]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kernel/traps.c
Replace <asm/uaccess.h> with <linux/uaccess.h> globally
[thirdparty/linux.git] / arch / powerpc / kernel / traps.c
1 /*
2 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
3 * Copyright 2007-2010 Freescale Semiconductor, Inc.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version
8 * 2 of the License, or (at your option) any later version.
9 *
10 * Modified by Cort Dougan (cort@cs.nmt.edu)
11 * and Paul Mackerras (paulus@samba.org)
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of hardware exceptions
16 */
17
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/user.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/extable.h>
29 #include <linux/module.h> /* print_modules */
30 #include <linux/prctl.h>
31 #include <linux/delay.h>
32 #include <linux/kprobes.h>
33 #include <linux/kexec.h>
34 #include <linux/backlight.h>
35 #include <linux/bug.h>
36 #include <linux/kdebug.h>
37 #include <linux/debugfs.h>
38 #include <linux/ratelimit.h>
39 #include <linux/context_tracking.h>
40
41 #include <asm/emulated_ops.h>
42 #include <asm/pgtable.h>
43 #include <linux/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/machdep.h>
46 #include <asm/rtas.h>
47 #include <asm/pmc.h>
48 #include <asm/reg.h>
49 #ifdef CONFIG_PMAC_BACKLIGHT
50 #include <asm/backlight.h>
51 #endif
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #include <asm/processor.h>
55 #include <asm/tm.h>
56 #endif
57 #include <asm/kexec.h>
58 #include <asm/ppc-opcode.h>
59 #include <asm/rio.h>
60 #include <asm/fadump.h>
61 #include <asm/switch_to.h>
62 #include <asm/tm.h>
63 #include <asm/debug.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/hmi.h>
66 #include <sysdev/fsl_pci.h>
67 #include <asm/kprobes.h>
68
69 #if defined(CONFIG_DEBUGGER) || defined(CONFIG_KEXEC_CORE)
70 int (*__debugger)(struct pt_regs *regs) __read_mostly;
71 int (*__debugger_ipi)(struct pt_regs *regs) __read_mostly;
72 int (*__debugger_bpt)(struct pt_regs *regs) __read_mostly;
73 int (*__debugger_sstep)(struct pt_regs *regs) __read_mostly;
74 int (*__debugger_iabr_match)(struct pt_regs *regs) __read_mostly;
75 int (*__debugger_break_match)(struct pt_regs *regs) __read_mostly;
76 int (*__debugger_fault_handler)(struct pt_regs *regs) __read_mostly;
77
78 EXPORT_SYMBOL(__debugger);
79 EXPORT_SYMBOL(__debugger_ipi);
80 EXPORT_SYMBOL(__debugger_bpt);
81 EXPORT_SYMBOL(__debugger_sstep);
82 EXPORT_SYMBOL(__debugger_iabr_match);
83 EXPORT_SYMBOL(__debugger_break_match);
84 EXPORT_SYMBOL(__debugger_fault_handler);
85 #endif
86
87 /* Transactional Memory trap debug */
88 #ifdef TM_DEBUG_SW
89 #define TM_DEBUG(x...) printk(KERN_INFO x)
90 #else
91 #define TM_DEBUG(x...) do { } while(0)
92 #endif
93
94 /*
95 * Trap & Exception support
96 */
97
98 #ifdef CONFIG_PMAC_BACKLIGHT
99 static void pmac_backlight_unblank(void)
100 {
101 mutex_lock(&pmac_backlight_mutex);
102 if (pmac_backlight) {
103 struct backlight_properties *props;
104
105 props = &pmac_backlight->props;
106 props->brightness = props->max_brightness;
107 props->power = FB_BLANK_UNBLANK;
108 backlight_update_status(pmac_backlight);
109 }
110 mutex_unlock(&pmac_backlight_mutex);
111 }
112 #else
113 static inline void pmac_backlight_unblank(void) { }
114 #endif
115
116 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
117 static int die_owner = -1;
118 static unsigned int die_nest_count;
119 static int die_counter;
120
121 static unsigned long oops_begin(struct pt_regs *regs)
122 {
123 int cpu;
124 unsigned long flags;
125
126 oops_enter();
127
128 /* racy, but better than risking deadlock. */
129 raw_local_irq_save(flags);
130 cpu = smp_processor_id();
131 if (!arch_spin_trylock(&die_lock)) {
132 if (cpu == die_owner)
133 /* nested oops. should stop eventually */;
134 else
135 arch_spin_lock(&die_lock);
136 }
137 die_nest_count++;
138 die_owner = cpu;
139 console_verbose();
140 bust_spinlocks(1);
141 if (machine_is(powermac))
142 pmac_backlight_unblank();
143 return flags;
144 }
145 NOKPROBE_SYMBOL(oops_begin);
146
147 static void oops_end(unsigned long flags, struct pt_regs *regs,
148 int signr)
149 {
150 bust_spinlocks(0);
151 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
152 die_nest_count--;
153 oops_exit();
154 printk("\n");
155 if (!die_nest_count) {
156 /* Nest count reaches zero, release the lock. */
157 die_owner = -1;
158 arch_spin_unlock(&die_lock);
159 }
160 raw_local_irq_restore(flags);
161
162 crash_fadump(regs, "die oops");
163
164 /*
165 * A system reset (0x100) is a request to dump, so we always send
166 * it through the crashdump code.
167 */
168 if (kexec_should_crash(current) || (TRAP(regs) == 0x100)) {
169 crash_kexec(regs);
170
171 /*
172 * We aren't the primary crash CPU. We need to send it
173 * to a holding pattern to avoid it ending up in the panic
174 * code.
175 */
176 crash_kexec_secondary(regs);
177 }
178
179 if (!signr)
180 return;
181
182 /*
183 * While our oops output is serialised by a spinlock, output
184 * from panic() called below can race and corrupt it. If we
185 * know we are going to panic, delay for 1 second so we have a
186 * chance to get clean backtraces from all CPUs that are oopsing.
187 */
188 if (in_interrupt() || panic_on_oops || !current->pid ||
189 is_global_init(current)) {
190 mdelay(MSEC_PER_SEC);
191 }
192
193 if (in_interrupt())
194 panic("Fatal exception in interrupt");
195 if (panic_on_oops)
196 panic("Fatal exception");
197 do_exit(signr);
198 }
199 NOKPROBE_SYMBOL(oops_end);
200
201 static int __die(const char *str, struct pt_regs *regs, long err)
202 {
203 printk("Oops: %s, sig: %ld [#%d]\n", str, err, ++die_counter);
204 #ifdef CONFIG_PREEMPT
205 printk("PREEMPT ");
206 #endif
207 #ifdef CONFIG_SMP
208 printk("SMP NR_CPUS=%d ", NR_CPUS);
209 #endif
210 if (debug_pagealloc_enabled())
211 printk("DEBUG_PAGEALLOC ");
212 #ifdef CONFIG_NUMA
213 printk("NUMA ");
214 #endif
215 printk("%s\n", ppc_md.name ? ppc_md.name : "");
216
217 if (notify_die(DIE_OOPS, str, regs, err, 255, SIGSEGV) == NOTIFY_STOP)
218 return 1;
219
220 print_modules();
221 show_regs(regs);
222
223 return 0;
224 }
225 NOKPROBE_SYMBOL(__die);
226
227 void die(const char *str, struct pt_regs *regs, long err)
228 {
229 unsigned long flags;
230
231 if (debugger(regs))
232 return;
233
234 flags = oops_begin(regs);
235 if (__die(str, regs, err))
236 err = 0;
237 oops_end(flags, regs, err);
238 }
239
240 void user_single_step_siginfo(struct task_struct *tsk,
241 struct pt_regs *regs, siginfo_t *info)
242 {
243 memset(info, 0, sizeof(*info));
244 info->si_signo = SIGTRAP;
245 info->si_code = TRAP_TRACE;
246 info->si_addr = (void __user *)regs->nip;
247 }
248
249 void _exception(int signr, struct pt_regs *regs, int code, unsigned long addr)
250 {
251 siginfo_t info;
252 const char fmt32[] = KERN_INFO "%s[%d]: unhandled signal %d " \
253 "at %08lx nip %08lx lr %08lx code %x\n";
254 const char fmt64[] = KERN_INFO "%s[%d]: unhandled signal %d " \
255 "at %016lx nip %016lx lr %016lx code %x\n";
256
257 if (!user_mode(regs)) {
258 die("Exception in kernel mode", regs, signr);
259 return;
260 }
261
262 if (show_unhandled_signals && unhandled_signal(current, signr)) {
263 printk_ratelimited(regs->msr & MSR_64BIT ? fmt64 : fmt32,
264 current->comm, current->pid, signr,
265 addr, regs->nip, regs->link, code);
266 }
267
268 if (arch_irqs_disabled() && !arch_irq_disabled_regs(regs))
269 local_irq_enable();
270
271 current->thread.trap_nr = code;
272 memset(&info, 0, sizeof(info));
273 info.si_signo = signr;
274 info.si_code = code;
275 info.si_addr = (void __user *) addr;
276 force_sig_info(signr, &info, current);
277 }
278
279 void system_reset_exception(struct pt_regs *regs)
280 {
281 /* See if any machine dependent calls */
282 if (ppc_md.system_reset_exception) {
283 if (ppc_md.system_reset_exception(regs))
284 return;
285 }
286
287 die("System Reset", regs, SIGABRT);
288
289 /* Must die if the interrupt is not recoverable */
290 if (!(regs->msr & MSR_RI))
291 panic("Unrecoverable System Reset");
292
293 /* What should we do here? We could issue a shutdown or hard reset. */
294 }
295
296 #ifdef CONFIG_PPC64
297 /*
298 * This function is called in real mode. Strictly no printk's please.
