.h>
57 #include <asm/ppc-opcode.h>
58 #include <asm/rio.h>
59 #include <asm/fadump.h>
60 #include <asm/switch_to.h>
61 #include <asm/tm.h>
62 #include <asm/debug.h>
63 #include <sysdev/fsl_pci.h>
64
65 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC)
66 int (*__debugger)(struct pt_regs *regs) __read_mostly;
67 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
68 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
69 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
70 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
73
74 EXPORT_SYMBOL(__debugger);
75 EXPORT_SYMBOL(__debugger_ipi);
76 EXPORT_SYMBOL(__debugger_bpt);
77 EXPORT_SYMBOL(__debugger_sstep);
78 EXPORT_SYMBOL(__debugger_iabr_match);
79 EXPORT_SYMBOL(__debugger_break_match);
80 EXPORT_SYMBOL(__debugger_fault_handler);
81 #endif
82
83 /* Transactional Memory trap debug */
84 #ifdef TM_DEBUG_SW
85 #define TM_DEBUG(x...) printk(KERN_INFO x)
86 #else
87 #define TM_DEBUG(x...) do { } while(0)
88 #endif
89
90 /*
91 * Trap & Exception support
92 */
93
94 #ifdef CONFIG_PMAC_BACKLIGHT
95 static void pmac_backlight_unblank(void)
96 {
97 mutex_lock(&pmac_backlight_mutex);
98 if (pmac_backlight) {
99 struct backlight_properties *props;
100
101 props = &pmac_backlight->props;
102 props->brightness = props->max_brightness;
103 props->power = FB_BLANK_UNBLANK;
104 backlight_update_status(pmac_backlight);
105 }
106 mutex_unlock(&pmac_backlight_mutex);
107 }
108 #else
109 static inline void pmac_backlight_unblank(void) { }
110 #endif
111
112 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
113 static int die_owner = -1;
114 static unsigned int die_nest_count;
115 static int die_counter;
116
117 static unsigned __kprobes long oops_begin(struct pt_regs *regs)
118 {
119 int cpu;
120 unsigned long flags;
121
122 if (debugger(regs))
123 return 1;
124
125 oops_enter();
126
127 /* racy, but better than risking deadlock. */
128 raw_local_irq_save(flags);
129 cpu = smp_processor_id();
130 if (!arch_spin_trylock(&die_lock)) {
131 if (cpu == die_owner)
132 /* nested oops. should stop eventually */;
133 else
134 arch_spin_lock(&die_lock);
135 }
136 die_nest_count++;
137 die_owner = cpu;
138 console_verbose();
139 bust_spinlocks(1);
140 if (machine_is(powermac))
141 pmac_backlight_unblank();
142 return flags;
143 }
144
145 static void __kprobes oops_end(unsigned long flags, struct pt_regs *regs,
146 int signr)
147 {
148 bust_spinlocks(0);
149 die_owner = -1;
150 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
151 die_nest_count--;
152 oops_exit();
153 printk("\n");
154 if (!die_nest_count)
155 /* Nest count reaches zero, release the lock. */
156 arch_spin_unlock(&die_lock);
157 raw_local_irq_restore(flags);
158
159 crash_fadump(regs, "die oops");
160
161 /*
162 * A system reset (0x100) is a request to dump, so we always send
163 * it through the crashdump code.
164 */
165 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
166 crash_kexec(regs);
167
168 /*
169 * We aren't the primary crash CPU. We need to send it
170 * to a holding pattern to avoid it ending up in the panic
171 * code.
172 */
173 crash_kexec_secondary(regs);
174 }
175
176 if (!signr)
177 return;
178
179 /*
180 * While our oops output is serialised by a spinlock, output
181 * from panic() called below can race and corrupt it. If we
182 * know we are going to panic, delay for 1 second so we have a
183 * chance to get clean backtraces from all CPUs that are oopsing.
184 */
185 if (in_interrupt() || panic_on_oops || !current->pid ||
186 is_global_init(current)) {
187 mdelay(MSEC_PER_SEC);
188 }
189
190 if (in_interrupt())
191 panic("Fatal exception in interrupt");
192 if (panic_on_oops)
193 panic("Fatal exception");
194 do_exit(signr);
195 }
196
197 static int __kprobes __die(const char *str, struct pt_regs *regs, long err)
198 {
199 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
200 #ifdef CONFIG_PREEMPT
201 printk("PREEMPT ");
202 #endif
203 #ifdef CONFIG_SMP
204 printk("SMP NR_CPUS=%d ", NR_CPUS);
205 #endif
206 if (debug_pagealloc_enabled())
207 printk("DEBUG_PAGEALLOC ");
208 #ifdef CONFIG_NUMA
209 printk("NUMA ");
210 #endif
211 printk("%s\n", ppc_md.name ? ppc_md.name : "");
212
213 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
214 return 1;
215
216 print_modules();
217 show_regs(regs);
218
219 return 0;
220 }
221
222 void die(const char *str, struct pt_regs *regs, long err)
223 {
224 unsigned long flags = oops_begin(regs);
225
226 if (__die(str, regs, err))
227 err = 0;
228 oops_end(flags, regs, err);
229 }
230
231 void user_single_step_siginfo(struct task_struct *tsk,
232 struct pt_regs *regs, siginfo_t *info)
233 {
234 memset(info, 0, sizeof(*info));
235 info->si_signo = SIGTRAP;
236 info->si_code = TRAP_TRACE;
237 info->si_addr = (void __user *)regs->nip;
238 }
239
240 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
241 {
242 siginfo_t info;
243 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
244 "at %08lx nip %08lx lr %08lx code %x\n";
245 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
246 "at %016lx nip %016lx lr %016lx code %x\n";
247
248 if (!user_mode(regs)) {
249 die("Exception in kernel mode", regs, signr);
250 return;
251 }
252
253 if (show_unhandled_signals && unhandled_signal(current, signr)) {
254 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
255 current->comm, current->pid, signr,
256 addr, regs->nip, regs->link, code);
257 }
258
259 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
260 local_irq_enable();
261
262 current->thread.trap_nr = code;
263 memset(&info, 0, sizeof(info));
264 info.si_signo = signr;
265 info.si_code = code;
266 info.si_addr = (void __user *) addr;
267 force_sig_info(signr, &info, current);
268 }
269
270 #ifdef CONFIG_PPC64
271 void system_reset_exception(struct pt_regs *regs)
272 {
273 /* See if any machine dependent calls */
274 if (ppc_md.system_reset_exception) {
275 if (ppc_md.system_reset_exception(regs))
276 return;
277 }
278
279 die("System Reset", regs, SIGABRT);
280
281 /* Must die if the interrupt is not recoverable */
282 if (!(regs->msr & MSR_RI))
283 panic("Unrecoverable System Reset");
284
285 /* What should we do here? We could issue a shutdown or hard reset. */
286 }
287
288 /*
289 * This function is called in real mode. Strictly no printk's please.
290 *
291 * regs->nip and regs->msr contains srr0 and ssr1.
292 */
293 long machine_check_early(struct pt_regs *regs)
294 {
295 long handled = 0;
296
297 __this_cpu_inc(irq_stat.mce_exceptions);
298
299 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
300
301 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
302 handled = cur_cpu_spec->machine_check_early(regs);
303 return handled;
304 }
305
306 long hmi_exception_realmode(struct pt_regs *regs)
307 {
308 __this_cpu_inc(irq_stat.hmi_exceptions);
309
310 if (ppc_md.hmi_exception_early)
311 ppc_md.hmi_exception_early(regs);
312
313 return 0;
314 }
315
316 #endif
317
318 /*
319 * I/O accesses can cause machine checks on powermacs.
