]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/powerpc/kernel/traps.c
Remove 'type' argument from access_ok() function
[thirdparty/kernel/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/pkeys.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/interrupt.h>
29 #include <linux/init.h>
30 #include <linux/extable.h>
31 #include <linux/module.h> /* print_modules */
32 #include <linux/prctl.h>
33 #include <linux/delay.h>
34 #include <linux/kprobes.h>
35 #include <linux/kexec.h>
36 #include <linux/backlight.h>
37 #include <linux/bug.h>
38 #include <linux/kdebug.h>
39 #include <linux/ratelimit.h>
40 #include <linux/context_tracking.h>
41 #include <linux/smp.h>
42 #include <linux/console.h>
43 #include <linux/kmsg_dump.h>
44
45 #include <asm/emulated_ops.h>
46 #include <asm/pgtable.h>
47 #include <linux/uaccess.h>
48 #include <asm/debugfs.h>
49 #include <asm/io.h>
50 #include <asm/machdep.h>
51 #include <asm/rtas.h>
52 #include <asm/pmc.h>
53 #include <asm/reg.h>
54 #ifdef CONFIG_PMAC_BACKLIGHT
55 #include <asm/backlight.h>
56 #endif
57 #ifdef CONFIG_PPC64
58 #include <asm/firmware.h>
59 #include <asm/processor.h>
60 #include <asm/tm.h>
61 #endif
62 #include <asm/kexec.h>
63 #include <asm/ppc-opcode.h>
64 #include <asm/rio.h>
65 #include <asm/fadump.h>
66 #include <asm/switch_to.h>
67 #include <asm/tm.h>
68 #include <asm/debug.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/hmi.h>
71 #include <sysdev/fsl_pci.h>
72 #include <asm/kprobes.h>
73 #include <asm/stacktrace.h>
74
75 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
76 int (*__debugger)(struct pt_regs *regs) __read_mostly;
77 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
78 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
79 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
80 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
81 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
82 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
83
84 EXPORT_SYMBOL(__debugger);
85 EXPORT_SYMBOL(__debugger_ipi);
86 EXPORT_SYMBOL(__debugger_bpt);
87 EXPORT_SYMBOL(__debugger_sstep);
88 EXPORT_SYMBOL(__debugger_iabr_match);
89 EXPORT_SYMBOL(__debugger_break_match);
90 EXPORT_SYMBOL(__debugger_fault_handler);
91 #endif
92
93 /* Transactional Memory trap debug */
94 #ifdef TM_DEBUG_SW
95 #define TM_DEBUG(x...) printk(KERN_INFO x)
96 #else
97 #define TM_DEBUG(x...) do { } while(0)
98 #endif
99
100 static const char *signame(int signr)
101 {
102 switch (signr) {
103 case SIGBUS: return "bus error";
104 case SIGFPE: return "floating point exception";
105 case SIGILL: return "illegal instruction";
106 case SIGSEGV: return "segfault";
107 case SIGTRAP: return "unhandled trap";
108 }
109
110 return "unknown signal";
111 }
112
113 /*
114 * Trap & Exception support
115 */
116
117 #ifdef CONFIG_PMAC_BACKLIGHT
118 static void pmac_backlight_unblank(void)
119 {
120 mutex_lock(&pmac_backlight_mutex);
121 if (pmac_backlight) {
122 struct backlight_properties *props;
123
124 props = &pmac_backlight->props;
125 props->brightness = props->max_brightness;
126 props->power = FB_BLANK_UNBLANK;
127 backlight_update_status(pmac_backlight);
128 }
129 mutex_unlock(&pmac_backlight_mutex);
130 }
131 #else
132 static inline void pmac_backlight_unblank(void) { }
133 #endif
134
135 /*
136 * If oops/die is expected to crash the machine, return true here.
137 *
138 * This should not be expected to be 100% accurate, there may be
139 * notifiers registered or other unexpected conditions that may bring
140 * down the kernel. Or if the current process in the kernel is holding
141 * locks or has other critical state, the kernel may become effectively
142 * unusable anyway.
143 */
144 bool die_will_crash(void)
145 {
146 if (should_fadump_crash())
147 return true;
148 if (kexec_should_crash(current))
149 return true;
150 if (in_interrupt() || panic_on_oops ||
151 !current->pid || is_global_init(current))
152 return true;
153
154 return false;
155 }
156
157 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
158 static int die_owner = -1;
159 static unsigned int die_nest_count;
160 static int die_counter;
161
162 extern void panic_flush_kmsg_start(void)
163 {
164 /*
165 * These are mostly taken from kernel/panic.c, but tries to do
166 * relatively minimal work. Don't use delay functions (TB may
167 * be broken), don't crash dump (need to set a firmware log),
168 * don't run notifiers. We do want to get some information to
169 * Linux console.
170 */
171 console_verbose();
172 bust_spinlocks(1);
173 }
174
175 extern void panic_flush_kmsg_end(void)
176 {
177 printk_safe_flush_on_panic();
178 kmsg_dump(KMSG_DUMP_PANIC);
179 bust_spinlocks(0);
180 debug_locks_off();
181 console_flush_on_panic();
182 }
183
184 static unsigned long oops_begin(struct pt_regs *regs)
185 {
186 int cpu;
187 unsigned long flags;
188
189 oops_enter();
190
191 /* racy, but better than risking deadlock. */
192 raw_local_irq_save(flags);
193 cpu = smp_processor_id();
194 if (!arch_spin_trylock(&die_lock)) {
195 if (cpu == die_owner)
196 /* nested oops. should stop eventually */;
197 else
198 arch_spin_lock(&die_lock);
199 }
200 die_nest_count++;
201 die_owner = cpu;
202 console_verbose();
203 bust_spinlocks(1);
204 if (machine_is(powermac))
205 pmac_backlight_unblank();
206 return flags;
207 }
208 NOKPROBE_SYMBOL(oops_begin);
209
210 static void oops_end(unsigned long flags, struct pt_regs *regs,
211 int signr)
212 {
213 bust_spinlocks(0);
214 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
215 die_nest_count--;
216 oops_exit();
217 printk("\n");
218 if (!die_nest_count) {
219 /* Nest count reaches zero, release the lock. */
220 die_owner = -1;
221 arch_spin_unlock(&die_lock);
222 }
223 raw_local_irq_restore(flags);
224
225 /*
226 * system_reset_excption handles debugger, crash dump, panic, for 0x100
227 */
228 if (TRAP(regs) == 0x100)
229 return;
230
231 crash_fadump(regs, "die oops");
232
233 if (kexec_should_crash(current))
234 crash_kexec(regs);
235
236 if (!signr)
237 return;
238
239 /*
240 * While our oops output is serialised by a spinlock, output
241 * from panic() called below can race and corrupt it. If we
242 * know we are going to panic, delay for 1 second so we have a
243 * chance to get clean backtraces from all CPUs that are oopsing.
244 */
245 if (in_interrupt() || panic_on_oops || !current->pid ||
246 is_global_init(current)) {
247 mdelay(MSEC_PER_SEC);
248 }
249
250 if (panic_on_oops)
251 panic("Fatal exception");
252 do_exit(signr);
253 }
254 NOKPROBE_SYMBOL(oops_end);
255
256 static int __die(const char *str, struct pt_regs *regs, long err)
257 {
258 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
259
260 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN))
261 printk("LE ");
262 else
263 printk("BE ");
264
265 if (IS_ENABLED(CONFIG_PREEMPT))
266 pr_cont("PREEMPT ");
267
268 if (IS_ENABLED(CONFIG_SMP))
269 pr_cont("SMP NR_CPUS=%d ", NR_CPUS);
270
271 if (debug_pagealloc_enabled())
272 pr_cont("DEBUG_PAGEALLOC ");
273
274 if (IS_ENABLED(CONFIG_NUMA))
275 pr_cont("NUMA ");
276
277 pr_cont("%s\n", ppc_md.name ? ppc_md.name : "");
278
279 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
280 return 1;
281
282 print_modules();
283 show_regs(regs);
284
285 return 0;
286 }
287 NOKPROBE_SYMBOL(__die);
288
289 void die(const char *str, struct pt_regs *regs, long err)
290 {
291 unsigned long flags;
292
293 /*
294 * system_reset_excption handles debugger, crash dump, panic, for 0x100
295 */
296 if (TRAP(regs) != 0x100) {
297 if (debugger(regs))
298 return;
299 }
300
301 flags = oops_begin(regs);
302 if (__die(str, regs, err))
303 err = 0;
304 oops_end(flags, regs, err);
305 }
306 NOKPROBE_SYMBOL(die);
307
308 void user_single_step_report(struct pt_regs *regs)
309 {
310 force_sig_fault(SIGTRAP, TRAP_TRACE, (void __user *)regs->nip, current);
311 }
312
313 static void show_signal_msg(int signr, struct pt_regs *regs, int code,
314 unsigned long addr)
315 {
316 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
317 DEFAULT_RATELIMIT_BURST);
318
319 if (!show_unhandled_signals)
320 return;
321
322 if (!unhandled_signal(current, signr))
323 return;
324
325 if (!__ratelimit(&rs))
326 return;
327
328 pr_info("%s[%d]: %s (%d) at %lx nip %lx lr %lx code %x",
329 current->comm, current->pid, signame(signr), signr,
330 addr, regs->nip, regs->link, code);
331
332 print_vma_addr(KERN_CONT " in ", regs->nip);
333
334 pr_cont("\n");
335
336 show_user_instructions(regs);
337 }
338
339 static bool exception_common(int signr, struct pt_regs *regs, int code,
340 unsigned long addr)
341 {
342 if (!user_mode(regs)) {
343 die("Exception in kernel mode", regs, signr);
344 return false;
345 }
346
347 show_signal_msg(signr, regs, code, addr);
348
349 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
350 local_irq_enable();
351
352 current->thread.trap_nr = code;
353
354 /*
355 * Save all the pkey registers AMR/IAMR/UAMOR. Eg: Core dumps need
356 * to capture the content, if the task gets killed.