299 *
300 * regs->nip and regs->msr contains srr0 and ssr1.
301 */
302 long machine_check_early(struct pt_regs *regs)
303 {
304 long handled = 0;
305
306 __this_cpu_inc(irq_stat.mce_exceptions);
307
308 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
309
310 if (cur_cpu_spec && cur_cpu_spec->machine_check_early)
311 handled = cur_cpu_spec->machine_check_early(regs);
312 return handled;
313 }
314
315 long hmi_exception_realmode(struct pt_regs *regs)
316 {
317 __this_cpu_inc(irq_stat.hmi_exceptions);
318
319 wait_for_subcore_guest_exit();
320
321 if (ppc_md.hmi_exception_early)
322 ppc_md.hmi_exception_early(regs);
323
324 wait_for_tb_resync();
325
326 return 0;
327 }
328
329 #endif
330
331 /*
332 * I/O accesses can cause machine checks on powermacs.
333 * Check if the NIP corresponds to the address of a sync
334 * instruction for which there is an entry in the exception
335 * table.
336 * Note that the 601 only takes a machine check on TEA
337 * (transfer error ack) signal assertion, and does not
338 * set any of the top 16 bits of SRR1.
339 * -- paulus.
340 */
341 static inline int check_io_access(struct pt_regs *regs)
342 {
343 #ifdef CONFIG_PPC32
344 unsigned long msr = regs->msr;
345 const struct exception_table_entry *entry;
346 unsigned int *nip = (unsigned int *)regs->nip;
347
348 if (((msr & 0xffff0000) == 0 || (msr & (0x80000 | 0x40000)))
349 && (entry = search_exception_tables(regs->nip)) != NULL) {
350 /*
351 * Check that it's a sync instruction, or somewhere
352 * in the twi; isync; nop sequence that inb/inw/inl uses.
353 * As the address is in the exception table
354 * we should be able to read the instr there.
355 * For the debug message, we look at the preceding
356 * load or store.
357 */
358 if (*nip == PPC_INST_NOP)
359 nip -= 2;
360 else if (*nip == PPC_INST_ISYNC)
361 --nip;
362 if (*nip == PPC_INST_SYNC || (*nip >> 26) == OP_TRAP) {
363 unsigned int rb;
364
365 --nip;
366 rb = (*nip >> 11) & 0x1f;
367 printk(KERN_DEBUG "%s bad port %lx at %p\n",
368 (*nip & 0x100)? "OUT to": "IN from",
369 regs->gpr[rb] - _IO_BASE, nip);
370 regs->msr |= MSR_RI;
371 regs->nip = extable_fixup(entry);
372 return 1;
373 }
374 }
375 #endif /* CONFIG_PPC32 */
376 return 0;
377 }
378
379 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
380 /* On 4xx, the reason for the machine check or program exception
381 is in the ESR. */
382 #define get_reason(regs) ((regs)->dsisr)
383 #ifndef CONFIG_FSL_BOOKE
384 #define get_mc_reason(regs) ((regs)->dsisr)
385 #else
386 #define get_mc_reason(regs) (mfspr(SPRN_MCSR))
387 #endif
388 #define REASON_FP ESR_FP
389 #define REASON_ILLEGAL (ESR_PIL | ESR_PUO)
390 #define REASON_PRIVILEGED ESR_PPR
391 #define REASON_TRAP ESR_PTR
392
393 /* single-step stuff */
394 #define single_stepping(regs) (current->thread.debug.dbcr0 & DBCR0_IC)
395 #define clear_single_step(regs) (current->thread.debug.dbcr0 &= ~DBCR0_IC)
396
397 #else
398 /* On non-4xx, the reason for the machine check or program
399 exception is in the MSR. */
400 #define get_reason(regs) ((regs)->msr)
401 #define get_mc_reason(regs) ((regs)->msr)
402 #define REASON_TM 0x200000
403 #define REASON_FP 0x100000
404 #define REASON_ILLEGAL 0x80000
405 #define REASON_PRIVILEGED 0x40000
406 #define REASON_TRAP 0x20000
407
408 #define single_stepping(regs) ((regs)->msr & MSR_SE)
409 #define clear_single_step(regs) ((regs)->msr &= ~MSR_SE)
410 #endif
411
412 #if defined(CONFIG_4xx)
413 int machine_check_4xx(struct pt_regs *regs)
414 {
415 unsigned long reason = get_mc_reason(regs);
416
417 if (reason & ESR_IMCP) {
418 printk("Instruction");
419 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
420 } else
421 printk("Data");
422 printk(" machine check in kernel mode.\n");
423
424 return 0;
425 }
426
427 int machine_check_440A(struct pt_regs *regs)
428 {
429 unsigned long reason = get_mc_reason(regs);
430
431 printk("Machine check in kernel mode.\n");
432 if (reason & ESR_IMCP){
433 printk("Instruction Synchronous Machine Check exception\n");
434 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
435 }
436 else {
437 u32 mcsr = mfspr(SPRN_MCSR);
438 if (mcsr & MCSR_IB)
439 printk("Instruction Read PLB Error\n");
440 if (mcsr & MCSR_DRB)
441 printk("Data Read PLB Error\n");
442 if (mcsr & MCSR_DWB)
443 printk("Data Write PLB Error\n");
444 if (mcsr & MCSR_TLBP)
445 printk("TLB Parity Error\n");
446 if (mcsr & MCSR_ICP){
447 flush_instruction_cache();
448 printk("I-Cache Parity Error\n");
449 }
450 if (mcsr & MCSR_DCSP)
451 printk("D-Cache Search Parity Error\n");
452 if (mcsr & MCSR_DCFP)
453 printk("D-Cache Flush Parity Error\n");
454 if (mcsr & MCSR_IMPE)
455 printk("Machine Check exception is imprecise\n");
456
457 /* Clear MCSR */
458 mtspr(SPRN_MCSR, mcsr);
459 }
460 return 0;
461 }
462
463 int machine_check_47x(struct pt_regs *regs)
464 {
465 unsigned long reason = get_mc_reason(regs);
466 u32 mcsr;
467
468 printk(KERN_ERR "Machine check in kernel mode.\n");
469 if (reason & ESR_IMCP) {
470 printk(KERN_ERR
471 "Instruction Synchronous Machine Check exception\n");
472 mtspr(SPRN_ESR, reason & ~ESR_IMCP);
473 return 0;
474 }
475 mcsr = mfspr(SPRN_MCSR);
476 if (mcsr & MCSR_IB)
477 printk(KERN_ERR "Instruction Read PLB Error\n");
478 if (mcsr & MCSR_DRB)
479 printk(KERN_ERR "Data Read PLB Error\n");
480 if (mcsr & MCSR_DWB)
481 printk(KERN_ERR "Data Write PLB Error\n");
482 if (mcsr & MCSR_TLBP)
483 printk(KERN_ERR "TLB Parity Error\n");
484 if (mcsr & MCSR_ICP) {
485 flush_instruction_cache();
486 printk(KERN_ERR "I-Cache Parity Error\n");
487 }
488 if (mcsr & MCSR_DCSP)
489 printk(KERN_ERR "D-Cache Search Parity Error\n");
490 if (mcsr & PPC47x_MCSR_GPR)
491 printk(KERN_ERR "GPR Parity Error\n");
492 if (mcsr & PPC47x_MCSR_FPR)
493 printk(KERN_ERR "FPR Parity Error\n");
494 if (mcsr & PPC47x_MCSR_IPR)
495 printk(KERN_ERR "Machine Check exception is imprecise\n");
496
497 /* Clear MCSR */
498 mtspr(SPRN_MCSR, mcsr);
499
500 return 0;
501 }
502 #elif defined(CONFIG_E500)
503 int machine_check_e500mc(struct pt_regs *regs)
504 {
505 unsigned long mcsr = mfspr(SPRN_MCSR);
506 unsigned long reason = mcsr;
507 int recoverable = 1;
508
509 if (reason & MCSR_LD) {
510 recoverable = fsl_rio_mcheck_exception(regs);
511 if (recoverable == 1)
512 goto silent_out;
513 }
514
515 printk("Machine check in kernel mode.\n");
516 printk("Caused by (from MCSR=%lx): ", reason);
517
518 if (reason & MCSR_MCP)
519 printk("Machine Check Signal\n");
520
521 if (reason & MCSR_ICPERR) {
522 printk("Instruction Cache Parity Error\n");
523
524 /*
525 * This is recoverable by invalidating the i-cache.
526 */
527 mtspr(SPRN_L1CSR1, mfspr(SPRN_L1CSR1) | L1CSR1_ICFI);
528 while (mfspr(SPRN_L1CSR1) & L1CSR1_ICFI)
529 ;
530
531 /*
532 * This will generally be accompanied by an instruction
533 * fetch error report -- only treat MCSR_IF as fatal
534 * if it wasn't due to an L1 parity error.
535 */
536 reason &= ~MCSR_IF;
537 }
538
539 if (reason & MCSR_DCPERR_MC) {
540 printk("Data Cache Parity Error\n");
541
542 /*
543 * In write shadow mode we auto-recover from the error, but it
544 * may still get logged and cause a machine check. We should
545 * only treat the non-write shadow case as non-recoverable.