320 * Check if the NIP corresponds to the address of a sync
321 * instruction for which there is an entry in the exception
322 * table.
323 * Note that the 601 only takes a machine check on TEA
324 * (transfer error ack) signal assertion, and does not
325 * set any of the top 16 bits of SRR1.
326 * -- paulus.
327 */
328 static inline int check_io_access(struct pt_regs *regs)
329 {
330 #ifdef CONFIG_PPC32
331 unsigned long msr = regs->msr;
332 const struct exception_table_entry *entry;
333 unsigned int *nip = (unsigned int *)regs->nip;
334
335 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
336 && (entry = search_exception_tables(regs->nip)) != NULL) {
337 /*
338 * Check that it's a sync instruction, or somewhere
339 * in the twi; isync; nop sequence that inb/inw/inl uses.
340 * As the address is in the exception table
341 * we should be able to read the instr there.
342 * For the debug message, we look at the preceding
343 * load or store.
344 */
345 if (*nip == 0x60000000) /* nop */
346 nip -= 2;
347 else if (*nip == 0x4c00012c) /* isync */
348 --nip;
349 if (*nip == 0x7c0004ac || (*nip >> 26) == 3) {
350 /* sync or twi */
351 unsigned int rb;
352
353 --nip;
354 rb = (*nip >> 11) & 0x1f;
355 printk(KERN_DEBUG "%s bad port %lx at %p\n",
356 (*nip & 0x100)? "OUT to": "IN from",
357 regs->gpr[rb] - _IO_BASE, nip);
358 regs->msr |= MSR_RI;
359 regs->nip = entry->fixup;
360 return 1;
361 }
362 }
363 #endif /* CONFIG_PPC32 */
364 return 0;
365 }
366
367 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
368 /* On 4xx, the reason for the machine check or program exception
369 is in the ESR. */
370 #define get_reason(regs) ((regs)->dsisr)
371 #ifndef CONFIG_FSL_BOOKE
372 #define get_mc_reason(regs) ((regs)->dsisr)
373 #else
374 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
375 #endif
376 #define REASON_FP ESR_FP
377 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
378 #define REASON_PRIVILEGED ESR_PPR
379 #define REASON_TRAP ESR_PTR
380
381 /* single-step stuff */
382 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
383 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
384
385 #else
386 /* On non-4xx, the reason for the machine check or program
387 exception is in the MSR. */
388 #define get_reason(regs) ((regs)->msr)
389 #define get_mc_reason(regs) ((regs)->msr)
390 #define REASON_TM 0x200000
391 #define REASON_FP 0x100000
392 #define REASON_ILLEGAL 0x80000
393 #define REASON_PRIVILEGED 0x40000
394 #define REASON_TRAP 0x20000
395
396 #define single_stepping(regs) ((regs)->msr & MSR_SE)
397 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
398 #endif
399
400 #if defined(CONFIG_4xx)
401 int machine_check_4xx(struct pt_regs *regs)
402 {
403 unsigned long reason = get_mc_reason(regs);
404
405 if (reason & ESR_IMCP) {
406 printk("Instruction");
407 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
408 } else
409 printk("Data");
410 printk(" machine check in kernel mode.\n");
411
412 return 0;
413 }
414
415 int machine_check_440A(struct pt_regs *regs)
416 {
417 unsigned long reason = get_mc_reason(regs);
418
419 printk("Machine check in kernel mode.\n");
420 if (reason & ESR_IMCP){
421 printk("Instruction Synchronous Machine Check exception\n");
422 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
423 }
424 else {
425 u32 mcsr = mfspr(SPRN_MCSR);
426 if (mcsr & MCSR_IB)
427 printk("Instruction Read PLB Error\n");
428 if (mcsr & MCSR_DRB)
429 printk("Data Read PLB Error\n");
430 if (mcsr & MCSR_DWB)
431 printk("Data Write PLB Error\n");
432 if (mcsr & MCSR_TLBP)
433 printk("TLB Parity Error\n");
434 if (mcsr & MCSR_ICP){
435 flush_instruction_cache();
436 printk("I-Cache Parity Error\n");
437 }
438 if (mcsr & MCSR_DCSP)
439 printk("D-Cache Search Parity Error\n");
440 if (mcsr & MCSR_DCFP)
441 printk("D-Cache Flush Parity Error\n");
442 if (mcsr & MCSR_IMPE)
443 printk("Machine Check exception is imprecise\n");
444
445 /* Clear MCSR */
446 mtspr(SPRN_MCSR, mcsr);
447 }
448 return 0;
449 }
450
451 int machine_check_47x(struct pt_regs *regs)
452 {
453 unsigned long reason = get_mc_reason(regs);
454 u32 mcsr;
455
456 printk(KERN_ERR "Machine check in kernel mode.\n");
457 if (reason & ESR_IMCP) {
458 printk(KERN_ERR
459 "Instruction Synchronous Machine Check exception\n");
460 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
461 return 0;
462 }
463 mcsr = mfspr(SPRN_MCSR);
464 if (mcsr & MCSR_IB)
465 printk(KERN_ERR "Instruction Read PLB Error\n");
466 if (mcsr & MCSR_DRB)
467 printk(KERN_ERR "Data Read PLB Error\n");
468 if (mcsr & MCSR_DWB)
469 printk(KERN_ERR "Data Write PLB Error\n");
470 if (mcsr & MCSR_TLBP)
471 printk(KERN_ERR "TLB Parity Error\n");
472 if (mcsr & MCSR_ICP) {
473 flush_instruction_cache();
474 printk(KERN_ERR "I-Cache Parity Error\n");
475 }
476 if (mcsr & MCSR_DCSP)
477 printk(KERN_ERR "D-Cache Search Parity Error\n");
478 if (mcsr & PPC47x_MCSR_GPR)
479 printk(KERN_ERR "GPR Parity Error\n");
480 if (mcsr & PPC47x_MCSR_FPR)
481 printk(KERN_ERR "FPR Parity Error\n");
482 if (mcsr & PPC47x_MCSR_IPR)
483 printk(KERN_ERR "Machine Check exception is imprecise\n");
484
485 /* Clear MCSR */
486 mtspr(SPRN_MCSR, mcsr);
487
488 return 0;
489 }
490 #elif defined(CONFIG_E500)
491 int machine_check_e500mc(struct pt_regs *regs)
492 {
493 unsigned long mcsr = mfspr(SPRN_MCSR);
494 unsigned long reason = mcsr;
495 int recoverable = 1;
496
497 if (reason & MCSR_LD) {
498 recoverable = fsl_rio_mcheck_exception(regs);
499 if (recoverable == 1)
500 goto silent_out;
501 }
502
503 printk("Machine check in kernel mode.\n");
504 printk("Caused by (from MCSR=%lx): ", reason);
505
506 if (reason & MCSR_MCP)
507 printk("Machine Check Signal\n");
508
509 if (reason & MCSR_ICPERR) {
510 printk("Instruction Cache Parity Error\n");
511
512 /*
513 * This is recoverable by invalidating the i-cache.