357 */
358 thread_pkey_regs_save(&current->thread);
359
360 return true;
361 }
362
363 void _exception_pkey(struct pt_regs *regs, unsigned long addr, int key)
364 {
365 if (!exception_common(SIGSEGV, regs, SEGV_PKUERR, addr))
366 return;
367
368 force_sig_pkuerr((void __user *) addr, key);
369 }
370
371 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
372 {
373 if (!exception_common(signr, regs, code, addr))
374 return;
375
376 force_sig_fault(signr, code, (void __user *)addr, current);
377 }
378
379 void system_reset_exception(struct pt_regs *regs)
380 {
381 /*
382 * Avoid crashes in case of nested NMI exceptions. Recoverability
383 * is determined by RI and in_nmi
384 */
385 bool nested = in_nmi();
386 if (!nested)
387 nmi_enter();
388
389 __this_cpu_inc(irq_stat.sreset_irqs);
390
391 /* See if any machine dependent calls */
392 if (ppc_md.system_reset_exception) {
393 if (ppc_md.system_reset_exception(regs))
394 goto out;
395 }
396
397 if (debugger(regs))
398 goto out;
399
400 /*
401 * A system reset is a request to dump, so we always send
402 * it through the crashdump code (if fadump or kdump are
403 * registered).
404 */
405 crash_fadump(regs, "System Reset");
406
407 crash_kexec(regs);
408
409 /*
410 * We aren't the primary crash CPU. We need to send it
411 * to a holding pattern to avoid it ending up in the panic
412 * code.
413 */
414 crash_kexec_secondary(regs);
415
416 /*
417 * No debugger or crash dump registered, print logs then
418 * panic.
419 */
420 die("System Reset", regs, SIGABRT);
421
422 mdelay(2*MSEC_PER_SEC); /* Wait a little while for others to print */
423 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
424 nmi_panic(regs, "System Reset");
425
426 out:
427 #ifdef CONFIG_PPC_BOOK3S_64
428 BUG_ON(get_paca()->in_nmi == 0);
429 if (get_paca()->in_nmi > 1)
430 nmi_panic(regs, "Unrecoverable nested System Reset");
431 #endif
432 /* Must die if the interrupt is not recoverable */
433 if (!(regs->msr & MSR_RI))
434 nmi_panic(regs, "Unrecoverable System Reset");
435
436 if (!nested)
437 nmi_exit();
438
439 /* What should we do here? We could issue a shutdown or hard reset. */
440 }
441
442 /*
443 * I/O accesses can cause machine checks on powermacs.
444 * Check if the NIP corresponds to the address of a sync
445 * instruction for which there is an entry in the exception
446 * table.
447 * Note that the 601 only takes a machine check on TEA
448 * (transfer error ack) signal assertion, and does not
449 * set any of the top 16 bits of SRR1.
450 * -- paulus.
451 */
452 static inline int check_io_access(struct pt_regs *regs)
453 {
454 #ifdef CONFIG_PPC32
455 unsigned long msr = regs->msr;
456 const struct exception_table_entry *entry;
457 unsigned int *nip = (unsigned int *)regs->nip;
458
459 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
460 && (entry = search_exception_tables(regs->nip)) != NULL) {
461 /*
462 * Check that it's a sync instruction, or somewhere
463 * in the twi; isync; nop sequence that inb/inw/inl uses.
464 * As the address is in the exception table
465 * we should be able to read the instr there.
466 * For the debug message, we look at the preceding
467 * load or store.
468 */
469 if (*nip == PPC_INST_NOP)
470 nip -= 2;
471 else if (*nip == PPC_INST_ISYNC)
472 --nip;
473 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
474 unsigned int rb;
475
476 --nip;
477 rb = (*nip >> 11) & 0x1f;
478 printk(KERN_DEBUG "%s bad port %lx at %p\n",
479 (*nip & 0x100)? "OUT to": "IN from",
480 regs->gpr[rb] - _IO_BASE, nip);
481 regs->msr |= MSR_RI;
482 regs->nip = extable_fixup(entry);
483 return 1;
484 }
485 }
486 #endif /* CONFIG_PPC32 */
487 return 0;
488 }
489
490 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
491 /* On 4xx, the reason for the machine check or program exception
492 is in the ESR. */
493 #define get_reason(regs) ((regs)->dsisr)
494 #define REASON_FP ESR_FP
495 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
496 #define REASON_PRIVILEGED ESR_PPR
497 #define REASON_TRAP ESR_PTR
498
499 /* single-step stuff */
500 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
501 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
502 #define clear_br_trace(regs) do {} while(0)
503 #else
504 /* On non-4xx, the reason for the machine check or program
505 exception is in the MSR. */
506 #define get_reason(regs) ((regs)->msr)
507 #define REASON_TM SRR1_PROGTM
508 #define REASON_FP SRR1_PROGFPE
509 #define REASON_ILLEGAL SRR1_PROGILL
510 #define REASON_PRIVILEGED SRR1_PROGPRIV
511 #define REASON_TRAP SRR1_PROGTRAP
512
513 #define single_stepping(regs) ((regs)->msr & MSR_SE)
514 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
515 #define clear_br_trace(regs) ((regs)->msr &= ~MSR_BE)
516 #endif
517
518 #if defined(CONFIG_E500)
519 int machine_check_e500mc(struct pt_regs *regs)
520 {
521 unsigned long mcsr = mfspr(SPRN_MCSR);
522 unsigned long pvr = mfspr(SPRN_PVR);
523 unsigned long reason = mcsr;
524 int recoverable = 1;
525
526 if (reason & MCSR_LD) {
527 recoverable = fsl_rio_mcheck_exception(regs);
528 if (recoverable == 1)
529 goto silent_out;
530 }
531
532 printk("Machine check in kernel mode.\n");
533 printk("Caused by (from MCSR=%lx): ", reason);
534
535 if (reason & MCSR_MCP)
536 pr_cont("Machine Check Signal\n");
537
538 if (reason & MCSR_ICPERR) {
539 pr_cont("Instruction Cache Parity Error\n");
540
541 /*
542 * This is recoverable by invalidating the i-cache.
543 */
544 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
545 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
546 ;
547
548 /*
549 * This will generally be accompanied by an instruction
550 * fetch error report -- only treat MCSR_IF as fatal
551 * if it wasn't due to an L1 parity error.
552 */
553 reason &= ~MCSR_IF;
554 }
555
556 if (reason & MCSR_DCPERR_MC) {
557 pr_cont("Data Cache Parity Error\n");
558
559 /*
560 * In write shadow mode we auto-recover from the error, but it
561 * may still get logged and cause a machine check. We should
562 * only treat the non-write shadow case as non-recoverable.
563 */
564 /* On e6500 core, L1 DCWS (Data cache write shadow mode) bit
565 * is not implemented but L1 data cache always runs in write
566 * shadow mode. Hence on data cache parity errors HW will
567 * automatically invalidate the L1 Data Cache.