546 */
547 if (!(mfspr(SPRN_L1CSR2) & L1CSR2_DCWS))
548 recoverable = 0;
549 }
550
551 if (reason & MCSR_L2MMU_MHIT) {
552 printk("Hit on multiple TLB entries\n");
553 recoverable = 0;
554 }
555
556 if (reason & MCSR_NMI)
557 printk("Non-maskable interrupt\n");
558
559 if (reason & MCSR_IF) {
560 printk("Instruction Fetch Error Report\n");
561 recoverable = 0;
562 }
563
564 if (reason & MCSR_LD) {
565 printk("Load Error Report\n");
566 recoverable = 0;
567 }
568
569 if (reason & MCSR_ST) {
570 printk("Store Error Report\n");
571 recoverable = 0;
572 }
573
574 if (reason & MCSR_LDG) {
575 printk("Guarded Load Error Report\n");
576 recoverable = 0;
577 }
578
579 if (reason & MCSR_TLBSYNC)
580 printk("Simultaneous tlbsync operations\n");
581
582 if (reason & MCSR_BSL2_ERR) {
583 printk("Level 2 Cache Error\n");
584 recoverable = 0;
585 }
586
587 if (reason & MCSR_MAV) {
588 u64 addr;
589
590 addr = mfspr(SPRN_MCAR);
591 addr |= (u64)mfspr(SPRN_MCARU) << 32;
592
593 printk("Machine Check %s Address: %#llx\n",
594 reason & MCSR_MEA ? "Effective" : "Physical", addr);
595 }
596
597 silent_out:
598 mtspr(SPRN_MCSR, mcsr);
599 return mfspr(SPRN_MCSR) == 0 && recoverable;
600 }
601
602 int machine_check_e500(struct pt_regs *regs)
603 {
604 unsigned long reason = get_mc_reason(regs);
605
606 if (reason & MCSR_BUS_RBERR) {
607 if (fsl_rio_mcheck_exception(regs))
608 return 1;
609 if (fsl_pci_mcheck_exception(regs))
610 return 1;
611 }
612
613 printk("Machine check in kernel mode.\n");
614 printk("Caused by (from MCSR=%lx): ", reason);
615
616 if (reason & MCSR_MCP)
617 printk("Machine Check Signal\n");
618 if (reason & MCSR_ICPERR)
619 printk("Instruction Cache Parity Error\n");
620 if (reason & MCSR_DCP_PERR)
621 printk("Data Cache Push Parity Error\n");
622 if (reason & MCSR_DCPERR)
623 printk("Data Cache Parity Error\n");
624 if (reason & MCSR_BUS_IAERR)
625 printk("Bus - Instruction Address Error\n");
626 if (reason & MCSR_BUS_RAERR)
627 printk("Bus - Read Address Error\n");
628 if (reason & MCSR_BUS_WAERR)
629 printk("Bus - Write Address Error\n");
630 if (reason & MCSR_BUS_IBERR)
631 printk("Bus - Instruction Data Error\n");
632 if (reason & MCSR_BUS_RBERR)
633 printk("Bus - Read Data Bus Error\n");
634 if (reason & MCSR_BUS_WBERR)
635 printk("Bus - Write Data Bus Error\n");
636 if (reason & MCSR_BUS_IPERR)
637 printk("Bus - Instruction Parity Error\n");
638 if (reason & MCSR_BUS_RPERR)
639 printk("Bus - Read Parity Error\n");
640
641 return 0;
642 }
643
644 int machine_check_generic(struct pt_regs *regs)
645 {
646 return 0;
647 }
648 #elif defined(CONFIG_E200)
649 int machine_check_e200(struct pt_regs *regs)
650 {
651 unsigned long reason = get_mc_reason(regs);
652
653 printk("Machine check in kernel mode.\n");
654 printk("Caused by (from MCSR=%lx): ", reason);
655
656 if (reason & MCSR_MCP)
657 printk("Machine Check Signal\n");
658 if (reason & MCSR_CP_PERR)
659 printk("Cache Push Parity Error\n");
660 if (reason & MCSR_CPERR)
661 printk("Cache Parity Error\n");
662 if (reason & MCSR_EXCP_ERR)
663 printk("ISI, ITLB, or Bus Error on first instruction fetch for an exception handler\n");
664 if (reason & MCSR_BUS_IRERR)
665 printk("Bus - Read Bus Error on instruction fetch\n");
666 if (reason & MCSR_BUS_DRERR)
667 printk("Bus - Read Bus Error on data load\n");
668 if (reason & MCSR_BUS_WRERR)
669 printk("Bus - Write Bus Error on buffered store or cache line push\n");
670
671 return 0;
672 }
673 #elif defined(CONFIG_PPC_8xx)
674 int machine_check_8xx(struct pt_regs *regs)
675 {
676 unsigned long reason = get_mc_reason(regs);
677
678 pr_err("Machine check in kernel mode.\n");
679 pr_err("Caused by (from SRR1=%lx): ", reason);
680 if (reason & 0x40000000)
681 pr_err("Fetch error at address %lx\n", regs->nip);
682 else
683 pr_err("Data access error at address %lx\n", regs->dar);
684
685 #ifdef CONFIG_PCI
686 /* the qspan pci read routines can cause machine checks -- Cort
687 *
688 * yuck !!! that totally needs to go away ! There are better ways
689 * to deal with that than having a wart in the mcheck handler.
690 * -- BenH
691 */
692 bad_page_fault(regs, regs->dar, SIGBUS);
693 return 1;
694 #else
695 return 0;
696 #endif
697 }
698 #else
699 int machine_check_generic(struct pt_regs *regs)
700 {
701 unsigned long reason = get_mc_reason(regs);
702
703 printk("Machine check in kernel mode.\n");
704 printk("Caused by (from SRR1=%lx): ", reason);
705 switch (reason & 0x601F0000) {
706 case 0x80000:
707 printk("Machine check signal\n");
708 break;
709 case 0: /* for 601 */
710 case 0x40000:
711 case 0x140000: /* 7450 MSS error and TEA */
712 printk("Transfer error ack signal\n");
713 break;
714 case 0x20000:
715 printk("Data parity error signal\n");
716 break;
717 case 0x10000:
718 printk("Address parity error signal\n");
719 break;
720 case 0x20000000:
721 printk("L1 Data Cache error\n");
722 break;
723 case 0x40000000:
724 printk("L1 Instruction Cache error\n");
725 break;
726 case 0x00100000:
727 printk("L2 data cache parity error\n");
728 break;
729 default:
730 printk("Unknown values in msr\n");
731 }
732 return 0;
733 }
734 #endif /* everything else */
735
736 void machine_check_exception(struct pt_regs *regs)
737 {
738 enum ctx_state prev_state = exception_enter();
739 int recover = 0;
740
741 __this_cpu_inc(irq_stat.mce_exceptions);
742
743 /* See if any machine dependent calls. In theory, we would want
744 * to call the CPU first, and call the ppc_md. one if the CPU
745 * one returns a positive number. However there is existing code
746 * that assumes the board gets a first chance, so let's keep it
747 * that way for now and fix things later. --BenH.