514 */
515 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
516 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
517 ;
518
519 /*
520 * This will generally be accompanied by an instruction
521 * fetch error report -- only treat MCSR_IF as fatal
522 * if it wasn't due to an L1 parity error.
523 */
524 reason &= ~MCSR_IF;
525 }
526
527 if (reason & MCSR_DCPERR_MC) {
528 printk("Data Cache Parity Error\n");
529
530 /*
531 * In write shadow mode we auto-recover from the error, but it
532 * may still get logged and cause a machine check. We should
533 * only treat the non-write shadow case as non-recoverable.
534 */
535 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
536 recoverable = 0;
537 }
538
539 if (reason & MCSR_L2MMU_MHIT) {
540 printk("Hit on multiple TLB entries\n");
541 recoverable = 0;
542 }
543
544 if (reason & MCSR_NMI)
545 printk("Non-maskable interrupt\n");
546
547 if (reason & MCSR_IF) {
548 printk("Instruction Fetch Error Report\n");
549 recoverable = 0;
550 }
551
552 if (reason & MCSR_LD) {
553 printk("Load Error Report\n");
554 recoverable = 0;
555 }
556
557 if (reason & MCSR_ST) {
558 printk("Store Error Report\n");
559 recoverable = 0;
560 }
561
562 if (reason & MCSR_LDG) {
563 printk("Guarded Load Error Report\n");
564 recoverable = 0;
565 }
566
567 if (reason & MCSR_TLBSYNC)
568 printk("Simultaneous tlbsync operations\n");
569
570 if (reason & MCSR_BSL2_ERR) {
571 printk("Level 2 Cache Error\n");
572 recoverable = 0;
573 }
574
575 if (reason & MCSR_MAV) {
576 u64 addr;
577
578 addr = mfspr(SPRN_MCAR);
579 addr |= (u64)mfspr(SPRN_MCARU) << 32;
580
581 printk("Machine Check %s Address: %#llx\n",
582 reason & MCSR_MEA ? "Effective" : "Physical", addr);
583 }
584
585 silent_out:
586 mtspr(SPRN_MCSR, mcsr);
587 return mfspr(SPRN_MCSR) == 0 && recoverable;
588 }
589
590 int machine_check_e500(struct pt_regs *regs)
591 {
592 unsigned long reason = get_mc_reason(regs);
593
594 if (reason & MCSR_BUS_RBERR) {
595 if (fsl_rio_mcheck_exception(regs))
596 return 1;
597 if (fsl_pci_mcheck_exception(regs))
598 return 1;
599 }
600
601 printk("Machine check in kernel mode.\n");
602 printk("Caused by (from MCSR=%lx): ", reason);
603
604 if (reason & MCSR_MCP)
605 printk("Machine Check Signal\n");
606 if (reason & MCSR_ICPERR)
607 printk("Instruction Cache Parity Error\n");
608 if (reason & MCSR_DCP_PERR)
609 printk("Data Cache Push Parity Error\n");
610 if (reason & MCSR_DCPERR)
611 printk("Data Cache Parity Error\n");
612 if (reason & MCSR_BUS_IAERR)
613 printk("Bus - Instruction Address Error\n");
614 if (reason & MCSR_BUS_RAERR)
615 printk("Bus - Read Address Error\n");
616 if (reason & MCSR_BUS_WAERR)
617 printk("Bus - Write Address Error\n");
618 if (reason & MCSR_BUS_IBERR)
619 printk("Bus - Instruction Data Error\n");
620 if (reason & MCSR_BUS_RBERR)
621 printk("Bus - Read Data Bus Error\n");
622 if (reason & MCSR_BUS_WBERR)
623 printk("Bus - Write Data Bus Error\n");
624 if (reason & MCSR_BUS_IPERR)
625 printk("Bus - Instruction Parity Error\n");
626 if (reason & MCSR_BUS_RPERR)
627 printk("Bus - Read Parity Error\n");
628
629 return 0;
630 }
631
632 int machine_check_generic(struct pt_regs *regs)
633 {
634 return 0;
635 }
636 #elif defined(CONFIG_E200)
637 int machine_check_e200(struct pt_regs *regs)
638 {
639 unsigned long reason = get_mc_reason(regs);
640
641 printk("Machine check in kernel mode.\n");
642 printk("Caused by (from MCSR=%lx): ", reason);
643
644 if (reason & MCSR_MCP)
645 printk("Machine Check Signal\n");
646 if (reason & MCSR_CP_PERR)
647 printk("Cache Push Parity Error\n");
648 if (reason & MCSR_CPERR)
649 printk("Cache Parity Error\n");
650 if (reason & MCSR_EXCP_ERR)
651 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
652 if (reason & MCSR_BUS_IRERR)
653 printk("Bus - Read Bus Error on instruction fetch\n");
654 if (reason & MCSR_BUS_DRERR)
655 printk("Bus - Read Bus Error on data load\n");
656 if (reason & MCSR_BUS_WRERR)
657 printk("Bus - Write Bus Error on buffered store or cache line push\n");
658
659 return 0;
660 }
661 #else
662 int machine_check_generic(struct pt_regs *regs)
663 {
664 unsigned long reason = get_mc_reason(regs);
665
666 printk("Machine check in kernel mode.\n");
667 printk("Caused by (from SRR1=%lx): ", reason);
668 switch (reason & 0x601F0000) {
669 case 0x80000:
670 printk("Machine check signal\n");
671 break;
672 case 0: /* for 601 */
673 case 0x40000:
674 case 0x140000: /* 7450 MSS error and TEA */
675 printk("Transfer error ack signal\n");
676 break;
677 case 0x20000:
678 printk("Data parity error signal\n");
679 break;
680 case 0x10000:
681 printk("Address parity error signal\n");
682 break;
683 case 0x20000000:
684 printk("L1 Data Cache error\n");
685 break;
686 case 0x40000000:
687 printk("L1 Instruction Cache error\n");
688 break;
689 case 0x00100000:
690 printk("L2 data cache parity error\n");
691 break;
692 default:
693 printk("Unknown values in msr\n");
694 }
695 return 0;
696 }
697 #endif /* everything else */
698
699 void machine_check_exception(struct pt_regs *regs)
700 {
701 enum ctx_state prev_state = exception_enter();
702 int recover = 0;
703
704 __this_cpu_inc(irq_stat.mce_exceptions);
705
706 /* See if any machine dependent calls. In theory, we would want
707 * to call the CPU first, and call the ppc_md. one if the CPU
708 * one returns a positive number. However there is existing code
709 * that assumes the board gets a first chance, so let's keep it
710 * that way for now and fix things later. --BenH.
711 */
712 if (ppc_md.machine_check_exception)
713 recover = ppc_md.machine_check_exception(regs);
714 else if (cur_cpu_spec->machine_check)
715 recover = cur_cpu_spec->machine_check(regs);
716
717 if (recover > 0)
718 goto bail;
719
720 #if defined(CONFIG_8xx) && defined(CONFIG_PCI)
721 /* the qspan pci read routines can cause machine checks -- Cort
722 *
723 * yuck !!! that totally needs to go away ! There are better ways
724 * to deal with that than having a wart in the mcheck handler.