568 */
569 if (PVR_VER(pvr) != PVR_VER_E6500) {
570 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
571 recoverable = 0;
572 }
573 }
574
575 if (reason & MCSR_L2MMU_MHIT) {
576 pr_cont("Hit on multiple TLB entries\n");
577 recoverable = 0;
578 }
579
580 if (reason & MCSR_NMI)
581 pr_cont("Non-maskable interrupt\n");
582
583 if (reason & MCSR_IF) {
584 pr_cont("Instruction Fetch Error Report\n");
585 recoverable = 0;
586 }
587
588 if (reason & MCSR_LD) {
589 pr_cont("Load Error Report\n");
590 recoverable = 0;
591 }
592
593 if (reason & MCSR_ST) {
594 pr_cont("Store Error Report\n");
595 recoverable = 0;
596 }
597
598 if (reason & MCSR_LDG) {
599 pr_cont("Guarded Load Error Report\n");
600 recoverable = 0;
601 }
602
603 if (reason & MCSR_TLBSYNC)
604 pr_cont("Simultaneous tlbsync operations\n");
605
606 if (reason & MCSR_BSL2_ERR) {
607 pr_cont("Level 2 Cache Error\n");
608 recoverable = 0;
609 }
610
611 if (reason & MCSR_MAV) {
612 u64 addr;
613
614 addr = mfspr(SPRN_MCAR);
615 addr |= (u64)mfspr(SPRN_MCARU) << 32;
616
617 pr_cont("Machine Check %s Address: %#llx\n",
618 reason & MCSR_MEA ? "Effective" : "Physical", addr);
619 }
620
621 silent_out:
622 mtspr(SPRN_MCSR, mcsr);
623 return mfspr(SPRN_MCSR) == 0 && recoverable;
624 }
625
626 int machine_check_e500(struct pt_regs *regs)
627 {
628 unsigned long reason = mfspr(SPRN_MCSR);
629
630 if (reason & MCSR_BUS_RBERR) {
631 if (fsl_rio_mcheck_exception(regs))
632 return 1;
633 if (fsl_pci_mcheck_exception(regs))
634 return 1;
635 }
636
637 printk("Machine check in kernel mode.\n");
638 printk("Caused by (from MCSR=%lx): ", reason);
639
640 if (reason & MCSR_MCP)
641 pr_cont("Machine Check Signal\n");
642 if (reason & MCSR_ICPERR)
643 pr_cont("Instruction Cache Parity Error\n");
644 if (reason & MCSR_DCP_PERR)
645 pr_cont("Data Cache Push Parity Error\n");
646 if (reason & MCSR_DCPERR)
647 pr_cont("Data Cache Parity Error\n");
648 if (reason & MCSR_BUS_IAERR)
649 pr_cont("Bus - Instruction Address Error\n");
650 if (reason & MCSR_BUS_RAERR)
651 pr_cont("Bus - Read Address Error\n");
652 if (reason & MCSR_BUS_WAERR)
653 pr_cont("Bus - Write Address Error\n");
654 if (reason & MCSR_BUS_IBERR)
655 pr_cont("Bus - Instruction Data Error\n");
656 if (reason & MCSR_BUS_RBERR)
657 pr_cont("Bus - Read Data Bus Error\n");
658 if (reason & MCSR_BUS_WBERR)
659 pr_cont("Bus - Write Data Bus Error\n");
660 if (reason & MCSR_BUS_IPERR)
661 pr_cont("Bus - Instruction Parity Error\n");
662 if (reason & MCSR_BUS_RPERR)
663 pr_cont("Bus - Read Parity Error\n");
664
665 return 0;
666 }
667
668 int machine_check_generic(struct pt_regs *regs)
669 {
670 return 0;
671 }
672 #elif defined(CONFIG_E200)
673 int machine_check_e200(struct pt_regs *regs)
674 {
675 unsigned long reason = mfspr(SPRN_MCSR);
676
677 printk("Machine check in kernel mode.\n");
678 printk("Caused by (from MCSR=%lx): ", reason);
679
680 if (reason & MCSR_MCP)
681 pr_cont("Machine Check Signal\n");
682 if (reason & MCSR_CP_PERR)
683 pr_cont("Cache Push Parity Error\n");
684 if (reason & MCSR_CPERR)
685 pr_cont("Cache Parity Error\n");
686 if (reason & MCSR_EXCP_ERR)
687 pr_cont("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
688 if (reason & MCSR_BUS_IRERR)
689 pr_cont("Bus - Read Bus Error on instruction fetch\n");
690 if (reason & MCSR_BUS_DRERR)
691 pr_cont("Bus - Read Bus Error on data load\n");
692 if (reason & MCSR_BUS_WRERR)
693 pr_cont("Bus - Write Bus Error on buffered store or cache line push\n");
694
695 return 0;
696 }
697 #elif defined(CONFIG_PPC32)
698 int machine_check_generic(struct pt_regs *regs)
699 {
700 unsigned long reason = regs->msr;
701
702 printk("Machine check in kernel mode.\n");
703 printk("Caused by (from SRR1=%lx): ", reason);
704 switch (reason & 0x601F0000) {
705 case 0x80000:
706 pr_cont("Machine check signal\n");
707 break;
708 case 0: /* for 601 */
709 case 0x40000:
710 case 0x140000: /* 7450 MSS error and TEA */
711 pr_cont("Transfer error ack signal\n");
712 break;
713 case 0x20000:
714 pr_cont("Data parity error signal\n");
715 break;
716 case 0x10000:
717 pr_cont("Address parity error signal\n");
718 break;
719 case 0x20000000:
720 pr_cont("L1 Data Cache error\n");
721 break;
722 case 0x40000000:
723 pr_cont("L1 Instruction Cache error\n");
724 break;
725 case 0x00100000:
726 pr_cont("L2 data cache parity error\n");
727 break;
728 default:
729 pr_cont("Unknown values in msr\n");
730 }
731 return 0;
732 }
733 #endif /* everything else */
734
735 void machine_check_exception(struct pt_regs *regs)
736 {
737 int recover = 0;
738 bool nested = in_nmi();
739 if (!nested)
740 nmi_enter();
741
742 __this_cpu_inc(irq_stat.mce_exceptions);
743
744 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
745
746 /* See if any machine dependent calls. In theory, we would want
747 * to call the CPU first, and call the ppc_md. one if the CPU
748 * one returns a positive number. However there is existing code
749 * that assumes the board gets a first chance, so let's keep it
750 * that way for now and fix things later. --BenH.
751 */
752 if (ppc_md.machine_check_exception)
753 recover = ppc_md.machine_check_exception(regs);
754 else if (cur_cpu_spec->machine_check)
755 recover = cur_cpu_spec->machine_check(regs);
756
757 if (recover > 0)
758 goto bail;
759
760 if (debugger_fault_handler(regs))
761 goto bail;
762
763 if (check_io_access(regs))
764 goto bail;
765
766 /* Must die if the interrupt is not recoverable */
767 if (!(regs->msr & MSR_RI))
768 nmi_panic(regs, "Unrecoverable Machine check");
769
770 if (!nested)
771 nmi_exit();
772
773 die("Machine check", regs, SIGBUS);
774
775 return;
776
777 bail:
778 if (!nested)
779 nmi_exit();
780 }
781
782 void SMIException(struct pt_regs *regs)
783 {
784 die("System Management Interrupt", regs, SIGABRT);
785 }
786
787 #ifdef CONFIG_VSX
788 static void p9_hmi_special_emu(struct pt_regs *regs)
789 {
790 unsigned int ra, rb, t, i, sel, instr, rc;
791 const void __user *addr;
792 u8 vbuf[16], *vdst;
793 unsigned long ea, msr, msr_mask;
794 bool swap;
795
796 if (__get_user_inatomic(instr, (unsigned int __user *)regs->nip))
797 return;
798
799 /*
800 * lxvb16x opcode: 0x7c0006d8
801 * lxvd2x opcode: 0x7c000698
802 * lxvh8x opcode: 0x7c000658
803 * lxvw4x opcode: 0x7c000618
804 */
805 if ((instr & 0xfc00073e) != 0x7c000618) {
806 pr_devel("HMI vec emu: not vector CI %i:%s[%d] nip=%016lx"
807 " instr=%08x\n",
808 smp_processor_id(), current->comm, current->pid,
809 regs->nip, instr);
810 return;
811 }
812
813 /* Grab vector registers into the task struct */
814 msr = regs->msr; /* Grab msr before we flush the bits */
815 flush_vsx_to_thread(current);
816 enable_kernel_altivec();
817
818 /*
819 * Is userspace running with a different endian (this is rare but
820 * not impossible)
821 */
822 swap = (msr & MSR_LE) != (MSR_KERNEL & MSR_LE);
823
824 /* Decode the instruction */
825 ra = (instr >> 16) & 0x1f;
826 rb = (instr >> 11) & 0x1f;
827 t = (instr >> 21) & 0x1f;
828 if (instr & 1)
829 vdst = (u8 *)&current->thread.vr_state.vr[t];
830 else
831 vdst = (u8 *)&current->thread.fp_state.fpr[t][0];
832
833 /* Grab the vector address */
834 ea = regs->gpr[rb] + (ra ? regs->gpr[ra] : 0);
835 if (is_32bit_task())
836 ea &= 0xfffffffful;
837 addr = (__force const void __user *)ea;
838
839 /* Check it */
840 if (!access_ok(addr, 16)) {
841 pr_devel("HMI vec emu: bad access %i:%s[%d] nip=%016lx"
842 " instr=%08x addr=%016lx\n",
843 smp_processor_id(), current->comm, current->pid,
844 regs->nip, instr, (unsigned long)addr);
845 return;
846 }
847
848 /* Read the vector */
849 rc = 0;
850 if ((unsigned long)addr & 0xfUL)
851 /* unaligned case */
852 rc = __copy_from_user_inatomic(vbuf, addr, 16);
853 else
854 __get_user_atomic_128_aligned(vbuf, addr, rc);
855 if (rc) {
856 pr_devel("HMI vec emu: page fault %i:%s[%d] nip=%016lx"
857 " instr=%08x addr=%016lx\n",
858 smp_processor_id(), current->comm, current->pid,
859 regs->nip, instr, (unsigned long)addr);
860 return;
861 }
862
863 pr_devel("HMI vec emu: emulated vector CI %i:%s[%d] nip=%016lx"
864 " instr=%08x addr=%016lx\n",
865 smp_processor_id(), current->comm, current->pid, regs->nip,
866 instr, (unsigned long) addr);
867
868 /* Grab instruction "selector" */
869 sel = (instr >> 6) & 3;
870
871 /*
872 * Check to make sure the facility is actually enabled. This
873 * could happen if we get a false positive hit.