748 */
749 if (ppc_md.machine_check_exception)
750 recover = ppc_md.machine_check_exception(regs);
751 else if (cur_cpu_spec->machine_check)
752 recover = cur_cpu_spec->machine_check(regs);
753
754 if (recover > 0)
755 goto bail;
756
757 if (debugger_fault_handler(regs))
758 goto bail;
759
760 if (check_io_access(regs))
761 goto bail;
762
763 die("Machine check", regs, SIGBUS);
764
765 /* Must die if the interrupt is not recoverable */
766 if (!(regs->msr & MSR_RI))
767 panic("Unrecoverable Machine check");
768
769 bail:
770 exception_exit(prev_state);
771 }
772
773 void SMIException(struct pt_regs *regs)
774 {
775 die("System Management Interrupt", regs, SIGABRT);
776 }
777
778 void handle_hmi_exception(struct pt_regs *regs)
779 {
780 struct pt_regs *old_regs;
781
782 old_regs = set_irq_regs(regs);
783 irq_enter();
784
785 if (ppc_md.handle_hmi_exception)
786 ppc_md.handle_hmi_exception(regs);
787
788 irq_exit();
789 set_irq_regs(old_regs);
790 }
791
792 void unknown_exception(struct pt_regs *regs)
793 {
794 enum ctx_state prev_state = exception_enter();
795
796 printk("Bad trap at PC: %lx, SR: %lx, vector=%lx\n",
797 regs->nip, regs->msr, regs->trap);
798
799 _exception(SIGTRAP, regs, 0, 0);
800
801 exception_exit(prev_state);
802 }
803
804 void instruction_breakpoint_exception(struct pt_regs *regs)
805 {
806 enum ctx_state prev_state = exception_enter();
807
808 if (notify_die(DIE_IABR_MATCH, "iabr_match", regs, 5,
809 5, SIGTRAP) == NOTIFY_STOP)
810 goto bail;
811 if (debugger_iabr_match(regs))
812 goto bail;
813 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
814
815 bail:
816 exception_exit(prev_state);
817 }
818
819 void RunModeException(struct pt_regs *regs)
820 {
821 _exception(SIGTRAP, regs, 0, 0);
822 }
823
824 void single_step_exception(struct pt_regs *regs)
825 {
826 enum ctx_state prev_state = exception_enter();
827
828 clear_single_step(regs);
829
830 if (kprobe_post_handler(regs))
831 return;
832
833 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
834 5, SIGTRAP) == NOTIFY_STOP)
835 goto bail;
836 if (debugger_sstep(regs))
837 goto bail;
838
839 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
840
841 bail:
842 exception_exit(prev_state);
843 }
844 NOKPROBE_SYMBOL(single_step_exception);
845
846 /*
847 * After we have successfully emulated an instruction, we have to
848 * check if the instruction was being single-stepped, and if so,
849 * pretend we got a single-step exception. This was pointed out
850 * by Kumar Gala. -- paulus
851 */
852 static void emulate_single_step(struct pt_regs *regs)
853 {
854 if (single_stepping(regs))
855 single_step_exception(regs);
856 }
857
858 static inline int __parse_fpscr(unsigned long fpscr)
859 {
860 int ret = 0;
861
862 /* Invalid operation */
863 if ((fpscr & FPSCR_VE) && (fpscr & FPSCR_VX))
864 ret = FPE_FLTINV;
865
866 /* Overflow */
867 else if ((fpscr & FPSCR_OE) && (fpscr & FPSCR_OX))
868 ret = FPE_FLTOVF;
869
870 /* Underflow */
871 else if ((fpscr & FPSCR_UE) && (fpscr & FPSCR_UX))
872 ret = FPE_FLTUND;
873
874 /* Divide by zero */
875 else if ((fpscr & FPSCR_ZE) && (fpscr & FPSCR_ZX))
876 ret = FPE_FLTDIV;
877
878 /* Inexact result */
879 else if ((fpscr & FPSCR_XE) && (fpscr & FPSCR_XX))
880 ret = FPE_FLTRES;
881
882 return ret;
883 }
884
885 static void parse_fpe(struct pt_regs *regs)
886 {
887 int code = 0;
888
889 flush_fp_to_thread(current);
890
891 code = __parse_fpscr(current->thread.fp_state.fpscr);
892
893 _exception(SIGFPE, regs, code, regs->nip);
894 }
895
896 /*
897 * Illegal instruction emulation support. Originally written to
898 * provide the PVR to user applications using the mfspr rd, PVR.
899 * Return non-zero if we can't emulate, or -EFAULT if the associated
900 * memory access caused an access fault. Return zero on success.
901 *
902 * There are a couple of ways to do this, either "decode" the instruction
903 * or directly match lots of bits. In this case, matching lots of
904 * bits is faster and easier.
905 *
906 */
907 static int emulate_string_inst(struct pt_regs *regs, u32 instword)
908 {
909 u8 rT = (instword >> 21) & 0x1f;
910 u8 rA = (instword >> 16) & 0x1f;
911 u8 NB_RB = (instword >> 11) & 0x1f;
912 u32 num_bytes;
913 unsigned long EA;
914 int pos = 0;
915
916 /* Early out if we are an invalid form of lswx */
917 if ((instword & PPC_INST_STRING_MASK) == PPC_INST_LSWX)
918 if ((rT == rA) || (rT == NB_RB))
919 return -EINVAL;
920
921 EA = (rA == 0) ? 0 : regs->gpr[rA];
922
923 switch (instword & PPC_INST_STRING_MASK) {
924 case PPC_INST_LSWX:
925 case PPC_INST_STSWX:
926 EA += NB_RB;
927 num_bytes = regs->xer & 0x7f;
928 break;
929 case PPC_INST_LSWI:
930 case PPC_INST_STSWI:
931 num_bytes = (NB_RB == 0) ? 32 : NB_RB;
932 break;
933 default:
934 return -EINVAL;
935 }
936
937 while (num_bytes != 0)
938 {
939 u8 val;
940 u32 shift = 8 * (3 - (pos & 0x3));
941
942 /* if process is 32-bit, clear upper 32 bits of EA */
943 if ((regs->msr & MSR_64BIT) == 0)
944 EA &= 0xFFFFFFFF;
945
946 switch ((instword & PPC_INST_STRING_MASK)) {
947 case PPC_INST_LSWX:
948 case PPC_INST_LSWI:
949 if (get_user(val, (u8 __user *)EA))
950 return -EFAULT;
951 /* first time updating this reg,
952 * zero it out */
953 if (pos == 0)
954 regs->gpr[rT] = 0;
955 regs->gpr[rT] |= val << shift;
956 break;
957 case PPC_INST_STSWI:
958 case PPC_INST_STSWX:
959 val = regs->gpr[rT] >> shift;
960 if (put_user(val, (u8 __user *)EA))
961 return -EFAULT;
962 break;
963 }
964 /* move EA to next address */
965 EA += 1;
966 num_bytes--;
967
968 /* manage our position within the register */
969 if (++pos == 4) {
970 pos = 0;
971 if (++rT == 32)
972 rT = 0;
973 }
974 }
975
976 return 0;
977 }
978
979 static int emulate_popcntb_inst(struct pt_regs *regs, u32 instword)
980 {
981 u32 ra,rs;
982 unsigned long tmp;
983
984 ra = (instword >> 16) & 0x1f;
985 rs = (instword >> 21) & 0x1f;
986
987 tmp = regs->gpr[rs];
988 tmp = tmp - ((tmp >> 1) & 0x5555555555555555ULL);
989 tmp = (tmp & 0x3333333333333333ULL) + ((tmp >> 2) & 0x3333333333333333ULL);
990 tmp = (tmp + (tmp >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
991 regs->gpr[ra] = tmp;
992
993 return 0;
994 }
995
996 static int emulate_isel(struct pt_regs *regs, u32 instword)
997 {
998 u8 rT = (instword >> 21) & 0x1f;
999 u8 rA = (instword >> 16) & 0x1f;
1000 u8 rB = (instword >> 11) & 0x1f;
1001 u8 BC = (instword >> 6) & 0x1f;
1002 u8 bit;
1003 unsigned long tmp;
1004
1005 tmp = (rA == 0) ? 0 : regs->gpr[rA];
1006 bit = (regs->ccr >> (31 - BC)) & 0x1;
1007
1008 regs->gpr[rT] = bit ? tmp : regs->gpr[rB];
1009
1010 return 0;
1011 }
1012
1013 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1014 static inline bool tm_abort_check(struct pt_regs *regs, int cause)
1015 {
1016 /* If we're emulating a load/store in an active transaction, we cannot
1017 * emulate it as the kernel operates in transaction suspended context.
1018 * We need to abort the transaction. This creates a persistent TM
1019 * abort so tell the user what caused it with a new code.