725 * -- BenH
726 */
727 bad_page_fault(regs, regs->dar, SIGBUS);
728 goto bail;
729 #endif
730
731 if (debugger_fault_handler(regs))
732 goto bail;
733
734 if (check_io_access(regs))
735 goto bail;
736
737 die("Machine check", regs, SIGBUS);
738
739 /* Must die if the interrupt is not recoverable */
740 if (!(regs->msr & MSR_RI))
741 panic("Unrecoverable Machine check");
742
743 bail:
744 exception_exit(prev_state);
745 }
746
747 void SMIException(struct pt_regs *regs)
748 {
749 die("System Management Interrupt", regs, SIGABRT);
750 }
751
752 void handle_hmi_exception(struct pt_regs *regs)
753 {
754 struct pt_regs *old_regs;
755
756 old_regs = set_irq_regs(regs);
757 irq_enter();
758
759 if (ppc_md.handle_hmi_exception)
760 ppc_md.handle_hmi_exception(regs);
761
762 irq_exit();
763 set_irq_regs(old_regs);
764 }
765
766 void unknown_exception(struct pt_regs *regs)
767 {
768 enum ctx_state prev_state = exception_enter();
769
770 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
771 regs->nip, regs->msr, regs->trap);
772
773 _exception(SIGTRAP, regs, 0, 0);
774
775 exception_exit(prev_state);
776 }
777
778 void instruction_breakpoint_exception(struct pt_regs *regs)
779 {
780 enum ctx_state prev_state = exception_enter();
781
782 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
783 5, SIGTRAP) == NOTIFY_STOP)
784 goto bail;
785 if (debugger_iabr_match(regs))
786 goto bail;
787 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
788
789 bail:
790 exception_exit(prev_state);
791 }
792
793 void RunModeException(struct pt_regs *regs)
794 {
795 _exception(SIGTRAP, regs, 0, 0);
796 }
797
798 void __kprobes single_step_exception(struct pt_regs *regs)
799 {
800 enum ctx_state prev_state = exception_enter();
801
802 clear_single_step(regs);
803
804 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
805 5, SIGTRAP) == NOTIFY_STOP)
806 goto bail;
807 if (debugger_sstep(regs))
808 goto bail;
809
810 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
811
812 bail:
813 exception_exit(prev_state);
814 }
815
816 /*
817 * After we have successfully emulated an instruction, we have to
818 * check if the instruction was being single-stepped, and if so,
819 * pretend we got a single-step exception. This was pointed out
820 * by Kumar Gala. -- paulus
821 */
822 static void emulate_single_step(struct pt_regs *regs)
823 {
824 if (single_stepping(regs))
825 single_step_exception(regs);
826 }
827
828 static inline int __parse_fpscr(unsigned long fpscr)
829 {
830 int ret = 0;
831
832 /* Invalid operation */
833 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
834 ret = FPE_FLTINV;
835
836 /* Overflow */
837 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
838 ret = FPE_FLTOVF;
839
840 /* Underflow */
841 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
842 ret = FPE_FLTUND;
843
844 /* Divide by zero */
845 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
846 ret = FPE_FLTDIV;
847
848 /* Inexact result */
849 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
850 ret = FPE_FLTRES;
851
852 return ret;
853 }
854
855 static void parse_fpe(struct pt_regs *regs)
856 {
857 int code = 0;
858
859 flush_fp_to_thread(current);
860
861 code = __parse_fpscr(current->thread.fp_state.fpscr);
862
863 _exception(SIGFPE, regs, code, regs->nip);
864 }
865
866 /*
867 * Illegal instruction emulation support. Originally written to
868 * provide the PVR to user applications using the mfspr rd, PVR.
869 * Return non-zero if we can't emulate, or -EFAULT if the associated
870 * memory access caused an access fault. Return zero on success.
871 *
872 * There are a couple of ways to do this, either "decode" the instruction
873 * or directly match lots of bits. In this case, matching lots of
874 * bits is faster and easier.
875 *
876 */
877 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
878 {
879 u8 rT = (instword >> 21) & 0x1f;
880 u8 rA = (instword >> 16) & 0x1f;
881 u8 NB_RB = (instword >> 11) & 0x1f;
882 u32 num_bytes;
883 unsigned long EA;
884 int pos = 0;
885
886 /* Early out if we are an invalid form of lswx */
887 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
888 if ((rT == rA) || (rT == NB_RB))
889 return -EINVAL;
890
891 EA = (rA == 0) ? 0 : regs->gpr[rA];
892
893 switch (instword & PPC_INST_STRING_MASK) {
894 case PPC_INST_LSWX:
895 case PPC_INST_STSWX:
896 EA += NB_RB;
897 num_bytes = regs->xer & 0x7f;
898 break;
899 case PPC_INST_LSWI:
900 case PPC_INST_STSWI:
901 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
902 break;
903 default:
904 return -EINVAL;
905 }
906
907 while (num_bytes != 0)
908 {
909 u8 val;
910 u32 shift = 8 * (3 - (pos & 0x3));
911
912 /* if process is 32-bit, clear upper 32 bits of EA */
913 if ((regs->msr & MSR_64BIT) == 0)
914 EA &= 0xFFFFFFFF;
915
916 switch ((instword & PPC_INST_STRING_MASK)) {
917 case PPC_INST_LSWX:
918 case PPC_INST_LSWI:
919 if (get_user(val, (u8 __user *)EA))
920 return -EFAULT;
921 /* first time updating this reg,
922 * zero it out */
923 if (pos == 0)
924 regs->gpr[rT] = 0;
925 regs->gpr[rT] |= val << shift;
926 break;
927 case PPC_INST_STSWI:
928 case PPC_INST_STSWX:
929 val = regs->gpr[rT] >> shift;
930 if (put_user(val, (u8 __user *)EA))
931 return -EFAULT;
932 break;
933 }
934 /* move EA to next address */
935 EA += 1;
936 num_bytes--;
937
938 /* manage our position within the register */
939 if (++pos == 4) {
940 pos = 0;
941 if (++rT == 32)
942 rT = 0;
943 }
944 }
945
946 return 0;
947 }
948
949 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
950 {
951 u32 ra,rs;
952 unsigned long tmp;
953
954 ra = (instword >> 16) & 0x1f;
955 rs = (instword >> 21) & 0x1f;
956
957 tmp = regs->gpr[rs];
958 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
959 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
960 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
961 regs->gpr[ra] = tmp;
962
963 return 0;
964 }
965
966 static int emulate_isel(struct pt_regs *regs, u32 instword)
967 {
968 u8 rT = (instword >> 21) & 0x1f;
969 u8 rA = (instword >> 16) & 0x1f;
970 u8 rB = (instword >> 11) & 0x1f;
971 u8 BC = (instword >> 6) & 0x1f;
972 u8 bit;
973 unsigned long tmp;
974
975 tmp = (rA == 0) ? 0 : regs->gpr[rA];
976 bit = (regs->ccr >> (31 - BC)) & 0x1;
977
978 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
979
980 return 0;
981 }
982
983 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
984 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
985 {
986 /* If we're emulating a load/store in an active transaction, we cannot
987 * emulate it as the kernel operates in transaction suspended context.
988 * We need to abort the transaction. This creates a persistent TM
989 * abort so tell the user what caused it with a new code.
