]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/powerpc/kvm/book3s_hv.c
Merge tag 'powerpc-5.7-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/kernel/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77
78 #include "book3s.h"
79
80 #define CREATE_TRACE_POINTS
81 #include "trace_hv.h"
82
83 /* #define EXIT_DEBUG */
84 /* #define EXIT_DEBUG_SIMPLE */
85 /* #define EXIT_DEBUG_INT */
86
87 /* Used to indicate that a guest page fault needs to be handled */
88 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
89 /* Used to indicate that a guest passthrough interrupt needs to be handled */
90 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
91
92 /* Used as a "null" value for timebase values */
93 #define TB_NIL (~(u64)0)
94
95 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
96
97 static int dynamic_mt_modes = 6;
98 module_param(dynamic_mt_modes, int, 0644);
99 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
100 static int target_smt_mode;
101 module_param(target_smt_mode, int, 0644);
102 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
103
104 static bool indep_threads_mode = true;
105 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
107
108 static bool one_vm_per_core;
109 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
111
112 #ifdef CONFIG_KVM_XICS
113 static struct kernel_param_ops module_param_ops = {
114 .set = param_set_int,
115 .get = param_get_int,
116 };
117
118 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
119 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
120
121 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
122 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
123 #endif
124
125 /* If set, guests are allowed to create and control nested guests */
126 static bool nested = true;
127 module_param(nested, bool, S_IRUGO | S_IWUSR);
128 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
129
130 static inline bool nesting_enabled(struct kvm *kvm)
131 {
132 return kvm->arch.nested_enable && kvm_is_radix(kvm);
133 }
134
135 /* If set, the threads on each CPU core have to be in the same MMU mode */
136 static bool no_mixing_hpt_and_radix;
137
138 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
139
140 /*
141 * RWMR values for POWER8. These control the rate at which PURR
142 * and SPURR count and should be set according to the number of
143 * online threads in the vcore being run.
144 */
145 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
146 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
147 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
148 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
149 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
150 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
151 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
152 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
153
154 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
155 RWMR_RPA_P8_1THREAD,
156 RWMR_RPA_P8_1THREAD,
157 RWMR_RPA_P8_2THREAD,
158 RWMR_RPA_P8_3THREAD,
159 RWMR_RPA_P8_4THREAD,
160 RWMR_RPA_P8_5THREAD,
161 RWMR_RPA_P8_6THREAD,
162 RWMR_RPA_P8_7THREAD,
163 RWMR_RPA_P8_8THREAD,
164 };
165
166 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
167 int *ip)
168 {
169 int i = *ip;
170 struct kvm_vcpu *vcpu;
171
172 while (++i < MAX_SMT_THREADS) {
173 vcpu = READ_ONCE(vc->runnable_threads[i]);
174 if (vcpu) {
175 *ip = i;
176 return vcpu;
177 }
178 }
179 return NULL;
180 }
181
182 /* Used to traverse the list of runnable threads for a given vcore */
183 #define for_each_runnable_thread(i, vcpu, vc) \
184 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
185
186 static bool kvmppc_ipi_thread(int cpu)
187 {
188 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
189
190 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
191 if (kvmhv_on_pseries())
192 return false;
193
194 /* On POWER9 we can use msgsnd to IPI any cpu */
195 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
196 msg |= get_hard_smp_processor_id(cpu);
197 smp_mb();
198 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
199 return true;
200 }
201
202 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
203 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
204 preempt_disable();
205 if (cpu_first_thread_sibling(cpu) ==
206 cpu_first_thread_sibling(smp_processor_id())) {
207 msg |= cpu_thread_in_core(cpu);
208 smp_mb();
209 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
210 preempt_enable();
211 return true;
212 }
213 preempt_enable();
214 }
215
216 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
217 if (cpu >= 0 && cpu < nr_cpu_ids) {
218 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
219 xics_wake_cpu(cpu);
220 return true;
221 }
222 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
223 return true;
224 }
225 #endif
226
227 return false;
228 }
229
230 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
231 {
232 int cpu;
233 struct swait_queue_head *wqp;
234
235 wqp = kvm_arch_vcpu_wq(vcpu);
236 if (swq_has_sleeper(wqp)) {
237 swake_up_one(wqp);
238 ++vcpu->stat.halt_wakeup;
239 }
240
241 cpu = READ_ONCE(vcpu->arch.thread_cpu);
242 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
243 return;
244
245 /* CPU points to the first thread of the core */
246 cpu = vcpu->cpu;
247 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
248 smp_send_reschedule(cpu);
249 }
250
251 /*
252 * We use the vcpu_load/put functions to measure stolen time.
253 * Stolen time is counted as time when either the vcpu is able to
254 * run as part of a virtual core, but the task running the vcore
255 * is preempted or sleeping, or when the vcpu needs something done
256 * in the kernel by the task running the vcpu, but that task is
257 * preempted or sleeping. Those two things have to be counted
258 * separately, since one of the vcpu tasks will take on the job
259 * of running the core, and the other vcpu tasks in the vcore will
260 * sleep waiting for it to do that, but that sleep shouldn't count
261 * as stolen time.
262 *
263 * Hence we accumulate stolen time when the vcpu can run as part of
264 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
265 * needs its task to do other things in the kernel (for example,
266 * service a page fault) in busy_stolen. We don't accumulate
267 * stolen time for a vcore when it is inactive, or for a vcpu
268 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
269 * a misnomer; it means that the vcpu task is not executing in
270 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
271 * the kernel. We don't have any way of dividing up that time
272 * between time that the vcpu is genuinely stopped, time that
273 * the task is actively working on behalf of the vcpu, and time
274 * that the task is preempted, so we don't count any of it as
275 * stolen.
276 *
277 * Updates to busy_stolen are protected by arch.tbacct_lock;
278 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
279 * lock. The stolen times are measured in units of timebase ticks.
280 * (Note that the != TB_NIL checks below are purely defensive;
281 * they should never fail.)
282 */
283
284 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
285 {
286 unsigned long flags;
287
288 spin_lock_irqsave(&vc->stoltb_lock, flags);
289 vc->preempt_tb = mftb();
290 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
291 }
292
293 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
294 {
295 unsigned long flags;
296
297 spin_lock_irqsave(&vc->stoltb_lock, flags);
298 if (vc->preempt_tb != TB_NIL) {
299 vc->stolen_tb += mftb() - vc->preempt_tb;
300 vc->preempt_tb = TB_NIL;
301 }
302 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
303 }
304
305 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
306 {
307 struct kvmppc_vcore *vc = vcpu->arch.vcore;
308 unsigned long flags;
309
310 /*
311 * We can test vc->runner without taking the vcore lock,
312 * because only this task ever sets vc->runner to this
313 * vcpu, and once it is set to this vcpu, only this task
314 * ever sets it to NULL.
315 */
316 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
317 kvmppc_core_end_stolen(vc);
318
319 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
320 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
321 vcpu->arch.busy_preempt != TB_NIL) {
322 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
323 vcpu->arch.busy_preempt = TB_NIL;
324 }
325 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
326 }
327
328 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
329 {
330 struct kvmppc_vcore *vc = vcpu->arch.vcore;
331 unsigned long flags;
332
333 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
334 kvmppc_core_start_stolen(vc);
335
336 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
337 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
338 vcpu->arch.busy_preempt = mftb();
339 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
340 }
341
342 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
343 {
344 vcpu->arch.pvr = pvr;
345 }
346
347 /* Dummy value used in computing PCR value below */
348 #define PCR_ARCH_300 (PCR_ARCH_207 << 1)
349
350 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
351 {
352 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
353 struct kvmppc_vcore *vc = vcpu->arch.vcore;
354
355 /* We can (emulate) our own architecture version and anything older */
356 if (cpu_has_feature(CPU_FTR_ARCH_300))
357 host_pcr_bit = PCR_ARCH_300;
358 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
359 host_pcr_bit = PCR_ARCH_207;
360 else if (cpu_has_feature(CPU_FTR_ARCH_206))
361 host_pcr_bit = PCR_ARCH_206;
362 else
363 host_pcr_bit = PCR_ARCH_205;
364
365 /* Determine lowest PCR bit needed to run guest in given PVR level */
366 guest_pcr_bit = host_pcr_bit;
367 if (arch_compat) {
368 switch (arch_compat) {
369 case PVR_ARCH_205:
370 guest_pcr_bit = PCR_ARCH_205;
371 break;
372 case PVR_ARCH_206:
373 case PVR_ARCH_206p:
374 guest_pcr_bit = PCR_ARCH_206;
375 break;
376 case PVR_ARCH_207:
377 guest_pcr_bit = PCR_ARCH_207;
378 break;
379 case PVR_ARCH_300:
380 guest_pcr_bit = PCR_ARCH_300;
381 break;
382 default:
383 return -EINVAL;
384 }
385 }
386
387 /* Check requested PCR bits don't exceed our capabilities */
388 if (guest_pcr_bit > host_pcr_bit)
389 return -EINVAL;
390
391 spin_lock(&vc->lock);
392 vc->arch_compat = arch_compat;
393 /*
394 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
395 * Also set all reserved PCR bits
396 */
397 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
398 spin_unlock(&vc->lock);
399
400 return 0;
401 }
402
403 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
404 {
405 int r;
406
407 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
408 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
409 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
410 for (r = 0; r < 16; ++r)
411 pr_err("r%2d = %.16lx r%d = %.16lx\n",
412 r, kvmppc_get_gpr(vcpu, r),
413 r+16, kvmppc_get_gpr(vcpu, r+16));
414 pr_err("ctr = %.16lx lr = %.16lx\n",
415 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
416 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
417 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
418 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
419 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
420 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
421 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
422 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
423 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
424 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
425 pr_err("fault dar = %.16lx dsisr = %.8x\n",
426 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
427 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
428 for (r = 0; r < vcpu->arch.slb_max; ++r)
429 pr_err(" ESID = %.16llx VSID = %.16llx\n",
430 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
431 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
432 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
433 vcpu->arch.last_inst);
434 }
435
436 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
437 {
438 return kvm_get_vcpu_by_id(kvm, id);
439 }
440
441 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
442 {
443 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
444 vpa->yield_count = cpu_to_be32(1);
445 }
446
447 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
448 unsigned long addr, unsigned long len)
449 {
450 /* check address is cacheline aligned */
451 if (addr & (L1_CACHE_BYTES - 1))
452 return -EINVAL;
453 spin_lock(&vcpu->arch.vpa_update_lock);
454 if (v->next_gpa != addr || v->len != len) {
455 v->next_gpa = addr;
456 v->len = addr ? len : 0;
457 v->update_pending = 1;
458 }
459 spin_unlock(&vcpu->arch.vpa_update_lock);
460 return 0;
461 }
462
463 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
464 struct reg_vpa {
465 u32 dummy;
466 union {
467 __be16 hword;
468 __be32 word;
469 } length;
470 };
471
472 static int vpa_is_registered(struct kvmppc_vpa *vpap)
473 {
474 if (vpap->update_pending)
475 return vpap->next_gpa != 0;
476 return vpap->pinned_addr != NULL;
477 }
478
479 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
480 unsigned long flags,
481 unsigned long vcpuid, unsigned long vpa)
482 {
483 struct kvm *kvm = vcpu->kvm;
484 unsigned long len, nb;
485 void *va;
486 struct kvm_vcpu *tvcpu;
487 int err;
488 int subfunc;
489 struct kvmppc_vpa *vpap;
490
491 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
492 if (!tvcpu)
493 return H_PARAMETER;
494
495 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
496 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
497 subfunc == H_VPA_REG_SLB) {
498 /* Registering new area - address must be cache-line aligned */
499 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
500 return H_PARAMETER;
501
502 /* convert logical addr to kernel addr and read length */
503 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
504 if (va == NULL)
505 return H_PARAMETER;
506 if (subfunc == H_VPA_REG_VPA)
507 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
508 else
509 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
510 kvmppc_unpin_guest_page(kvm, va, vpa, false);
511
512 /* Check length */
513 if (len > nb || len < sizeof(struct reg_vpa))
514 return H_PARAMETER;
515 } else {
516 vpa = 0;
517 len = 0;
518 }
519
520 err = H_PARAMETER;
521 vpap = NULL;
522 spin_lock(&tvcpu->arch.vpa_update_lock);
523
524 switch (subfunc) {
525 case H_VPA_REG_VPA: /* register VPA */
526 /*
527 * The size of our lppaca is 1kB because of the way we align
528 * it for the guest to avoid crossing a 4kB boundary. We only
529 * use 640 bytes of the structure though, so we should accept
530 * clients that set a size of 640.
531 */
532 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
533 if (len < sizeof(struct lppaca))
534 break;
535 vpap = &tvcpu->arch.vpa;
536 err = 0;
537 break;
538
539 case H_VPA_REG_DTL: /* register DTL */
540 if (len < sizeof(struct dtl_entry))
541 break;
542 len -= len % sizeof(struct dtl_entry);
543
544 /* Check that they have previously registered a VPA */
545 err = H_RESOURCE;
546 if (!vpa_is_registered(&tvcpu->arch.vpa))
547 break;
548
549 vpap = &tvcpu->arch.dtl;
550 err = 0;
551 break;
552
553 case H_VPA_REG_SLB: /* register SLB shadow buffer */
554 /* Check that they have previously registered a VPA */
555 err = H_RESOURCE;
556 if (!vpa_is_registered(&tvcpu->arch.vpa))
557 break;
558
559 vpap = &tvcpu->arch.slb_shadow;
560 err = 0;
561 break;
562
563 case H_VPA_DEREG_VPA: /* deregister VPA */
564 /* Check they don't still have a DTL or SLB buf registered */
565 err = H_RESOURCE;
566 if (vpa_is_registered(&tvcpu->arch.dtl) ||
567 vpa_is_registered(&tvcpu->arch.slb_shadow))
568 break;
569
570 vpap = &tvcpu->arch.vpa;
571 err = 0;
572 break;
573
574 case H_VPA_DEREG_DTL: /* deregister DTL */
575 vpap = &tvcpu->arch.dtl;
576 err = 0;
577 break;
578
579 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
580 vpap = &tvcpu->arch.slb_shadow;
581 err = 0;
582 break;
583 }
584
585 if (vpap) {
586 vpap->next_gpa = vpa;
587 vpap->len = len;
588 vpap->update_pending = 1;
589 }
590
591 spin_unlock(&tvcpu->arch.vpa_update_lock);
592
593 return err;
594 }
595
596 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
597 {
598 struct kvm *kvm = vcpu->kvm;
599 void *va;
600 unsigned long nb;
601 unsigned long gpa;
602
603 /*
604 * We need to pin the page pointed to by vpap->next_gpa,
605 * but we can't call kvmppc_pin_guest_page under the lock
606 * as it does get_user_pages() and down_read(). So we
607 * have to drop the lock, pin the page, then get the lock
608 * again and check that a new area didn't get registered
609 * in the meantime.
610 */
611 for (;;) {
612 gpa = vpap->next_gpa;
613 spin_unlock(&vcpu->arch.vpa_update_lock);
614 va = NULL;
615 nb = 0;
616 if (gpa)
617 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
618 spin_lock(&vcpu->arch.vpa_update_lock);
619 if (gpa == vpap->next_gpa)
620 break;
621 /* sigh... unpin that one and try again */
622 if (va)
623 kvmppc_unpin_guest_page(kvm, va, gpa, false);
624 }
625
626 vpap->update_pending = 0;
627 if (va && nb < vpap->len) {
628 /*
629 * If it's now too short, it must be that userspace
630 * has changed the mappings underlying guest memory,
631 * so unregister the region.
632 */
633 kvmppc_unpin_guest_page(kvm, va, gpa, false);
634 va = NULL;
635 }
636 if (vpap->pinned_addr)
637 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
638 vpap->dirty);
639 vpap->gpa = gpa;
640 vpap->pinned_addr = va;
641 vpap->dirty = false;
642 if (va)
643 vpap->pinned_end = va + vpap->len;
644 }
645
646 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
647 {
648 if (!(vcpu->arch.vpa.update_pending ||
649 vcpu->arch.slb_shadow.update_pending ||
650 vcpu->arch.dtl.update_pending))
651 return;
652
653 spin_lock(&vcpu->arch.vpa_update_lock);
654 if (vcpu->arch.vpa.update_pending) {
655 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
656 if (vcpu->arch.vpa.pinned_addr)
657 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
658 }
659 if (vcpu->arch.dtl.update_pending) {
660 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
661 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
662 vcpu->arch.dtl_index = 0;
663 }
664 if (vcpu->arch.slb_shadow.update_pending)
665 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
666 spin_unlock(&vcpu->arch.vpa_update_lock);
667 }
668
669 /*
670 * Return the accumulated stolen time for the vcore up until `now'.
671 * The caller should hold the vcore lock.
672 */
673 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
674 {
675 u64 p;
676 unsigned long flags;
677
678 spin_lock_irqsave(&vc->stoltb_lock, flags);
679 p = vc->stolen_tb;
680 if (vc->vcore_state != VCORE_INACTIVE &&
681 vc->preempt_tb != TB_NIL)
682 p += now - vc->preempt_tb;
683 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
684 return p;
685 }
686
687 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
688 struct kvmppc_vcore *vc)
689 {
690 struct dtl_entry *dt;
691 struct lppaca *vpa;
692 unsigned long stolen;
693 unsigned long core_stolen;
694 u64 now;
695 unsigned long flags;
696
697 dt = vcpu->arch.dtl_ptr;
698 vpa = vcpu->arch.vpa.pinned_addr;
699 now = mftb();
700 core_stolen = vcore_stolen_time(vc, now);
701 stolen = core_stolen - vcpu->arch.stolen_logged;
702 vcpu->arch.stolen_logged = core_stolen;
703 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
704 stolen += vcpu->arch.busy_stolen;
705 vcpu->arch.busy_stolen = 0;
706 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
707 if (!dt || !vpa)
708 return;
709 memset(dt, 0, sizeof(struct dtl_entry));
710 dt->dispatch_reason = 7;
711 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
712 dt->timebase = cpu_to_be64(now + vc->tb_offset);
713 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
714 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
715 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
716 ++dt;
717 if (dt == vcpu->arch.dtl.pinned_end)
718 dt = vcpu->arch.dtl.pinned_addr;
719 vcpu->arch.dtl_ptr = dt;
720 /* order writing *dt vs. writing vpa->dtl_idx */
721 smp_wmb();
722 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
723 vcpu->arch.dtl.dirty = true;
724 }
725
726 /* See if there is a doorbell interrupt pending for a vcpu */
727 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
728 {
729 int thr;
730 struct kvmppc_vcore *vc;
731
732 if (vcpu->arch.doorbell_request)
733 return true;
734 /*
735 * Ensure that the read of vcore->dpdes comes after the read
736 * of vcpu->doorbell_request. This barrier matches the
737 * smp_wmb() in kvmppc_guest_entry_inject().
738 */
739 smp_rmb();
740 vc = vcpu->arch.vcore;
741 thr = vcpu->vcpu_id - vc->first_vcpuid;
742 return !!(vc->dpdes & (1 << thr));
743 }
744
745 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
746 {
747 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
748 return true;
749 if ((!vcpu->arch.vcore->arch_compat) &&
750 cpu_has_feature(CPU_FTR_ARCH_207S))
751 return true;
752 return false;
753 }
754
755 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
756 unsigned long resource, unsigned long value1,
757 unsigned long value2)
758 {
759 switch (resource) {
760 case H_SET_MODE_RESOURCE_SET_CIABR:
761 if (!kvmppc_power8_compatible(vcpu))
762 return H_P2;
763 if (value2)
764 return H_P4;
765 if (mflags)
766 return H_UNSUPPORTED_FLAG_START;
767 /* Guests can't breakpoint the hypervisor */
768 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
769 return H_P3;
770 vcpu->arch.ciabr = value1;
771 return H_SUCCESS;
772 case H_SET_MODE_RESOURCE_SET_DAWR:
773 if (!kvmppc_power8_compatible(vcpu))
774 return H_P2;
775 if (!ppc_breakpoint_available())
776 return H_P2;
777 if (mflags)
778 return H_UNSUPPORTED_FLAG_START;
779 if (value2 & DABRX_HYP)
780 return H_P4;
781 vcpu->arch.dawr = value1;
782 vcpu->arch.dawrx = value2;
783 return H_SUCCESS;
784 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
785 /* KVM does not support mflags=2 (AIL=2) */
786 if (mflags != 0 && mflags != 3)
787 return H_UNSUPPORTED_FLAG_START;
788 return H_TOO_HARD;
789 default:
790 return H_TOO_HARD;
791 }
792 }
793
794 /* Copy guest memory in place - must reside within a single memslot */
795 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
796 unsigned long len)
797 {
798 struct kvm_memory_slot *to_memslot = NULL;
799 struct kvm_memory_slot *from_memslot = NULL;
800 unsigned long to_addr, from_addr;
801 int r;
802
803 /* Get HPA for from address */
804 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
805 if (!from_memslot)
806 return -EFAULT;
807 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
808 << PAGE_SHIFT))
809 return -EINVAL;
810 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
811 if (kvm_is_error_hva(from_addr))
812 return -EFAULT;
813 from_addr |= (from & (PAGE_SIZE - 1));
814
815 /* Get HPA for to address */
816 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
817 if (!to_memslot)
818 return -EFAULT;
819 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
820 << PAGE_SHIFT))
821 return -EINVAL;
822 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
823 if (kvm_is_error_hva(to_addr))
824 return -EFAULT;
825 to_addr |= (to & (PAGE_SIZE - 1));
826
827 /* Perform copy */
828 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
829 len);
830 if (r)
831 return -EFAULT;
832 mark_page_dirty(kvm, to >> PAGE_SHIFT);
833 return 0;
834 }
835
836 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
837 unsigned long dest, unsigned long src)
838 {
839 u64 pg_sz = SZ_4K; /* 4K page size */
840 u64 pg_mask = SZ_4K - 1;
841 int ret;
842
843 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
844 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
845 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
846 return H_PARAMETER;
847
848 /* dest (and src if copy_page flag set) must be page aligned */
849 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
850 return H_PARAMETER;
851
852 /* zero and/or copy the page as determined by the flags */
853 if (flags & H_COPY_PAGE) {
854 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
855 if (ret < 0)
856 return H_PARAMETER;
857 } else if (flags & H_ZERO_PAGE) {
858 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
859 if (ret < 0)
860 return H_PARAMETER;
861 }
862
863 /* We can ignore the remaining flags */
864
865 return H_SUCCESS;
866 }
867
868 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
869 {
870 struct kvmppc_vcore *vcore = target->arch.vcore;
871
872 /*
873 * We expect to have been called by the real mode handler
874 * (kvmppc_rm_h_confer()) which would have directly returned
875 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
876 * have useful work to do and should not confer) so we don't
877 * recheck that here.