874 *
875 * lxvd2x/lxvw4x always check MSR VSX sel = 0,2
876 * lxvh8x/lxvb16x check MSR VSX or VEC depending on VSR used sel = 1,3
877 */
878 msr_mask = MSR_VSX;
879 if ((sel & 1) && (instr & 1)) /* lxvh8x & lxvb16x + VSR >= 32 */
880 msr_mask = MSR_VEC;
881 if (!(msr & msr_mask)) {
882 pr_devel("HMI vec emu: MSR fac clear %i:%s[%d] nip=%016lx"
883 " instr=%08x msr:%016lx\n",
884 smp_processor_id(), current->comm, current->pid,
885 regs->nip, instr, msr);
886 return;
887 }
888
889 /* Do logging here before we modify sel based on endian */
890 switch (sel) {
891 case 0: /* lxvw4x */
892 PPC_WARN_EMULATED(lxvw4x, regs);
893 break;
894 case 1: /* lxvh8x */
895 PPC_WARN_EMULATED(lxvh8x, regs);
896 break;
897 case 2: /* lxvd2x */
898 PPC_WARN_EMULATED(lxvd2x, regs);
899 break;
900 case 3: /* lxvb16x */
901 PPC_WARN_EMULATED(lxvb16x, regs);
902 break;
903 }
904
905 #ifdef __LITTLE_ENDIAN__
906 /*
907 * An LE kernel stores the vector in the task struct as an LE
908 * byte array (effectively swapping both the components and
909 * the content of the components). Those instructions expect
910 * the components to remain in ascending address order, so we
911 * swap them back.
912 *
913 * If we are running a BE user space, the expectation is that
914 * of a simple memcpy, so forcing the emulation to look like
915 * a lxvb16x should do the trick.
916 */
917 if (swap)
918 sel = 3;
919
920 switch (sel) {
921 case 0: /* lxvw4x */
922 for (i = 0; i < 4; i++)
923 ((u32 *)vdst)[i] = ((u32 *)vbuf)[3-i];
924 break;
925 case 1: /* lxvh8x */
926 for (i = 0; i < 8; i++)
927 ((u16 *)vdst)[i] = ((u16 *)vbuf)[7-i];
928 break;
929 case 2: /* lxvd2x */
930 for (i = 0; i < 2; i++)
931 ((u64 *)vdst)[i] = ((u64 *)vbuf)[1-i];
932 break;
933 case 3: /* lxvb16x */
934 for (i = 0; i < 16; i++)
935 vdst[i] = vbuf[15-i];
936 break;
937 }
938 #else /* __LITTLE_ENDIAN__ */
939 /* On a big endian kernel, a BE userspace only needs a memcpy */
940 if (!swap)
941 sel = 3;
942
943 /* Otherwise, we need to swap the content of the components */
944 switch (sel) {
945 case 0: /* lxvw4x */
946 for (i = 0; i < 4; i++)
947 ((u32 *)vdst)[i] = cpu_to_le32(((u32 *)vbuf)[i]);
948 break;
949 case 1: /* lxvh8x */
950 for (i = 0; i < 8; i++)
951 ((u16 *)vdst)[i] = cpu_to_le16(((u16 *)vbuf)[i]);
952 break;
953 case 2: /* lxvd2x */
954 for (i = 0; i < 2; i++)
955 ((u64 *)vdst)[i] = cpu_to_le64(((u64 *)vbuf)[i]);
956 break;
957 case 3: /* lxvb16x */
958 memcpy(vdst, vbuf, 16);
959 break;
960 }
961 #endif /* !__LITTLE_ENDIAN__ */
962
963 /* Go to next instruction */
964 regs->nip += 4;
965 }
966 #endif /* CONFIG_VSX */
967
968 void handle_hmi_exception(struct pt_regs *regs)
969 {
970 struct pt_regs *old_regs;
971
972 old_regs = set_irq_regs(regs);
973 irq_enter();
974
975 #ifdef CONFIG_VSX
976 /* Real mode flagged P9 special emu is needed */
977 if (local_paca->hmi_p9_special_emu) {
978 local_paca->hmi_p9_special_emu = 0;
979
980 /*
981 * We don't want to take page faults while doing the
982 * emulation, we just replay the instruction if necessary.
983 */
984 pagefault_disable();
985 p9_hmi_special_emu(regs);
986 pagefault_enable();
987 }
988 #endif /* CONFIG_VSX */
989
990 if (ppc_md.handle_hmi_exception)
991 ppc_md.handle_hmi_exception(regs);
992
993 irq_exit();
994 set_irq_regs(old_regs);
995 }
996
997 void unknown_exception(struct pt_regs *regs)
998 {
999 enum ctx_state prev_state = exception_enter();
1000
1001 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
1002 regs->nip, regs->msr, regs->trap);
1003
1004 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1005
1006 exception_exit(prev_state);
1007 }
1008
1009 void instruction_breakpoint_exception(struct pt_regs *regs)
1010 {
1011 enum ctx_state prev_state = exception_enter();
1012
1013 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
1014 5, SIGTRAP) == NOTIFY_STOP)
1015 goto bail;
1016 if (debugger_iabr_match(regs))
1017 goto bail;
1018 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1019
1020 bail:
1021 exception_exit(prev_state);
1022 }
1023
1024 void RunModeException(struct pt_regs *regs)
1025 {
1026 _exception(SIGTRAP, regs, TRAP_UNK, 0);
1027 }
1028
1029 void single_step_exception(struct pt_regs *regs)
1030 {
1031 enum ctx_state prev_state = exception_enter();
1032
1033 clear_single_step(regs);
1034 clear_br_trace(regs);
1035
1036 if (kprobe_post_handler(regs))
1037 return;
1038
1039 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1040 5, SIGTRAP) == NOTIFY_STOP)
1041 goto bail;
1042 if (debugger_sstep(regs))
1043 goto bail;
1044
1045 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1046
1047 bail:
1048 exception_exit(prev_state);
1049 }
1050 NOKPROBE_SYMBOL(single_step_exception);
1051
1052 /*
1053 * After we have successfully emulated an instruction, we have to
1054 * check if the instruction was being single-stepped, and if so,
1055 * pretend we got a single-step exception. This was pointed out
1056 * by Kumar Gala. -- paulus
1057 */
1058 static void emulate_single_step(struct pt_regs *regs)
1059 {
1060 if (single_stepping(regs))
1061 single_step_exception(regs);
1062 }
1063
1064 static inline int __parse_fpscr(unsigned long fpscr)
1065 {
1066 int ret = FPE_FLTUNK;
1067
1068 /* Invalid operation */
1069 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
1070 ret = FPE_FLTINV;
1071
1072 /* Overflow */
1073 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
1074 ret = FPE_FLTOVF;
1075
1076 /* Underflow */
1077 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
1078 ret = FPE_FLTUND;
1079
1080 /* Divide by zero */
1081 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
1082 ret = FPE_FLTDIV;
1083
1084 /* Inexact result */
1085 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
1086 ret = FPE_FLTRES;
1087
1088 return ret;
1089 }
1090
1091 static void parse_fpe(struct pt_regs *regs)
1092 {
1093 int code = 0;
1094
1095 flush_fp_to_thread(current);
1096
1097 code = __parse_fpscr(current->thread.fp_state.fpscr);
1098
1099 _exception(SIGFPE, regs, code, regs->nip);
1100 }
1101
1102 /*
1103 * Illegal instruction emulation support. Originally written to
1104 * provide the PVR to user applications using the mfspr rd, PVR.