990 */
991 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
992 tm_enable();
993 tm_abort(cause);
994 return true;
995 }
996 return false;
997 }
998 #else
999 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1000 {
1001 return false;
1002 }
1003 #endif
1004
1005 static int emulate_instruction(struct pt_regs *regs)
1006 {
1007 u32 instword;
1008 u32 rd;
1009
1010 if (!user_mode(regs))
1011 return -EINVAL;
1012 CHECK_FULL_REGS(regs);
1013
1014 if (get_user(instword, (u32 __user *)(regs->nip)))
1015 return -EFAULT;
1016
1017 /* Emulate the mfspr rD, PVR. */
1018 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1019 PPC_WARN_EMULATED(mfpvr, regs);
1020 rd = (instword >> 21) & 0x1f;
1021 regs->gpr[rd] = mfspr(SPRN_PVR);
1022 return 0;
1023 }
1024
1025 /* Emulating the dcba insn is just a no-op. */
1026 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1027 PPC_WARN_EMULATED(dcba, regs);
1028 return 0;
1029 }
1030
1031 /* Emulate the mcrxr insn. */
1032 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1033 int shift = (instword >> 21) & 0x1c;
1034 unsigned long msk = 0xf0000000UL >> shift;
1035
1036 PPC_WARN_EMULATED(mcrxr, regs);
1037 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1038 regs->xer &= ~0xf0000000UL;
1039 return 0;
1040 }
1041
1042 /* Emulate load/store string insn. */
1043 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1044 if (tm_abort_check(regs,
1045 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1046 return -EINVAL;
1047 PPC_WARN_EMULATED(string, regs);
1048 return emulate_string_inst(regs, instword);
1049 }
1050
1051 /* Emulate the popcntb (Population Count Bytes) instruction. */
1052 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1053 PPC_WARN_EMULATED(popcntb, regs);
1054 return emulate_popcntb_inst(regs, instword);
1055 }
1056
1057 /* Emulate isel (Integer Select) instruction */
1058 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1059 PPC_WARN_EMULATED(isel, regs);
1060 return emulate_isel(regs, instword);
1061 }
1062
1063 /* Emulate sync instruction variants */
1064 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1065 PPC_WARN_EMULATED(sync, regs);
1066 asm volatile("sync");
1067 return 0;
1068 }
1069
1070 #ifdef CONFIG_PPC64
1071 /* Emulate the mfspr rD, DSCR. */
1072 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1073 PPC_INST_MFSPR_DSCR_USER) ||
1074 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1075 PPC_INST_MFSPR_DSCR)) &&
1076 cpu_has_feature(CPU_FTR_DSCR)) {
1077 PPC_WARN_EMULATED(mfdscr, regs);
1078 rd = (instword >> 21) & 0x1f;
1079 regs->gpr[rd] = mfspr(SPRN_DSCR);
1080 return 0;
1081 }
1082 /* Emulate the mtspr DSCR, rD. */
1083 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1084 PPC_INST_MTSPR_DSCR_USER) ||
1085 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1086 PPC_INST_MTSPR_DSCR)) &&
1087 cpu_has_feature(CPU_FTR_DSCR)) {
1088 PPC_WARN_EMULATED(mtdscr, regs);
1089 rd = (instword >> 21) & 0x1f;
1090 current->thread.dscr = regs->gpr[rd];
1091 current->thread.dscr_inherit = 1;
1092 mtspr(SPRN_DSCR, current->thread.dscr);
1093 return 0;
1094 }
1095 #endif
1096
1097 return -EINVAL;
1098 }
1099
1100 int is_valid_bugaddr(unsigned long addr)
1101 {
1102 return is_kernel_addr(addr);
1103 }
1104
1105 #ifdef CONFIG_MATH_EMULATION
1106 static int emulate_math(struct pt_regs *regs)
1107 {
1108 int ret;
1109 extern int do_mathemu(struct pt_regs *regs);
1110
1111 ret = do_mathemu(regs);
1112 if (ret >= 0)
1113 PPC_WARN_EMULATED(math, regs);
1114
1115 switch (ret) {
1116 case 0:
1117 emulate_single_step(regs);
1118 return 0;
1119 case 1: {
1120 int code = 0;
1121 code = __parse_fpscr(current->thread.fp_state.fpscr);
1122 _exception(SIGFPE, regs, code, regs->nip);
1123 return 0;
1124 }
1125 case -EFAULT:
1126 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1127 return 0;
1128 }
1129
1130 return -1;
1131 }
1132 #else
1133 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1134 #endif
1135
1136 void __kprobes program_check_exception(struct pt_regs *regs)
1137 {
1138 enum ctx_state prev_state = exception_enter();
1139 unsigned int reason = get_reason(regs);
1140
1141 /* We can now get here via a FP Unavailable exception if the core
1142 * has no FPU, in that case the reason flags will be 0 */
1143
1144 if (reason & REASON_FP) {
1145 /* IEEE FP exception */
1146 parse_fpe(regs);
1147 goto bail;
1148 }
1149 if (reason & REASON_TRAP) {
1150 /* Debugger is first in line to stop recursive faults in
1151 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1152 if (debugger_bpt(regs))
1153 goto bail;
1154
1155 /* trap exception */
1156 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1157 == NOTIFY_STOP)
1158 goto bail;
1159
1160 if (!(regs->msr & MSR_PR) && /* not user-mode */
1161 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1162 regs->nip += 4;
1163 goto bail;
1164 }
1165 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1166 goto bail;
1167 }
1168 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1169 if (reason & REASON_TM) {
1170 /* This is a TM "Bad Thing Exception" program check.
1171 * This occurs when:
1172 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1173 * transition in TM states.
1174 * - A trechkpt is attempted when transactional.
1175 * - A treclaim is attempted when non transactional.
1176 * - A tend is illegally attempted.
1177 * - writing a TM SPR when transactional.
1178 */
1179 if (!user_mode(regs) &&
1180 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1181 regs->nip += 4;
1182 goto bail;
1183 }
1184 /* If usermode caused this, it's done something illegal and
1185 * gets a SIGILL slap on the wrist. We call it an illegal
1186 * operand to distinguish from the instruction just being bad
1187 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1188 * illegal /placement/ of a valid instruction.
1189 */
1190 if (user_mode(regs)) {
1191 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1192 goto bail;
1193 } else {
1194 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1195 "at %lx (msr 0x%x)\n", regs->nip, reason);
1196 die("Unrecoverable exception", regs, SIGABRT);
1197 }
1198 }
1199 #endif
1200
1201 /*
1202 * If we took the program check in the kernel skip down to sending a
1203 * SIGILL. The subsequent cases all relate to emulating instructions
1204 * which we should only do for userspace. We also do not want to enable
1205 * interrupts for kernel faults because that might lead to further
1206 * faults, and loose the context of the original exception.
1207 */
1208 if (!user_mode(regs))
1209 goto sigill;
1210
1211 /* We restore the interrupt state now */
1212 if (!arch_irq_disabled_regs(regs))
1213 local_irq_enable();
1214
1215 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1216 * but there seems to be a hardware bug on the 405GP (RevD)
1217 * that means ESR is sometimes set incorrectly - either to
1218 * ESR_DST (!?) or 0. In the process of chasing this with the
1219 * hardware people - not sure if it can happen on any illegal
1220 * instruction or only on FP instructions, whether there is a
1221 * pattern to occurrences etc. -dgibson 31/Mar/2003
1222 */
1223 if (!emulate_math(regs))
1224 goto bail;
1225
1226 /* Try to emulate it if we should. */
1227 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1228 switch (emulate_instruction(regs)) {
1229 case 0:
1230 regs->nip += 4;
1231 emulate_single_step(regs);
1232 goto bail;
1233 case -EFAULT:
1234 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1235 goto bail;
1236 }
1237 }
1238
1239 sigill:
1240 if (reason & REASON_PRIVILEGED)
1241 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1242 else
1243 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1244
1245 bail:
1246 exception_exit(prev_state);
1247 }
1248
1249 /*
1250 * This occurs when running in hypervisor mode on POWER6 or later
1251 * and an illegal instruction is encountered.