878 */
879
880 spin_lock(&vcore->lock);
881 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
882 vcore->vcore_state != VCORE_INACTIVE &&
883 vcore->runner)
884 target = vcore->runner;
885 spin_unlock(&vcore->lock);
886
887 return kvm_vcpu_yield_to(target);
888 }
889
890 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
891 {
892 int yield_count = 0;
893 struct lppaca *lppaca;
894
895 spin_lock(&vcpu->arch.vpa_update_lock);
896 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
897 if (lppaca)
898 yield_count = be32_to_cpu(lppaca->yield_count);
899 spin_unlock(&vcpu->arch.vpa_update_lock);
900 return yield_count;
901 }
902
903 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
904 {
905 unsigned long req = kvmppc_get_gpr(vcpu, 3);
906 unsigned long target, ret = H_SUCCESS;
907 int yield_count;
908 struct kvm_vcpu *tvcpu;
909 int idx, rc;
910
911 if (req <= MAX_HCALL_OPCODE &&
912 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
913 return RESUME_HOST;
914
915 switch (req) {
916 case H_CEDE:
917 break;
918 case H_PROD:
919 target = kvmppc_get_gpr(vcpu, 4);
920 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
921 if (!tvcpu) {
922 ret = H_PARAMETER;
923 break;
924 }
925 tvcpu->arch.prodded = 1;
926 smp_mb();
927 if (tvcpu->arch.ceded)
928 kvmppc_fast_vcpu_kick_hv(tvcpu);
929 break;
930 case H_CONFER:
931 target = kvmppc_get_gpr(vcpu, 4);
932 if (target == -1)
933 break;
934 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
935 if (!tvcpu) {
936 ret = H_PARAMETER;
937 break;
938 }
939 yield_count = kvmppc_get_gpr(vcpu, 5);
940 if (kvmppc_get_yield_count(tvcpu) != yield_count)
941 break;
942 kvm_arch_vcpu_yield_to(tvcpu);
943 break;
944 case H_REGISTER_VPA:
945 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
946 kvmppc_get_gpr(vcpu, 5),
947 kvmppc_get_gpr(vcpu, 6));
948 break;
949 case H_RTAS:
950 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
951 return RESUME_HOST;
952
953 idx = srcu_read_lock(&vcpu->kvm->srcu);
954 rc = kvmppc_rtas_hcall(vcpu);
955 srcu_read_unlock(&vcpu->kvm->srcu, idx);
956
957 if (rc == -ENOENT)
958 return RESUME_HOST;
959 else if (rc == 0)
960 break;
961
962 /* Send the error out to userspace via KVM_RUN */
963 return rc;
964 case H_LOGICAL_CI_LOAD:
965 ret = kvmppc_h_logical_ci_load(vcpu);
966 if (ret == H_TOO_HARD)
967 return RESUME_HOST;
968 break;
969 case H_LOGICAL_CI_STORE:
970 ret = kvmppc_h_logical_ci_store(vcpu);
971 if (ret == H_TOO_HARD)
972 return RESUME_HOST;
973 break;
974 case H_SET_MODE:
975 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
976 kvmppc_get_gpr(vcpu, 5),
977 kvmppc_get_gpr(vcpu, 6),
978 kvmppc_get_gpr(vcpu, 7));
979 if (ret == H_TOO_HARD)
980 return RESUME_HOST;
981 break;
982 case H_XIRR:
983 case H_CPPR:
984 case H_EOI:
985 case H_IPI:
986 case H_IPOLL:
987 case H_XIRR_X:
988 if (kvmppc_xics_enabled(vcpu)) {
989 if (xics_on_xive()) {
990 ret = H_NOT_AVAILABLE;
991 return RESUME_GUEST;
992 }
993 ret = kvmppc_xics_hcall(vcpu, req);
994 break;
995 }
996 return RESUME_HOST;
997 case H_SET_DABR:
998 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
999 break;
1000 case H_SET_XDABR:
1001 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1002 kvmppc_get_gpr(vcpu, 5));
1003 break;
1004 #ifdef CONFIG_SPAPR_TCE_IOMMU
1005 case H_GET_TCE:
1006 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1007 kvmppc_get_gpr(vcpu, 5));
1008 if (ret == H_TOO_HARD)
1009 return RESUME_HOST;
1010 break;
1011 case H_PUT_TCE:
1012 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1013 kvmppc_get_gpr(vcpu, 5),
1014 kvmppc_get_gpr(vcpu, 6));
1015 if (ret == H_TOO_HARD)
1016 return RESUME_HOST;
1017 break;
1018 case H_PUT_TCE_INDIRECT:
1019 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1020 kvmppc_get_gpr(vcpu, 5),
1021 kvmppc_get_gpr(vcpu, 6),
1022 kvmppc_get_gpr(vcpu, 7));
1023 if (ret == H_TOO_HARD)
1024 return RESUME_HOST;
1025 break;
1026 case H_STUFF_TCE:
1027 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1028 kvmppc_get_gpr(vcpu, 5),
1029 kvmppc_get_gpr(vcpu, 6),
1030 kvmppc_get_gpr(vcpu, 7));
1031 if (ret == H_TOO_HARD)
1032 return RESUME_HOST;
1033 break;
1034 #endif
1035 case H_RANDOM:
1036 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1037 ret = H_HARDWARE;
1038 break;
1039
1040 case H_SET_PARTITION_TABLE:
1041 ret = H_FUNCTION;
1042 if (nesting_enabled(vcpu->kvm))
1043 ret = kvmhv_set_partition_table(vcpu);
1044 break;
1045 case H_ENTER_NESTED:
1046 ret = H_FUNCTION;
1047 if (!nesting_enabled(vcpu->kvm))
1048 break;
1049 ret = kvmhv_enter_nested_guest(vcpu);
1050 if (ret == H_INTERRUPT) {
1051 kvmppc_set_gpr(vcpu, 3, 0);
1052 vcpu->arch.hcall_needed = 0;
1053 return -EINTR;
1054 } else if (ret == H_TOO_HARD) {
1055 kvmppc_set_gpr(vcpu, 3, 0);
1056 vcpu->arch.hcall_needed = 0;
1057 return RESUME_HOST;
1058 }
1059 break;
1060 case H_TLB_INVALIDATE:
1061 ret = H_FUNCTION;
1062 if (nesting_enabled(vcpu->kvm))
1063 ret = kvmhv_do_nested_tlbie(vcpu);
1064 break;
1065 case H_COPY_TOFROM_GUEST:
1066 ret = H_FUNCTION;
1067 if (nesting_enabled(vcpu->kvm))
1068 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1069 break;
1070 case H_PAGE_INIT:
1071 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1072 kvmppc_get_gpr(vcpu, 5),
1073 kvmppc_get_gpr(vcpu, 6));
1074 break;
1075 case H_SVM_PAGE_IN:
1076 ret = H_UNSUPPORTED;
1077 if (kvmppc_get_srr1(vcpu) & MSR_S)
1078 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1079 kvmppc_get_gpr(vcpu, 4),
1080 kvmppc_get_gpr(vcpu, 5),
1081 kvmppc_get_gpr(vcpu, 6));
1082 break;
1083 case H_SVM_PAGE_OUT:
1084 ret = H_UNSUPPORTED;
1085 if (kvmppc_get_srr1(vcpu) & MSR_S)
1086 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1087 kvmppc_get_gpr(vcpu, 4),
1088 kvmppc_get_gpr(vcpu, 5),
1089 kvmppc_get_gpr(vcpu, 6));
1090 break;
1091 case H_SVM_INIT_START:
1092 ret = H_UNSUPPORTED;
1093 if (kvmppc_get_srr1(vcpu) & MSR_S)
1094 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1095 break;
1096 case H_SVM_INIT_DONE:
1097 ret = H_UNSUPPORTED;
1098 if (kvmppc_get_srr1(vcpu) & MSR_S)
1099 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1100 break;
1101 case H_SVM_INIT_ABORT:
1102 ret = H_UNSUPPORTED;
1103 if (kvmppc_get_srr1(vcpu) & MSR_S)
1104 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1105 break;
1106
1107 default:
1108 return RESUME_HOST;
1109 }
1110 kvmppc_set_gpr(vcpu, 3, ret);
1111 vcpu->arch.hcall_needed = 0;
1112 return RESUME_GUEST;
1113 }
1114
1115 /*
1116 * Handle H_CEDE in the nested virtualization case where we haven't
1117 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1118 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1119 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1120 */
1121 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1122 {
1123 vcpu->arch.shregs.msr |= MSR_EE;
1124 vcpu->arch.ceded = 1;
1125 smp_mb();
1126 if (vcpu->arch.prodded) {
1127 vcpu->arch.prodded = 0;
1128 smp_mb();
1129 vcpu->arch.ceded = 0;
1130 }
1131 }
1132
1133 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1134 {
1135 switch (cmd) {
1136 case H_CEDE:
1137 case H_PROD:
1138 case H_CONFER:
1139 case H_REGISTER_VPA:
1140 case H_SET_MODE:
1141 case H_LOGICAL_CI_LOAD:
1142 case H_LOGICAL_CI_STORE:
1143 #ifdef CONFIG_KVM_XICS
1144 case H_XIRR:
1145 case H_CPPR:
1146 case H_EOI:
1147 case H_IPI:
1148 case H_IPOLL:
1149 case H_XIRR_X:
1150 #endif
1151 case H_PAGE_INIT:
1152 return 1;
1153 }
1154
1155 /* See if it's in the real-mode table */
1156 return kvmppc_hcall_impl_hv_realmode(cmd);
1157 }
1158
1159 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
1160 struct kvm_vcpu *vcpu)
1161 {
1162 u32 last_inst;
1163
1164 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1165 EMULATE_DONE) {
1166 /*
1167 * Fetch failed, so return to guest and
1168 * try executing it again.
1169 */
1170 return RESUME_GUEST;
1171 }
1172
1173 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1174 run->exit_reason = KVM_EXIT_DEBUG;
1175 run->debug.arch.address = kvmppc_get_pc(vcpu);
1176 return RESUME_HOST;
1177 } else {
1178 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1179 return RESUME_GUEST;
1180 }
1181 }
1182
1183 static void do_nothing(void *x)
1184 {
1185 }
1186
1187 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1188 {
1189 int thr, cpu, pcpu, nthreads;
1190 struct kvm_vcpu *v;
1191 unsigned long dpdes;
1192
1193 nthreads = vcpu->kvm->arch.emul_smt_mode;
1194 dpdes = 0;
1195 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1196 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1197 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1198 if (!v)
1199 continue;
1200 /*
1201 * If the vcpu is currently running on a physical cpu thread,
1202 * interrupt it in order to pull it out of the guest briefly,
1203 * which will update its vcore->dpdes value.
1204 */
1205 pcpu = READ_ONCE(v->cpu);
1206 if (pcpu >= 0)
1207 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1208 if (kvmppc_doorbell_pending(v))
1209 dpdes |= 1 << thr;
1210 }
1211 return dpdes;
1212 }
1213
1214 /*
1215 * On POWER9, emulate doorbell-related instructions in order to
1216 * give the guest the illusion of running on a multi-threaded core.
1217 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1218 * and mfspr DPDES.
1219 */
1220 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1221 {
1222 u32 inst, rb, thr;
1223 unsigned long arg;
1224 struct kvm *kvm = vcpu->kvm;
1225 struct kvm_vcpu *tvcpu;
1226
1227 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1228 return RESUME_GUEST;
1229 if (get_op(inst) != 31)
1230 return EMULATE_FAIL;
1231 rb = get_rb(inst);
1232 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1233 switch (get_xop(inst)) {
1234 case OP_31_XOP_MSGSNDP:
1235 arg = kvmppc_get_gpr(vcpu, rb);
1236 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1237 break;
1238 arg &= 0x3f;
1239 if (arg >= kvm->arch.emul_smt_mode)
1240 break;
1241 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1242 if (!tvcpu)
1243 break;
1244 if (!tvcpu->arch.doorbell_request) {
1245 tvcpu->arch.doorbell_request = 1;
1246 kvmppc_fast_vcpu_kick_hv(tvcpu);
1247 }
1248 break;
1249 case OP_31_XOP_MSGCLRP:
1250 arg = kvmppc_get_gpr(vcpu, rb);
1251 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1252 break;
1253 vcpu->arch.vcore->dpdes = 0;
1254 vcpu->arch.doorbell_request = 0;
1255 break;
1256 case OP_31_XOP_MFSPR:
1257 switch (get_sprn(inst)) {
1258 case SPRN_TIR:
1259 arg = thr;
1260 break;
1261 case SPRN_DPDES:
1262 arg = kvmppc_read_dpdes(vcpu);
1263 break;
1264 default:
1265 return EMULATE_FAIL;
1266 }
1267 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1268 break;
1269 default:
1270 return EMULATE_FAIL;
1271 }
1272 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1273 return RESUME_GUEST;
1274 }
1275
1276 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1277 struct task_struct *tsk)
1278 {
1279 int r = RESUME_HOST;
1280
1281 vcpu->stat.sum_exits++;
1282
1283 /*
1284 * This can happen if an interrupt occurs in the last stages
1285 * of guest entry or the first stages of guest exit (i.e. after
1286 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1287 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1288 * That can happen due to a bug, or due to a machine check
1289 * occurring at just the wrong time.
1290 */
1291 if (vcpu->arch.shregs.msr & MSR_HV) {
1292 printk(KERN_EMERG "KVM trap in HV mode!\n");
1293 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1294 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1295 vcpu->arch.shregs.msr);
1296 kvmppc_dump_regs(vcpu);
1297 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1298 run->hw.hardware_exit_reason = vcpu->arch.trap;
1299 return RESUME_HOST;
1300 }
1301 run->exit_reason = KVM_EXIT_UNKNOWN;
1302 run->ready_for_interrupt_injection = 1;
1303 switch (vcpu->arch.trap) {
1304 /* We're good on these - the host merely wanted to get our attention */
1305 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1306 vcpu->stat.dec_exits++;
1307 r = RESUME_GUEST;
1308 break;
1309 case BOOK3S_INTERRUPT_EXTERNAL:
1310 case BOOK3S_INTERRUPT_H_DOORBELL:
1311 case BOOK3S_INTERRUPT_H_VIRT:
1312 vcpu->stat.ext_intr_exits++;
1313 r = RESUME_GUEST;
1314 break;
1315 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1316 case BOOK3S_INTERRUPT_HMI:
1317 case BOOK3S_INTERRUPT_PERFMON:
1318 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1319 r = RESUME_GUEST;
1320 break;
1321 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1322 /* Print the MCE event to host console. */
1323 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1324
1325 /*
1326 * If the guest can do FWNMI, exit to userspace so it can
1327 * deliver a FWNMI to the guest.
1328 * Otherwise we synthesize a machine check for the guest
1329 * so that it knows that the machine check occurred.
1330 */
1331 if (!vcpu->kvm->arch.fwnmi_enabled) {
1332 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1333 kvmppc_core_queue_machine_check(vcpu, flags);
1334 r = RESUME_GUEST;
1335 break;
1336 }
1337
1338 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1339 run->exit_reason = KVM_EXIT_NMI;
1340 run->hw.hardware_exit_reason = vcpu->arch.trap;
1341 /* Clear out the old NMI status from run->flags */
1342 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1343 /* Now set the NMI status */
1344 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1345 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1346 else
1347 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1348
1349 r = RESUME_HOST;
1350 break;
1351 case BOOK3S_INTERRUPT_PROGRAM:
1352 {
1353 ulong flags;
1354 /*
1355 * Normally program interrupts are delivered directly
1356 * to the guest by the hardware, but we can get here
1357 * as a result of a hypervisor emulation interrupt
1358 * (e40) getting turned into a 700 by BML RTAS.
1359 */
1360 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1361 kvmppc_core_queue_program(vcpu, flags);
1362 r = RESUME_GUEST;
1363 break;
1364 }
1365 case BOOK3S_INTERRUPT_SYSCALL:
1366 {
1367 /* hcall - punt to userspace */
1368 int i;
1369
1370 /* hypercall with MSR_PR has already been handled in rmode,
1371 * and never reaches here.
1372 */
1373
1374 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1375 for (i = 0; i < 9; ++i)
1376 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1377 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1378 vcpu->arch.hcall_needed = 1;
1379 r = RESUME_HOST;
1380 break;
1381 }
1382 /*
1383 * We get these next two if the guest accesses a page which it thinks
1384 * it has mapped but which is not actually present, either because
1385 * it is for an emulated I/O device or because the corresonding
1386 * host page has been paged out. Any other HDSI/HISI interrupts
1387 * have been handled already.
1388 */
1389 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1390 r = RESUME_PAGE_FAULT;
1391 break;
1392 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1393 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1394 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1395 DSISR_SRR1_MATCH_64S;
1396 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1397 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1398 r = RESUME_PAGE_FAULT;
1399 break;
1400 /*
1401 * This occurs if the guest executes an illegal instruction.
1402 * If the guest debug is disabled, generate a program interrupt
1403 * to the guest. If guest debug is enabled, we need to check
1404 * whether the instruction is a software breakpoint instruction.
1405 * Accordingly return to Guest or Host.
1406 */
1407 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1408 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1409 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1410 swab32(vcpu->arch.emul_inst) :
1411 vcpu->arch.emul_inst;
1412 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1413 r = kvmppc_emulate_debug_inst(run, vcpu);
1414 } else {
1415 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1416 r = RESUME_GUEST;
1417 }
1418 break;
1419 /*
1420 * This occurs if the guest (kernel or userspace), does something that
1421 * is prohibited by HFSCR.
1422 * On POWER9, this could be a doorbell instruction that we need
1423 * to emulate.
1424 * Otherwise, we just generate a program interrupt to the guest.
1425 */
1426 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1427 r = EMULATE_FAIL;
1428 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1429 cpu_has_feature(CPU_FTR_ARCH_300))
1430 r = kvmppc_emulate_doorbell_instr(vcpu);
1431 if (r == EMULATE_FAIL) {
1432 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1433 r = RESUME_GUEST;
1434 }
1435 break;
1436
1437 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1438 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1439 /*
1440 * This occurs for various TM-related instructions that
1441 * we need to emulate on POWER9 DD2.2. We have already
1442 * handled the cases where the guest was in real-suspend
1443 * mode and was transitioning to transactional state.
1444 */
1445 r = kvmhv_p9_tm_emulation(vcpu);
1446 break;
1447 #endif
1448
1449 case BOOK3S_INTERRUPT_HV_RM_HARD:
1450 r = RESUME_PASSTHROUGH;
1451 break;
1452 default:
1453 kvmppc_dump_regs(vcpu);
1454 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1455 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1456 vcpu->arch.shregs.msr);
1457 run->hw.hardware_exit_reason = vcpu->arch.trap;
1458 r = RESUME_HOST;
1459 break;
1460 }
1461
1462 return r;
1463 }
1464
1465 static int kvmppc_handle_nested_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1466 {
1467 int r;
1468 int srcu_idx;
1469
1470 vcpu->stat.sum_exits++;
1471
1472 /*
1473 * This can happen if an interrupt occurs in the last stages
1474 * of guest entry or the first stages of guest exit (i.e. after
1475 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1476 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1477 * That can happen due to a bug, or due to a machine check
1478 * occurring at just the wrong time.