1020 */
1021 if (MSR_TM_TRANSACTIONAL(regs->msr)) {
1022 tm_enable();
1023 tm_abort(cause);
1024 return true;
1025 }
1026 return false;
1027 }
1028 #else
1029 static inline bool tm_abort_check(struct pt_regs *regs, int reason)
1030 {
1031 return false;
1032 }
1033 #endif
1034
1035 static int emulate_instruction(struct pt_regs *regs)
1036 {
1037 u32 instword;
1038 u32 rd;
1039
1040 if (!user_mode(regs))
1041 return -EINVAL;
1042 CHECK_FULL_REGS(regs);
1043
1044 if (get_user(instword, (u32 __user *)(regs->nip)))
1045 return -EFAULT;
1046
1047 /* Emulate the mfspr rD, PVR. */
1048 if ((instword & PPC_INST_MFSPR_PVR_MASK) == PPC_INST_MFSPR_PVR) {
1049 PPC_WARN_EMULATED(mfpvr, regs);
1050 rd = (instword >> 21) & 0x1f;
1051 regs->gpr[rd] = mfspr(SPRN_PVR);
1052 return 0;
1053 }
1054
1055 /* Emulating the dcba insn is just a no-op. */
1056 if ((instword & PPC_INST_DCBA_MASK) == PPC_INST_DCBA) {
1057 PPC_WARN_EMULATED(dcba, regs);
1058 return 0;
1059 }
1060
1061 /* Emulate the mcrxr insn. */
1062 if ((instword & PPC_INST_MCRXR_MASK) == PPC_INST_MCRXR) {
1063 int shift = (instword >> 21) & 0x1c;
1064 unsigned long msk = 0xf0000000UL >> shift;
1065
1066 PPC_WARN_EMULATED(mcrxr, regs);
1067 regs->ccr = (regs->ccr & ~msk) | ((regs->xer >> shift) & msk);
1068 regs->xer &= ~0xf0000000UL;
1069 return 0;
1070 }
1071
1072 /* Emulate load/store string insn. */
1073 if ((instword & PPC_INST_STRING_GEN_MASK) == PPC_INST_STRING) {
1074 if (tm_abort_check(regs,
1075 TM_CAUSE_EMULATE | TM_CAUSE_PERSISTENT))
1076 return -EINVAL;
1077 PPC_WARN_EMULATED(string, regs);
1078 return emulate_string_inst(regs, instword);
1079 }
1080
1081 /* Emulate the popcntb (Population Count Bytes) instruction. */
1082 if ((instword & PPC_INST_POPCNTB_MASK) == PPC_INST_POPCNTB) {
1083 PPC_WARN_EMULATED(popcntb, regs);
1084 return emulate_popcntb_inst(regs, instword);
1085 }
1086
1087 /* Emulate isel (Integer Select) instruction */
1088 if ((instword & PPC_INST_ISEL_MASK) == PPC_INST_ISEL) {
1089 PPC_WARN_EMULATED(isel, regs);
1090 return emulate_isel(regs, instword);
1091 }
1092
1093 /* Emulate sync instruction variants */
1094 if ((instword & PPC_INST_SYNC_MASK) == PPC_INST_SYNC) {
1095 PPC_WARN_EMULATED(sync, regs);
1096 asm volatile("sync");
1097 return 0;
1098 }
1099
1100 #ifdef CONFIG_PPC64
1101 /* Emulate the mfspr rD, DSCR. */
1102 if ((((instword & PPC_INST_MFSPR_DSCR_USER_MASK) ==
1103 PPC_INST_MFSPR_DSCR_USER) ||
1104 ((instword & PPC_INST_MFSPR_DSCR_MASK) ==
1105 PPC_INST_MFSPR_DSCR)) &&
1106 cpu_has_feature(CPU_FTR_DSCR)) {
1107 PPC_WARN_EMULATED(mfdscr, regs);
1108 rd = (instword >> 21) & 0x1f;
1109 regs->gpr[rd] = mfspr(SPRN_DSCR);
1110 return 0;
1111 }
1112 /* Emulate the mtspr DSCR, rD. */
1113 if ((((instword & PPC_INST_MTSPR_DSCR_USER_MASK) ==
1114 PPC_INST_MTSPR_DSCR_USER) ||
1115 ((instword & PPC_INST_MTSPR_DSCR_MASK) ==
1116 PPC_INST_MTSPR_DSCR)) &&
1117 cpu_has_feature(CPU_FTR_DSCR)) {
1118 PPC_WARN_EMULATED(mtdscr, regs);
1119 rd = (instword >> 21) & 0x1f;
1120 current->thread.dscr = regs->gpr[rd];
1121 current->thread.dscr_inherit = 1;
1122 mtspr(SPRN_DSCR, current->thread.dscr);
1123 return 0;
1124 }
1125 #endif
1126
1127 return -EINVAL;
1128 }
1129
1130 int is_valid_bugaddr(unsigned long addr)
1131 {
1132 return is_kernel_addr(addr);
1133 }
1134
1135 #ifdef CONFIG_MATH_EMULATION
1136 static int emulate_math(struct pt_regs *regs)
1137 {
1138 int ret;
1139 extern int do_mathemu(struct pt_regs *regs);
1140
1141 ret = do_mathemu(regs);
1142 if (ret >= 0)
1143 PPC_WARN_EMULATED(math, regs);
1144
1145 switch (ret) {
1146 case 0:
1147 emulate_single_step(regs);
1148 return 0;
1149 case 1: {
1150 int code = 0;
1151 code = __parse_fpscr(current->thread.fp_state.fpscr);
1152 _exception(SIGFPE, regs, code, regs->nip);
1153 return 0;
1154 }
1155 case -EFAULT:
1156 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1157 return 0;
1158 }
1159
1160 return -1;
1161 }
1162 #else
1163 static inline int emulate_math(struct pt_regs *regs) { return -1; }
1164 #endif
1165
1166 void program_check_exception(struct pt_regs *regs)
1167 {
1168 enum ctx_state prev_state = exception_enter();
1169 unsigned int reason = get_reason(regs);
1170
1171 /* We can now get here via a FP Unavailable exception if the core
1172 * has no FPU, in that case the reason flags will be 0 */
1173
1174 if (reason & REASON_FP) {
1175 /* IEEE FP exception */
1176 parse_fpe(regs);
1177 goto bail;
1178 }
1179 if (reason & REASON_TRAP) {
1180 unsigned long bugaddr;
1181 /* Debugger is first in line to stop recursive faults in
1182 * rcu_lock, notify_die, or atomic_notifier_call_chain */
1183 if (debugger_bpt(regs))
1184 goto bail;
1185
1186 if (kprobe_handler(regs))
1187 goto bail;
1188
1189 /* trap exception */
1190 if (notify_die(DIE_BPT, "breakpoint", regs, 5, 5, SIGTRAP)
1191 == NOTIFY_STOP)
1192 goto bail;
1193
1194 bugaddr = regs->nip;
1195 /*
1196 * Fixup bugaddr for BUG_ON() in real mode
1197 */
1198 if (!is_kernel_addr(bugaddr) && !(regs->msr & MSR_IR))
1199 bugaddr += PAGE_OFFSET;
1200
1201 if (!(regs->msr & MSR_PR) && /* not user-mode */
1202 report_bug(bugaddr, regs) == BUG_TRAP_TYPE_WARN) {
1203 regs->nip += 4;
1204 goto bail;
1205 }
1206 _exception(SIGTRAP, regs, TRAP_BRKPT, regs->nip);
1207 goto bail;
1208 }
1209 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1210 if (reason & REASON_TM) {
1211 /* This is a TM "Bad Thing Exception" program check.
1212 * This occurs when:
1213 * - An rfid/hrfid/mtmsrd attempts to cause an illegal
1214 * transition in TM states.
1215 * - A trechkpt is attempted when transactional.
1216 * - A treclaim is attempted when non transactional.
1217 * - A tend is illegally attempted.
1218 * - writing a TM SPR when transactional.
1219 */
1220 if (!user_mode(regs) &&
1221 report_bug(regs->nip, regs) == BUG_TRAP_TYPE_WARN) {
1222 regs->nip += 4;
1223 goto bail;
1224 }
1225 /* If usermode caused this, it's done something illegal and
1226 * gets a SIGILL slap on the wrist. We call it an illegal
1227 * operand to distinguish from the instruction just being bad
1228 * (e.g. executing a 'tend' on a CPU without TM!); it's an
1229 * illegal /placement/ of a valid instruction.
1230 */
1231 if (user_mode(regs)) {
1232 _exception(SIGILL, regs, ILL_ILLOPN, regs->nip);
1233 goto bail;
1234 } else {
1235 printk(KERN_EMERG "Unexpected TM Bad Thing exception "
1236 "at %lx (msr 0x%x)\n", regs->nip, reason);
1237 die("Unrecoverable exception", regs, SIGABRT);
1238 }
1239 }
1240 #endif
1241
1242 /*
1243 * If we took the program check in the kernel skip down to sending a
1244 * SIGILL. The subsequent cases all relate to emulating instructions
1245 * which we should only do for userspace. We also do not want to enable
1246 * interrupts for kernel faults because that might lead to further
1247 * faults, and loose the context of the original exception.
1248 */
1249 if (!user_mode(regs))
1250 goto sigill;
1251
1252 /* We restore the interrupt state now */
1253 if (!arch_irq_disabled_regs(regs))
1254 local_irq_enable();
1255
1256 /* (reason & REASON_ILLEGAL) would be the obvious thing here,
1257 * but there seems to be a hardware bug on the 405GP (RevD)
1258 * that means ESR is sometimes set incorrectly - either to
1259 * ESR_DST (!?) or 0. In the process of chasing this with the
1260 * hardware people - not sure if it can happen on any illegal
1261 * instruction or only on FP instructions, whether there is a
1262 * pattern to occurrences etc. -dgibson 31/Mar/2003
1263 */
1264 if (!emulate_math(regs))
1265 goto bail;
1266
1267 /* Try to emulate it if we should. */
1268 if (reason & (REASON_ILLEGAL | REASON_PRIVILEGED)) {
1269 switch (emulate_instruction(regs)) {
1270 case 0:
1271 regs->nip += 4;
1272 emulate_single_step(regs);
1273 goto bail;
1274 case -EFAULT:
1275 _exception(SIGSEGV, regs, SEGV_MAPERR, regs->nip);
1276 goto bail;
1277 }
1278 }
1279
1280 sigill:
1281 if (reason & REASON_PRIVILEGED)
1282 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1283 else
1284 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1285
1286 bail:
1287 exception_exit(prev_state);
1288 }
1289 NOKPROBE_SYMBOL(program_check_exception);
1290
1291 /*
1292 * This occurs when running in hypervisor mode on POWER6 or later
1293 * and an illegal instruction is encountered.