1252 */
1253 void __kprobes emulation_assist_interrupt(struct pt_regs *regs)
1254 {
1255 regs->msr |= REASON_ILLEGAL;
1256 program_check_exception(regs);
1257 }
1258
1259 void alignment_exception(struct pt_regs *regs)
1260 {
1261 enum ctx_state prev_state = exception_enter();
1262 int sig, code, fixed = 0;
1263
1264 /* We restore the interrupt state now */
1265 if (!arch_irq_disabled_regs(regs))
1266 local_irq_enable();
1267
1268 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1269 goto bail;
1270
1271 /* we don't implement logging of alignment exceptions */
1272 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1273 fixed = fix_alignment(regs);
1274
1275 if (fixed == 1) {
1276 regs->nip += 4; /* skip over emulated instruction */
1277 emulate_single_step(regs);
1278 goto bail;
1279 }
1280
1281 /* Operand address was bad */
1282 if (fixed == -EFAULT) {
1283 sig = SIGSEGV;
1284 code = SEGV_ACCERR;
1285 } else {
1286 sig = SIGBUS;
1287 code = BUS_ADRALN;
1288 }
1289 if (user_mode(regs))
1290 _exception(sig, regs, code, regs->dar);
1291 else
1292 bad_page_fault(regs, regs->dar, sig);
1293
1294 bail:
1295 exception_exit(prev_state);
1296 }
1297
1298 void StackOverflow(struct pt_regs *regs)
1299 {
1300 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1301 current, regs->gpr[1]);
1302 debugger(regs);
1303 show_regs(regs);
1304 panic("kernel stack overflow");
1305 }
1306
1307 void nonrecoverable_exception(struct pt_regs *regs)
1308 {
1309 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1310 regs->nip, regs->msr);
1311 debugger(regs);
1312 die("nonrecoverable exception", regs, SIGKILL);
1313 }
1314
1315 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1316 {
1317 enum ctx_state prev_state = exception_enter();
1318
1319 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1320 "%lx at %lx\n", regs->trap, regs->nip);
1321 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1322
1323 exception_exit(prev_state);
1324 }
1325
1326 void altivec_unavailable_exception(struct pt_regs *regs)
1327 {
1328 enum ctx_state prev_state = exception_enter();
1329
1330 if (user_mode(regs)) {
1331 /* A user program has executed an altivec instruction,
1332 but this kernel doesn't support altivec. */
1333 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1334 goto bail;
1335 }
1336
1337 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1338 "%lx at %lx\n", regs->trap, regs->nip);
1339 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1340
1341 bail:
1342 exception_exit(prev_state);
1343 }
1344
1345 void vsx_unavailable_exception(struct pt_regs *regs)
1346 {
1347 if (user_mode(regs)) {
1348 /* A user program has executed an vsx instruction,
1349 but this kernel doesn't support vsx. */
1350 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1351 return;
1352 }
1353
1354 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1355 "%lx at %lx\n", regs->trap, regs->nip);
1356 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1357 }
1358
1359 #ifdef CONFIG_PPC64
1360 void facility_unavailable_exception(struct pt_regs *regs)
1361 {
1362 static char *facility_strings[] = {
1363 [FSCR_FP_LG] = "FPU",
1364 [FSCR_VECVSX_LG] = "VMX/VSX",
1365 [FSCR_DSCR_LG] = "DSCR",
1366 [FSCR_PM_LG] = "PMU SPRs",
1367 [FSCR_BHRB_LG] = "BHRB",
1368 [FSCR_TM_LG] = "TM",
1369 [FSCR_EBB_LG] = "EBB",
1370 [FSCR_TAR_LG] = "TAR",
1371 };
1372 char *facility = "unknown";
1373 u64 value;
1374 u32 instword, rd;
1375 u8 status;
1376 bool hv;
1377
1378 hv = (regs->trap == 0xf80);
1379 if (hv)
1380 value = mfspr(SPRN_HFSCR);
1381 else
1382 value = mfspr(SPRN_FSCR);
1383
1384 status = value >> 56;
1385 if (status == FSCR_DSCR_LG) {
1386 /*
1387 * User is accessing the DSCR register using the problem
1388 * state only SPR number (0x03) either through a mfspr or
1389 * a mtspr instruction. If it is a write attempt through
1390 * a mtspr, then we set the inherit bit. This also allows
1391 * the user to write or read the register directly in the
1392 * future by setting via the FSCR DSCR bit. But in case it
1393 * is a read DSCR attempt through a mfspr instruction, we
1394 * just emulate the instruction instead. This code path will
1395 * always emulate all the mfspr instructions till the user
1396 * has attempted atleast one mtspr instruction. This way it
1397 * preserves the same behaviour when the user is accessing
1398 * the DSCR through privilege level only SPR number (0x11)
1399 * which is emulated through illegal instruction exception.
1400 * We always leave HFSCR DSCR set.
1401 */
1402 if (get_user(instword, (u32 __user *)(regs->nip))) {
1403 pr_err("Failed to fetch the user instruction\n");
1404 return;
1405 }
1406
1407 /* Write into DSCR (mtspr 0x03, RS) */
1408 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1409 == PPC_INST_MTSPR_DSCR_USER) {
1410 rd = (instword >> 21) & 0x1f;
1411 current->thread.dscr = regs->gpr[rd];
1412 current->thread.dscr_inherit = 1;
1413 mtspr(SPRN_FSCR, value | FSCR_DSCR);
1414 }
1415
1416 /* Read from DSCR (mfspr RT, 0x03) */
1417 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1418 == PPC_INST_MFSPR_DSCR_USER) {
1419 if (emulate_instruction(regs)) {
1420 pr_err("DSCR based mfspr emulation failed\n");
1421 return;
1422 }
1423 regs->nip += 4;
1424 emulate_single_step(regs);
1425 }
1426 return;
1427 }
1428
1429 if ((status < ARRAY_SIZE(facility_strings)) &&
1430 facility_strings[status])
1431 facility = facility_strings[status];
1432
1433 /* We restore the interrupt state now */
1434 if (!arch_irq_disabled_regs(regs))
1435 local_irq_enable();
1436
1437 pr_err_ratelimited(
1438 "%sFacility '%s' unavailable, exception at 0x%lx, MSR=%lx\n",
1439 hv ? "Hypervisor " : "", facility, regs->nip, regs->msr);
1440
1441 if (user_mode(regs)) {
1442 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1443 return;
1444 }
1445
1446 die("Unexpected facility unavailable exception", regs, SIGABRT);
1447 }
1448 #endif
1449
1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451
1452 void fp_unavailable_tm(struct pt_regs *regs)
1453 {
1454 /* Note: This does not handle any kind of FP laziness. */
1455
1456 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1457 regs->nip, regs->msr);
1458
1459 /* We can only have got here if the task started using FP after
1460 * beginning the transaction. So, the transactional regs are just a
1461 * copy of the checkpointed ones. But, we still need to recheckpoint
1462 * as we're enabling FP for the process; it will return, abort the
1463 * transaction, and probably retry but now with FP enabled. So the
1464 * checkpointed FP registers need to be loaded.