1479 */
1480 if (vcpu->arch.shregs.msr & MSR_HV) {
1481 pr_emerg("KVM trap in HV mode while nested!\n");
1482 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1483 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1484 vcpu->arch.shregs.msr);
1485 kvmppc_dump_regs(vcpu);
1486 return RESUME_HOST;
1487 }
1488 switch (vcpu->arch.trap) {
1489 /* We're good on these - the host merely wanted to get our attention */
1490 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1491 vcpu->stat.dec_exits++;
1492 r = RESUME_GUEST;
1493 break;
1494 case BOOK3S_INTERRUPT_EXTERNAL:
1495 vcpu->stat.ext_intr_exits++;
1496 r = RESUME_HOST;
1497 break;
1498 case BOOK3S_INTERRUPT_H_DOORBELL:
1499 case BOOK3S_INTERRUPT_H_VIRT:
1500 vcpu->stat.ext_intr_exits++;
1501 r = RESUME_GUEST;
1502 break;
1503 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1504 case BOOK3S_INTERRUPT_HMI:
1505 case BOOK3S_INTERRUPT_PERFMON:
1506 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1507 r = RESUME_GUEST;
1508 break;
1509 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1510 /* Pass the machine check to the L1 guest */
1511 r = RESUME_HOST;
1512 /* Print the MCE event to host console. */
1513 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1514 break;
1515 /*
1516 * We get these next two if the guest accesses a page which it thinks
1517 * it has mapped but which is not actually present, either because
1518 * it is for an emulated I/O device or because the corresonding
1519 * host page has been paged out.
1520 */
1521 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1522 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1523 r = kvmhv_nested_page_fault(run, vcpu);
1524 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1525 break;
1526 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1527 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1528 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1529 DSISR_SRR1_MATCH_64S;
1530 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1531 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1532 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1533 r = kvmhv_nested_page_fault(run, vcpu);
1534 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1535 break;
1536
1537 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1538 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1539 /*
1540 * This occurs for various TM-related instructions that
1541 * we need to emulate on POWER9 DD2.2. We have already
1542 * handled the cases where the guest was in real-suspend
1543 * mode and was transitioning to transactional state.
1544 */
1545 r = kvmhv_p9_tm_emulation(vcpu);
1546 break;
1547 #endif
1548
1549 case BOOK3S_INTERRUPT_HV_RM_HARD:
1550 vcpu->arch.trap = 0;
1551 r = RESUME_GUEST;
1552 if (!xics_on_xive())
1553 kvmppc_xics_rm_complete(vcpu, 0);
1554 break;
1555 default:
1556 r = RESUME_HOST;
1557 break;
1558 }
1559
1560 return r;
1561 }
1562
1563 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1564 struct kvm_sregs *sregs)
1565 {
1566 int i;
1567
1568 memset(sregs, 0, sizeof(struct kvm_sregs));
1569 sregs->pvr = vcpu->arch.pvr;
1570 for (i = 0; i < vcpu->arch.slb_max; i++) {
1571 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1572 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1573 }
1574
1575 return 0;
1576 }
1577
1578 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1579 struct kvm_sregs *sregs)
1580 {
1581 int i, j;
1582
1583 /* Only accept the same PVR as the host's, since we can't spoof it */
1584 if (sregs->pvr != vcpu->arch.pvr)
1585 return -EINVAL;
1586
1587 j = 0;
1588 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1589 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1590 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1591 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1592 ++j;
1593 }
1594 }
1595 vcpu->arch.slb_max = j;
1596
1597 return 0;
1598 }
1599
1600 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1601 bool preserve_top32)
1602 {
1603 struct kvm *kvm = vcpu->kvm;
1604 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1605 u64 mask;
1606
1607 spin_lock(&vc->lock);
1608 /*
1609 * If ILE (interrupt little-endian) has changed, update the
1610 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1611 */
1612 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1613 struct kvm_vcpu *vcpu;
1614 int i;
1615
1616 kvm_for_each_vcpu(i, vcpu, kvm) {
1617 if (vcpu->arch.vcore != vc)
1618 continue;
1619 if (new_lpcr & LPCR_ILE)
1620 vcpu->arch.intr_msr |= MSR_LE;
1621 else
1622 vcpu->arch.intr_msr &= ~MSR_LE;
1623 }
1624 }
1625
1626 /*
1627 * Userspace can only modify DPFD (default prefetch depth),
1628 * ILE (interrupt little-endian) and TC (translation control).
1629 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1630 */
1631 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1632 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1633 mask |= LPCR_AIL;
1634 /*
1635 * On POWER9, allow userspace to enable large decrementer for the
1636 * guest, whether or not the host has it enabled.
1637 */
1638 if (cpu_has_feature(CPU_FTR_ARCH_300))
1639 mask |= LPCR_LD;
1640
1641 /* Broken 32-bit version of LPCR must not clear top bits */
1642 if (preserve_top32)
1643 mask &= 0xFFFFFFFF;
1644 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1645 spin_unlock(&vc->lock);
1646 }
1647
1648 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1649 union kvmppc_one_reg *val)
1650 {
1651 int r = 0;
1652 long int i;
1653
1654 switch (id) {
1655 case KVM_REG_PPC_DEBUG_INST:
1656 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1657 break;
1658 case KVM_REG_PPC_HIOR:
1659 *val = get_reg_val(id, 0);
1660 break;
1661 case KVM_REG_PPC_DABR:
1662 *val = get_reg_val(id, vcpu->arch.dabr);
1663 break;
1664 case KVM_REG_PPC_DABRX:
1665 *val = get_reg_val(id, vcpu->arch.dabrx);
1666 break;
1667 case KVM_REG_PPC_DSCR:
1668 *val = get_reg_val(id, vcpu->arch.dscr);
1669 break;
1670 case KVM_REG_PPC_PURR:
1671 *val = get_reg_val(id, vcpu->arch.purr);
1672 break;
1673 case KVM_REG_PPC_SPURR:
1674 *val = get_reg_val(id, vcpu->arch.spurr);
1675 break;
1676 case KVM_REG_PPC_AMR:
1677 *val = get_reg_val(id, vcpu->arch.amr);
1678 break;
1679 case KVM_REG_PPC_UAMOR:
1680 *val = get_reg_val(id, vcpu->arch.uamor);
1681 break;
1682 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1683 i = id - KVM_REG_PPC_MMCR0;
1684 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1685 break;
1686 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1687 i = id - KVM_REG_PPC_PMC1;
1688 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1689 break;
1690 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1691 i = id - KVM_REG_PPC_SPMC1;
1692 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1693 break;
1694 case KVM_REG_PPC_SIAR:
1695 *val = get_reg_val(id, vcpu->arch.siar);
1696 break;
1697 case KVM_REG_PPC_SDAR:
1698 *val = get_reg_val(id, vcpu->arch.sdar);
1699 break;
1700 case KVM_REG_PPC_SIER:
1701 *val = get_reg_val(id, vcpu->arch.sier);
1702 break;
1703 case KVM_REG_PPC_IAMR:
1704 *val = get_reg_val(id, vcpu->arch.iamr);
1705 break;
1706 case KVM_REG_PPC_PSPB:
1707 *val = get_reg_val(id, vcpu->arch.pspb);
1708 break;
1709 case KVM_REG_PPC_DPDES:
1710 /*
1711 * On POWER9, where we are emulating msgsndp etc.,
1712 * we return 1 bit for each vcpu, which can come from
1713 * either vcore->dpdes or doorbell_request.
1714 * On POWER8, doorbell_request is 0.
1715 */
1716 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1717 vcpu->arch.doorbell_request);
1718 break;
1719 case KVM_REG_PPC_VTB:
1720 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1721 break;
1722 case KVM_REG_PPC_DAWR:
1723 *val = get_reg_val(id, vcpu->arch.dawr);
1724 break;
1725 case KVM_REG_PPC_DAWRX:
1726 *val = get_reg_val(id, vcpu->arch.dawrx);
1727 break;
1728 case KVM_REG_PPC_CIABR:
1729 *val = get_reg_val(id, vcpu->arch.ciabr);
1730 break;
1731 case KVM_REG_PPC_CSIGR:
1732 *val = get_reg_val(id, vcpu->arch.csigr);
1733 break;
1734 case KVM_REG_PPC_TACR:
1735 *val = get_reg_val(id, vcpu->arch.tacr);
1736 break;
1737 case KVM_REG_PPC_TCSCR:
1738 *val = get_reg_val(id, vcpu->arch.tcscr);
1739 break;
1740 case KVM_REG_PPC_PID:
1741 *val = get_reg_val(id, vcpu->arch.pid);
1742 break;
1743 case KVM_REG_PPC_ACOP:
1744 *val = get_reg_val(id, vcpu->arch.acop);
1745 break;
1746 case KVM_REG_PPC_WORT:
1747 *val = get_reg_val(id, vcpu->arch.wort);
1748 break;
1749 case KVM_REG_PPC_TIDR:
1750 *val = get_reg_val(id, vcpu->arch.tid);
1751 break;
1752 case KVM_REG_PPC_PSSCR:
1753 *val = get_reg_val(id, vcpu->arch.psscr);
1754 break;
1755 case KVM_REG_PPC_VPA_ADDR:
1756 spin_lock(&vcpu->arch.vpa_update_lock);
1757 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1758 spin_unlock(&vcpu->arch.vpa_update_lock);
1759 break;
1760 case KVM_REG_PPC_VPA_SLB:
1761 spin_lock(&vcpu->arch.vpa_update_lock);
1762 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1763 val->vpaval.length = vcpu->arch.slb_shadow.len;
1764 spin_unlock(&vcpu->arch.vpa_update_lock);
1765 break;
1766 case KVM_REG_PPC_VPA_DTL:
1767 spin_lock(&vcpu->arch.vpa_update_lock);
1768 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1769 val->vpaval.length = vcpu->arch.dtl.len;
1770 spin_unlock(&vcpu->arch.vpa_update_lock);
1771 break;
1772 case KVM_REG_PPC_TB_OFFSET:
1773 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1774 break;
1775 case KVM_REG_PPC_LPCR:
1776 case KVM_REG_PPC_LPCR_64:
1777 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1778 break;
1779 case KVM_REG_PPC_PPR:
1780 *val = get_reg_val(id, vcpu->arch.ppr);
1781 break;
1782 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1783 case KVM_REG_PPC_TFHAR:
1784 *val = get_reg_val(id, vcpu->arch.tfhar);
1785 break;
1786 case KVM_REG_PPC_TFIAR:
1787 *val = get_reg_val(id, vcpu->arch.tfiar);
1788 break;
1789 case KVM_REG_PPC_TEXASR:
1790 *val = get_reg_val(id, vcpu->arch.texasr);
1791 break;
1792 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1793 i = id - KVM_REG_PPC_TM_GPR0;
1794 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1795 break;
1796 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1797 {
1798 int j;
1799 i = id - KVM_REG_PPC_TM_VSR0;
1800 if (i < 32)
1801 for (j = 0; j < TS_FPRWIDTH; j++)
1802 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1803 else {
1804 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1805 val->vval = vcpu->arch.vr_tm.vr[i-32];
1806 else
1807 r = -ENXIO;
1808 }
1809 break;
1810 }
1811 case KVM_REG_PPC_TM_CR:
1812 *val = get_reg_val(id, vcpu->arch.cr_tm);
1813 break;
1814 case KVM_REG_PPC_TM_XER:
1815 *val = get_reg_val(id, vcpu->arch.xer_tm);
1816 break;
1817 case KVM_REG_PPC_TM_LR:
1818 *val = get_reg_val(id, vcpu->arch.lr_tm);
1819 break;
1820 case KVM_REG_PPC_TM_CTR:
1821 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1822 break;
1823 case KVM_REG_PPC_TM_FPSCR:
1824 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1825 break;
1826 case KVM_REG_PPC_TM_AMR:
1827 *val = get_reg_val(id, vcpu->arch.amr_tm);
1828 break;
1829 case KVM_REG_PPC_TM_PPR:
1830 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1831 break;
1832 case KVM_REG_PPC_TM_VRSAVE:
1833 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1834 break;
1835 case KVM_REG_PPC_TM_VSCR:
1836 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1837 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1838 else
1839 r = -ENXIO;
1840 break;
1841 case KVM_REG_PPC_TM_DSCR:
1842 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1843 break;
1844 case KVM_REG_PPC_TM_TAR:
1845 *val = get_reg_val(id, vcpu->arch.tar_tm);
1846 break;
1847 #endif
1848 case KVM_REG_PPC_ARCH_COMPAT:
1849 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1850 break;
1851 case KVM_REG_PPC_DEC_EXPIRY:
1852 *val = get_reg_val(id, vcpu->arch.dec_expires +
1853 vcpu->arch.vcore->tb_offset);
1854 break;
1855 case KVM_REG_PPC_ONLINE:
1856 *val = get_reg_val(id, vcpu->arch.online);
1857 break;
1858 case KVM_REG_PPC_PTCR:
1859 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1860 break;
1861 default:
1862 r = -EINVAL;
1863 break;
1864 }
1865
1866 return r;
1867 }
1868
1869 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1870 union kvmppc_one_reg *val)
1871 {
1872 int r = 0;
1873 long int i;
1874 unsigned long addr, len;
1875
1876 switch (id) {
1877 case KVM_REG_PPC_HIOR:
1878 /* Only allow this to be set to zero */
1879 if (set_reg_val(id, *val))
1880 r = -EINVAL;
1881 break;
1882 case KVM_REG_PPC_DABR:
1883 vcpu->arch.dabr = set_reg_val(id, *val);
1884 break;
1885 case KVM_REG_PPC_DABRX:
1886 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1887 break;
1888 case KVM_REG_PPC_DSCR:
1889 vcpu->arch.dscr = set_reg_val(id, *val);
1890 break;
1891 case KVM_REG_PPC_PURR:
1892 vcpu->arch.purr = set_reg_val(id, *val);
1893 break;
1894 case KVM_REG_PPC_SPURR:
1895 vcpu->arch.spurr = set_reg_val(id, *val);
1896 break;
1897 case KVM_REG_PPC_AMR:
1898 vcpu->arch.amr = set_reg_val(id, *val);
1899 break;
1900 case KVM_REG_PPC_UAMOR:
1901 vcpu->arch.uamor = set_reg_val(id, *val);
1902 break;
1903 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1904 i = id - KVM_REG_PPC_MMCR0;
1905 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1906 break;
1907 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1908 i = id - KVM_REG_PPC_PMC1;
1909 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1910 break;
1911 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1912 i = id - KVM_REG_PPC_SPMC1;
1913 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1914 break;
1915 case KVM_REG_PPC_SIAR:
1916 vcpu->arch.siar = set_reg_val(id, *val);
1917 break;
1918 case KVM_REG_PPC_SDAR:
1919 vcpu->arch.sdar = set_reg_val(id, *val);
1920 break;
1921 case KVM_REG_PPC_SIER:
1922 vcpu->arch.sier = set_reg_val(id, *val);
1923 break;
1924 case KVM_REG_PPC_IAMR:
1925 vcpu->arch.iamr = set_reg_val(id, *val);
1926 break;
1927 case KVM_REG_PPC_PSPB:
1928 vcpu->arch.pspb = set_reg_val(id, *val);
1929 break;
1930 case KVM_REG_PPC_DPDES:
1931 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1932 break;
1933 case KVM_REG_PPC_VTB:
1934 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1935 break;
1936 case KVM_REG_PPC_DAWR:
1937 vcpu->arch.dawr = set_reg_val(id, *val);
1938 break;
1939 case KVM_REG_PPC_DAWRX:
1940 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1941 break;
1942 case KVM_REG_PPC_CIABR:
1943 vcpu->arch.ciabr = set_reg_val(id, *val);
1944 /* Don't allow setting breakpoints in hypervisor code */
1945 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1946 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1947 break;
1948 case KVM_REG_PPC_CSIGR:
1949 vcpu->arch.csigr = set_reg_val(id, *val);
1950 break;
1951 case KVM_REG_PPC_TACR:
1952 vcpu->arch.tacr = set_reg_val(id, *val);
1953 break;
1954 case KVM_REG_PPC_TCSCR:
1955 vcpu->arch.tcscr = set_reg_val(id, *val);
1956 break;
1957 case KVM_REG_PPC_PID:
1958 vcpu->arch.pid = set_reg_val(id, *val);
1959 break;
1960 case KVM_REG_PPC_ACOP:
1961 vcpu->arch.acop = set_reg_val(id, *val);
1962 break;
1963 case KVM_REG_PPC_WORT:
1964 vcpu->arch.wort = set_reg_val(id, *val);
1965 break;
1966 case KVM_REG_PPC_TIDR:
1967 vcpu->arch.tid = set_reg_val(id, *val);
1968 break;
1969 case KVM_REG_PPC_PSSCR:
1970 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1971 break;
1972 case KVM_REG_PPC_VPA_ADDR:
1973 addr = set_reg_val(id, *val);
1974 r = -EINVAL;
1975 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1976 vcpu->arch.dtl.next_gpa))
1977 break;
1978 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1979 break;
1980 case KVM_REG_PPC_VPA_SLB:
1981 addr = val->vpaval.addr;
1982 len = val->vpaval.length;
1983 r = -EINVAL;
1984 if (addr && !vcpu->arch.vpa.next_gpa)
1985 break;
1986 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1987 break;
1988 case KVM_REG_PPC_VPA_DTL:
1989 addr = val->vpaval.addr;
1990 len = val->vpaval.length;
1991 r = -EINVAL;
1992 if (addr && (len < sizeof(struct dtl_entry) ||
1993 !vcpu->arch.vpa.next_gpa))
1994 break;
1995 len -= len % sizeof(struct dtl_entry);
1996 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1997 break;
1998 case KVM_REG_PPC_TB_OFFSET:
1999 /* round up to multiple of 2^24 */
2000 vcpu->arch.vcore->tb_offset =
2001 ALIGN(set_reg_val(id, *val), 1UL << 24);
2002 break;
2003 case KVM_REG_PPC_LPCR:
2004 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2005 break;
2006 case KVM_REG_PPC_LPCR_64:
2007 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2008 break;
2009 case KVM_REG_PPC_PPR:
2010 vcpu->arch.ppr = set_reg_val(id, *val);
2011 break;
2012 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2013 case KVM_REG_PPC_TFHAR:
2014 vcpu->arch.tfhar = set_reg_val(id, *val);
2015 break;
2016 case KVM_REG_PPC_TFIAR:
2017 vcpu->arch.tfiar = set_reg_val(id, *val);
2018 break;
2019 case KVM_REG_PPC_TEXASR:
2020 vcpu->arch.texasr = set_reg_val(id, *val);
2021 break;
2022 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2023 i = id - KVM_REG_PPC_TM_GPR0;
2024 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2025 break;
2026 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2027 {
2028 int j;
2029 i = id - KVM_REG_PPC_TM_VSR0;
2030 if (i < 32)
2031 for (j = 0; j < TS_FPRWIDTH; j++)
2032 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2033 else
2034 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2035 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2036 else
2037 r = -ENXIO;
2038 break;
2039 }
2040 case KVM_REG_PPC_TM_CR:
2041 vcpu->arch.cr_tm = set_reg_val(id, *val);
2042 break;
2043 case KVM_REG_PPC_TM_XER:
2044 vcpu->arch.xer_tm = set_reg_val(id, *val);
2045 break;
2046 case KVM_REG_PPC_TM_LR:
2047 vcpu->arch.lr_tm = set_reg_val(id, *val);
2048 break;
2049 case KVM_REG_PPC_TM_CTR:
2050 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2051 break;
2052 case KVM_REG_PPC_TM_FPSCR:
2053 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2054 break;
2055 case KVM_REG_PPC_TM_AMR:
2056 vcpu->arch.amr_tm = set_reg_val(id, *val);
2057 break;
2058 case KVM_REG_PPC_TM_PPR:
2059 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2060 break;
2061 case KVM_REG_PPC_TM_VRSAVE:
2062 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2063 break;
2064 case KVM_REG_PPC_TM_VSCR:
2065 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2066 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2067 else
2068 r = - ENXIO;
2069 break;
2070 case KVM_REG_PPC_TM_DSCR:
2071 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2072 break;
2073 case KVM_REG_PPC_TM_TAR:
2074 vcpu->arch.tar_tm = set_reg_val(id, *val);
2075 break;
2076 #endif
2077 case KVM_REG_PPC_ARCH_COMPAT:
2078 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2079 break;
2080 case KVM_REG_PPC_DEC_EXPIRY:
2081 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2082 vcpu->arch.vcore->tb_offset;
2083 break;
2084 case KVM_REG_PPC_ONLINE:
2085 i = set_reg_val(id, *val);
2086 if (i && !vcpu->arch.online)
2087 atomic_inc(&vcpu->arch.vcore->online_count);
2088 else if (!i && vcpu->arch.online)
2089 atomic_dec(&vcpu->arch.vcore->online_count);
2090 vcpu->arch.online = i;
2091 break;
2092 case KVM_REG_PPC_PTCR:
2093 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2094 break;
2095 default:
2096 r = -EINVAL;
2097 break;
2098 }
2099
2100 return r;
2101 }
2102
2103 /*
2104 * On POWER9, threads are independent and can be in different partitions.
2105 * Therefore we consider each thread to be a subcore.
2106 * There is a restriction that all threads have to be in the same
2107 * MMU mode (radix or HPT), unfortunately, but since we only support
2108 * HPT guests on a HPT host so far, that isn't an impediment yet.