1105 * Return non-zero if we can't emulate, or -EFAULT if the associated
1106 * memory access caused an access fault. Return zero on success.
1107 *
1108 * There are a couple of ways to do this, either "decode" the instruction
1109 * or directly match lots of bits. In this case, matching lots of
1110 * bits is faster and easier.
1111 *
1112 */
1113 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
1114 {
1115 u8 rT = (instword >> 21) & 0x1f;
1116 u8 rA = (instword >> 16) & 0x1f;
1117 u8 NB_RB = (instword >> 11) & 0x1f;
1118 u32 num_bytes;
1119 unsigned long EA;
1120 int pos = 0;
1121
1122 /* Early out if we are an invalid form of lswx */
1123 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
1124 if ((rT == rA) || (rT == NB_RB))
1125 return -EINVAL;
1126
1127 EA = (rA == 0) ? 0 : regs->gpr[rA];
1128
1129 switch (instword & PPC_INST_STRING_MASK) {
1130 case PPC_INST_LSWX:
1131 case PPC_INST_STSWX:
1132 EA += NB_RB;
1133 num_bytes = regs->xer & 0x7f;
1134 break;
1135 case PPC_INST_LSWI:
1136 case PPC_INST_STSWI:
1137 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
1138 break;
1139 default:
1140 return -EINVAL;
1141 }
1142
1143 while (num_bytes != 0)
1144 {
1145 u8 val;
1146 u32 shift = 8 * (3 - (pos & 0x3));
1147
1148 /* if process is 32-bit, clear upper 32 bits of EA */
1149 if ((regs->msr & MSR_64BIT) == 0)
1150 EA &= 0xFFFFFFFF;
1151
1152 switch ((instword & PPC_INST_STRING_MASK)) {
1153 case PPC_INST_LSWX:
1154 case PPC_INST_LSWI:
1155 if (get_user(val, (u8 __user *)EA))
1156 return -EFAULT;
1157 /* first time updating this reg,
1158 * zero it out */
1159 if (pos == 0)
1160 regs->gpr[rT] = 0;
1161 regs->gpr[rT] |= val << shift;
1162 break;
1163 case PPC_INST_STSWI:
1164 case PPC_INST_STSWX:
1165 val = regs->gpr[rT] >> shift;
1166 if (put_user(val, (u8 __user *)EA))
1167 return -EFAULT;
1168 break;
1169 }
1170 /* move EA to next address */
1171 EA += 1;
1172 num_bytes--;
1173
1174 /* manage our position within the register */
1175 if (++pos == 4) {
1176 pos = 0;
1177 if (++rT == 32)
1178 rT = 0;
1179 }
1180 }
1181
1182 return 0;
1183 }
1184
1185 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
1186 {
1187 u32 ra,rs;
1188 unsigned long tmp;
1189
1190 ra = (instword >> 16) & 0x1f;
1191 rs = (instword >> 21) & 0x1f;
1192
1193 tmp = regs->gpr[rs];
1194 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
1195 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
1196 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
1197 regs->gpr[ra] = tmp;
1198
1199 return 0;
1200 }
1201
1202 static int emulate_isel(struct pt_regs *regs, u32 instword)
1203 {
1204 u8 rT = (instword >> 21) & 0x1f;
1205 u8 rA = (instword >> 16) & 0x1f;
1206 u8 rB = (instword >> 11) & 0x1f;
1207 u8 BC = (instword >> 6) & 0x1f;
1208 u8 bit;
1209 unsigned long tmp;
1210
1211 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1212 bit = (regs->ccr >> (31 - BC)) & 0x1;
1213
1214 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1215
1216 return 0;
1217 }
1218
1219 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1220 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1221 {
1222 /* If we're emulating a load/store in an active transaction, we cannot
1223 * emulate it as the kernel operates in transaction suspended context.
1224 * We need to abort the transaction. This creates a persistent TM
1225 * abort so tell the user what caused it with a new code.
1226 */
1227 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1228 tm_enable();
1229 tm_abort(cause);
1230 return true;
1231 }
1232 return false;
1233 }
1234 #else
1235 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1236 {
1237 return false;
1238 }
1239 #endif
1240
1241 static int emulate_instruction(struct pt_regs *regs)
1242 {
1243 u32 instword;
1244 u32 rd;
1245
1246 if (!user_mode(regs))
1247 return -EINVAL;
1248 CHECK_FULL_REGS(regs);
1249
1250 if (get_user(instword, (u32 __user *)(regs->nip)))
1251 return -EFAULT;
1252
1253 /* Emulate the mfspr rD, PVR. */
1254 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1255 PPC_WARN_EMULATED(mfpvr, regs);
1256 rd = (instword >> 21) & 0x1f;
1257 regs->gpr[rd] = mfspr(SPRN_PVR);
1258 return 0;
1259 }
1260
1261 /* Emulating the dcba insn is just a no-op. */
1262 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1263 PPC_WARN_EMULATED(dcba, regs);
1264 return 0;
1265 }
1266
1267 /* Emulate the mcrxr insn. */
1268 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1269 int shift = (instword >> 21) & 0x1c;
1270 unsigned long msk = 0xf0000000UL >> shift;
1271
1272 PPC_WARN_EMULATED(mcrxr, regs);
1273 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1274 regs->xer &= ~0xf0000000UL;
1275 return 0;
1276 }
1277
1278 /* Emulate load/store string insn. */
1279 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1280 if (tm_abort_check(regs,
1281 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1282 return -EINVAL;
1283 PPC_WARN_EMULATED(string, regs);
1284 return emulate_string_inst(regs, instword);
1285 }
1286
1287 /* Emulate the popcntb (Population Count Bytes) instruction. */
1288 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1289 PPC_WARN_EMULATED(popcntb, regs);
1290 return emulate_popcntb_inst(regs, instword);
1291 }
1292
1293 /* Emulate isel (Integer Select) instruction */
1294 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1295 PPC_WARN_EMULATED(isel, regs);
1296 return emulate_isel(regs, instword);
1297 }
1298
1299 /* Emulate sync instruction variants */
1300 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1301 PPC_WARN_EMULATED(sync, regs);
1302 asm volatile("sync");
1303 return 0;
1304 }
1305
1306 #ifdef CONFIG_PPC64
1307 /* Emulate the mfspr rD, DSCR. */
1308 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1309 PPC_INST_MFSPR_DSCR_USER) ||
1310 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1311 PPC_INST_MFSPR_DSCR)) &&
1312 cpu_has_feature(CPU_FTR_DSCR)) {
1313 PPC_WARN_EMULATED(mfdscr, regs);
1314 rd = (instword >> 21) & 0x1f;
1315 regs->gpr[rd] = mfspr(SPRN_DSCR);
1316 return 0;
1317 }
1318 /* Emulate the mtspr DSCR, rD. */
1319 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1320 PPC_INST_MTSPR_DSCR_USER) ||
1321 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1322 PPC_INST_MTSPR_DSCR)) &&
1323 cpu_has_feature(CPU_FTR_DSCR)) {
1324 PPC_WARN_EMULATED(mtdscr, regs);
1325 rd = (instword >> 21) & 0x1f;
1326 current->thread.dscr = regs->gpr[rd];
1327 current->thread.dscr_inherit = 1;
1328 mtspr(SPRN_DSCR, current->thread.dscr);
1329 return 0;
1330 }
1331 #endif
1332
1333 return -EINVAL;
1334 }
1335
1336 int is_valid_bugaddr(unsigned long addr)
1337 {
1338 return is_kernel_addr(addr);
1339 }
1340
1341 #ifdef CONFIG_MATH_EMULATION
1342 static int emulate_math(struct pt_regs *regs)
1343 {
1344 int ret;
1345 extern int do_mathemu(struct pt_regs *regs);
1346
1347 ret = do_mathemu(regs);
1348 if (ret >= 0)
1349 PPC_WARN_EMULATED(math, regs);
1350
1351 switch (ret) {
1352 case 0:
1353 emulate_single_step(regs);
1354 return 0;
1355 case 1: {
1356 int code = 0;
1357 code = __parse_fpscr(current->thread.fp_state.fpscr);
1358 _exception(SIGFPE, regs, code, regs->nip);
1359 return 0;
1360 }
1361 case -EFAULT:
1362 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1363 return 0;
1364 }
1365
1366 return -1;
1367 }
1368 #else
1369 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1370 #endif
1371
1372 void program_check_exception(struct pt_regs *regs)
1373 {
1374 enum ctx_state prev_state = exception_enter();
1375 unsigned int reason = get_reason(regs);
1376
1377 /* We can now get here via a FP Unavailable exception if the core
1378 * has no FPU, in that case the reason flags will be 0 */
1379
1380 if (reason & REASON_FP) {
1381 /* IEEE FP exception */
1382 parse_fpe(regs);
1383 goto bail;
1384 }
1385 if (reason & REASON_TRAP) {
1386 unsigned long bugaddr;
1387 /* Debugger is first in line to stop recursive faults in
1388 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1389 if (debugger_bpt(regs))
1390 goto bail;
1391
1392 if (kprobe_handler(regs))
1393 goto bail;
1394
1395 /* trap exception */
1396 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1397 == NOTIFY_STOP)
1398 goto bail;
1399
1400 bugaddr = regs->nip;
1401 /*
1402 * Fixup bugaddr for BUG_ON() in real mode
1403 */
1404 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1405 bugaddr += PAGE_OFFSET;
1406
1407 if (!(regs->msr & MSR_PR) && /* not user-mode */
1408 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1409 regs->nip += 4;
1410 goto bail;
1411 }
1412 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1413 goto bail;
1414 }
1415 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1416 if (reason & REASON_TM) {
1417 /* This is a TM "Bad Thing Exception" program check.