1465 */
1466 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1467 /* Reclaim didn't save out any FPRs to transact_fprs. */
1468
1469 /* Enable FP for the task: */
1470 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1471
1472 /* This loads and recheckpoints the FP registers from
1473 * thread.fpr[]. They will remain in registers after the
1474 * checkpoint so we don't need to reload them after.
1475 * If VMX is in use, the VRs now hold checkpointed values,
1476 * so we don't want to load the VRs from the thread_struct.
1477 */
1478 tm_recheckpoint(&current->thread, MSR_FP);
1479
1480 /* If VMX is in use, get the transactional values back */
1481 if (regs->msr & MSR_VEC) {
1482 do_load_up_transact_altivec(&current->thread);
1483 /* At this point all the VSX state is loaded, so enable it */
1484 regs->msr |= MSR_VSX;
1485 }
1486 }
1487
1488 void altivec_unavailable_tm(struct pt_regs *regs)
1489 {
1490 /* See the comments in fp_unavailable_tm(). This function operates
1491 * the same way.
1492 */
1493
1494 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1495 "MSR=%lx\n",
1496 regs->nip, regs->msr);
1497 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1498 regs->msr |= MSR_VEC;
1499 tm_recheckpoint(&current->thread, MSR_VEC);
1500 current->thread.used_vr = 1;
1501
1502 if (regs->msr & MSR_FP) {
1503 do_load_up_transact_fpu(&current->thread);
1504 regs->msr |= MSR_VSX;
1505 }
1506 }
1507
1508 void vsx_unavailable_tm(struct pt_regs *regs)
1509 {
1510 unsigned long orig_msr = regs->msr;
1511
1512 /* See the comments in fp_unavailable_tm(). This works similarly,
1513 * though we're loading both FP and VEC registers in here.
1514 *
1515 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1516 * regs. Either way, set MSR_VSX.
1517 */
1518
1519 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1520 "MSR=%lx\n",
1521 regs->nip, regs->msr);
1522
1523 current->thread.used_vsr = 1;
1524
1525 /* If FP and VMX are already loaded, we have all the state we need */
1526 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1527 regs->msr |= MSR_VSX;
1528 return;
1529 }
1530
1531 /* This reclaims FP and/or VR regs if they're already enabled */
1532 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1533
1534 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1535 MSR_VSX;
1536
1537 /* This loads & recheckpoints FP and VRs; but we have
1538 * to be sure not to overwrite previously-valid state.
1539 */
1540 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1541
1542 if (orig_msr & MSR_FP)
1543 do_load_up_transact_fpu(&current->thread);
1544 if (orig_msr & MSR_VEC)
1545 do_load_up_transact_altivec(&current->thread);
1546 }
1547 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1548
1549 void performance_monitor_exception(struct pt_regs *regs)
1550 {
1551 __this_cpu_inc(irq_stat.pmu_irqs);
1552
1553 perf_irq(regs);
1554 }
1555
1556 #ifdef CONFIG_8xx
1557 void SoftwareEmulation(struct pt_regs *regs)
1558 {
1559 CHECK_FULL_REGS(regs);
1560
1561 if (!user_mode(regs)) {
1562 debugger(regs);
1563 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1564 regs, SIGFPE);
1565 }
1566
1567 if (!emulate_math(regs))
1568 return;
1569
1570 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1571 }
1572 #endif /* CONFIG_8xx */
1573
1574 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1575 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1576 {
1577 int changed = 0;
1578 /*
1579 * Determine the cause of the debug event, clear the
1580 * event flags and send a trap to the handler. Torez
1581 */
1582 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1583 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1584 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1585 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1586 #endif
1587 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1588 5);
1589 changed |= 0x01;
1590 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1591 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1592 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1593 6);
1594 changed |= 0x01;
1595 } else if (debug_status & DBSR_IAC1) {
1596 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1597 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1598 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1599 1);
1600 changed |= 0x01;
1601 } else if (debug_status & DBSR_IAC2) {
1602 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1603 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1604 2);
1605 changed |= 0x01;
1606 } else if (debug_status & DBSR_IAC3) {
1607 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1608 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1609 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1610 3);
1611 changed |= 0x01;
1612 } else if (debug_status & DBSR_IAC4) {
1613 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1614 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1615 4);
1616 changed |= 0x01;
1617 }
1618 /*
1619 * At the point this routine was called, the MSR(DE) was turned off.
1620 * Check all other debug flags and see if that bit needs to be turned
1621 * back on or not.
1622 */
1623 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1624 current->thread.debug.dbcr1))
1625 regs->msr |= MSR_DE;
1626 else
1627 /* Make sure the IDM flag is off */
1628 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1629
1630 if (changed & 0x01)
1631 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1632 }
1633
1634 void __kprobes DebugException(struct pt_regs *regs, unsigned long debug_status)
1635 {
1636 current->thread.debug.dbsr = debug_status;
1637
1638 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1639 * on server, it stops on the target of the branch. In order to simulate
1640 * the server behaviour, we thus restart right away with a single step
1641 * instead of stopping here when hitting a BT
1642 */
1643 if (debug_status & DBSR_BT) {
1644 regs->msr &= ~MSR_DE;
1645
1646 /* Disable BT */
1647 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1648 /* Clear the BT event */
1649 mtspr(SPRN_DBSR, DBSR_BT);
1650
1651 /* Do the single step trick only when coming from userspace */
1652 if (user_mode(regs)) {
1653 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1654 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1655 regs->msr |= MSR_DE;
1656 return;
1657 }
1658
1659 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1660 5, SIGTRAP) == NOTIFY_STOP) {
1661 return;
1662 }
1663 if (debugger_sstep(regs))
1664 return;
1665 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1666 regs->msr &= ~MSR_DE;
1667
1668 /* Disable instruction completion */
1669 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1670 /* Clear the instruction completion event */
1671 mtspr(SPRN_DBSR, DBSR_IC);
1672
1673 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1674 5, SIGTRAP) == NOTIFY_STOP) {
1675 return;
1676 }
1677
1678 if (debugger_sstep(regs))
1679 return;
1680
1681 if (user_mode(regs)) {
1682 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1683 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1684 current->thread.debug.dbcr1))
1685 regs->msr |= MSR_DE;
1686 else
1687 /* Make sure the IDM bit is off */
1688 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1689 }
1690
1691 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1692 } else
1693 handle_debug(regs, debug_status);