2109 */
2110 static int threads_per_vcore(struct kvm *kvm)
2111 {
2112 if (kvm->arch.threads_indep)
2113 return 1;
2114 return threads_per_subcore;
2115 }
2116
2117 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2118 {
2119 struct kvmppc_vcore *vcore;
2120
2121 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2122
2123 if (vcore == NULL)
2124 return NULL;
2125
2126 spin_lock_init(&vcore->lock);
2127 spin_lock_init(&vcore->stoltb_lock);
2128 init_swait_queue_head(&vcore->wq);
2129 vcore->preempt_tb = TB_NIL;
2130 vcore->lpcr = kvm->arch.lpcr;
2131 vcore->first_vcpuid = id;
2132 vcore->kvm = kvm;
2133 INIT_LIST_HEAD(&vcore->preempt_list);
2134
2135 return vcore;
2136 }
2137
2138 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2139 static struct debugfs_timings_element {
2140 const char *name;
2141 size_t offset;
2142 } timings[] = {
2143 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2144 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2145 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2146 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2147 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2148 };
2149
2150 #define N_TIMINGS (ARRAY_SIZE(timings))
2151
2152 struct debugfs_timings_state {
2153 struct kvm_vcpu *vcpu;
2154 unsigned int buflen;
2155 char buf[N_TIMINGS * 100];
2156 };
2157
2158 static int debugfs_timings_open(struct inode *inode, struct file *file)
2159 {
2160 struct kvm_vcpu *vcpu = inode->i_private;
2161 struct debugfs_timings_state *p;
2162
2163 p = kzalloc(sizeof(*p), GFP_KERNEL);
2164 if (!p)
2165 return -ENOMEM;
2166
2167 kvm_get_kvm(vcpu->kvm);
2168 p->vcpu = vcpu;
2169 file->private_data = p;
2170
2171 return nonseekable_open(inode, file);
2172 }
2173
2174 static int debugfs_timings_release(struct inode *inode, struct file *file)
2175 {
2176 struct debugfs_timings_state *p = file->private_data;
2177
2178 kvm_put_kvm(p->vcpu->kvm);
2179 kfree(p);
2180 return 0;
2181 }
2182
2183 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2184 size_t len, loff_t *ppos)
2185 {
2186 struct debugfs_timings_state *p = file->private_data;
2187 struct kvm_vcpu *vcpu = p->vcpu;
2188 char *s, *buf_end;
2189 struct kvmhv_tb_accumulator tb;
2190 u64 count;
2191 loff_t pos;
2192 ssize_t n;
2193 int i, loops;
2194 bool ok;
2195
2196 if (!p->buflen) {
2197 s = p->buf;
2198 buf_end = s + sizeof(p->buf);
2199 for (i = 0; i < N_TIMINGS; ++i) {
2200 struct kvmhv_tb_accumulator *acc;
2201
2202 acc = (struct kvmhv_tb_accumulator *)
2203 ((unsigned long)vcpu + timings[i].offset);
2204 ok = false;
2205 for (loops = 0; loops < 1000; ++loops) {
2206 count = acc->seqcount;
2207 if (!(count & 1)) {
2208 smp_rmb();
2209 tb = *acc;
2210 smp_rmb();
2211 if (count == acc->seqcount) {
2212 ok = true;
2213 break;
2214 }
2215 }
2216 udelay(1);
2217 }
2218 if (!ok)
2219 snprintf(s, buf_end - s, "%s: stuck\n",
2220 timings[i].name);
2221 else
2222 snprintf(s, buf_end - s,
2223 "%s: %llu %llu %llu %llu\n",
2224 timings[i].name, count / 2,
2225 tb_to_ns(tb.tb_total),
2226 tb_to_ns(tb.tb_min),
2227 tb_to_ns(tb.tb_max));
2228 s += strlen(s);
2229 }
2230 p->buflen = s - p->buf;
2231 }
2232
2233 pos = *ppos;
2234 if (pos >= p->buflen)
2235 return 0;
2236 if (len > p->buflen - pos)
2237 len = p->buflen - pos;
2238 n = copy_to_user(buf, p->buf + pos, len);
2239 if (n) {
2240 if (n == len)
2241 return -EFAULT;
2242 len -= n;
2243 }
2244 *ppos = pos + len;
2245 return len;
2246 }
2247
2248 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2249 size_t len, loff_t *ppos)
2250 {
2251 return -EACCES;
2252 }
2253
2254 static const struct file_operations debugfs_timings_ops = {
2255 .owner = THIS_MODULE,
2256 .open = debugfs_timings_open,
2257 .release = debugfs_timings_release,
2258 .read = debugfs_timings_read,
2259 .write = debugfs_timings_write,
2260 .llseek = generic_file_llseek,
2261 };
2262
2263 /* Create a debugfs directory for the vcpu */
2264 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2265 {
2266 char buf[16];
2267 struct kvm *kvm = vcpu->kvm;
2268
2269 snprintf(buf, sizeof(buf), "vcpu%u", id);
2270 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2271 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2272 &debugfs_timings_ops);
2273 }
2274
2275 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2276 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2277 {
2278 }
2279 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2280
2281 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2282 {
2283 int err;
2284 int core;
2285 struct kvmppc_vcore *vcore;
2286 struct kvm *kvm;
2287 unsigned int id;
2288
2289 kvm = vcpu->kvm;
2290 id = vcpu->vcpu_id;
2291
2292 vcpu->arch.shared = &vcpu->arch.shregs;
2293 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2294 /*
2295 * The shared struct is never shared on HV,
2296 * so we can always use host endianness
2297 */
2298 #ifdef __BIG_ENDIAN__
2299 vcpu->arch.shared_big_endian = true;
2300 #else
2301 vcpu->arch.shared_big_endian = false;
2302 #endif
2303 #endif
2304 vcpu->arch.mmcr[0] = MMCR0_FC;
2305 vcpu->arch.ctrl = CTRL_RUNLATCH;
2306 /* default to host PVR, since we can't spoof it */
2307 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2308 spin_lock_init(&vcpu->arch.vpa_update_lock);
2309 spin_lock_init(&vcpu->arch.tbacct_lock);
2310 vcpu->arch.busy_preempt = TB_NIL;
2311 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2312
2313 /*
2314 * Set the default HFSCR for the guest from the host value.
2315 * This value is only used on POWER9.
2316 * On POWER9, we want to virtualize the doorbell facility, so we
2317 * don't set the HFSCR_MSGP bit, and that causes those instructions
2318 * to trap and then we emulate them.
2319 */
2320 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2321 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP;
2322 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2323 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2324 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2325 vcpu->arch.hfscr |= HFSCR_TM;
2326 }
2327 if (cpu_has_feature(CPU_FTR_TM_COMP))
2328 vcpu->arch.hfscr |= HFSCR_TM;
2329
2330 kvmppc_mmu_book3s_hv_init(vcpu);
2331
2332 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2333
2334 init_waitqueue_head(&vcpu->arch.cpu_run);
2335
2336 mutex_lock(&kvm->lock);
2337 vcore = NULL;
2338 err = -EINVAL;
2339 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2340 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2341 pr_devel("KVM: VCPU ID too high\n");
2342 core = KVM_MAX_VCORES;
2343 } else {
2344 BUG_ON(kvm->arch.smt_mode != 1);
2345 core = kvmppc_pack_vcpu_id(kvm, id);
2346 }
2347 } else {
2348 core = id / kvm->arch.smt_mode;
2349 }
2350 if (core < KVM_MAX_VCORES) {
2351 vcore = kvm->arch.vcores[core];
2352 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2353 pr_devel("KVM: collision on id %u", id);
2354 vcore = NULL;
2355 } else if (!vcore) {
2356 /*
2357 * Take mmu_setup_lock for mutual exclusion
2358 * with kvmppc_update_lpcr().
2359 */
2360 err = -ENOMEM;
2361 vcore = kvmppc_vcore_create(kvm,
2362 id & ~(kvm->arch.smt_mode - 1));
2363 mutex_lock(&kvm->arch.mmu_setup_lock);
2364 kvm->arch.vcores[core] = vcore;
2365 kvm->arch.online_vcores++;
2366 mutex_unlock(&kvm->arch.mmu_setup_lock);
2367 }
2368 }
2369 mutex_unlock(&kvm->lock);
2370
2371 if (!vcore)
2372 return err;
2373
2374 spin_lock(&vcore->lock);
2375 ++vcore->num_threads;
2376 spin_unlock(&vcore->lock);
2377 vcpu->arch.vcore = vcore;
2378 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2379 vcpu->arch.thread_cpu = -1;
2380 vcpu->arch.prev_cpu = -1;
2381
2382 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2383 kvmppc_sanity_check(vcpu);
2384
2385 debugfs_vcpu_init(vcpu, id);
2386
2387 return 0;
2388 }
2389
2390 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2391 unsigned long flags)
2392 {
2393 int err;
2394 int esmt = 0;
2395
2396 if (flags)
2397 return -EINVAL;
2398 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2399 return -EINVAL;
2400 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2401 /*
2402 * On POWER8 (or POWER7), the threading mode is "strict",
2403 * so we pack smt_mode vcpus per vcore.
2404 */
2405 if (smt_mode > threads_per_subcore)
2406 return -EINVAL;
2407 } else {
2408 /*
2409 * On POWER9, the threading mode is "loose",
2410 * so each vcpu gets its own vcore.
2411 */
2412 esmt = smt_mode;
2413 smt_mode = 1;
2414 }
2415 mutex_lock(&kvm->lock);
2416 err = -EBUSY;
2417 if (!kvm->arch.online_vcores) {
2418 kvm->arch.smt_mode = smt_mode;
2419 kvm->arch.emul_smt_mode = esmt;
2420 err = 0;
2421 }
2422 mutex_unlock(&kvm->lock);
2423
2424 return err;
2425 }
2426
2427 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2428 {
2429 if (vpa->pinned_addr)
2430 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2431 vpa->dirty);
2432 }
2433
2434 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2435 {
2436 spin_lock(&vcpu->arch.vpa_update_lock);
2437 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2438 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2439 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2440 spin_unlock(&vcpu->arch.vpa_update_lock);
2441 }
2442
2443 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2444 {
2445 /* Indicate we want to get back into the guest */
2446 return 1;
2447 }
2448
2449 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2450 {
2451 unsigned long dec_nsec, now;
2452
2453 now = get_tb();
2454 if (now > vcpu->arch.dec_expires) {
2455 /* decrementer has already gone negative */
2456 kvmppc_core_queue_dec(vcpu);
2457 kvmppc_core_prepare_to_enter(vcpu);
2458 return;
2459 }
2460 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2461 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2462 vcpu->arch.timer_running = 1;
2463 }
2464
2465 extern int __kvmppc_vcore_entry(void);
2466
2467 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2468 struct kvm_vcpu *vcpu)
2469 {
2470 u64 now;
2471
2472 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2473 return;
2474 spin_lock_irq(&vcpu->arch.tbacct_lock);
2475 now = mftb();
2476 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2477 vcpu->arch.stolen_logged;
2478 vcpu->arch.busy_preempt = now;
2479 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2480 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2481 --vc->n_runnable;
2482 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2483 }
2484
2485 static int kvmppc_grab_hwthread(int cpu)
2486 {
2487 struct paca_struct *tpaca;
2488 long timeout = 10000;
2489
2490 tpaca = paca_ptrs[cpu];
2491
2492 /* Ensure the thread won't go into the kernel if it wakes */
2493 tpaca->kvm_hstate.kvm_vcpu = NULL;
2494 tpaca->kvm_hstate.kvm_vcore = NULL;
2495 tpaca->kvm_hstate.napping = 0;
2496 smp_wmb();
2497 tpaca->kvm_hstate.hwthread_req = 1;
2498
2499 /*
2500 * If the thread is already executing in the kernel (e.g. handling
2501 * a stray interrupt), wait for it to get back to nap mode.
2502 * The smp_mb() is to ensure that our setting of hwthread_req
2503 * is visible before we look at hwthread_state, so if this
2504 * races with the code at system_reset_pSeries and the thread
2505 * misses our setting of hwthread_req, we are sure to see its
2506 * setting of hwthread_state, and vice versa.
2507 */
2508 smp_mb();
2509 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2510 if (--timeout <= 0) {
2511 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2512 return -EBUSY;
2513 }
2514 udelay(1);
2515 }
2516 return 0;
2517 }
2518
2519 static void kvmppc_release_hwthread(int cpu)
2520 {
2521 struct paca_struct *tpaca;
2522
2523 tpaca = paca_ptrs[cpu];
2524 tpaca->kvm_hstate.hwthread_req = 0;
2525 tpaca->kvm_hstate.kvm_vcpu = NULL;
2526 tpaca->kvm_hstate.kvm_vcore = NULL;
2527 tpaca->kvm_hstate.kvm_split_mode = NULL;
2528 }
2529
2530 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2531 {
2532 struct kvm_nested_guest *nested = vcpu->arch.nested;
2533 cpumask_t *cpu_in_guest;
2534 int i;
2535
2536 cpu = cpu_first_thread_sibling(cpu);
2537 if (nested) {
2538 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2539 cpu_in_guest = &nested->cpu_in_guest;
2540 } else {
2541 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2542 cpu_in_guest = &kvm->arch.cpu_in_guest;
2543 }
2544 /*
2545 * Make sure setting of bit in need_tlb_flush precedes
2546 * testing of cpu_in_guest bits. The matching barrier on
2547 * the other side is the first smp_mb() in kvmppc_run_core().
2548 */
2549 smp_mb();
2550 for (i = 0; i < threads_per_core; ++i)
2551 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2552 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2553 }
2554
2555 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2556 {
2557 struct kvm_nested_guest *nested = vcpu->arch.nested;
2558 struct kvm *kvm = vcpu->kvm;
2559 int prev_cpu;
2560
2561 if (!cpu_has_feature(CPU_FTR_HVMODE))
2562 return;
2563
2564 if (nested)
2565 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2566 else
2567 prev_cpu = vcpu->arch.prev_cpu;
2568
2569 /*
2570 * With radix, the guest can do TLB invalidations itself,
2571 * and it could choose to use the local form (tlbiel) if
2572 * it is invalidating a translation that has only ever been
2573 * used on one vcpu. However, that doesn't mean it has
2574 * only ever been used on one physical cpu, since vcpus
2575 * can move around between pcpus. To cope with this, when
2576 * a vcpu moves from one pcpu to another, we need to tell
2577 * any vcpus running on the same core as this vcpu previously
2578 * ran to flush the TLB. The TLB is shared between threads,
2579 * so we use a single bit in .need_tlb_flush for all 4 threads.
2580 */
2581 if (prev_cpu != pcpu) {
2582 if (prev_cpu >= 0 &&
2583 cpu_first_thread_sibling(prev_cpu) !=
2584 cpu_first_thread_sibling(pcpu))
2585 radix_flush_cpu(kvm, prev_cpu, vcpu);
2586 if (nested)
2587 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2588 else
2589 vcpu->arch.prev_cpu = pcpu;
2590 }
2591 }
2592
2593 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2594 {
2595 int cpu;
2596 struct paca_struct *tpaca;
2597 struct kvm *kvm = vc->kvm;
2598
2599 cpu = vc->pcpu;
2600 if (vcpu) {
2601 if (vcpu->arch.timer_running) {
2602 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2603 vcpu->arch.timer_running = 0;
2604 }
2605 cpu += vcpu->arch.ptid;
2606 vcpu->cpu = vc->pcpu;
2607 vcpu->arch.thread_cpu = cpu;
2608 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2609 }
2610 tpaca = paca_ptrs[cpu];
2611 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2612 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2613 tpaca->kvm_hstate.fake_suspend = 0;
2614 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2615 smp_wmb();
2616 tpaca->kvm_hstate.kvm_vcore = vc;
2617 if (cpu != smp_processor_id())
2618 kvmppc_ipi_thread(cpu);
2619 }
2620
2621 static void kvmppc_wait_for_nap(int n_threads)
2622 {
2623 int cpu = smp_processor_id();
2624 int i, loops;
2625
2626 if (n_threads <= 1)
2627 return;
2628 for (loops = 0; loops < 1000000; ++loops) {
2629 /*
2630 * Check if all threads are finished.
2631 * We set the vcore pointer when starting a thread
2632 * and the thread clears it when finished, so we look
2633 * for any threads that still have a non-NULL vcore ptr.
2634 */
2635 for (i = 1; i < n_threads; ++i)
2636 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2637 break;
2638 if (i == n_threads) {
2639 HMT_medium();
2640 return;
2641 }
2642 HMT_low();
2643 }
2644 HMT_medium();
2645 for (i = 1; i < n_threads; ++i)
2646 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2647 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2648 }
2649
2650 /*
2651 * Check that we are on thread 0 and that any other threads in
2652 * this core are off-line. Then grab the threads so they can't
2653 * enter the kernel.
2654 */
2655 static int on_primary_thread(void)
2656 {
2657 int cpu = smp_processor_id();
2658 int thr;
2659
2660 /* Are we on a primary subcore? */
2661 if (cpu_thread_in_subcore(cpu))
2662 return 0;
2663
2664 thr = 0;
2665 while (++thr < threads_per_subcore)
2666 if (cpu_online(cpu + thr))
2667 return 0;
2668
2669 /* Grab all hw threads so they can't go into the kernel */
2670 for (thr = 1; thr < threads_per_subcore; ++thr) {
2671 if (kvmppc_grab_hwthread(cpu + thr)) {
2672 /* Couldn't grab one; let the others go */
2673 do {
2674 kvmppc_release_hwthread(cpu + thr);
2675 } while (--thr > 0);
2676 return 0;
2677 }
2678 }
2679 return 1;
2680 }
2681
2682 /*
2683 * A list of virtual cores for each physical CPU.
2684 * These are vcores that could run but their runner VCPU tasks are
2685 * (or may be) preempted.
2686 */
2687 struct preempted_vcore_list {
2688 struct list_head list;
2689 spinlock_t lock;
2690 };
2691
2692 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2693
2694 static void init_vcore_lists(void)
2695 {
2696 int cpu;
2697
2698 for_each_possible_cpu(cpu) {
2699 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2700 spin_lock_init(&lp->lock);
2701 INIT_LIST_HEAD(&lp->list);
2702 }
2703 }
2704
2705 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2706 {
2707 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2708
2709 vc->vcore_state = VCORE_PREEMPT;
2710 vc->pcpu = smp_processor_id();
2711 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2712 spin_lock(&lp->lock);
2713 list_add_tail(&vc->preempt_list, &lp->list);
2714 spin_unlock(&lp->lock);
2715 }
2716
2717 /* Start accumulating stolen time */
2718 kvmppc_core_start_stolen(vc);
2719 }
2720
2721 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2722 {
2723 struct preempted_vcore_list *lp;
2724
2725 kvmppc_core_end_stolen(vc);
2726 if (!list_empty(&vc->preempt_list)) {
2727 lp = &per_cpu(preempted_vcores, vc->pcpu);
2728 spin_lock(&lp->lock);
2729 list_del_init(&vc->preempt_list);
2730 spin_unlock(&lp->lock);
2731 }
2732 vc->vcore_state = VCORE_INACTIVE;
2733 }
2734
2735 /*
2736 * This stores information about the virtual cores currently
2737 * assigned to a physical core.
2738 */
2739 struct core_info {
2740 int n_subcores;
2741 int max_subcore_threads;
2742 int total_threads;
2743 int subcore_threads[MAX_SUBCORES];
2744 struct kvmppc_vcore *vc[MAX_SUBCORES];
2745 };
2746
2747 /*
2748 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2749 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2750 */
2751 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2752
2753 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2754 {
2755 memset(cip, 0, sizeof(*cip));
2756 cip->n_subcores = 1;
2757 cip->max_subcore_threads = vc->num_threads;
2758 cip->total_threads = vc->num_threads;
2759 cip->subcore_threads[0] = vc->num_threads;
2760 cip->vc[0] = vc;
2761 }
2762
2763 static bool subcore_config_ok(int n_subcores, int n_threads)
2764 {
2765 /*
2766 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2767 * split-core mode, with one thread per subcore.
2768 */
2769 if (cpu_has_feature(CPU_FTR_ARCH_300))
2770 return n_subcores <= 4 && n_threads == 1;
2771
2772 /* On POWER8, can only dynamically split if unsplit to begin with */
2773 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2774 return false;
2775 if (n_subcores > MAX_SUBCORES)
2776 return false;
2777 if (n_subcores > 1) {
2778 if (!(dynamic_mt_modes & 2))
2779 n_subcores = 4;
2780 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2781 return false;
2782 }
2783
2784 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2785 }
2786
2787 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2788 {
2789 vc->entry_exit_map = 0;
2790 vc->in_guest = 0;
2791 vc->napping_threads = 0;
2792 vc->conferring_threads = 0;
2793 vc->tb_offset_applied = 0;
2794 }
2795
2796 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2797 {
2798 int n_threads = vc->num_threads;
2799 int sub;
2800
2801 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2802 return false;
2803
2804 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2805 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2806 return false;
2807
2808 /* Some POWER9 chips require all threads to be in the same MMU mode */
2809 if (no_mixing_hpt_and_radix &&
2810 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2811 return false;
2812
2813 if (n_threads < cip->max_subcore_threads)
2814 n_threads = cip->max_subcore_threads;
2815 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2816 return false;
2817 cip->max_subcore_threads = n_threads;
2818
2819 sub = cip->n_subcores;
2820 ++cip->n_subcores;
2821 cip->total_threads += vc->num_threads;
2822 cip->subcore_threads[sub] = vc->num_threads;
2823 cip->vc[sub] = vc;
2824 init_vcore_to_run(vc);
2825 list_del_init(&vc->preempt_list);
2826
2827 return true;
2828 }
2829
2830 /*
2831 * Work out whether it is possible to piggyback the execution of
2832 * vcore *pvc onto the execution of the other vcores described in *cip.