1418 * This occurs when:
1419 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1420 * transition in TM states.
1421 * - A trechkpt is attempted when transactional.
1422 * - A treclaim is attempted when non transactional.
1423 * - A tend is illegally attempted.
1424 * - writing a TM SPR when transactional.
1425 *
1426 * If usermode caused this, it's done something illegal and
1427 * gets a SIGILL slap on the wrist. We call it an illegal
1428 * operand to distinguish from the instruction just being bad
1429 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1430 * illegal /placement/ of a valid instruction.
1431 */
1432 if (user_mode(regs)) {
1433 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1434 goto bail;
1435 } else {
1436 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1437 "at %lx (msr 0x%lx) tm_scratch=%llx\n",
1438 regs->nip, regs->msr, get_paca()->tm_scratch);
1439 die("Unrecoverable exception", regs, SIGABRT);
1440 }
1441 }
1442 #endif
1443
1444 /*
1445 * If we took the program check in the kernel skip down to sending a
1446 * SIGILL. The subsequent cases all relate to emulating instructions
1447 * which we should only do for userspace. We also do not want to enable
1448 * interrupts for kernel faults because that might lead to further
1449 * faults, and loose the context of the original exception.
1450 */
1451 if (!user_mode(regs))
1452 goto sigill;
1453
1454 /* We restore the interrupt state now */
1455 if (!arch_irq_disabled_regs(regs))
1456 local_irq_enable();
1457
1458 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1459 * but there seems to be a hardware bug on the 405GP (RevD)
1460 * that means ESR is sometimes set incorrectly - either to
1461 * ESR_DST (!?) or 0. In the process of chasing this with the
1462 * hardware people - not sure if it can happen on any illegal
1463 * instruction or only on FP instructions, whether there is a
1464 * pattern to occurrences etc. -dgibson 31/Mar/2003
1465 */
1466 if (!emulate_math(regs))
1467 goto bail;
1468
1469 /* Try to emulate it if we should. */
1470 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1471 switch (emulate_instruction(regs)) {
1472 case 0:
1473 regs->nip += 4;
1474 emulate_single_step(regs);
1475 goto bail;
1476 case -EFAULT:
1477 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1478 goto bail;
1479 }
1480 }
1481
1482 sigill:
1483 if (reason & REASON_PRIVILEGED)
1484 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1485 else
1486 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1487
1488 bail:
1489 exception_exit(prev_state);
1490 }
1491 NOKPROBE_SYMBOL(program_check_exception);
1492
1493 /*
1494 * This occurs when running in hypervisor mode on POWER6 or later
1495 * and an illegal instruction is encountered.
1496 */
1497 void emulation_assist_interrupt(struct pt_regs *regs)
1498 {
1499 regs->msr |= REASON_ILLEGAL;
1500 program_check_exception(regs);
1501 }
1502 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1503
1504 void alignment_exception(struct pt_regs *regs)
1505 {
1506 enum ctx_state prev_state = exception_enter();
1507 int sig, code, fixed = 0;
1508
1509 /* We restore the interrupt state now */
1510 if (!arch_irq_disabled_regs(regs))
1511 local_irq_enable();
1512
1513 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1514 goto bail;
1515
1516 /* we don't implement logging of alignment exceptions */
1517 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1518 fixed = fix_alignment(regs);
1519
1520 if (fixed == 1) {
1521 regs->nip += 4; /* skip over emulated instruction */
1522 emulate_single_step(regs);
1523 goto bail;
1524 }
1525
1526 /* Operand address was bad */
1527 if (fixed == -EFAULT) {
1528 sig = SIGSEGV;
1529 code = SEGV_ACCERR;
1530 } else {
1531 sig = SIGBUS;
1532 code = BUS_ADRALN;
1533 }
1534 if (user_mode(regs))
1535 _exception(sig, regs, code, regs->dar);
1536 else
1537 bad_page_fault(regs, regs->dar, sig);
1538
1539 bail:
1540 exception_exit(prev_state);
1541 }
1542
1543 void StackOverflow(struct pt_regs *regs)
1544 {
1545 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1546 current, regs->gpr[1]);
1547 debugger(regs);
1548 show_regs(regs);
1549 panic("kernel stack overflow");
1550 }
1551
1552 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1553 {
1554 enum ctx_state prev_state = exception_enter();
1555
1556 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1557 "%lx at %lx\n", regs->trap, regs->nip);
1558 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1559
1560 exception_exit(prev_state);
1561 }
1562
1563 void altivec_unavailable_exception(struct pt_regs *regs)
1564 {
1565 enum ctx_state prev_state = exception_enter();
1566
1567 if (user_mode(regs)) {
1568 /* A user program has executed an altivec instruction,
1569 but this kernel doesn't support altivec. */
1570 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1571 goto bail;
1572 }
1573
1574 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1575 "%lx at %lx\n", regs->trap, regs->nip);
1576 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1577
1578 bail:
1579 exception_exit(prev_state);
1580 }
1581
1582 void vsx_unavailable_exception(struct pt_regs *regs)
1583 {
1584 if (user_mode(regs)) {
1585 /* A user program has executed an vsx instruction,
1586 but this kernel doesn't support vsx. */
1587 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1588 return;
1589 }
1590
1591 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1592 "%lx at %lx\n", regs->trap, regs->nip);
1593 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1594 }
1595
1596 #ifdef CONFIG_PPC64
1597 static void tm_unavailable(struct pt_regs *regs)
1598 {
1599 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1600 if (user_mode(regs)) {
1601 current->thread.load_tm++;
1602 regs->msr |= MSR_TM;
1603 tm_enable();
1604 tm_restore_sprs(&current->thread);
1605 return;
1606 }
1607 #endif
1608 pr_emerg("Unrecoverable TM Unavailable Exception "
1609 "%lx at %lx\n", regs->trap, regs->nip);
1610 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1611 }
1612
1613 void facility_unavailable_exception(struct pt_regs *regs)
1614 {
1615 static char *facility_strings[] = {
1616 [FSCR_FP_LG] = "FPU",
1617 [FSCR_VECVSX_LG] = "VMX/VSX",
1618 [FSCR_DSCR_LG] = "DSCR",
1619 [FSCR_PM_LG] = "PMU SPRs",
1620 [FSCR_BHRB_LG] = "BHRB",
1621 [FSCR_TM_LG] = "TM",
1622 [FSCR_EBB_LG] = "EBB",
1623 [FSCR_TAR_LG] = "TAR",
1624 [FSCR_MSGP_LG] = "MSGP",
1625 [FSCR_SCV_LG] = "SCV",
1626 };
1627 char *facility = "unknown";
1628 u64 value;
1629 u32 instword, rd;
1630 u8 status;
1631 bool hv;
1632
1633 hv = (TRAP(regs) == 0xf80);
1634 if (hv)
1635 value = mfspr(SPRN_HFSCR);
1636 else
1637 value = mfspr(SPRN_FSCR);
1638
1639 status = value >> 56;
1640 if ((hv || status >= 2) &&
1641 (status < ARRAY_SIZE(facility_strings)) &&
1642 facility_strings[status])
1643 facility = facility_strings[status];
1644
1645 /* We should not have taken this interrupt in kernel */
1646 if (!user_mode(regs)) {
1647 pr_emerg("Facility '%s' unavailable (%d) exception in kernel mode at %lx\n",
1648 facility, status, regs->nip);
1649 die("Unexpected facility unavailable exception", regs, SIGABRT);
1650 }
1651
1652 /* We restore the interrupt state now */
1653 if (!arch_irq_disabled_regs(regs))
1654 local_irq_enable();
1655
1656 if (status == FSCR_DSCR_LG) {
1657 /*
1658 * User is accessing the DSCR register using the problem
1659 * state only SPR number (0x03) either through a mfspr or
1660 * a mtspr instruction. If it is a write attempt through
1661 * a mtspr, then we set the inherit bit. This also allows
1662 * the user to write or read the register directly in the
1663 * future by setting via the FSCR DSCR bit. But in case it
1664 * is a read DSCR attempt through a mfspr instruction, we
1665 * just emulate the instruction instead. This code path will
1666 * always emulate all the mfspr instructions till the user
1667 * has attempted at least one mtspr instruction. This way it
1668 * preserves the same behaviour when the user is accessing
1669 * the DSCR through privilege level only SPR number (0x11)
1670 * which is emulated through illegal instruction exception.