1294 */
1295 void emulation_assist_interrupt(struct pt_regs *regs)
1296 {
1297 regs->msr |= REASON_ILLEGAL;
1298 program_check_exception(regs);
1299 }
1300 NOKPROBE_SYMBOL(emulation_assist_interrupt);
1301
1302 void alignment_exception(struct pt_regs *regs)
1303 {
1304 enum ctx_state prev_state = exception_enter();
1305 int sig, code, fixed = 0;
1306
1307 /* We restore the interrupt state now */
1308 if (!arch_irq_disabled_regs(regs))
1309 local_irq_enable();
1310
1311 if (tm_abort_check(regs, TM_CAUSE_ALIGNMENT | TM_CAUSE_PERSISTENT))
1312 goto bail;
1313
1314 /* we don't implement logging of alignment exceptions */
1315 if (!(current->thread.align_ctl & PR_UNALIGN_SIGBUS))
1316 fixed = fix_alignment(regs);
1317
1318 if (fixed == 1) {
1319 regs->nip += 4; /* skip over emulated instruction */
1320 emulate_single_step(regs);
1321 goto bail;
1322 }
1323
1324 /* Operand address was bad */
1325 if (fixed == -EFAULT) {
1326 sig = SIGSEGV;
1327 code = SEGV_ACCERR;
1328 } else {
1329 sig = SIGBUS;
1330 code = BUS_ADRALN;
1331 }
1332 if (user_mode(regs))
1333 _exception(sig, regs, code, regs->dar);
1334 else
1335 bad_page_fault(regs, regs->dar, sig);
1336
1337 bail:
1338 exception_exit(prev_state);
1339 }
1340
1341 void slb_miss_bad_addr(struct pt_regs *regs)
1342 {
1343 enum ctx_state prev_state = exception_enter();
1344
1345 if (user_mode(regs))
1346 _exception(SIGSEGV, regs, SEGV_BNDERR, regs->dar);
1347 else
1348 bad_page_fault(regs, regs->dar, SIGSEGV);
1349
1350 exception_exit(prev_state);
1351 }
1352
1353 void StackOverflow(struct pt_regs *regs)
1354 {
1355 printk(KERN_CRIT "Kernel stack overflow in process %p, r1=%lx\n",
1356 current, regs->gpr[1]);
1357 debugger(regs);
1358 show_regs(regs);
1359 panic("kernel stack overflow");
1360 }
1361
1362 void nonrecoverable_exception(struct pt_regs *regs)
1363 {
1364 printk(KERN_ERR "Non-recoverable exception at PC=%lx MSR=%lx\n",
1365 regs->nip, regs->msr);
1366 debugger(regs);
1367 die("nonrecoverable exception", regs, SIGKILL);
1368 }
1369
1370 void kernel_fp_unavailable_exception(struct pt_regs *regs)
1371 {
1372 enum ctx_state prev_state = exception_enter();
1373
1374 printk(KERN_EMERG "Unrecoverable FP Unavailable Exception "
1375 "%lx at %lx\n", regs->trap, regs->nip);
1376 die("Unrecoverable FP Unavailable Exception", regs, SIGABRT);
1377
1378 exception_exit(prev_state);
1379 }
1380
1381 void altivec_unavailable_exception(struct pt_regs *regs)
1382 {
1383 enum ctx_state prev_state = exception_enter();
1384
1385 if (user_mode(regs)) {
1386 /* A user program has executed an altivec instruction,
1387 but this kernel doesn't support altivec. */
1388 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1389 goto bail;
1390 }
1391
1392 printk(KERN_EMERG "Unrecoverable VMX/Altivec Unavailable Exception "
1393 "%lx at %lx\n", regs->trap, regs->nip);
1394 die("Unrecoverable VMX/Altivec Unavailable Exception", regs, SIGABRT);
1395
1396 bail:
1397 exception_exit(prev_state);
1398 }
1399
1400 void vsx_unavailable_exception(struct pt_regs *regs)
1401 {
1402 if (user_mode(regs)) {
1403 /* A user program has executed an vsx instruction,
1404 but this kernel doesn't support vsx. */
1405 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1406 return;
1407 }
1408
1409 printk(KERN_EMERG "Unrecoverable VSX Unavailable Exception "
1410 "%lx at %lx\n", regs->trap, regs->nip);
1411 die("Unrecoverable VSX Unavailable Exception", regs, SIGABRT);
1412 }
1413
1414 #ifdef CONFIG_PPC64
1415 static void tm_unavailable(struct pt_regs *regs)
1416 {
1417 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1418 if (user_mode(regs)) {
1419 current->thread.load_tm++;
1420 regs->msr |= MSR_TM;
1421 tm_enable();
1422 tm_restore_sprs(&current->thread);
1423 return;
1424 }
1425 #endif
1426 pr_emerg("Unrecoverable TM Unavailable Exception "
1427 "%lx at %lx\n", regs->trap, regs->nip);
1428 die("Unrecoverable TM Unavailable Exception", regs, SIGABRT);
1429 }
1430
1431 void facility_unavailable_exception(struct pt_regs *regs)
1432 {
1433 static char *facility_strings[] = {
1434 [FSCR_FP_LG] = "FPU",
1435 [FSCR_VECVSX_LG] = "VMX/VSX",
1436 [FSCR_DSCR_LG] = "DSCR",
1437 [FSCR_PM_LG] = "PMU SPRs",
1438 [FSCR_BHRB_LG] = "BHRB",
1439 [FSCR_TM_LG] = "TM",
1440 [FSCR_EBB_LG] = "EBB",
1441 [FSCR_TAR_LG] = "TAR",
1442 };
1443 char *facility = "unknown";
1444 u64 value;
1445 u32 instword, rd;
1446 u8 status;
1447 bool hv;
1448
1449 hv = (regs->trap == 0xf80);
1450 if (hv)
1451 value = mfspr(SPRN_HFSCR);
1452 else
1453 value = mfspr(SPRN_FSCR);
1454
1455 status = value >> 56;
1456 if (status == FSCR_DSCR_LG) {
1457 /*
1458 * User is accessing the DSCR register using the problem
1459 * state only SPR number (0x03) either through a mfspr or
1460 * a mtspr instruction. If it is a write attempt through
1461 * a mtspr, then we set the inherit bit. This also allows
1462 * the user to write or read the register directly in the
1463 * future by setting via the FSCR DSCR bit. But in case it
1464 * is a read DSCR attempt through a mfspr instruction, we
1465 * just emulate the instruction instead. This code path will
1466 * always emulate all the mfspr instructions till the user
1467 * has attempted at least one mtspr instruction. This way it
1468 * preserves the same behaviour when the user is accessing
1469 * the DSCR through privilege level only SPR number (0x11)
1470 * which is emulated through illegal instruction exception.
1471 * We always leave HFSCR DSCR set.
1472 */
1473 if (get_user(instword, (u32 __user *)(regs->nip))) {
1474 pr_err("Failed to fetch the user instruction\n");
1475 return;
1476 }
1477
1478 /* Write into DSCR (mtspr 0x03, RS) */
1479 if ((instword & PPC_INST_MTSPR_DSCR_USER_MASK)
1480 == PPC_INST_MTSPR_DSCR_USER) {
1481 rd = (instword >> 21) & 0x1f;
1482 current->thread.dscr = regs->gpr[rd];
1483 current->thread.dscr_inherit = 1;
1484 current->thread.fscr |= FSCR_DSCR;
1485 mtspr(SPRN_FSCR, current->thread.fscr);
1486 }
1487
1488 /* Read from DSCR (mfspr RT, 0x03) */
1489 if ((instword & PPC_INST_MFSPR_DSCR_USER_MASK)
1490 == PPC_INST_MFSPR_DSCR_USER) {
1491 if (emulate_instruction(regs)) {
1492 pr_err("DSCR based mfspr emulation failed\n");
1493 return;
1494 }
1495 regs->nip += 4;
1496 emulate_single_step(regs);
1497 }
1498 return;
1499 }
1500
1501 if (status == FSCR_TM_LG) {
1502 /*
1503 * If we're here then the hardware is TM aware because it
1504 * generated an exception with FSRM_TM set.
1505 *
1506 * If cpu_has_feature(CPU_FTR_TM) is false, then either firmware
1507 * told us not to do TM, or the kernel is not built with TM
1508 * support.
1509 *
1510 * If both of those things are true, then userspace can spam the
1511 * console by triggering the printk() below just by continually
1512 * doing tbegin (or any TM instruction). So in that case just
1513 * send the process a SIGILL immediately.
1514 */
1515 if (!cpu_has_feature(CPU_FTR_TM))
1516 goto out;
1517
1518 tm_unavailable(regs);
1519 return;
1520 }
1521
1522 if ((hv || status >= 2) &&
1523 (status < ARRAY_SIZE(facility_strings)) &&
1524 facility_strings[status])
1525 facility = facility_strings[status];
1526
1527 /* We restore the interrupt state now */
1528 if (!arch_irq_disabled_regs(regs))
1529 local_irq_enable();
1530
1531 pr_err_ratelimited("%sFacility '%s' unavailable (%d), exception at 0x%lx, MSR=%lx\n",
1532 hv ? "Hypervisor " : "", facility, status, regs->nip, regs->msr);
1533
1534 out:
1535 if (user_mode(regs)) {
1536 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1537 return;
1538 }
1539
1540 die("Unexpected facility unavailable exception", regs, SIGABRT);
1541 }
1542 #endif
1543
1544 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1545
1546 void fp_unavailable_tm(struct pt_regs *regs)
1547 {
1548 /* Note: This does not handle any kind of FP laziness. */
1549
1550 TM_DEBUG("FP Unavailable trap whilst transactional at 0x%lx, MSR=%lx\n",
1551 regs->nip, regs->msr);
1552
1553 /* We can only have got here if the task started using FP after
1554 * beginning the transaction. So, the transactional regs are just a
1555 * copy of the checkpointed ones. But, we still need to recheckpoint
1556 * as we're enabling FP for the process; it will return, abort the
1557 * transaction, and probably retry but now with FP enabled. So the
1558 * checkpointed FP registers need to be loaded.
1559 */
1560 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1561 /* Reclaim didn't save out any FPRs to transact_fprs. */
1562
1563 /* Enable FP for the task: */
1564 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
1565
1566 /* This loads and recheckpoints the FP registers from
1567 * thread.fpr[]. They will remain in registers after the
1568 * checkpoint so we don't need to reload them after.
1569 * If VMX is in use, the VRs now hold checkpointed values,
1570 * so we don't want to load the VRs from the thread_struct.