2833 */
2834 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2835 int target_threads)
2836 {
2837 if (cip->total_threads + pvc->num_threads > target_threads)
2838 return false;
2839
2840 return can_dynamic_split(pvc, cip);
2841 }
2842
2843 static void prepare_threads(struct kvmppc_vcore *vc)
2844 {
2845 int i;
2846 struct kvm_vcpu *vcpu;
2847
2848 for_each_runnable_thread(i, vcpu, vc) {
2849 if (signal_pending(vcpu->arch.run_task))
2850 vcpu->arch.ret = -EINTR;
2851 else if (vcpu->arch.vpa.update_pending ||
2852 vcpu->arch.slb_shadow.update_pending ||
2853 vcpu->arch.dtl.update_pending)
2854 vcpu->arch.ret = RESUME_GUEST;
2855 else
2856 continue;
2857 kvmppc_remove_runnable(vc, vcpu);
2858 wake_up(&vcpu->arch.cpu_run);
2859 }
2860 }
2861
2862 static void collect_piggybacks(struct core_info *cip, int target_threads)
2863 {
2864 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2865 struct kvmppc_vcore *pvc, *vcnext;
2866
2867 spin_lock(&lp->lock);
2868 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2869 if (!spin_trylock(&pvc->lock))
2870 continue;
2871 prepare_threads(pvc);
2872 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2873 list_del_init(&pvc->preempt_list);
2874 if (pvc->runner == NULL) {
2875 pvc->vcore_state = VCORE_INACTIVE;
2876 kvmppc_core_end_stolen(pvc);
2877 }
2878 spin_unlock(&pvc->lock);
2879 continue;
2880 }
2881 if (!can_piggyback(pvc, cip, target_threads)) {
2882 spin_unlock(&pvc->lock);
2883 continue;
2884 }
2885 kvmppc_core_end_stolen(pvc);
2886 pvc->vcore_state = VCORE_PIGGYBACK;
2887 if (cip->total_threads >= target_threads)
2888 break;
2889 }
2890 spin_unlock(&lp->lock);
2891 }
2892
2893 static bool recheck_signals_and_mmu(struct core_info *cip)
2894 {
2895 int sub, i;
2896 struct kvm_vcpu *vcpu;
2897 struct kvmppc_vcore *vc;
2898
2899 for (sub = 0; sub < cip->n_subcores; ++sub) {
2900 vc = cip->vc[sub];
2901 if (!vc->kvm->arch.mmu_ready)
2902 return true;
2903 for_each_runnable_thread(i, vcpu, vc)
2904 if (signal_pending(vcpu->arch.run_task))
2905 return true;
2906 }
2907 return false;
2908 }
2909
2910 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2911 {
2912 int still_running = 0, i;
2913 u64 now;
2914 long ret;
2915 struct kvm_vcpu *vcpu;
2916
2917 spin_lock(&vc->lock);
2918 now = get_tb();
2919 for_each_runnable_thread(i, vcpu, vc) {
2920 /*
2921 * It's safe to unlock the vcore in the loop here, because
2922 * for_each_runnable_thread() is safe against removal of
2923 * the vcpu, and the vcore state is VCORE_EXITING here,
2924 * so any vcpus becoming runnable will have their arch.trap
2925 * set to zero and can't actually run in the guest.
2926 */
2927 spin_unlock(&vc->lock);
2928 /* cancel pending dec exception if dec is positive */
2929 if (now < vcpu->arch.dec_expires &&
2930 kvmppc_core_pending_dec(vcpu))
2931 kvmppc_core_dequeue_dec(vcpu);
2932
2933 trace_kvm_guest_exit(vcpu);
2934
2935 ret = RESUME_GUEST;
2936 if (vcpu->arch.trap)
2937 ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2938 vcpu->arch.run_task);
2939
2940 vcpu->arch.ret = ret;
2941 vcpu->arch.trap = 0;
2942
2943 spin_lock(&vc->lock);
2944 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2945 if (vcpu->arch.pending_exceptions)
2946 kvmppc_core_prepare_to_enter(vcpu);
2947 if (vcpu->arch.ceded)
2948 kvmppc_set_timer(vcpu);
2949 else
2950 ++still_running;
2951 } else {
2952 kvmppc_remove_runnable(vc, vcpu);
2953 wake_up(&vcpu->arch.cpu_run);
2954 }
2955 }
2956 if (!is_master) {
2957 if (still_running > 0) {
2958 kvmppc_vcore_preempt(vc);
2959 } else if (vc->runner) {
2960 vc->vcore_state = VCORE_PREEMPT;
2961 kvmppc_core_start_stolen(vc);
2962 } else {
2963 vc->vcore_state = VCORE_INACTIVE;
2964 }
2965 if (vc->n_runnable > 0 && vc->runner == NULL) {
2966 /* make sure there's a candidate runner awake */
2967 i = -1;
2968 vcpu = next_runnable_thread(vc, &i);
2969 wake_up(&vcpu->arch.cpu_run);
2970 }
2971 }
2972 spin_unlock(&vc->lock);
2973 }
2974
2975 /*
2976 * Clear core from the list of active host cores as we are about to
2977 * enter the guest. Only do this if it is the primary thread of the
2978 * core (not if a subcore) that is entering the guest.
2979 */
2980 static inline int kvmppc_clear_host_core(unsigned int cpu)
2981 {
2982 int core;
2983
2984 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2985 return 0;
2986 /*
2987 * Memory barrier can be omitted here as we will do a smp_wmb()
2988 * later in kvmppc_start_thread and we need ensure that state is
2989 * visible to other CPUs only after we enter guest.
2990 */
2991 core = cpu >> threads_shift;
2992 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2993 return 0;
2994 }
2995
2996 /*
2997 * Advertise this core as an active host core since we exited the guest
2998 * Only need to do this if it is the primary thread of the core that is
2999 * exiting.
3000 */
3001 static inline int kvmppc_set_host_core(unsigned int cpu)
3002 {
3003 int core;
3004
3005 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3006 return 0;
3007
3008 /*
3009 * Memory barrier can be omitted here because we do a spin_unlock
3010 * immediately after this which provides the memory barrier.
3011 */
3012 core = cpu >> threads_shift;
3013 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3014 return 0;
3015 }
3016
3017 static void set_irq_happened(int trap)
3018 {
3019 switch (trap) {
3020 case BOOK3S_INTERRUPT_EXTERNAL:
3021 local_paca->irq_happened |= PACA_IRQ_EE;
3022 break;
3023 case BOOK3S_INTERRUPT_H_DOORBELL:
3024 local_paca->irq_happened |= PACA_IRQ_DBELL;
3025 break;
3026 case BOOK3S_INTERRUPT_HMI:
3027 local_paca->irq_happened |= PACA_IRQ_HMI;
3028 break;
3029 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3030 replay_system_reset();
3031 break;
3032 }
3033 }
3034
3035 /*
3036 * Run a set of guest threads on a physical core.
3037 * Called with vc->lock held.
3038 */
3039 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3040 {
3041 struct kvm_vcpu *vcpu;
3042 int i;
3043 int srcu_idx;
3044 struct core_info core_info;
3045 struct kvmppc_vcore *pvc;
3046 struct kvm_split_mode split_info, *sip;
3047 int split, subcore_size, active;
3048 int sub;
3049 bool thr0_done;
3050 unsigned long cmd_bit, stat_bit;
3051 int pcpu, thr;
3052 int target_threads;
3053 int controlled_threads;
3054 int trap;
3055 bool is_power8;
3056 bool hpt_on_radix;
3057
3058 /*
3059 * Remove from the list any threads that have a signal pending
3060 * or need a VPA update done
3061 */
3062 prepare_threads(vc);
3063
3064 /* if the runner is no longer runnable, let the caller pick a new one */
3065 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3066 return;
3067
3068 /*
3069 * Initialize *vc.
3070 */
3071 init_vcore_to_run(vc);
3072 vc->preempt_tb = TB_NIL;
3073
3074 /*
3075 * Number of threads that we will be controlling: the same as
3076 * the number of threads per subcore, except on POWER9,
3077 * where it's 1 because the threads are (mostly) independent.
3078 */
3079 controlled_threads = threads_per_vcore(vc->kvm);
3080
3081 /*
3082 * Make sure we are running on primary threads, and that secondary
3083 * threads are offline. Also check if the number of threads in this
3084 * guest are greater than the current system threads per guest.
3085 * On POWER9, we need to be not in independent-threads mode if
3086 * this is a HPT guest on a radix host machine where the
3087 * CPU threads may not be in different MMU modes.
3088 */
3089 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3090 !kvm_is_radix(vc->kvm);
3091 if (((controlled_threads > 1) &&
3092 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3093 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3094 for_each_runnable_thread(i, vcpu, vc) {
3095 vcpu->arch.ret = -EBUSY;
3096 kvmppc_remove_runnable(vc, vcpu);
3097 wake_up(&vcpu->arch.cpu_run);
3098 }
3099 goto out;
3100 }
3101
3102 /*
3103 * See if we could run any other vcores on the physical core
3104 * along with this one.
3105 */
3106 init_core_info(&core_info, vc);
3107 pcpu = smp_processor_id();
3108 target_threads = controlled_threads;
3109 if (target_smt_mode && target_smt_mode < target_threads)
3110 target_threads = target_smt_mode;
3111 if (vc->num_threads < target_threads)
3112 collect_piggybacks(&core_info, target_threads);
3113
3114 /*
3115 * On radix, arrange for TLB flushing if necessary.
3116 * This has to be done before disabling interrupts since
3117 * it uses smp_call_function().
3118 */
3119 pcpu = smp_processor_id();
3120 if (kvm_is_radix(vc->kvm)) {
3121 for (sub = 0; sub < core_info.n_subcores; ++sub)
3122 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3123 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3124 }
3125
3126 /*
3127 * Hard-disable interrupts, and check resched flag and signals.
3128 * If we need to reschedule or deliver a signal, clean up
3129 * and return without going into the guest(s).
3130 * If the mmu_ready flag has been cleared, don't go into the
3131 * guest because that means a HPT resize operation is in progress.
3132 */
3133 local_irq_disable();
3134 hard_irq_disable();
3135 if (lazy_irq_pending() || need_resched() ||
3136 recheck_signals_and_mmu(&core_info)) {
3137 local_irq_enable();
3138 vc->vcore_state = VCORE_INACTIVE;
3139 /* Unlock all except the primary vcore */
3140 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3141 pvc = core_info.vc[sub];
3142 /* Put back on to the preempted vcores list */
3143 kvmppc_vcore_preempt(pvc);
3144 spin_unlock(&pvc->lock);
3145 }
3146 for (i = 0; i < controlled_threads; ++i)
3147 kvmppc_release_hwthread(pcpu + i);
3148 return;
3149 }
3150
3151 kvmppc_clear_host_core(pcpu);
3152
3153 /* Decide on micro-threading (split-core) mode */
3154 subcore_size = threads_per_subcore;
3155 cmd_bit = stat_bit = 0;
3156 split = core_info.n_subcores;
3157 sip = NULL;
3158 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3159 && !cpu_has_feature(CPU_FTR_ARCH_300);
3160
3161 if (split > 1 || hpt_on_radix) {
3162 sip = &split_info;
3163 memset(&split_info, 0, sizeof(split_info));
3164 for (sub = 0; sub < core_info.n_subcores; ++sub)
3165 split_info.vc[sub] = core_info.vc[sub];
3166
3167 if (is_power8) {
3168 if (split == 2 && (dynamic_mt_modes & 2)) {
3169 cmd_bit = HID0_POWER8_1TO2LPAR;
3170 stat_bit = HID0_POWER8_2LPARMODE;
3171 } else {
3172 split = 4;
3173 cmd_bit = HID0_POWER8_1TO4LPAR;
3174 stat_bit = HID0_POWER8_4LPARMODE;
3175 }
3176 subcore_size = MAX_SMT_THREADS / split;
3177 split_info.rpr = mfspr(SPRN_RPR);
3178 split_info.pmmar = mfspr(SPRN_PMMAR);
3179 split_info.ldbar = mfspr(SPRN_LDBAR);
3180 split_info.subcore_size = subcore_size;
3181 } else {
3182 split_info.subcore_size = 1;
3183 if (hpt_on_radix) {
3184 /* Use the split_info for LPCR/LPIDR changes */
3185 split_info.lpcr_req = vc->lpcr;
3186 split_info.lpidr_req = vc->kvm->arch.lpid;
3187 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3188 split_info.do_set = 1;
3189 }
3190 }
3191
3192 /* order writes to split_info before kvm_split_mode pointer */
3193 smp_wmb();
3194 }
3195
3196 for (thr = 0; thr < controlled_threads; ++thr) {
3197 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3198
3199 paca->kvm_hstate.tid = thr;
3200 paca->kvm_hstate.napping = 0;
3201 paca->kvm_hstate.kvm_split_mode = sip;
3202 }
3203
3204 /* Initiate micro-threading (split-core) on POWER8 if required */
3205 if (cmd_bit) {
3206 unsigned long hid0 = mfspr(SPRN_HID0);
3207
3208 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3209 mb();
3210 mtspr(SPRN_HID0, hid0);
3211 isync();
3212 for (;;) {
3213 hid0 = mfspr(SPRN_HID0);
3214 if (hid0 & stat_bit)
3215 break;
3216 cpu_relax();
3217 }
3218 }
3219
3220 /*
3221 * On POWER8, set RWMR register.
3222 * Since it only affects PURR and SPURR, it doesn't affect
3223 * the host, so we don't save/restore the host value.
3224 */
3225 if (is_power8) {
3226 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3227 int n_online = atomic_read(&vc->online_count);
3228
3229 /*
3230 * Use the 8-thread value if we're doing split-core
3231 * or if the vcore's online count looks bogus.
3232 */
3233 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3234 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3235 rwmr_val = p8_rwmr_values[n_online];
3236 mtspr(SPRN_RWMR, rwmr_val);
3237 }
3238
3239 /* Start all the threads */
3240 active = 0;
3241 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3242 thr = is_power8 ? subcore_thread_map[sub] : sub;
3243 thr0_done = false;
3244 active |= 1 << thr;
3245 pvc = core_info.vc[sub];
3246 pvc->pcpu = pcpu + thr;
3247 for_each_runnable_thread(i, vcpu, pvc) {
3248 kvmppc_start_thread(vcpu, pvc);
3249 kvmppc_create_dtl_entry(vcpu, pvc);
3250 trace_kvm_guest_enter(vcpu);
3251 if (!vcpu->arch.ptid)
3252 thr0_done = true;
3253 active |= 1 << (thr + vcpu->arch.ptid);
3254 }
3255 /*
3256 * We need to start the first thread of each subcore
3257 * even if it doesn't have a vcpu.
3258 */
3259 if (!thr0_done)
3260 kvmppc_start_thread(NULL, pvc);
3261 }
3262
3263 /*
3264 * Ensure that split_info.do_nap is set after setting
3265 * the vcore pointer in the PACA of the secondaries.
3266 */
3267 smp_mb();
3268
3269 /*
3270 * When doing micro-threading, poke the inactive threads as well.
3271 * This gets them to the nap instruction after kvm_do_nap,
3272 * which reduces the time taken to unsplit later.
3273 * For POWER9 HPT guest on radix host, we need all the secondary
3274 * threads woken up so they can do the LPCR/LPIDR change.
3275 */
3276 if (cmd_bit || hpt_on_radix) {
3277 split_info.do_nap = 1; /* ask secondaries to nap when done */
3278 for (thr = 1; thr < threads_per_subcore; ++thr)
3279 if (!(active & (1 << thr)))
3280 kvmppc_ipi_thread(pcpu + thr);
3281 }
3282
3283 vc->vcore_state = VCORE_RUNNING;
3284 preempt_disable();
3285
3286 trace_kvmppc_run_core(vc, 0);
3287
3288 for (sub = 0; sub < core_info.n_subcores; ++sub)
3289 spin_unlock(&core_info.vc[sub]->lock);
3290
3291 guest_enter_irqoff();
3292
3293 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3294
3295 this_cpu_disable_ftrace();
3296
3297 /*
3298 * Interrupts will be enabled once we get into the guest,
3299 * so tell lockdep that we're about to enable interrupts.
3300 */
3301 trace_hardirqs_on();
3302
3303 trap = __kvmppc_vcore_entry();
3304
3305 trace_hardirqs_off();
3306
3307 this_cpu_enable_ftrace();
3308
3309 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3310
3311 set_irq_happened(trap);
3312
3313 spin_lock(&vc->lock);
3314 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3315 vc->vcore_state = VCORE_EXITING;
3316
3317 /* wait for secondary threads to finish writing their state to memory */
3318 kvmppc_wait_for_nap(controlled_threads);
3319
3320 /* Return to whole-core mode if we split the core earlier */
3321 if (cmd_bit) {
3322 unsigned long hid0 = mfspr(SPRN_HID0);
3323 unsigned long loops = 0;
3324
3325 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3326 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3327 mb();
3328 mtspr(SPRN_HID0, hid0);
3329 isync();
3330 for (;;) {
3331 hid0 = mfspr(SPRN_HID0);
3332 if (!(hid0 & stat_bit))
3333 break;
3334 cpu_relax();
3335 ++loops;
3336 }
3337 } else if (hpt_on_radix) {
3338 /* Wait for all threads to have seen final sync */
3339 for (thr = 1; thr < controlled_threads; ++thr) {
3340 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3341
3342 while (paca->kvm_hstate.kvm_split_mode) {
3343 HMT_low();
3344 barrier();
3345 }
3346 HMT_medium();
3347 }
3348 }
3349 split_info.do_nap = 0;
3350
3351 kvmppc_set_host_core(pcpu);
3352
3353 local_irq_enable();
3354 guest_exit();
3355
3356 /* Let secondaries go back to the offline loop */
3357 for (i = 0; i < controlled_threads; ++i) {
3358 kvmppc_release_hwthread(pcpu + i);
3359 if (sip && sip->napped[i])
3360 kvmppc_ipi_thread(pcpu + i);
3361 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3362 }
3363
3364 spin_unlock(&vc->lock);
3365
3366 /* make sure updates to secondary vcpu structs are visible now */
3367 smp_mb();
3368
3369 preempt_enable();
3370
3371 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3372 pvc = core_info.vc[sub];
3373 post_guest_process(pvc, pvc == vc);
3374 }
3375
3376 spin_lock(&vc->lock);
3377
3378 out:
3379 vc->vcore_state = VCORE_INACTIVE;
3380 trace_kvmppc_run_core(vc, 1);
3381 }
3382
3383 /*
3384 * Load up hypervisor-mode registers on P9.
3385 */
3386 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3387 unsigned long lpcr)
3388 {
3389 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3390 s64 hdec;
3391 u64 tb, purr, spurr;
3392 int trap;
3393 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3394 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3395 unsigned long host_dawr = mfspr(SPRN_DAWR);
3396 unsigned long host_dawrx = mfspr(SPRN_DAWRX);
3397 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3398 unsigned long host_pidr = mfspr(SPRN_PID);
3399
3400 hdec = time_limit - mftb();
3401 if (hdec < 0)
3402 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3403 mtspr(SPRN_HDEC, hdec);
3404
3405 if (vc->tb_offset) {
3406 u64 new_tb = mftb() + vc->tb_offset;
3407 mtspr(SPRN_TBU40, new_tb);
3408 tb = mftb();
3409 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3410 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3411 vc->tb_offset_applied = vc->tb_offset;
3412 }
3413
3414 if (vc->pcr)
3415 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3416 mtspr(SPRN_DPDES, vc->dpdes);
3417 mtspr(SPRN_VTB, vc->vtb);
3418
3419 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3420 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3421 mtspr(SPRN_PURR, vcpu->arch.purr);
3422 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3423
3424 if (dawr_enabled()) {
3425 mtspr(SPRN_DAWR, vcpu->arch.dawr);
3426 mtspr(SPRN_DAWRX, vcpu->arch.dawrx);
3427 }
3428 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3429 mtspr(SPRN_IC, vcpu->arch.ic);
3430 mtspr(SPRN_PID, vcpu->arch.pid);
3431
3432 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3433 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3434
3435 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3436
3437 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3438 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3439 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3440 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3441
3442 mtspr(SPRN_AMOR, ~0UL);
3443
3444 mtspr(SPRN_LPCR, lpcr);
3445 isync();
3446
3447 kvmppc_xive_push_vcpu(vcpu);
3448
3449 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3450 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3451
3452 trap = __kvmhv_vcpu_entry_p9(vcpu);
3453
3454 /* Advance host PURR/SPURR by the amount used by guest */
3455 purr = mfspr(SPRN_PURR);
3456 spurr = mfspr(SPRN_SPURR);
3457 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3458 purr - vcpu->arch.purr);
3459 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3460 spurr - vcpu->arch.spurr);
3461 vcpu->arch.purr = purr;
3462 vcpu->arch.spurr = spurr;
3463
3464 vcpu->arch.ic = mfspr(SPRN_IC);
3465 vcpu->arch.pid = mfspr(SPRN_PID);
3466 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3467
3468 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3469 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3470 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3471 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3472
3473 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3474 mtspr(SPRN_PSSCR, host_psscr |
3475 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3476 mtspr(SPRN_HFSCR, host_hfscr);
3477 mtspr(SPRN_CIABR, host_ciabr);
3478 mtspr(SPRN_DAWR, host_dawr);
3479 mtspr(SPRN_DAWRX, host_dawrx);
3480 mtspr(SPRN_PID, host_pidr);
3481
3482 /*
3483 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3484 * case we interrupted the guest between a tlbie and a ptesync.