1671 * We always leave HFSCR DSCR set.
1672 */
1673 if (get_user(instword, (u32 __user *)(regs->nip))) {
1674 pr_err("Failed to fetch the user instruction\n");
1675 return;
1676 }
1677
1678 /* Write into DSCR (mtspr 0x03, RS) */
1679 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1680 == PPC_INST_MTSPR_DSCR_USER) {
1681 rd = (instword >> 21) & 0x1f;
1682 current->thread.dscr = regs->gpr[rd];
1683 current->thread.dscr_inherit = 1;
1684 current->thread.fscr |= FSCR_DSCR;
1685 mtspr(SPRN_FSCR, current->thread.fscr);
1686 }
1687
1688 /* Read from DSCR (mfspr RT, 0x03) */
1689 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1690 == PPC_INST_MFSPR_DSCR_USER) {
1691 if (emulate_instruction(regs)) {
1692 pr_err("DSCR based mfspr emulation failed\n");
1693 return;
1694 }
1695 regs->nip += 4;
1696 emulate_single_step(regs);
1697 }
1698 return;
1699 }
1700
1701 if (status == FSCR_TM_LG) {
1702 /*
1703 * If we're here then the hardware is TM aware because it
1704 * generated an exception with FSRM_TM set.
1705 *
1706 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1707 * told us not to do TM, or the kernel is not built with TM
1708 * support.
1709 *
1710 * If both of those things are true, then userspace can spam the
1711 * console by triggering the printk() below just by continually
1712 * doing tbegin (or any TM instruction). So in that case just
1713 * send the process a SIGILL immediately.
1714 */
1715 if (!cpu_has_feature(CPU_FTR_TM))
1716 goto out;
1717
1718 tm_unavailable(regs);
1719 return;
1720 }
1721
1722 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1723 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1724
1725 out:
1726 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1727 }
1728 #endif
1729
1730 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1731
1732 void fp_unavailable_tm(struct pt_regs *regs)
1733 {
1734 /* Note: This does not handle any kind of FP laziness. */
1735
1736 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1737 regs->nip, regs->msr);
1738
1739 /* We can only have got here if the task started using FP after
1740 * beginning the transaction. So, the transactional regs are just a
1741 * copy of the checkpointed ones. But, we still need to recheckpoint
1742 * as we're enabling FP for the process; it will return, abort the
1743 * transaction, and probably retry but now with FP enabled. So the
1744 * checkpointed FP registers need to be loaded.
1745 */
1746 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1747
1748 /*
1749 * Reclaim initially saved out bogus (lazy) FPRs to ckfp_state, and
1750 * then it was overwrite by the thr->fp_state by tm_reclaim_thread().
1751 *
1752 * At this point, ck{fp,vr}_state contains the exact values we want to
1753 * recheckpoint.
1754 */
1755
1756 /* Enable FP for the task: */
1757 current->thread.load_fp = 1;
1758
1759 /*
1760 * Recheckpoint all the checkpointed ckpt, ck{fp, vr}_state registers.
1761 */
1762 tm_recheckpoint(&current->thread);
1763 }
1764
1765 void altivec_unavailable_tm(struct pt_regs *regs)
1766 {
1767 /* See the comments in fp_unavailable_tm(). This function operates
1768 * the same way.
1769 */
1770
1771 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1772 "MSR=%lx\n",
1773 regs->nip, regs->msr);
1774 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1775 current->thread.load_vec = 1;
1776 tm_recheckpoint(&current->thread);
1777 current->thread.used_vr = 1;
1778 }
1779
1780 void vsx_unavailable_tm(struct pt_regs *regs)
1781 {
1782 /* See the comments in fp_unavailable_tm(). This works similarly,
1783 * though we're loading both FP and VEC registers in here.
1784 *
1785 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1786 * regs. Either way, set MSR_VSX.
1787 */
1788
1789 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1790 "MSR=%lx\n",
1791 regs->nip, regs->msr);
1792
1793 current->thread.used_vsr = 1;
1794
1795 /* This reclaims FP and/or VR regs if they're already enabled */
1796 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1797
1798 current->thread.load_vec = 1;
1799 current->thread.load_fp = 1;
1800
1801 tm_recheckpoint(&current->thread);
1802 }
1803 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1804
1805 void performance_monitor_exception(struct pt_regs *regs)
1806 {
1807 __this_cpu_inc(irq_stat.pmu_irqs);
1808
1809 perf_irq(regs);
1810 }
1811
1812 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1813 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1814 {
1815 int changed = 0;
1816 /*
1817 * Determine the cause of the debug event, clear the
1818 * event flags and send a trap to the handler. Torez
1819 */
1820 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1821 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1822 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1823 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1824 #endif
1825 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status,
1826 5);
1827 changed |= 0x01;
1828 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1829 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1830 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status,
1831 6);
1832 changed |= 0x01;
1833 } else if (debug_status & DBSR_IAC1) {
1834 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1835 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1836 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status,
1837 1);
1838 changed |= 0x01;
1839 } else if (debug_status & DBSR_IAC2) {
1840 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1841 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status,
1842 2);
1843 changed |= 0x01;
1844 } else if (debug_status & DBSR_IAC3) {
1845 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1846 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1847 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status,
1848 3);
1849 changed |= 0x01;
1850 } else if (debug_status & DBSR_IAC4) {
1851 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1852 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status,
1853 4);
1854 changed |= 0x01;
1855 }
1856 /*
1857 * At the point this routine was called, the MSR(DE) was turned off.
1858 * Check all other debug flags and see if that bit needs to be turned
1859 * back on or not.