1571 */
1572 tm_recheckpoint(&current->thread, MSR_FP);
1573
1574 /* If VMX is in use, get the transactional values back */
1575 if (regs->msr & MSR_VEC) {
1576 msr_check_and_set(MSR_VEC);
1577 load_vr_state(&current->thread.vr_state);
1578 /* At this point all the VSX state is loaded, so enable it */
1579 regs->msr |= MSR_VSX;
1580 }
1581 }
1582
1583 void altivec_unavailable_tm(struct pt_regs *regs)
1584 {
1585 /* See the comments in fp_unavailable_tm(). This function operates
1586 * the same way.
1587 */
1588
1589 TM_DEBUG("Vector Unavailable trap whilst transactional at 0x%lx,"
1590 "MSR=%lx\n",
1591 regs->nip, regs->msr);
1592 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1593 regs->msr |= MSR_VEC;
1594 tm_recheckpoint(&current->thread, MSR_VEC);
1595 current->thread.used_vr = 1;
1596
1597 if (regs->msr & MSR_FP) {
1598 msr_check_and_set(MSR_FP);
1599 load_fp_state(&current->thread.fp_state);
1600 regs->msr |= MSR_VSX;
1601 }
1602 }
1603
1604 void vsx_unavailable_tm(struct pt_regs *regs)
1605 {
1606 unsigned long orig_msr = regs->msr;
1607
1608 /* See the comments in fp_unavailable_tm(). This works similarly,
1609 * though we're loading both FP and VEC registers in here.
1610 *
1611 * If FP isn't in use, load FP regs. If VEC isn't in use, load VEC
1612 * regs. Either way, set MSR_VSX.
1613 */
1614
1615 TM_DEBUG("VSX Unavailable trap whilst transactional at 0x%lx,"
1616 "MSR=%lx\n",
1617 regs->nip, regs->msr);
1618
1619 current->thread.used_vsr = 1;
1620
1621 /* If FP and VMX are already loaded, we have all the state we need */
1622 if ((orig_msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC)) {
1623 regs->msr |= MSR_VSX;
1624 return;
1625 }
1626
1627 /* This reclaims FP and/or VR regs if they're already enabled */
1628 tm_reclaim_current(TM_CAUSE_FAC_UNAV);
1629
1630 regs->msr |= MSR_VEC | MSR_FP | current->thread.fpexc_mode |
1631 MSR_VSX;
1632
1633 /* This loads & recheckpoints FP and VRs; but we have
1634 * to be sure not to overwrite previously-valid state.
1635 */
1636 tm_recheckpoint(&current->thread, regs->msr & ~orig_msr);
1637
1638 msr_check_and_set(orig_msr & (MSR_FP | MSR_VEC));
1639
1640 if (orig_msr & MSR_FP)
1641 load_fp_state(&current->thread.fp_state);
1642 if (orig_msr & MSR_VEC)
1643 load_vr_state(&current->thread.vr_state);
1644 }
1645 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1646
1647 void performance_monitor_exception(struct pt_regs *regs)
1648 {
1649 __this_cpu_inc(irq_stat.pmu_irqs);
1650
1651 perf_irq(regs);
1652 }
1653
1654 #ifdef CONFIG_8xx
1655 void SoftwareEmulation(struct pt_regs *regs)
1656 {
1657 CHECK_FULL_REGS(regs);
1658
1659 if (!user_mode(regs)) {
1660 debugger(regs);
1661 die("Kernel Mode Unimplemented Instruction or SW FPU Emulation",
1662 regs, SIGFPE);
1663 }
1664
1665 if (!emulate_math(regs))
1666 return;
1667
1668 _exception(SIGILL, regs, ILL_ILLOPC, regs->nip);
1669 }
1670 #endif /* CONFIG_8xx */
1671
1672 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1673 static void handle_debug(struct pt_regs *regs, unsigned long debug_status)
1674 {
1675 int changed = 0;
1676 /*
1677 * Determine the cause of the debug event, clear the
1678 * event flags and send a trap to the handler. Torez
1679 */
1680 if (debug_status & (DBSR_DAC1R | DBSR_DAC1W)) {
1681 dbcr_dac(current) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1682 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1683 current->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1684 #endif
1685 do_send_trap(regs, mfspr(SPRN_DAC1), debug_status, TRAP_HWBKPT,
1686 5);
1687 changed |= 0x01;
1688 } else if (debug_status & (DBSR_DAC2R | DBSR_DAC2W)) {
1689 dbcr_dac(current) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1690 do_send_trap(regs, mfspr(SPRN_DAC2), debug_status, TRAP_HWBKPT,
1691 6);
1692 changed |= 0x01;
1693 } else if (debug_status & DBSR_IAC1) {
1694 current->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1695 dbcr_iac_range(current) &= ~DBCR_IAC12MODE;
1696 do_send_trap(regs, mfspr(SPRN_IAC1), debug_status, TRAP_HWBKPT,
1697 1);
1698 changed |= 0x01;
1699 } else if (debug_status & DBSR_IAC2) {
1700 current->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1701 do_send_trap(regs, mfspr(SPRN_IAC2), debug_status, TRAP_HWBKPT,
1702 2);
1703 changed |= 0x01;
1704 } else if (debug_status & DBSR_IAC3) {
1705 current->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1706 dbcr_iac_range(current) &= ~DBCR_IAC34MODE;
1707 do_send_trap(regs, mfspr(SPRN_IAC3), debug_status, TRAP_HWBKPT,
1708 3);
1709 changed |= 0x01;
1710 } else if (debug_status & DBSR_IAC4) {
1711 current->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1712 do_send_trap(regs, mfspr(SPRN_IAC4), debug_status, TRAP_HWBKPT,
1713 4);
1714 changed |= 0x01;
1715 }
1716 /*
1717 * At the point this routine was called, the MSR(DE) was turned off.
1718 * Check all other debug flags and see if that bit needs to be turned
1719 * back on or not.
1720 */
1721 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1722 current->thread.debug.dbcr1))
1723 regs->msr |= MSR_DE;
1724 else
1725 /* Make sure the IDM flag is off */
1726 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1727
1728 if (changed & 0x01)
1729 mtspr(SPRN_DBCR0, current->thread.debug.dbcr0);
1730 }
1731
1732 void DebugException(struct pt_regs *regs, unsigned long debug_status)
1733 {
1734 current->thread.debug.dbsr = debug_status;
1735
1736 /* Hack alert: On BookE, Branch Taken stops on the branch itself, while
1737 * on server, it stops on the target of the branch. In order to simulate
1738 * the server behaviour, we thus restart right away with a single step
1739 * instead of stopping here when hitting a BT
1740 */
1741 if (debug_status & DBSR_BT) {
1742 regs->msr &= ~MSR_DE;
1743
1744 /* Disable BT */
1745 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_BT);
1746 /* Clear the BT event */
1747 mtspr(SPRN_DBSR, DBSR_BT);
1748
1749 /* Do the single step trick only when coming from userspace */
1750 if (user_mode(regs)) {
1751 current->thread.debug.dbcr0 &= ~DBCR0_BT;
1752 current->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
1753 regs->msr |= MSR_DE;
1754 return;
1755 }
1756
1757 if (kprobe_post_handler(regs))
1758 return;
1759
1760 if (notify_die(DIE_SSTEP, "block_step", regs, 5,
1761 5, SIGTRAP) == NOTIFY_STOP) {
1762 return;
1763 }
1764 if (debugger_sstep(regs))
1765 return;
1766 } else if (debug_status & DBSR_IC) { /* Instruction complete */
1767 regs->msr &= ~MSR_DE;
1768
1769 /* Disable instruction completion */
1770 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~DBCR0_IC);
1771 /* Clear the instruction completion event */
1772 mtspr(SPRN_DBSR, DBSR_IC);
1773
1774 if (kprobe_post_handler(regs))
1775 return;
1776
1777 if (notify_die(DIE_SSTEP, "single_step", regs, 5,
1778 5, SIGTRAP) == NOTIFY_STOP) {
1779 return;
1780 }
1781
1782 if (debugger_sstep(regs))
1783 return;
1784
1785 if (user_mode(regs)) {
1786 current->thread.debug.dbcr0 &= ~DBCR0_IC;
1787 if (DBCR_ACTIVE_EVENTS(current->thread.debug.dbcr0,
1788 current->thread.debug.dbcr1))
1789 regs->msr |= MSR_DE;
1790 else
1791 /* Make sure the IDM bit is off */
1792 current->thread.debug.dbcr0 &= ~DBCR0_IDM;
1793 }
1794
1795 _exception(SIGTRAP, regs, TRAP_TRACE, regs->nip);
1796 } else
1797 handle_debug(regs, debug_status);
1798 }
1799 NOKPROBE_SYMBOL(DebugException);
1800 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1801
1802 #if !defined(CONFIG_TAU_INT)
1803 void TAUException(struct pt_regs *regs)