3485 */
3486 asm volatile("eieio; tlbsync; ptesync");
3487
3488 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3489 isync();
3490
3491 vc->dpdes = mfspr(SPRN_DPDES);
3492 vc->vtb = mfspr(SPRN_VTB);
3493 mtspr(SPRN_DPDES, 0);
3494 if (vc->pcr)
3495 mtspr(SPRN_PCR, PCR_MASK);
3496
3497 if (vc->tb_offset_applied) {
3498 u64 new_tb = mftb() - vc->tb_offset_applied;
3499 mtspr(SPRN_TBU40, new_tb);
3500 tb = mftb();
3501 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3502 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3503 vc->tb_offset_applied = 0;
3504 }
3505
3506 mtspr(SPRN_HDEC, 0x7fffffff);
3507 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3508
3509 return trap;
3510 }
3511
3512 /*
3513 * Virtual-mode guest entry for POWER9 and later when the host and
3514 * guest are both using the radix MMU. The LPIDR has already been set.
3515 */
3516 int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3517 unsigned long lpcr)
3518 {
3519 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3520 unsigned long host_dscr = mfspr(SPRN_DSCR);
3521 unsigned long host_tidr = mfspr(SPRN_TIDR);
3522 unsigned long host_iamr = mfspr(SPRN_IAMR);
3523 unsigned long host_amr = mfspr(SPRN_AMR);
3524 s64 dec;
3525 u64 tb;
3526 int trap, save_pmu;
3527
3528 dec = mfspr(SPRN_DEC);
3529 tb = mftb();
3530 if (dec < 512)
3531 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3532 local_paca->kvm_hstate.dec_expires = dec + tb;
3533 if (local_paca->kvm_hstate.dec_expires < time_limit)
3534 time_limit = local_paca->kvm_hstate.dec_expires;
3535
3536 vcpu->arch.ceded = 0;
3537
3538 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3539
3540 kvmppc_subcore_enter_guest();
3541
3542 vc->entry_exit_map = 1;
3543 vc->in_guest = 1;
3544
3545 if (vcpu->arch.vpa.pinned_addr) {
3546 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3547 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3548 lp->yield_count = cpu_to_be32(yield_count);
3549 vcpu->arch.vpa.dirty = 1;
3550 }
3551
3552 if (cpu_has_feature(CPU_FTR_TM) ||
3553 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3554 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3555
3556 kvmhv_load_guest_pmu(vcpu);
3557
3558 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3559 load_fp_state(&vcpu->arch.fp);
3560 #ifdef CONFIG_ALTIVEC
3561 load_vr_state(&vcpu->arch.vr);
3562 #endif
3563 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3564
3565 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3566 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3567 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3568 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3569 mtspr(SPRN_TAR, vcpu->arch.tar);
3570 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3571 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3572 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3573 mtspr(SPRN_WORT, vcpu->arch.wort);
3574 mtspr(SPRN_TIDR, vcpu->arch.tid);
3575 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3576 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3577 mtspr(SPRN_AMR, vcpu->arch.amr);
3578 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3579
3580 if (!(vcpu->arch.ctrl & 1))
3581 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3582
3583 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3584
3585 if (kvmhv_on_pseries()) {
3586 /*
3587 * We need to save and restore the guest visible part of the
3588 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3589 * doesn't do this for us. Note only required if pseries since
3590 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3591 */
3592 unsigned long host_psscr;
3593 /* call our hypervisor to load up HV regs and go */
3594 struct hv_guest_state hvregs;
3595
3596 host_psscr = mfspr(SPRN_PSSCR_PR);
3597 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3598 kvmhv_save_hv_regs(vcpu, &hvregs);
3599 hvregs.lpcr = lpcr;
3600 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3601 hvregs.version = HV_GUEST_STATE_VERSION;
3602 if (vcpu->arch.nested) {
3603 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3604 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3605 } else {
3606 hvregs.lpid = vcpu->kvm->arch.lpid;
3607 hvregs.vcpu_token = vcpu->vcpu_id;
3608 }
3609 hvregs.hdec_expiry = time_limit;
3610 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3611 __pa(&vcpu->arch.regs));
3612 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3613 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3614 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3615 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3616 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3617 mtspr(SPRN_PSSCR_PR, host_psscr);
3618
3619 /* H_CEDE has to be handled now, not later */
3620 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3621 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3622 kvmppc_nested_cede(vcpu);
3623 kvmppc_set_gpr(vcpu, 3, 0);
3624 trap = 0;
3625 }
3626 } else {
3627 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3628 }
3629
3630 vcpu->arch.slb_max = 0;
3631 dec = mfspr(SPRN_DEC);
3632 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3633 dec = (s32) dec;
3634 tb = mftb();
3635 vcpu->arch.dec_expires = dec + tb;
3636 vcpu->cpu = -1;
3637 vcpu->arch.thread_cpu = -1;
3638 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3639
3640 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3641 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3642 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3643 vcpu->arch.tar = mfspr(SPRN_TAR);
3644 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3645 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3646 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3647 vcpu->arch.wort = mfspr(SPRN_WORT);
3648 vcpu->arch.tid = mfspr(SPRN_TIDR);
3649 vcpu->arch.amr = mfspr(SPRN_AMR);
3650 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3651 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3652
3653 mtspr(SPRN_PSPB, 0);
3654 mtspr(SPRN_WORT, 0);
3655 mtspr(SPRN_UAMOR, 0);
3656 mtspr(SPRN_DSCR, host_dscr);
3657 mtspr(SPRN_TIDR, host_tidr);
3658 mtspr(SPRN_IAMR, host_iamr);
3659 mtspr(SPRN_PSPB, 0);
3660
3661 if (host_amr != vcpu->arch.amr)
3662 mtspr(SPRN_AMR, host_amr);
3663
3664 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3665 store_fp_state(&vcpu->arch.fp);
3666 #ifdef CONFIG_ALTIVEC
3667 store_vr_state(&vcpu->arch.vr);
3668 #endif
3669 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3670
3671 if (cpu_has_feature(CPU_FTR_TM) ||
3672 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3673 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3674
3675 save_pmu = 1;
3676 if (vcpu->arch.vpa.pinned_addr) {
3677 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3678 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3679 lp->yield_count = cpu_to_be32(yield_count);
3680 vcpu->arch.vpa.dirty = 1;
3681 save_pmu = lp->pmcregs_in_use;
3682 }
3683 /* Must save pmu if this guest is capable of running nested guests */
3684 save_pmu |= nesting_enabled(vcpu->kvm);
3685
3686 kvmhv_save_guest_pmu(vcpu, save_pmu);
3687
3688 vc->entry_exit_map = 0x101;
3689 vc->in_guest = 0;
3690
3691 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3692 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3693
3694 kvmhv_load_host_pmu();
3695
3696 kvmppc_subcore_exit_guest();
3697
3698 return trap;
3699 }
3700
3701 /*
3702 * Wait for some other vcpu thread to execute us, and
3703 * wake us up when we need to handle something in the host.
3704 */
3705 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3706 struct kvm_vcpu *vcpu, int wait_state)
3707 {
3708 DEFINE_WAIT(wait);
3709
3710 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3711 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3712 spin_unlock(&vc->lock);
3713 schedule();
3714 spin_lock(&vc->lock);
3715 }
3716 finish_wait(&vcpu->arch.cpu_run, &wait);
3717 }
3718
3719 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3720 {
3721 if (!halt_poll_ns_grow)
3722 return;
3723
3724 vc->halt_poll_ns *= halt_poll_ns_grow;
3725 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3726 vc->halt_poll_ns = halt_poll_ns_grow_start;
3727 }
3728
3729 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3730 {
3731 if (halt_poll_ns_shrink == 0)
3732 vc->halt_poll_ns = 0;
3733 else
3734 vc->halt_poll_ns /= halt_poll_ns_shrink;
3735 }
3736
3737 #ifdef CONFIG_KVM_XICS
3738 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3739 {
3740 if (!xics_on_xive())
3741 return false;
3742 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3743 vcpu->arch.xive_saved_state.cppr;
3744 }
3745 #else
3746 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3747 {
3748 return false;
3749 }
3750 #endif /* CONFIG_KVM_XICS */
3751
3752 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3753 {
3754 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3755 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3756 return true;
3757
3758 return false;
3759 }
3760
3761 /*
3762 * Check to see if any of the runnable vcpus on the vcore have pending
3763 * exceptions or are no longer ceded
3764 */
3765 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3766 {
3767 struct kvm_vcpu *vcpu;
3768 int i;
3769
3770 for_each_runnable_thread(i, vcpu, vc) {
3771 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3772 return 1;
3773 }
3774
3775 return 0;
3776 }
3777
3778 /*
3779 * All the vcpus in this vcore are idle, so wait for a decrementer
3780 * or external interrupt to one of the vcpus. vc->lock is held.
3781 */
3782 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3783 {
3784 ktime_t cur, start_poll, start_wait;
3785 int do_sleep = 1;
3786 u64 block_ns;
3787 DECLARE_SWAITQUEUE(wait);
3788
3789 /* Poll for pending exceptions and ceded state */
3790 cur = start_poll = ktime_get();
3791 if (vc->halt_poll_ns) {
3792 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3793 ++vc->runner->stat.halt_attempted_poll;
3794
3795 vc->vcore_state = VCORE_POLLING;
3796 spin_unlock(&vc->lock);
3797
3798 do {
3799 if (kvmppc_vcore_check_block(vc)) {
3800 do_sleep = 0;
3801 break;
3802 }
3803 cur = ktime_get();
3804 } while (single_task_running() && ktime_before(cur, stop));
3805
3806 spin_lock(&vc->lock);
3807 vc->vcore_state = VCORE_INACTIVE;
3808
3809 if (!do_sleep) {
3810 ++vc->runner->stat.halt_successful_poll;
3811 goto out;
3812 }
3813 }
3814
3815 prepare_to_swait_exclusive(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3816
3817 if (kvmppc_vcore_check_block(vc)) {
3818 finish_swait(&vc->wq, &wait);
3819 do_sleep = 0;
3820 /* If we polled, count this as a successful poll */
3821 if (vc->halt_poll_ns)
3822 ++vc->runner->stat.halt_successful_poll;
3823 goto out;
3824 }
3825
3826 start_wait = ktime_get();
3827
3828 vc->vcore_state = VCORE_SLEEPING;
3829 trace_kvmppc_vcore_blocked(vc, 0);
3830 spin_unlock(&vc->lock);
3831 schedule();
3832 finish_swait(&vc->wq, &wait);
3833 spin_lock(&vc->lock);
3834 vc->vcore_state = VCORE_INACTIVE;
3835 trace_kvmppc_vcore_blocked(vc, 1);
3836 ++vc->runner->stat.halt_successful_wait;
3837
3838 cur = ktime_get();
3839
3840 out:
3841 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3842
3843 /* Attribute wait time */
3844 if (do_sleep) {
3845 vc->runner->stat.halt_wait_ns +=
3846 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3847 /* Attribute failed poll time */
3848 if (vc->halt_poll_ns)
3849 vc->runner->stat.halt_poll_fail_ns +=
3850 ktime_to_ns(start_wait) -
3851 ktime_to_ns(start_poll);
3852 } else {
3853 /* Attribute successful poll time */
3854 if (vc->halt_poll_ns)
3855 vc->runner->stat.halt_poll_success_ns +=
3856 ktime_to_ns(cur) -
3857 ktime_to_ns(start_poll);
3858 }
3859
3860 /* Adjust poll time */
3861 if (halt_poll_ns) {
3862 if (block_ns <= vc->halt_poll_ns)
3863 ;
3864 /* We slept and blocked for longer than the max halt time */
3865 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3866 shrink_halt_poll_ns(vc);
3867 /* We slept and our poll time is too small */
3868 else if (vc->halt_poll_ns < halt_poll_ns &&
3869 block_ns < halt_poll_ns)
3870 grow_halt_poll_ns(vc);
3871 if (vc->halt_poll_ns > halt_poll_ns)
3872 vc->halt_poll_ns = halt_poll_ns;
3873 } else
3874 vc->halt_poll_ns = 0;
3875
3876 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3877 }
3878
3879 /*
3880 * This never fails for a radix guest, as none of the operations it does
3881 * for a radix guest can fail or have a way to report failure.
3882 * kvmhv_run_single_vcpu() relies on this fact.
3883 */
3884 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3885 {
3886 int r = 0;
3887 struct kvm *kvm = vcpu->kvm;
3888
3889 mutex_lock(&kvm->arch.mmu_setup_lock);
3890 if (!kvm->arch.mmu_ready) {
3891 if (!kvm_is_radix(kvm))
3892 r = kvmppc_hv_setup_htab_rma(vcpu);
3893 if (!r) {
3894 if (cpu_has_feature(CPU_FTR_ARCH_300))
3895 kvmppc_setup_partition_table(kvm);
3896 kvm->arch.mmu_ready = 1;
3897 }
3898 }
3899 mutex_unlock(&kvm->arch.mmu_setup_lock);
3900 return r;
3901 }
3902
3903 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3904 {
3905 int n_ceded, i, r;
3906 struct kvmppc_vcore *vc;
3907 struct kvm_vcpu *v;
3908
3909 trace_kvmppc_run_vcpu_enter(vcpu);
3910
3911 kvm_run->exit_reason = 0;
3912 vcpu->arch.ret = RESUME_GUEST;
3913 vcpu->arch.trap = 0;
3914 kvmppc_update_vpas(vcpu);
3915
3916 /*
3917 * Synchronize with other threads in this virtual core
3918 */
3919 vc = vcpu->arch.vcore;
3920 spin_lock(&vc->lock);
3921 vcpu->arch.ceded = 0;
3922 vcpu->arch.run_task = current;
3923 vcpu->arch.kvm_run = kvm_run;
3924 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3925 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3926 vcpu->arch.busy_preempt = TB_NIL;
3927 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3928 ++vc->n_runnable;
3929
3930 /*
3931 * This happens the first time this is called for a vcpu.
3932 * If the vcore is already running, we may be able to start
3933 * this thread straight away and have it join in.
3934 */
3935 if (!signal_pending(current)) {
3936 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3937 vc->vcore_state == VCORE_RUNNING) &&
3938 !VCORE_IS_EXITING(vc)) {
3939 kvmppc_create_dtl_entry(vcpu, vc);
3940 kvmppc_start_thread(vcpu, vc);
3941 trace_kvm_guest_enter(vcpu);
3942 } else if (vc->vcore_state == VCORE_SLEEPING) {
3943 swake_up_one(&vc->wq);
3944 }
3945
3946 }
3947
3948 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3949 !signal_pending(current)) {
3950 /* See if the MMU is ready to go */
3951 if (!vcpu->kvm->arch.mmu_ready) {
3952 spin_unlock(&vc->lock);
3953 r = kvmhv_setup_mmu(vcpu);
3954 spin_lock(&vc->lock);
3955 if (r) {
3956 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3957 kvm_run->fail_entry.
3958 hardware_entry_failure_reason = 0;
3959 vcpu->arch.ret = r;
3960 break;
3961 }
3962 }
3963
3964 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3965 kvmppc_vcore_end_preempt(vc);
3966
3967 if (vc->vcore_state != VCORE_INACTIVE) {
3968 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3969 continue;
3970 }
3971 for_each_runnable_thread(i, v, vc) {
3972 kvmppc_core_prepare_to_enter(v);
3973 if (signal_pending(v->arch.run_task)) {
3974 kvmppc_remove_runnable(vc, v);
3975 v->stat.signal_exits++;
3976 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3977 v->arch.ret = -EINTR;
3978 wake_up(&v->arch.cpu_run);
3979 }
3980 }
3981 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3982 break;
3983 n_ceded = 0;
3984 for_each_runnable_thread(i, v, vc) {
3985 if (!kvmppc_vcpu_woken(v))
3986 n_ceded += v->arch.ceded;
3987 else
3988 v->arch.ceded = 0;
3989 }
3990 vc->runner = vcpu;
3991 if (n_ceded == vc->n_runnable) {
3992 kvmppc_vcore_blocked(vc);
3993 } else if (need_resched()) {
3994 kvmppc_vcore_preempt(vc);
3995 /* Let something else run */
3996 cond_resched_lock(&vc->lock);
3997 if (vc->vcore_state == VCORE_PREEMPT)
3998 kvmppc_vcore_end_preempt(vc);
3999 } else {
4000 kvmppc_run_core(vc);
4001 }
4002 vc->runner = NULL;
4003 }
4004
4005 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4006 (vc->vcore_state == VCORE_RUNNING ||
4007 vc->vcore_state == VCORE_EXITING ||
4008 vc->vcore_state == VCORE_PIGGYBACK))
4009 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4010
4011 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4012 kvmppc_vcore_end_preempt(vc);
4013
4014 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4015 kvmppc_remove_runnable(vc, vcpu);
4016 vcpu->stat.signal_exits++;
4017 kvm_run->exit_reason = KVM_EXIT_INTR;
4018 vcpu->arch.ret = -EINTR;
4019 }
4020
4021 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4022 /* Wake up some vcpu to run the core */
4023 i = -1;
4024 v = next_runnable_thread(vc, &i);
4025 wake_up(&v->arch.cpu_run);
4026 }
4027
4028 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4029 spin_unlock(&vc->lock);
4030 return vcpu->arch.ret;
4031 }
4032
4033 int kvmhv_run_single_vcpu(struct kvm_run *kvm_run,
4034 struct kvm_vcpu *vcpu, u64 time_limit,
4035 unsigned long lpcr)
4036 {
4037 int trap, r, pcpu;
4038 int srcu_idx, lpid;
4039 struct kvmppc_vcore *vc;
4040 struct kvm *kvm = vcpu->kvm;
4041 struct kvm_nested_guest *nested = vcpu->arch.nested;
4042
4043 trace_kvmppc_run_vcpu_enter(vcpu);
4044
4045 kvm_run->exit_reason = 0;
4046 vcpu->arch.ret = RESUME_GUEST;
4047 vcpu->arch.trap = 0;
4048
4049 vc = vcpu->arch.vcore;
4050 vcpu->arch.ceded = 0;
4051 vcpu->arch.run_task = current;
4052 vcpu->arch.kvm_run = kvm_run;
4053 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4054 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4055 vcpu->arch.busy_preempt = TB_NIL;
4056 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4057 vc->runnable_threads[0] = vcpu;
4058 vc->n_runnable = 1;
4059 vc->runner = vcpu;
4060
4061 /* See if the MMU is ready to go */
4062 if (!kvm->arch.mmu_ready)
4063 kvmhv_setup_mmu(vcpu);
4064
4065 if (need_resched())
4066 cond_resched();
4067
4068 kvmppc_update_vpas(vcpu);
4069
4070 init_vcore_to_run(vc);
4071 vc->preempt_tb = TB_NIL;
4072
4073 preempt_disable();
4074 pcpu = smp_processor_id();
4075 vc->pcpu = pcpu;
4076 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4077
4078 local_irq_disable();
4079 hard_irq_disable();
4080 if (signal_pending(current))
4081 goto sigpend;
4082 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4083 goto out;
4084
4085 if (!nested) {
4086 kvmppc_core_prepare_to_enter(vcpu);
4087 if (vcpu->arch.doorbell_request) {
4088 vc->dpdes = 1;
4089 smp_wmb();
4090 vcpu->arch.doorbell_request = 0;
4091 }
4092 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4093 &vcpu->arch.pending_exceptions))
4094 lpcr |= LPCR_MER;
4095 } else if (vcpu->arch.pending_exceptions ||
4096 vcpu->arch.doorbell_request ||
4097 xive_interrupt_pending(vcpu)) {
4098 vcpu->arch.ret = RESUME_HOST;
4099 goto out;
4100 }
4101
4102 kvmppc_clear_host_core(pcpu);
4103
4104 local_paca->kvm_hstate.tid = 0;
4105 local_paca->kvm_hstate.napping = 0;
4106 local_paca->kvm_hstate.kvm_split_mode = NULL;
4107 kvmppc_start_thread(vcpu, vc);
4108 kvmppc_create_dtl_entry(vcpu, vc);
4109 trace_kvm_guest_enter(vcpu);
4110
4111 vc->vcore_state = VCORE_RUNNING;
4112 trace_kvmppc_run_core(vc, 0);
4113
4114 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4115 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4116 mtspr(SPRN_LPID, lpid);
4117 isync();
4118 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4119 }
4120
4121 guest_enter_irqoff();
4122
4123 srcu_idx = srcu_read_lock(&kvm->srcu);
4124
4125 this_cpu_disable_ftrace();
4126
4127 /* Tell lockdep that we're about to enable interrupts */
4128 trace_hardirqs_on();
4129
4130 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4131 vcpu->arch.trap = trap;
4132
4133 trace_hardirqs_off();
4134
4135 this_cpu_enable_ftrace();
4136
4137 srcu_read_unlock(&kvm->srcu, srcu_idx);
4138
4139 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4140 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4141 isync();
4142 }
4143
4144 set_irq_happened(trap);
4145
4146 kvmppc_set_host_core(pcpu);
4147
4148 local_irq_enable();
4149 guest_exit();
4150
4151 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4152
4153 preempt_enable();
4154
4155 /*
4156 * cancel pending decrementer exception if DEC is now positive, or if
4157 * entering a nested guest in which case the decrementer is now owned
4158 * by L2 and the L1 decrementer is provided in hdec_expires
4159 */
4160 if (kvmppc_core_pending_dec(vcpu) &&
4161 ((get_tb() < vcpu->arch.dec_expires) ||
4162 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4163 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4164 kvmppc_core_dequeue_dec(vcpu);
4165
4166 trace_kvm_guest_exit(vcpu);
4167 r = RESUME_GUEST;
4168 if (trap) {
4169 if (!nested)
4170 r = kvmppc_handle_exit_hv(kvm_run, vcpu, current);
4171 else
4172 r = kvmppc_handle_nested_exit(kvm_run, vcpu);
4173 }
4174 vcpu->arch.ret = r;
4175
4176 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4177 !kvmppc_vcpu_woken(vcpu)) {
4178 kvmppc_set_timer(vcpu);
4179 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4180 if (signal_pending(current)) {
4181 vcpu->stat.signal_exits++;
4182 kvm_run->exit_reason = KVM_EXIT_INTR;
4183 vcpu->arch.ret = -EINTR;
4184 break;
4185 }
4186 spin_lock(&vc->lock);
4187 kvmppc_vcore_blocked(vc);
4188 spin_unlock(&vc->lock);
4189 }
4190 }
4191 vcpu->arch.ceded = 0;
4192
4193 vc->vcore_state = VCORE_INACTIVE;
4194 trace_kvmppc_run_core(vc, 1);
4195
4196 done:
4197 kvmppc_remove_runnable(vc, vcpu);
4198 trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
4199
4200 return vcpu->arch.ret;
4201
4202 sigpend:
4203 vcpu->stat.signal_exits++;
4204 kvm_run->exit_reason = KVM_EXIT_INTR;
4205 vcpu->arch.ret = -EINTR;
4206 out:
4207 local_irq_enable();
4208 preempt_enable();
4209 goto done;
4210 }
4211
4212 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
4213 {
4214 int r;
4215 int srcu_idx;
4216 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4217 unsigned long user_tar = 0;
4218 unsigned int user_vrsave;
4219 struct kvm *kvm;
4220
4221 if (!vcpu->arch.sane) {
4222 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4223 return -EINVAL;
4224 }
4225
4226 /*
4227 * Don't allow entry with a suspended transaction, because
4228 * the guest entry/exit code will lose it.