1860 */
1861 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1862 current->thread.debug.dbcr1))
1863 regs->msr |= MSR_DE;
1864 else
1865 /* Make sure the IDM flag is off */
1866 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1867
1868 if (changed & 0x01)
1869 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1870 }
1871
1872 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1873 {
1874 current->thread.debug.dbsr = debug_status;
1875
1876 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1877 * on server, it stops on the target of the branch. In order to simulate
1878 * the server behaviour, we thus restart right away with a single step
1879 * instead of stopping here when hitting a BT
1880 */
1881 if (debug_status & DBSR_BT) {
1882 regs->msr &= ~MSR_DE;
1883
1884 /* Disable BT */
1885 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1886 /* Clear the BT event */
1887 mtspr(SPRN_DBSR, DBSR_BT);
1888
1889 /* Do the single step trick only when coming from userspace */
1890 if (user_mode(regs)) {
1891 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1892 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1893 regs->msr |= MSR_DE;
1894 return;
1895 }
1896
1897 if (kprobe_post_handler(regs))
1898 return;
1899
1900 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1901 5, SIGTRAP) == NOTIFY_STOP) {
1902 return;
1903 }
1904 if (debugger_sstep(regs))
1905 return;
1906 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1907 regs->msr &= ~MSR_DE;
1908
1909 /* Disable instruction completion */
1910 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1911 /* Clear the instruction completion event */
1912 mtspr(SPRN_DBSR, DBSR_IC);
1913
1914 if (kprobe_post_handler(regs))
1915 return;
1916
1917 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1918 5, SIGTRAP) == NOTIFY_STOP) {
1919 return;
1920 }
1921
1922 if (debugger_sstep(regs))
1923 return;
1924
1925 if (user_mode(regs)) {
1926 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1927 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1928 current->thread.debug.dbcr1))
1929 regs->msr |= MSR_DE;
1930 else
1931 /* Make sure the IDM bit is off */
1932 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1933 }
1934
1935 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1936 } else
1937 handle_debug(regs, debug_status);
1938 }
1939 NOKPROBE_SYMBOL(DebugException);
1940 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1941
1942 #if !defined(CONFIG_TAU_INT)
1943 void TAUException(struct pt_regs *regs)
1944 {
1945 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1946 regs->nip, regs->msr, regs->trap, print_tainted());
1947 }
1948 #endif /* CONFIG_INT_TAU */
1949
1950 #ifdef CONFIG_ALTIVEC
1951 void altivec_assist_exception(struct pt_regs *regs)
1952 {
1953 int err;
1954
1955 if (!user_mode(regs)) {
1956 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1957 " at %lx\n", regs->nip);
1958 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1959 }
1960
1961 flush_altivec_to_thread(current);
1962
1963 PPC_WARN_EMULATED(altivec, regs);
1964 err = emulate_altivec(regs);
1965 if (err == 0) {
1966 regs->nip += 4; /* skip emulated instruction */
1967 emulate_single_step(regs);
1968 return;
1969 }
1970
1971 if (err == -EFAULT) {
1972 /* got an error reading the instruction */
1973 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1974 } else {
1975 /* didn't recognize the instruction */
1976 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1977 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1978 "in %s at %lx\n", current->comm, regs->nip);
1979 current->thread.vr_state.vscr.u[3] |= 0x10000;
1980 }
1981 }
1982 #endif /* CONFIG_ALTIVEC */
1983
1984 #ifdef CONFIG_FSL_BOOKE
1985 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1986 unsigned long error_code)
1987 {
1988 /* We treat cache locking instructions from the user
1989 * as priv ops, in the future we could try to do
1990 * something smarter
1991 */
1992 if (error_code & (ESR_DLK|ESR_ILK))
1993 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1994 return;
1995 }
1996 #endif /* CONFIG_FSL_BOOKE */
1997
1998 #ifdef CONFIG_SPE
1999 void SPEFloatingPointException(struct pt_regs *regs)
2000 {
2001 extern int do_spe_mathemu(struct pt_regs *regs);
2002 unsigned long spefscr;
2003 int fpexc_mode;
2004 int code = FPE_FLTUNK;
2005 int err;
2006
2007 flush_spe_to_thread(current);
2008
2009 spefscr = current->thread.spefscr;
2010 fpexc_mode = current->thread.fpexc_mode;
2011
2012 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
2013 code = FPE_FLTOVF;
2014 }
2015 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
2016 code = FPE_FLTUND;
2017 }
2018 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
2019 code = FPE_FLTDIV;
2020 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
2021 code = FPE_FLTINV;
2022 }
2023 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
2024 code = FPE_FLTRES;
2025
2026 err = do_spe_mathemu(regs);
2027 if (err == 0) {
2028 regs->nip += 4; /* skip emulated instruction */
2029 emulate_single_step(regs);
2030 return;
2031 }
2032
2033 if (err == -EFAULT) {
2034 /* got an error reading the instruction */
2035 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2036 } else if (err == -EINVAL) {
2037 /* didn't recognize the instruction */
2038 printk(KERN_ERR "unrecognized spe instruction "
2039 "in %s at %lx\n", current->comm, regs->nip);
2040 } else {
2041 _exception(SIGFPE, regs, code, regs->nip);
2042 }
2043
2044 return;
2045 }
2046
2047 void SPEFloatingPointRoundException(struct pt_regs *regs)
2048 {
2049 extern int speround_handler(struct pt_regs *regs);
2050 int err;
2051
2052 preempt_disable();
2053 if (regs->msr & MSR_SPE)
2054 giveup_spe(current);
2055 preempt_enable();
2056
2057 regs->nip -= 4;
2058 err = speround_handler(regs);
2059 if (err == 0) {
2060 regs->nip += 4; /* skip emulated instruction */
2061 emulate_single_step(regs);
2062 return;
2063 }
2064
2065 if (err == -EFAULT) {
2066 /* got an error reading the instruction */
2067 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
2068 } else if (err == -EINVAL) {
2069 /* didn't recognize the instruction */
2070 printk(KERN_ERR "unrecognized spe instruction "
2071 "in %s at %lx\n", current->comm, regs->nip);
2072 } else {
2073 _exception(SIGFPE, regs, FPE_FLTUNK, regs->nip);
2074 return;
2075 }
2076 }
2077 #endif
2078
2079 /*
2080 * We enter here if we get an unrecoverable exception, that is, one
2081 * that happened at a point where the RI (recoverable interrupt) bit
2082 * in the MSR is 0. This indicates that SRR0/1 are live, and that
2083 * we therefore lost state by taking this exception.
2084 */
2085 void unrecoverable_exception(struct pt_regs *regs)
2086 {
2087 pr_emerg("Unrecoverable exception %lx at %lx (msr=%lx)\n",
2088 regs->trap, regs->nip, regs->msr);
2089 die("Unrecoverable exception", regs, SIGABRT);
2090 }
2091 NOKPROBE_SYMBOL(unrecoverable_exception);
2092
2093 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
2094 /*
2095 * Default handler for a Watchdog exception,
2096 * spins until a reboot occurs
2097 */
2098 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
2099 {
2100 /* Generic WatchdogHandler, implement your own */
2101 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
2102 return;
2103 }
2104
2105 void WatchdogException(struct pt_regs *regs)
2106 {
2107 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
2108 WatchdogHandler(regs);
2109 }
2110 #endif
2111
2112 /*
2113 * We enter here if we discover during exception entry that we are
2114 * running in supervisor mode with a userspace value in the stack pointer.
2115 */
2116 void kernel_bad_stack(struct pt_regs *regs)
2117 {
2118 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
2119 regs->gpr[1], regs->nip);
2120 die("Bad kernel stack pointer", regs, SIGABRT);
2121 }
2122 NOKPROBE_SYMBOL(kernel_bad_stack);
2123
2124 void __init trap_init(void)
2125 {
2126 }
2127
2128
2129 #ifdef CONFIG_PPC_EMULATED_STATS
2130
2131 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
2132
2133 struct ppc_emulated ppc_emulated = {
2134 #ifdef CONFIG_ALTIVEC
2135 WARN_EMULATED_SETUP(altivec),
2136 #endif
2137 WARN_EMULATED_SETUP(dcba),
2138 WARN_EMULATED_SETUP(dcbz),
2139 WARN_EMULATED_SETUP(fp_pair),
2140 WARN_EMULATED_SETUP(isel),
2141 WARN_EMULATED_SETUP(mcrxr),
2142 WARN_EMULATED_SETUP(mfpvr),
2143 WARN_EMULATED_SETUP(multiple),
2144 WARN_EMULATED_SETUP(popcntb),
2145 WARN_EMULATED_SETUP(spe),
2146 WARN_EMULATED_SETUP(string),
2147 WARN_EMULATED_SETUP(sync),
2148 WARN_EMULATED_SETUP(unaligned),
2149 #ifdef CONFIG_MATH_EMULATION
2150 WARN_EMULATED_SETUP(math),
2151 #endif
2152 #ifdef CONFIG_VSX
2153 WARN_EMULATED_SETUP(vsx),
2154 #endif
2155 #ifdef CONFIG_PPC64
2156 WARN_EMULATED_SETUP(mfdscr),
2157 WARN_EMULATED_SETUP(mtdscr),
2158 WARN_EMULATED_SETUP(lq_stq),
2159 WARN_EMULATED_SETUP(lxvw4x),
2160 WARN_EMULATED_SETUP(lxvh8x),
2161 WARN_EMULATED_SETUP(lxvd2x),
2162 WARN_EMULATED_SETUP(lxvb16x),
2163 #endif
2164 };
2165
2166 u32 ppc_warn_emulated;
2167
2168 void ppc_warn_emulated_print(const char *type)
2169 {
2170 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2171 type);
2172 }
2173
2174 static int __init ppc_warn_emulated_init(void)
2175 {
2176 struct dentry *dir, *d;
2177 unsigned int i;
2178 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2179
2180 if (!powerpc_debugfs_root)
2181 return -ENODEV;
2182
2183 dir = debugfs_create_dir("emulated_instructions",
2184 powerpc_debugfs_root);
2185 if (!dir)
2186 return -ENOMEM;
2187
2188 d = debugfs_create_u32("do_warn", 0644, dir,
2189 &ppc_warn_emulated);
2190 if (!d)
2191 goto fail;
2192
2193 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2194 d = debugfs_create_u32(entries[i].name, 0644, dir,
2195 (u32 *)&entries[i].val.counter);
2196 if (!d)
2197 goto fail;
2198 }
2199
2200 return 0;
2201
2202 fail:
2203 debugfs_remove_recursive(dir);
2204 return -ENOMEM;
2205 }
2206
2207 device_initcall(ppc_warn_emulated_init);
2208
2209 #endif /* CONFIG_PPC_EMULATED_STATS */