1694 }
1695 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1696
1697 #if !defined(CONFIG_TAU_INT)
1698 void TAUException(struct pt_regs *regs)
1699 {
1700 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1701 regs->nip, regs->msr, regs->trap, print_tainted());
1702 }
1703 #endif /* CONFIG_INT_TAU */
1704
1705 #ifdef CONFIG_ALTIVEC
1706 void altivec_assist_exception(struct pt_regs *regs)
1707 {
1708 int err;
1709
1710 if (!user_mode(regs)) {
1711 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1712 " at %lx\n", regs->nip);
1713 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1714 }
1715
1716 flush_altivec_to_thread(current);
1717
1718 PPC_WARN_EMULATED(altivec, regs);
1719 err = emulate_altivec(regs);
1720 if (err == 0) {
1721 regs->nip += 4; /* skip emulated instruction */
1722 emulate_single_step(regs);
1723 return;
1724 }
1725
1726 if (err == -EFAULT) {
1727 /* got an error reading the instruction */
1728 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1729 } else {
1730 /* didn't recognize the instruction */
1731 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1732 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1733 "in %s at %lx\n", current->comm, regs->nip);
1734 current->thread.vr_state.vscr.u[3] |= 0x10000;
1735 }
1736 }
1737 #endif /* CONFIG_ALTIVEC */
1738
1739 #ifdef CONFIG_FSL_BOOKE
1740 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1741 unsigned long error_code)
1742 {
1743 /* We treat cache locking instructions from the user
1744 * as priv ops, in the future we could try to do
1745 * something smarter
1746 */
1747 if (error_code & (ESR_DLK|ESR_ILK))
1748 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1749 return;
1750 }
1751 #endif /* CONFIG_FSL_BOOKE */
1752
1753 #ifdef CONFIG_SPE
1754 void SPEFloatingPointException(struct pt_regs *regs)
1755 {
1756 extern int do_spe_mathemu(struct pt_regs *regs);
1757 unsigned long spefscr;
1758 int fpexc_mode;
1759 int code = 0;
1760 int err;
1761
1762 flush_spe_to_thread(current);
1763
1764 spefscr = current->thread.spefscr;
1765 fpexc_mode = current->thread.fpexc_mode;
1766
1767 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1768 code = FPE_FLTOVF;
1769 }
1770 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1771 code = FPE_FLTUND;
1772 }
1773 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1774 code = FPE_FLTDIV;
1775 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1776 code = FPE_FLTINV;
1777 }
1778 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1779 code = FPE_FLTRES;
1780
1781 err = do_spe_mathemu(regs);
1782 if (err == 0) {
1783 regs->nip += 4; /* skip emulated instruction */
1784 emulate_single_step(regs);
1785 return;
1786 }
1787
1788 if (err == -EFAULT) {
1789 /* got an error reading the instruction */
1790 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1791 } else if (err == -EINVAL) {
1792 /* didn't recognize the instruction */
1793 printk(KERN_ERR "unrecognized spe instruction "
1794 "in %s at %lx\n", current->comm, regs->nip);
1795 } else {
1796 _exception(SIGFPE, regs, code, regs->nip);
1797 }
1798
1799 return;
1800 }
1801
1802 void SPEFloatingPointRoundException(struct pt_regs *regs)
1803 {
1804 extern int speround_handler(struct pt_regs *regs);
1805 int err;
1806
1807 preempt_disable();
1808 if (regs->msr & MSR_SPE)
1809 giveup_spe(current);
1810 preempt_enable();
1811
1812 regs->nip -= 4;
1813 err = speround_handler(regs);
1814 if (err == 0) {
1815 regs->nip += 4; /* skip emulated instruction */
1816 emulate_single_step(regs);
1817 return;
1818 }
1819
1820 if (err == -EFAULT) {
1821 /* got an error reading the instruction */
1822 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1823 } else if (err == -EINVAL) {
1824 /* didn't recognize the instruction */
1825 printk(KERN_ERR "unrecognized spe instruction "
1826 "in %s at %lx\n", current->comm, regs->nip);
1827 } else {
1828 _exception(SIGFPE, regs, 0, regs->nip);
1829 return;
1830 }
1831 }
1832 #endif
1833
1834 /*
1835 * We enter here if we get an unrecoverable exception, that is, one
1836 * that happened at a point where the RI (recoverable interrupt) bit
1837 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1838 * we therefore lost state by taking this exception.
1839 */
1840 void unrecoverable_exception(struct pt_regs *regs)
1841 {
1842 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1843 regs->trap, regs->nip);
1844 die("Unrecoverable exception", regs, SIGABRT);
1845 }
1846
1847 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1848 /*
1849 * Default handler for a Watchdog exception,
1850 * spins until a reboot occurs
1851 */
1852 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1853 {
1854 /* Generic WatchdogHandler, implement your own */
1855 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1856 return;
1857 }
1858
1859 void WatchdogException(struct pt_regs *regs)
1860 {
1861 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1862 WatchdogHandler(regs);
1863 }
1864 #endif
1865
1866 /*
1867 * We enter here if we discover during exception entry that we are
1868 * running in supervisor mode with a userspace value in the stack pointer.
1869 */
1870 void kernel_bad_stack(struct pt_regs *regs)
1871 {
1872 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1873 regs->gpr[1], regs->nip);
1874 die("Bad kernel stack pointer", regs, SIGABRT);
1875 }
1876
1877 void __init trap_init(void)
1878 {
1879 }
1880
1881
1882 #ifdef CONFIG_PPC_EMULATED_STATS
1883
1884 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1885
1886 struct ppc_emulated ppc_emulated = {
1887 #ifdef CONFIG_ALTIVEC
1888 WARN_EMULATED_SETUP(altivec),
1889 #endif
1890 WARN_EMULATED_SETUP(dcba),
1891 WARN_EMULATED_SETUP(dcbz),
1892 WARN_EMULATED_SETUP(fp_pair),
1893 WARN_EMULATED_SETUP(isel),
1894 WARN_EMULATED_SETUP(mcrxr),
1895 WARN_EMULATED_SETUP(mfpvr),
1896 WARN_EMULATED_SETUP(multiple),
1897 WARN_EMULATED_SETUP(popcntb),
1898 WARN_EMULATED_SETUP(spe),
1899 WARN_EMULATED_SETUP(string),
1900 WARN_EMULATED_SETUP(sync),
1901 WARN_EMULATED_SETUP(unaligned),
1902 #ifdef CONFIG_MATH_EMULATION
1903 WARN_EMULATED_SETUP(math),
1904 #endif
1905 #ifdef CONFIG_VSX
1906 WARN_EMULATED_SETUP(vsx),
1907 #endif
1908 #ifdef CONFIG_PPC64
1909 WARN_EMULATED_SETUP(mfdscr),
1910 WARN_EMULATED_SETUP(mtdscr),
1911 WARN_EMULATED_SETUP(lq_stq),
1912 #endif
1913 };
1914
1915 u32 ppc_warn_emulated;
1916
1917 void ppc_warn_emulated_print(const char *type)
1918 {
1919 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
1920 type);
1921 }
1922
1923 static int __init ppc_warn_emulated_init(void)
1924 {
1925 struct dentry *dir, *d;
1926 unsigned int i;
1927 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
1928
1929 if (!powerpc_debugfs_root)
1930 return -ENODEV;
1931
1932 dir = debugfs_create_dir("emulated_instructions",
1933 powerpc_debugfs_root);
1934 if (!dir)
1935 return -ENOMEM;
1936
1937 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
1938 &ppc_warn_emulated);
1939 if (!d)
1940 goto fail;
1941
1942 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
1943 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
1944 (u32 *)&entries[i].val.counter);
1945 if (!d)
1946 goto fail;
1947 }
1948
1949 return 0;
1950
1951 fail:
1952 debugfs_remove_recursive(dir);
1953 return -ENOMEM;
1954 }
1955
1956 device_initcall(ppc_warn_emulated_init);
1957
1958 #endif /* CONFIG_PPC_EMULATED_STATS */