4229 * If the guest has TM enabled, save away their TM-related SPRs
4230 * (they will get restored by the TM unavailable interrupt).
4231 */
4232 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4233 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4234 (current->thread.regs->msr & MSR_TM)) {
4235 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4236 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4237 run->fail_entry.hardware_entry_failure_reason = 0;
4238 return -EINVAL;
4239 }
4240 /* Enable TM so we can read the TM SPRs */
4241 mtmsr(mfmsr() | MSR_TM);
4242 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4243 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4244 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4245 current->thread.regs->msr &= ~MSR_TM;
4246 }
4247 #endif
4248
4249 /*
4250 * Force online to 1 for the sake of old userspace which doesn't
4251 * set it.
4252 */
4253 if (!vcpu->arch.online) {
4254 atomic_inc(&vcpu->arch.vcore->online_count);
4255 vcpu->arch.online = 1;
4256 }
4257
4258 kvmppc_core_prepare_to_enter(vcpu);
4259
4260 /* No need to go into the guest when all we'll do is come back out */
4261 if (signal_pending(current)) {
4262 run->exit_reason = KVM_EXIT_INTR;
4263 return -EINTR;
4264 }
4265
4266 kvm = vcpu->kvm;
4267 atomic_inc(&kvm->arch.vcpus_running);
4268 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4269 smp_mb();
4270
4271 flush_all_to_thread(current);
4272
4273 /* Save userspace EBB and other register values */
4274 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4275 ebb_regs[0] = mfspr(SPRN_EBBHR);
4276 ebb_regs[1] = mfspr(SPRN_EBBRR);
4277 ebb_regs[2] = mfspr(SPRN_BESCR);
4278 user_tar = mfspr(SPRN_TAR);
4279 }
4280 user_vrsave = mfspr(SPRN_VRSAVE);
4281
4282 vcpu->arch.wqp = &vcpu->arch.vcore->wq;
4283 vcpu->arch.pgdir = kvm->mm->pgd;
4284 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4285
4286 do {
4287 /*
4288 * The early POWER9 chips that can't mix radix and HPT threads
4289 * on the same core also need the workaround for the problem
4290 * where the TLB would prefetch entries in the guest exit path
4291 * for radix guests using the guest PIDR value and LPID 0.
4292 * The workaround is in the old path (kvmppc_run_vcpu())
4293 * but not the new path (kvmhv_run_single_vcpu()).
4294 */
4295 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4296 !no_mixing_hpt_and_radix)
4297 r = kvmhv_run_single_vcpu(run, vcpu, ~(u64)0,
4298 vcpu->arch.vcore->lpcr);
4299 else
4300 r = kvmppc_run_vcpu(run, vcpu);
4301
4302 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4303 !(vcpu->arch.shregs.msr & MSR_PR)) {
4304 trace_kvm_hcall_enter(vcpu);
4305 r = kvmppc_pseries_do_hcall(vcpu);
4306 trace_kvm_hcall_exit(vcpu, r);
4307 kvmppc_core_prepare_to_enter(vcpu);
4308 } else if (r == RESUME_PAGE_FAULT) {
4309 srcu_idx = srcu_read_lock(&kvm->srcu);
4310 r = kvmppc_book3s_hv_page_fault(run, vcpu,
4311 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4312 srcu_read_unlock(&kvm->srcu, srcu_idx);
4313 } else if (r == RESUME_PASSTHROUGH) {
4314 if (WARN_ON(xics_on_xive()))
4315 r = H_SUCCESS;
4316 else
4317 r = kvmppc_xics_rm_complete(vcpu, 0);
4318 }
4319 } while (is_kvmppc_resume_guest(r));
4320
4321 /* Restore userspace EBB and other register values */
4322 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4323 mtspr(SPRN_EBBHR, ebb_regs[0]);
4324 mtspr(SPRN_EBBRR, ebb_regs[1]);
4325 mtspr(SPRN_BESCR, ebb_regs[2]);
4326 mtspr(SPRN_TAR, user_tar);
4327 mtspr(SPRN_FSCR, current->thread.fscr);
4328 }
4329 mtspr(SPRN_VRSAVE, user_vrsave);
4330
4331 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4332 atomic_dec(&kvm->arch.vcpus_running);
4333 return r;
4334 }
4335
4336 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4337 int shift, int sllp)
4338 {
4339 (*sps)->page_shift = shift;
4340 (*sps)->slb_enc = sllp;
4341 (*sps)->enc[0].page_shift = shift;
4342 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4343 /*
4344 * Add 16MB MPSS support (may get filtered out by userspace)
4345 */
4346 if (shift != 24) {
4347 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4348 if (penc != -1) {
4349 (*sps)->enc[1].page_shift = 24;
4350 (*sps)->enc[1].pte_enc = penc;
4351 }
4352 }
4353 (*sps)++;
4354 }
4355
4356 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4357 struct kvm_ppc_smmu_info *info)
4358 {
4359 struct kvm_ppc_one_seg_page_size *sps;
4360
4361 /*
4362 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4363 * POWER7 doesn't support keys for instruction accesses,
4364 * POWER8 and POWER9 do.
4365 */
4366 info->data_keys = 32;
4367 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4368
4369 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4370 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4371 info->slb_size = 32;
4372
4373 /* We only support these sizes for now, and no muti-size segments */
4374 sps = &info->sps[0];
4375 kvmppc_add_seg_page_size(&sps, 12, 0);
4376 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4377 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4378
4379 /* If running as a nested hypervisor, we don't support HPT guests */
4380 if (kvmhv_on_pseries())
4381 info->flags |= KVM_PPC_NO_HASH;
4382
4383 return 0;
4384 }
4385
4386 /*
4387 * Get (and clear) the dirty memory log for a memory slot.
4388 */
4389 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4390 struct kvm_dirty_log *log)
4391 {
4392 struct kvm_memslots *slots;
4393 struct kvm_memory_slot *memslot;
4394 int i, r;
4395 unsigned long n;
4396 unsigned long *buf, *p;
4397 struct kvm_vcpu *vcpu;
4398
4399 mutex_lock(&kvm->slots_lock);
4400
4401 r = -EINVAL;
4402 if (log->slot >= KVM_USER_MEM_SLOTS)
4403 goto out;
4404
4405 slots = kvm_memslots(kvm);
4406 memslot = id_to_memslot(slots, log->slot);
4407 r = -ENOENT;
4408 if (!memslot || !memslot->dirty_bitmap)
4409 goto out;
4410
4411 /*
4412 * Use second half of bitmap area because both HPT and radix
4413 * accumulate bits in the first half.
4414 */
4415 n = kvm_dirty_bitmap_bytes(memslot);
4416 buf = memslot->dirty_bitmap + n / sizeof(long);
4417 memset(buf, 0, n);
4418
4419 if (kvm_is_radix(kvm))
4420 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4421 else
4422 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4423 if (r)
4424 goto out;
4425
4426 /*
4427 * We accumulate dirty bits in the first half of the
4428 * memslot's dirty_bitmap area, for when pages are paged
4429 * out or modified by the host directly. Pick up these
4430 * bits and add them to the map.
4431 */
4432 p = memslot->dirty_bitmap;
4433 for (i = 0; i < n / sizeof(long); ++i)
4434 buf[i] |= xchg(&p[i], 0);
4435
4436 /* Harvest dirty bits from VPA and DTL updates */
4437 /* Note: we never modify the SLB shadow buffer areas */
4438 kvm_for_each_vcpu(i, vcpu, kvm) {
4439 spin_lock(&vcpu->arch.vpa_update_lock);
4440 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4441 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4442 spin_unlock(&vcpu->arch.vpa_update_lock);
4443 }
4444
4445 r = -EFAULT;
4446 if (copy_to_user(log->dirty_bitmap, buf, n))
4447 goto out;
4448
4449 r = 0;
4450 out:
4451 mutex_unlock(&kvm->slots_lock);
4452 return r;
4453 }
4454
4455 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4456 {
4457 vfree(slot->arch.rmap);
4458 slot->arch.rmap = NULL;
4459 }
4460
4461 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4462 struct kvm_memory_slot *slot,
4463 const struct kvm_userspace_memory_region *mem,
4464 enum kvm_mr_change change)
4465 {
4466 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4467
4468 if (change == KVM_MR_CREATE) {
4469 slot->arch.rmap = vzalloc(array_size(npages,
4470 sizeof(*slot->arch.rmap)));
4471 if (!slot->arch.rmap)
4472 return -ENOMEM;
4473 }
4474
4475 return 0;
4476 }
4477
4478 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4479 const struct kvm_userspace_memory_region *mem,
4480 const struct kvm_memory_slot *old,
4481 const struct kvm_memory_slot *new,
4482 enum kvm_mr_change change)
4483 {
4484 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4485
4486 /*
4487 * If we are making a new memslot, it might make
4488 * some address that was previously cached as emulated
4489 * MMIO be no longer emulated MMIO, so invalidate
4490 * all the caches of emulated MMIO translations.
4491 */
4492 if (npages)
4493 atomic64_inc(&kvm->arch.mmio_update);
4494
4495 /*
4496 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4497 * have already called kvm_arch_flush_shadow_memslot() to
4498 * flush shadow mappings. For KVM_MR_CREATE we have no
4499 * previous mappings. So the only case to handle is
4500 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4501 * has been changed.
4502 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4503 * to get rid of any THP PTEs in the partition-scoped page tables
4504 * so we can track dirtiness at the page level; we flush when
4505 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4506 * using THP PTEs.
4507 */
4508 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4509 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4510 kvmppc_radix_flush_memslot(kvm, old);
4511 /*
4512 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4513 */
4514 if (!kvm->arch.secure_guest)
4515 return;
4516
4517 switch (change) {
4518 case KVM_MR_CREATE:
4519 if (kvmppc_uvmem_slot_init(kvm, new))
4520 return;
4521 uv_register_mem_slot(kvm->arch.lpid,
4522 new->base_gfn << PAGE_SHIFT,
4523 new->npages * PAGE_SIZE,
4524 0, new->id);
4525 break;
4526 case KVM_MR_DELETE:
4527 uv_unregister_mem_slot(kvm->arch.lpid, old->id);
4528 kvmppc_uvmem_slot_free(kvm, old);
4529 break;
4530 default:
4531 /* TODO: Handle KVM_MR_MOVE */
4532 break;
4533 }
4534 }
4535
4536 /*
4537 * Update LPCR values in kvm->arch and in vcores.
4538 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4539 * of kvm->arch.lpcr update).
4540 */
4541 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4542 {
4543 long int i;
4544 u32 cores_done = 0;
4545
4546 if ((kvm->arch.lpcr & mask) == lpcr)
4547 return;
4548
4549 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4550
4551 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4552 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4553 if (!vc)
4554 continue;
4555 spin_lock(&vc->lock);
4556 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4557 spin_unlock(&vc->lock);
4558 if (++cores_done >= kvm->arch.online_vcores)
4559 break;
4560 }
4561 }
4562
4563 void kvmppc_setup_partition_table(struct kvm *kvm)
4564 {
4565 unsigned long dw0, dw1;
4566
4567 if (!kvm_is_radix(kvm)) {
4568 /* PS field - page size for VRMA */
4569 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4570 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4571 /* HTABSIZE and HTABORG fields */
4572 dw0 |= kvm->arch.sdr1;
4573
4574 /* Second dword as set by userspace */
4575 dw1 = kvm->arch.process_table;
4576 } else {
4577 dw0 = PATB_HR | radix__get_tree_size() |
4578 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4579 dw1 = PATB_GR | kvm->arch.process_table;
4580 }
4581 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4582 }
4583
4584 /*
4585 * Set up HPT (hashed page table) and RMA (real-mode area).
4586 * Must be called with kvm->arch.mmu_setup_lock held.
4587 */
4588 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4589 {
4590 int err = 0;
4591 struct kvm *kvm = vcpu->kvm;
4592 unsigned long hva;
4593 struct kvm_memory_slot *memslot;
4594 struct vm_area_struct *vma;
4595 unsigned long lpcr = 0, senc;
4596 unsigned long psize, porder;
4597 int srcu_idx;
4598
4599 /* Allocate hashed page table (if not done already) and reset it */
4600 if (!kvm->arch.hpt.virt) {
4601 int order = KVM_DEFAULT_HPT_ORDER;
4602 struct kvm_hpt_info info;
4603
4604 err = kvmppc_allocate_hpt(&info, order);
4605 /* If we get here, it means userspace didn't specify a
4606 * size explicitly. So, try successively smaller
4607 * sizes if the default failed. */
4608 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4609 err = kvmppc_allocate_hpt(&info, order);
4610
4611 if (err < 0) {
4612 pr_err("KVM: Couldn't alloc HPT\n");
4613 goto out;
4614 }
4615
4616 kvmppc_set_hpt(kvm, &info);
4617 }
4618
4619 /* Look up the memslot for guest physical address 0 */
4620 srcu_idx = srcu_read_lock(&kvm->srcu);
4621 memslot = gfn_to_memslot(kvm, 0);
4622
4623 /* We must have some memory at 0 by now */
4624 err = -EINVAL;
4625 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4626 goto out_srcu;
4627
4628 /* Look up the VMA for the start of this memory slot */
4629 hva = memslot->userspace_addr;
4630 down_read(&kvm->mm->mmap_sem);
4631 vma = find_vma(kvm->mm, hva);
4632 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4633 goto up_out;
4634
4635 psize = vma_kernel_pagesize(vma);
4636
4637 up_read(&kvm->mm->mmap_sem);
4638
4639 /* We can handle 4k, 64k or 16M pages in the VRMA */
4640 if (psize >= 0x1000000)
4641 psize = 0x1000000;
4642 else if (psize >= 0x10000)
4643 psize = 0x10000;
4644 else
4645 psize = 0x1000;
4646 porder = __ilog2(psize);
4647
4648 senc = slb_pgsize_encoding(psize);
4649 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4650 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4651 /* Create HPTEs in the hash page table for the VRMA */
4652 kvmppc_map_vrma(vcpu, memslot, porder);
4653
4654 /* Update VRMASD field in the LPCR */
4655 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4656 /* the -4 is to account for senc values starting at 0x10 */
4657 lpcr = senc << (LPCR_VRMASD_SH - 4);
4658 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4659 }
4660
4661 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4662 smp_wmb();
4663 err = 0;
4664 out_srcu:
4665 srcu_read_unlock(&kvm->srcu, srcu_idx);
4666 out:
4667 return err;
4668
4669 up_out:
4670 up_read(&kvm->mm->mmap_sem);
4671 goto out_srcu;
4672 }
4673
4674 /*
4675 * Must be called with kvm->arch.mmu_setup_lock held and
4676 * mmu_ready = 0 and no vcpus running.
4677 */
4678 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4679 {
4680 if (nesting_enabled(kvm))
4681 kvmhv_release_all_nested(kvm);
4682 kvmppc_rmap_reset(kvm);
4683 kvm->arch.process_table = 0;
4684 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4685 spin_lock(&kvm->mmu_lock);
4686 kvm->arch.radix = 0;
4687 spin_unlock(&kvm->mmu_lock);
4688 kvmppc_free_radix(kvm);
4689 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4690 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4691 return 0;
4692 }
4693
4694 /*
4695 * Must be called with kvm->arch.mmu_setup_lock held and
4696 * mmu_ready = 0 and no vcpus running.
4697 */
4698 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4699 {
4700 int err;
4701
4702 err = kvmppc_init_vm_radix(kvm);
4703 if (err)
4704 return err;
4705 kvmppc_rmap_reset(kvm);
4706 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4707 spin_lock(&kvm->mmu_lock);
4708 kvm->arch.radix = 1;
4709 spin_unlock(&kvm->mmu_lock);
4710 kvmppc_free_hpt(&kvm->arch.hpt);
4711 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4712 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4713 return 0;
4714 }
4715
4716 #ifdef CONFIG_KVM_XICS
4717 /*
4718 * Allocate a per-core structure for managing state about which cores are
4719 * running in the host versus the guest and for exchanging data between
4720 * real mode KVM and CPU running in the host.
4721 * This is only done for the first VM.
4722 * The allocated structure stays even if all VMs have stopped.
4723 * It is only freed when the kvm-hv module is unloaded.
4724 * It's OK for this routine to fail, we just don't support host
4725 * core operations like redirecting H_IPI wakeups.
4726 */
4727 void kvmppc_alloc_host_rm_ops(void)
4728 {
4729 struct kvmppc_host_rm_ops *ops;
4730 unsigned long l_ops;
4731 int cpu, core;
4732 int size;
4733
4734 /* Not the first time here ? */
4735 if (kvmppc_host_rm_ops_hv != NULL)
4736 return;
4737
4738 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4739 if (!ops)
4740 return;
4741
4742 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4743 ops->rm_core = kzalloc(size, GFP_KERNEL);
4744
4745 if (!ops->rm_core) {
4746 kfree(ops);
4747 return;
4748 }
4749
4750 cpus_read_lock();
4751
4752 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4753 if (!cpu_online(cpu))
4754 continue;
4755
4756 core = cpu >> threads_shift;
4757 ops->rm_core[core].rm_state.in_host = 1;
4758 }
4759
4760 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4761
4762 /*
4763 * Make the contents of the kvmppc_host_rm_ops structure visible
4764 * to other CPUs before we assign it to the global variable.
4765 * Do an atomic assignment (no locks used here), but if someone
4766 * beats us to it, just free our copy and return.
4767 */
4768 smp_wmb();
4769 l_ops = (unsigned long) ops;
4770
4771 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4772 cpus_read_unlock();
4773 kfree(ops->rm_core);
4774 kfree(ops);
4775 return;
4776 }
4777
4778 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4779 "ppc/kvm_book3s:prepare",
4780 kvmppc_set_host_core,
4781 kvmppc_clear_host_core);
4782 cpus_read_unlock();
4783 }
4784
4785 void kvmppc_free_host_rm_ops(void)
4786 {
4787 if (kvmppc_host_rm_ops_hv) {
4788 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4789 kfree(kvmppc_host_rm_ops_hv->rm_core);
4790 kfree(kvmppc_host_rm_ops_hv);
4791 kvmppc_host_rm_ops_hv = NULL;
4792 }
4793 }
4794 #endif
4795
4796 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4797 {
4798 unsigned long lpcr, lpid;
4799 char buf[32];
4800 int ret;
4801
4802 mutex_init(&kvm->arch.uvmem_lock);
4803 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4804 mutex_init(&kvm->arch.mmu_setup_lock);
4805
4806 /* Allocate the guest's logical partition ID */
4807
4808 lpid = kvmppc_alloc_lpid();
4809 if ((long)lpid < 0)
4810 return -ENOMEM;
4811 kvm->arch.lpid = lpid;
4812
4813 kvmppc_alloc_host_rm_ops();
4814
4815 kvmhv_vm_nested_init(kvm);
4816
4817 /*
4818 * Since we don't flush the TLB when tearing down a VM,
4819 * and this lpid might have previously been used,
4820 * make sure we flush on each core before running the new VM.