1804 {
1805 printk("TAU trap at PC: %lx, MSR: %lx, vector=%lx %s\n",
1806 regs->nip, regs->msr, regs->trap, print_tainted());
1807 }
1808 #endif /* CONFIG_INT_TAU */
1809
1810 #ifdef CONFIG_ALTIVEC
1811 void altivec_assist_exception(struct pt_regs *regs)
1812 {
1813 int err;
1814
1815 if (!user_mode(regs)) {
1816 printk(KERN_EMERG "VMX/Altivec assist exception in kernel mode"
1817 " at %lx\n", regs->nip);
1818 die("Kernel VMX/Altivec assist exception", regs, SIGILL);
1819 }
1820
1821 flush_altivec_to_thread(current);
1822
1823 PPC_WARN_EMULATED(altivec, regs);
1824 err = emulate_altivec(regs);
1825 if (err == 0) {
1826 regs->nip += 4; /* skip emulated instruction */
1827 emulate_single_step(regs);
1828 return;
1829 }
1830
1831 if (err == -EFAULT) {
1832 /* got an error reading the instruction */
1833 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1834 } else {
1835 /* didn't recognize the instruction */
1836 /* XXX quick hack for now: set the non-Java bit in the VSCR */
1837 printk_ratelimited(KERN_ERR "Unrecognized altivec instruction "
1838 "in %s at %lx\n", current->comm, regs->nip);
1839 current->thread.vr_state.vscr.u[3] |= 0x10000;
1840 }
1841 }
1842 #endif /* CONFIG_ALTIVEC */
1843
1844 #ifdef CONFIG_FSL_BOOKE
1845 void CacheLockingException(struct pt_regs *regs, unsigned long address,
1846 unsigned long error_code)
1847 {
1848 /* We treat cache locking instructions from the user
1849 * as priv ops, in the future we could try to do
1850 * something smarter
1851 */
1852 if (error_code & (ESR_DLK|ESR_ILK))
1853 _exception(SIGILL, regs, ILL_PRVOPC, regs->nip);
1854 return;
1855 }
1856 #endif /* CONFIG_FSL_BOOKE */
1857
1858 #ifdef CONFIG_SPE
1859 void SPEFloatingPointException(struct pt_regs *regs)
1860 {
1861 extern int do_spe_mathemu(struct pt_regs *regs);
1862 unsigned long spefscr;
1863 int fpexc_mode;
1864 int code = 0;
1865 int err;
1866
1867 flush_spe_to_thread(current);
1868
1869 spefscr = current->thread.spefscr;
1870 fpexc_mode = current->thread.fpexc_mode;
1871
1872 if ((spefscr & SPEFSCR_FOVF) && (fpexc_mode & PR_FP_EXC_OVF)) {
1873 code = FPE_FLTOVF;
1874 }
1875 else if ((spefscr & SPEFSCR_FUNF) && (fpexc_mode & PR_FP_EXC_UND)) {
1876 code = FPE_FLTUND;
1877 }
1878 else if ((spefscr & SPEFSCR_FDBZ) && (fpexc_mode & PR_FP_EXC_DIV))
1879 code = FPE_FLTDIV;
1880 else if ((spefscr & SPEFSCR_FINV) && (fpexc_mode & PR_FP_EXC_INV)) {
1881 code = FPE_FLTINV;
1882 }
1883 else if ((spefscr & (SPEFSCR_FG | SPEFSCR_FX)) && (fpexc_mode & PR_FP_EXC_RES))
1884 code = FPE_FLTRES;
1885
1886 err = do_spe_mathemu(regs);
1887 if (err == 0) {
1888 regs->nip += 4; /* skip emulated instruction */
1889 emulate_single_step(regs);
1890 return;
1891 }
1892
1893 if (err == -EFAULT) {
1894 /* got an error reading the instruction */
1895 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1896 } else if (err == -EINVAL) {
1897 /* didn't recognize the instruction */
1898 printk(KERN_ERR "unrecognized spe instruction "
1899 "in %s at %lx\n", current->comm, regs->nip);
1900 } else {
1901 _exception(SIGFPE, regs, code, regs->nip);
1902 }
1903
1904 return;
1905 }
1906
1907 void SPEFloatingPointRoundException(struct pt_regs *regs)
1908 {
1909 extern int speround_handler(struct pt_regs *regs);
1910 int err;
1911
1912 preempt_disable();
1913 if (regs->msr & MSR_SPE)
1914 giveup_spe(current);
1915 preempt_enable();
1916
1917 regs->nip -= 4;
1918 err = speround_handler(regs);
1919 if (err == 0) {
1920 regs->nip += 4; /* skip emulated instruction */
1921 emulate_single_step(regs);
1922 return;
1923 }
1924
1925 if (err == -EFAULT) {
1926 /* got an error reading the instruction */
1927 _exception(SIGSEGV, regs, SEGV_ACCERR, regs->nip);
1928 } else if (err == -EINVAL) {
1929 /* didn't recognize the instruction */
1930 printk(KERN_ERR "unrecognized spe instruction "
1931 "in %s at %lx\n", current->comm, regs->nip);
1932 } else {
1933 _exception(SIGFPE, regs, 0, regs->nip);
1934 return;
1935 }
1936 }
1937 #endif
1938
1939 /*
1940 * We enter here if we get an unrecoverable exception, that is, one
1941 * that happened at a point where the RI (recoverable interrupt) bit
1942 * in the MSR is 0. This indicates that SRR0/1 are live, and that
1943 * we therefore lost state by taking this exception.
1944 */
1945 void unrecoverable_exception(struct pt_regs *regs)
1946 {
1947 printk(KERN_EMERG "Unrecoverable exception %lx at %lx\n",
1948 regs->trap, regs->nip);
1949 die("Unrecoverable exception", regs, SIGABRT);
1950 }
1951
1952 #if defined(CONFIG_BOOKE_WDT) || defined(CONFIG_40x)
1953 /*
1954 * Default handler for a Watchdog exception,
1955 * spins until a reboot occurs
1956 */
1957 void __attribute__ ((weak)) WatchdogHandler(struct pt_regs *regs)
1958 {
1959 /* Generic WatchdogHandler, implement your own */
1960 mtspr(SPRN_TCR, mfspr(SPRN_TCR)&(~TCR_WIE));
1961 return;
1962 }
1963
1964 void WatchdogException(struct pt_regs *regs)
1965 {
1966 printk (KERN_EMERG "PowerPC Book-E Watchdog Exception\n");
1967 WatchdogHandler(regs);
1968 }
1969 #endif
1970
1971 /*
1972 * We enter here if we discover during exception entry that we are
1973 * running in supervisor mode with a userspace value in the stack pointer.
1974 */
1975 void kernel_bad_stack(struct pt_regs *regs)
1976 {
1977 printk(KERN_EMERG "Bad kernel stack pointer %lx at %lx\n",
1978 regs->gpr[1], regs->nip);
1979 die("Bad kernel stack pointer", regs, SIGABRT);
1980 }
1981
1982 void __init trap_init(void)
1983 {
1984 }
1985
1986
1987 #ifdef CONFIG_PPC_EMULATED_STATS
1988
1989 #define WARN_EMULATED_SETUP(type) .type = { .name = #type }
1990
1991 struct ppc_emulated ppc_emulated = {
1992 #ifdef CONFIG_ALTIVEC
1993 WARN_EMULATED_SETUP(altivec),
1994 #endif
1995 WARN_EMULATED_SETUP(dcba),
1996 WARN_EMULATED_SETUP(dcbz),
1997 WARN_EMULATED_SETUP(fp_pair),
1998 WARN_EMULATED_SETUP(isel),
1999 WARN_EMULATED_SETUP(mcrxr),
2000 WARN_EMULATED_SETUP(mfpvr),
2001 WARN_EMULATED_SETUP(multiple),
2002 WARN_EMULATED_SETUP(popcntb),
2003 WARN_EMULATED_SETUP(spe),
2004 WARN_EMULATED_SETUP(string),
2005 WARN_EMULATED_SETUP(sync),
2006 WARN_EMULATED_SETUP(unaligned),
2007 #ifdef CONFIG_MATH_EMULATION
2008 WARN_EMULATED_SETUP(math),
2009 #endif
2010 #ifdef CONFIG_VSX
2011 WARN_EMULATED_SETUP(vsx),
2012 #endif
2013 #ifdef CONFIG_PPC64
2014 WARN_EMULATED_SETUP(mfdscr),
2015 WARN_EMULATED_SETUP(mtdscr),
2016 WARN_EMULATED_SETUP(lq_stq),
2017 #endif
2018 };
2019
2020 u32 ppc_warn_emulated;
2021
2022 void ppc_warn_emulated_print(const char *type)
2023 {
2024 pr_warn_ratelimited("%s used emulated %s instruction\n", current->comm,
2025 type);
2026 }
2027
2028 static int __init ppc_warn_emulated_init(void)
2029 {
2030 struct dentry *dir, *d;
2031 unsigned int i;
2032 struct ppc_emulated_entry *entries = (void *)&ppc_emulated;
2033
2034 if (!powerpc_debugfs_root)
2035 return -ENODEV;
2036
2037 dir = debugfs_create_dir("emulated_instructions",
2038 powerpc_debugfs_root);
2039 if (!dir)
2040 return -ENOMEM;
2041
2042 d = debugfs_create_u32("do_warn", S_IRUGO | S_IWUSR, dir,
2043 &ppc_warn_emulated);
2044 if (!d)
2045 goto fail;
2046
2047 for (i = 0; i < sizeof(ppc_emulated)/sizeof(*entries); i++) {
2048 d = debugfs_create_u32(entries[i].name, S_IRUGO | S_IWUSR, dir,
2049 (u32 *)&entries[i].val.counter);
2050 if (!d)
2051 goto fail;
2052 }
2053
2054 return 0;
2055
2056 fail:
2057 debugfs_remove_recursive(dir);
2058 return -ENOMEM;
2059 }
2060
2061 device_initcall(ppc_warn_emulated_init);
2062
2063 #endif /* CONFIG_PPC_EMULATED_STATS */