4821 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4822 * does this flush for us.
4823 */
4824 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4825 cpumask_setall(&kvm->arch.need_tlb_flush);
4826
4827 /* Start out with the default set of hcalls enabled */
4828 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4829 sizeof(kvm->arch.enabled_hcalls));
4830
4831 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4832 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4833
4834 /* Init LPCR for virtual RMA mode */
4835 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4836 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4837 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4838 lpcr &= LPCR_PECE | LPCR_LPES;
4839 } else {
4840 lpcr = 0;
4841 }
4842 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4843 LPCR_VPM0 | LPCR_VPM1;
4844 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4845 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4846 /* On POWER8 turn on online bit to enable PURR/SPURR */
4847 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4848 lpcr |= LPCR_ONL;
4849 /*
4850 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4851 * Set HVICE bit to enable hypervisor virtualization interrupts.
4852 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4853 * be unnecessary but better safe than sorry in case we re-enable
4854 * EE in HV mode with this LPCR still set)
4855 */
4856 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4857 lpcr &= ~LPCR_VPM0;
4858 lpcr |= LPCR_HVICE | LPCR_HEIC;
4859
4860 /*
4861 * If xive is enabled, we route 0x500 interrupts directly
4862 * to the guest.
4863 */
4864 if (xics_on_xive())
4865 lpcr |= LPCR_LPES;
4866 }
4867
4868 /*
4869 * If the host uses radix, the guest starts out as radix.
4870 */
4871 if (radix_enabled()) {
4872 kvm->arch.radix = 1;
4873 kvm->arch.mmu_ready = 1;
4874 lpcr &= ~LPCR_VPM1;
4875 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4876 ret = kvmppc_init_vm_radix(kvm);
4877 if (ret) {
4878 kvmppc_free_lpid(kvm->arch.lpid);
4879 return ret;
4880 }
4881 kvmppc_setup_partition_table(kvm);
4882 }
4883
4884 kvm->arch.lpcr = lpcr;
4885
4886 /* Initialization for future HPT resizes */
4887 kvm->arch.resize_hpt = NULL;
4888
4889 /*
4890 * Work out how many sets the TLB has, for the use of
4891 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4892 */
4893 if (radix_enabled())
4894 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4895 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4896 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4897 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4898 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4899 else
4900 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4901
4902 /*
4903 * Track that we now have a HV mode VM active. This blocks secondary
4904 * CPU threads from coming online.
4905 * On POWER9, we only need to do this if the "indep_threads_mode"
4906 * module parameter has been set to N.
4907 */
4908 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4909 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4910 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4911 kvm->arch.threads_indep = true;
4912 } else {
4913 kvm->arch.threads_indep = indep_threads_mode;
4914 }
4915 }
4916 if (!kvm->arch.threads_indep)
4917 kvm_hv_vm_activated();
4918
4919 /*
4920 * Initialize smt_mode depending on processor.
4921 * POWER8 and earlier have to use "strict" threading, where
4922 * all vCPUs in a vcore have to run on the same (sub)core,
4923 * whereas on POWER9 the threads can each run a different
4924 * guest.
4925 */
4926 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4927 kvm->arch.smt_mode = threads_per_subcore;
4928 else
4929 kvm->arch.smt_mode = 1;
4930 kvm->arch.emul_smt_mode = 1;
4931
4932 /*
4933 * Create a debugfs directory for the VM
4934 */
4935 snprintf(buf, sizeof(buf), "vm%d", current->pid);
4936 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4937 kvmppc_mmu_debugfs_init(kvm);
4938 if (radix_enabled())
4939 kvmhv_radix_debugfs_init(kvm);
4940
4941 return 0;
4942 }
4943
4944 static void kvmppc_free_vcores(struct kvm *kvm)
4945 {
4946 long int i;
4947
4948 for (i = 0; i < KVM_MAX_VCORES; ++i)
4949 kfree(kvm->arch.vcores[i]);
4950 kvm->arch.online_vcores = 0;
4951 }
4952
4953 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
4954 {
4955 debugfs_remove_recursive(kvm->arch.debugfs_dir);
4956
4957 if (!kvm->arch.threads_indep)
4958 kvm_hv_vm_deactivated();
4959
4960 kvmppc_free_vcores(kvm);
4961
4962
4963 if (kvm_is_radix(kvm))
4964 kvmppc_free_radix(kvm);
4965 else
4966 kvmppc_free_hpt(&kvm->arch.hpt);
4967
4968 /* Perform global invalidation and return lpid to the pool */
4969 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4970 if (nesting_enabled(kvm))
4971 kvmhv_release_all_nested(kvm);
4972 kvm->arch.process_table = 0;
4973 if (kvm->arch.secure_guest)
4974 uv_svm_terminate(kvm->arch.lpid);
4975 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
4976 }
4977
4978 kvmppc_free_lpid(kvm->arch.lpid);
4979
4980 kvmppc_free_pimap(kvm);
4981 }
4982
4983 /* We don't need to emulate any privileged instructions or dcbz */
4984 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
4985 unsigned int inst, int *advance)
4986 {
4987 return EMULATE_FAIL;
4988 }
4989
4990 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
4991 ulong spr_val)
4992 {
4993 return EMULATE_FAIL;
4994 }
4995
4996 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
4997 ulong *spr_val)
4998 {
4999 return EMULATE_FAIL;
5000 }
5001
5002 static int kvmppc_core_check_processor_compat_hv(void)
5003 {
5004 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5005 cpu_has_feature(CPU_FTR_ARCH_206))
5006 return 0;
5007
5008 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5009 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5010 return 0;
5011
5012 return -EIO;
5013 }
5014
5015 #ifdef CONFIG_KVM_XICS
5016
5017 void kvmppc_free_pimap(struct kvm *kvm)
5018 {
5019 kfree(kvm->arch.pimap);
5020 }
5021
5022 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5023 {
5024 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5025 }
5026
5027 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5028 {
5029 struct irq_desc *desc;
5030 struct kvmppc_irq_map *irq_map;
5031 struct kvmppc_passthru_irqmap *pimap;
5032 struct irq_chip *chip;
5033 int i, rc = 0;
5034
5035 if (!kvm_irq_bypass)
5036 return 1;
5037
5038 desc = irq_to_desc(host_irq);
5039 if (!desc)
5040 return -EIO;
5041
5042 mutex_lock(&kvm->lock);
5043
5044 pimap = kvm->arch.pimap;
5045 if (pimap == NULL) {
5046 /* First call, allocate structure to hold IRQ map */
5047 pimap = kvmppc_alloc_pimap();
5048 if (pimap == NULL) {
5049 mutex_unlock(&kvm->lock);
5050 return -ENOMEM;
5051 }
5052 kvm->arch.pimap = pimap;
5053 }
5054
5055 /*
5056 * For now, we only support interrupts for which the EOI operation
5057 * is an OPAL call followed by a write to XIRR, since that's
5058 * what our real-mode EOI code does, or a XIVE interrupt
5059 */
5060 chip = irq_data_get_irq_chip(&desc->irq_data);
5061 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5062 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5063 host_irq, guest_gsi);
5064 mutex_unlock(&kvm->lock);
5065 return -ENOENT;
5066 }
5067
5068 /*
5069 * See if we already have an entry for this guest IRQ number.
5070 * If it's mapped to a hardware IRQ number, that's an error,
5071 * otherwise re-use this entry.
5072 */
5073 for (i = 0; i < pimap->n_mapped; i++) {
5074 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5075 if (pimap->mapped[i].r_hwirq) {
5076 mutex_unlock(&kvm->lock);
5077 return -EINVAL;
5078 }
5079 break;
5080 }
5081 }
5082
5083 if (i == KVMPPC_PIRQ_MAPPED) {
5084 mutex_unlock(&kvm->lock);
5085 return -EAGAIN; /* table is full */
5086 }
5087
5088 irq_map = &pimap->mapped[i];
5089
5090 irq_map->v_hwirq = guest_gsi;
5091 irq_map->desc = desc;
5092
5093 /*
5094 * Order the above two stores before the next to serialize with
5095 * the KVM real mode handler.
5096 */
5097 smp_wmb();
5098 irq_map->r_hwirq = desc->irq_data.hwirq;
5099
5100 if (i == pimap->n_mapped)
5101 pimap->n_mapped++;
5102
5103 if (xics_on_xive())
5104 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5105 else
5106 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5107 if (rc)
5108 irq_map->r_hwirq = 0;
5109
5110 mutex_unlock(&kvm->lock);
5111
5112 return 0;
5113 }
5114
5115 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5116 {
5117 struct irq_desc *desc;
5118 struct kvmppc_passthru_irqmap *pimap;
5119 int i, rc = 0;
5120
5121 if (!kvm_irq_bypass)
5122 return 0;
5123
5124 desc = irq_to_desc(host_irq);
5125 if (!desc)
5126 return -EIO;
5127
5128 mutex_lock(&kvm->lock);
5129 if (!kvm->arch.pimap)
5130 goto unlock;
5131
5132 pimap = kvm->arch.pimap;
5133
5134 for (i = 0; i < pimap->n_mapped; i++) {
5135 if (guest_gsi == pimap->mapped[i].v_hwirq)
5136 break;
5137 }
5138
5139 if (i == pimap->n_mapped) {
5140 mutex_unlock(&kvm->lock);
5141 return -ENODEV;
5142 }
5143
5144 if (xics_on_xive())
5145 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5146 else
5147 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5148
5149 /* invalidate the entry (what do do on error from the above ?) */
5150 pimap->mapped[i].r_hwirq = 0;
5151
5152 /*
5153 * We don't free this structure even when the count goes to
5154 * zero. The structure is freed when we destroy the VM.
5155 */
5156 unlock:
5157 mutex_unlock(&kvm->lock);
5158 return rc;
5159 }
5160
5161 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5162 struct irq_bypass_producer *prod)
5163 {
5164 int ret = 0;
5165 struct kvm_kernel_irqfd *irqfd =
5166 container_of(cons, struct kvm_kernel_irqfd, consumer);
5167
5168 irqfd->producer = prod;
5169
5170 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5171 if (ret)
5172 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5173 prod->irq, irqfd->gsi, ret);
5174
5175 return ret;
5176 }
5177
5178 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5179 struct irq_bypass_producer *prod)
5180 {
5181 int ret;
5182 struct kvm_kernel_irqfd *irqfd =
5183 container_of(cons, struct kvm_kernel_irqfd, consumer);
5184
5185 irqfd->producer = NULL;
5186
5187 /*
5188 * When producer of consumer is unregistered, we change back to
5189 * default external interrupt handling mode - KVM real mode
5190 * will switch back to host.
5191 */
5192 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5193 if (ret)
5194 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5195 prod->irq, irqfd->gsi, ret);
5196 }
5197 #endif
5198
5199 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5200 unsigned int ioctl, unsigned long arg)
5201 {
5202 struct kvm *kvm __maybe_unused = filp->private_data;
5203 void __user *argp = (void __user *)arg;
5204 long r;
5205
5206 switch (ioctl) {
5207
5208 case KVM_PPC_ALLOCATE_HTAB: {
5209 u32 htab_order;
5210
5211 r = -EFAULT;
5212 if (get_user(htab_order, (u32 __user *)argp))
5213 break;
5214 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5215 if (r)
5216 break;
5217 r = 0;
5218 break;
5219 }
5220
5221 case KVM_PPC_GET_HTAB_FD: {
5222 struct kvm_get_htab_fd ghf;
5223
5224 r = -EFAULT;
5225 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5226 break;
5227 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5228 break;
5229 }
5230
5231 case KVM_PPC_RESIZE_HPT_PREPARE: {
5232 struct kvm_ppc_resize_hpt rhpt;
5233
5234 r = -EFAULT;
5235 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5236 break;
5237
5238 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5239 break;
5240 }
5241
5242 case KVM_PPC_RESIZE_HPT_COMMIT: {
5243 struct kvm_ppc_resize_hpt rhpt;
5244
5245 r = -EFAULT;
5246 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5247 break;
5248
5249 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5250 break;
5251 }
5252
5253 default:
5254 r = -ENOTTY;
5255 }
5256
5257 return r;
5258 }
5259
5260 /*
5261 * List of hcall numbers to enable by default.
5262 * For compatibility with old userspace, we enable by default
5263 * all hcalls that were implemented before the hcall-enabling
5264 * facility was added. Note this list should not include H_RTAS.
5265 */
5266 static unsigned int default_hcall_list[] = {
5267 H_REMOVE,
5268 H_ENTER,
5269 H_READ,
5270 H_PROTECT,
5271 H_BULK_REMOVE,
5272 H_GET_TCE,
5273 H_PUT_TCE,
5274 H_SET_DABR,
5275 H_SET_XDABR,
5276 H_CEDE,
5277 H_PROD,
5278 H_CONFER,
5279 H_REGISTER_VPA,
5280 #ifdef CONFIG_KVM_XICS
5281 H_EOI,
5282 H_CPPR,
5283 H_IPI,
5284 H_IPOLL,
5285 H_XIRR,
5286 H_XIRR_X,
5287 #endif
5288 0
5289 };
5290
5291 static void init_default_hcalls(void)
5292 {
5293 int i;
5294 unsigned int hcall;
5295
5296 for (i = 0; default_hcall_list[i]; ++i) {
5297 hcall = default_hcall_list[i];
5298 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5299 __set_bit(hcall / 4, default_enabled_hcalls);
5300 }
5301 }
5302
5303 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5304 {
5305 unsigned long lpcr;
5306 int radix;
5307 int err;
5308
5309 /* If not on a POWER9, reject it */
5310 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5311 return -ENODEV;
5312
5313 /* If any unknown flags set, reject it */
5314 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5315 return -EINVAL;
5316
5317 /* GR (guest radix) bit in process_table field must match */
5318 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5319 if (!!(cfg->process_table & PATB_GR) != radix)
5320 return -EINVAL;
5321
5322 /* Process table size field must be reasonable, i.e. <= 24 */
5323 if ((cfg->process_table & PRTS_MASK) > 24)
5324 return -EINVAL;
5325
5326 /* We can change a guest to/from radix now, if the host is radix */
5327 if (radix && !radix_enabled())
5328 return -EINVAL;
5329
5330 /* If we're a nested hypervisor, we currently only support radix */
5331 if (kvmhv_on_pseries() && !radix)
5332 return -EINVAL;
5333
5334 mutex_lock(&kvm->arch.mmu_setup_lock);
5335 if (radix != kvm_is_radix(kvm)) {
5336 if (kvm->arch.mmu_ready) {
5337 kvm->arch.mmu_ready = 0;
5338 /* order mmu_ready vs. vcpus_running */
5339 smp_mb();
5340 if (atomic_read(&kvm->arch.vcpus_running)) {
5341 kvm->arch.mmu_ready = 1;
5342 err = -EBUSY;
5343 goto out_unlock;
5344 }
5345 }
5346 if (radix)
5347 err = kvmppc_switch_mmu_to_radix(kvm);
5348 else
5349 err = kvmppc_switch_mmu_to_hpt(kvm);
5350 if (err)
5351 goto out_unlock;
5352 }
5353
5354 kvm->arch.process_table = cfg->process_table;
5355 kvmppc_setup_partition_table(kvm);
5356
5357 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5358 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5359 err = 0;
5360
5361 out_unlock:
5362 mutex_unlock(&kvm->arch.mmu_setup_lock);
5363 return err;
5364 }
5365
5366 static int kvmhv_enable_nested(struct kvm *kvm)
5367 {
5368 if (!nested)
5369 return -EPERM;
5370 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5371 return -ENODEV;
5372
5373 /* kvm == NULL means the caller is testing if the capability exists */
5374 if (kvm)
5375 kvm->arch.nested_enable = true;
5376 return 0;
5377 }
5378
5379 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5380 int size)
5381 {
5382 int rc = -EINVAL;
5383
5384 if (kvmhv_vcpu_is_radix(vcpu)) {
5385 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5386
5387 if (rc > 0)
5388 rc = -EINVAL;
5389 }
5390
5391 /* For now quadrants are the only way to access nested guest memory */
5392 if (rc && vcpu->arch.nested)
5393 rc = -EAGAIN;
5394
5395 return rc;
5396 }
5397
5398 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5399 int size)
5400 {
5401 int rc = -EINVAL;
5402
5403 if (kvmhv_vcpu_is_radix(vcpu)) {
5404 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5405
5406 if (rc > 0)
5407 rc = -EINVAL;
5408 }
5409
5410 /* For now quadrants are the only way to access nested guest memory */
5411 if (rc && vcpu->arch.nested)
5412 rc = -EAGAIN;
5413
5414 return rc;
5415 }
5416
5417 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5418 {
5419 unpin_vpa(kvm, vpa);
5420 vpa->gpa = 0;
5421 vpa->pinned_addr = NULL;
5422 vpa->dirty = false;
5423 vpa->update_pending = 0;
5424 }
5425
5426 /*
5427 * Enable a guest to become a secure VM, or test whether
5428 * that could be enabled.
5429 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5430 * tested (kvm == NULL) or enabled (kvm != NULL).
5431 */
5432 static int kvmhv_enable_svm(struct kvm *kvm)
5433 {
5434 if (!kvmppc_uvmem_available())
5435 return -EINVAL;
5436 if (kvm)
5437 kvm->arch.svm_enabled = 1;
5438 return 0;
5439 }
5440
5441 /*
5442 * IOCTL handler to turn off secure mode of guest
5443 *
5444 * - Release all device pages
5445 * - Issue ucall to terminate the guest on the UV side
5446 * - Unpin the VPA pages.
5447 * - Reinit the partition scoped page tables
5448 */
5449 static int kvmhv_svm_off(struct kvm *kvm)
5450 {
5451 struct kvm_vcpu *vcpu;
5452 int mmu_was_ready;
5453 int srcu_idx;
5454 int ret = 0;
5455 int i;
5456
5457 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5458 return ret;
5459
5460 mutex_lock(&kvm->arch.mmu_setup_lock);
5461 mmu_was_ready = kvm->arch.mmu_ready;
5462 if (kvm->arch.mmu_ready) {
5463 kvm->arch.mmu_ready = 0;
5464 /* order mmu_ready vs. vcpus_running */
5465 smp_mb();
5466 if (atomic_read(&kvm->arch.vcpus_running)) {
5467 kvm->arch.mmu_ready = 1;
5468 ret = -EBUSY;
5469 goto out;
5470 }
5471 }
5472
5473 srcu_idx = srcu_read_lock(&kvm->srcu);
5474 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5475 struct kvm_memory_slot *memslot;
5476 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5477
5478 if (!slots)
5479 continue;
5480
5481 kvm_for_each_memslot(memslot, slots) {
5482 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5483 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5484 }
5485 }
5486 srcu_read_unlock(&kvm->srcu, srcu_idx);
5487
5488 ret = uv_svm_terminate(kvm->arch.lpid);
5489 if (ret != U_SUCCESS) {
5490 ret = -EINVAL;
5491 goto out;
5492 }
5493
5494 /*
5495 * When secure guest is reset, all the guest pages are sent
5496 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5497 * chance to run and unpin their VPA pages. Unpinning of all
5498 * VPA pages is done here explicitly so that VPA pages
5499 * can be migrated to the secure side.
5500 *
5501 * This is required to for the secure SMP guest to reboot
5502 * correctly.
5503 */
5504 kvm_for_each_vcpu(i, vcpu, kvm) {
5505 spin_lock(&vcpu->arch.vpa_update_lock);
5506 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5507 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5508 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5509 spin_unlock(&vcpu->arch.vpa_update_lock);
5510 }
5511
5512 kvmppc_setup_partition_table(kvm);
5513 kvm->arch.secure_guest = 0;
5514 kvm->arch.mmu_ready = mmu_was_ready;
5515 out:
5516 mutex_unlock(&kvm->arch.mmu_setup_lock);
5517 return ret;
5518 }
5519
5520 static struct kvmppc_ops kvm_ops_hv = {
5521 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5522 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5523 .get_one_reg = kvmppc_get_one_reg_hv,
5524 .set_one_reg = kvmppc_set_one_reg_hv,
5525 .vcpu_load = kvmppc_core_vcpu_load_hv,
5526 .vcpu_put = kvmppc_core_vcpu_put_hv,
5527 .inject_interrupt = kvmppc_inject_interrupt_hv,
5528 .set_msr = kvmppc_set_msr_hv,
5529 .vcpu_run = kvmppc_vcpu_run_hv,
5530 .vcpu_create = kvmppc_core_vcpu_create_hv,
5531 .vcpu_free = kvmppc_core_vcpu_free_hv,
5532 .check_requests = kvmppc_core_check_requests_hv,
5533 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5534 .flush_memslot = kvmppc_core_flush_memslot_hv,
5535 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5536 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5537 .unmap_hva_range = kvm_unmap_hva_range_hv,
5538 .age_hva = kvm_age_hva_hv,
5539 .test_age_hva = kvm_test_age_hva_hv,
5540 .set_spte_hva = kvm_set_spte_hva_hv,
5541 .free_memslot = kvmppc_core_free_memslot_hv,
5542 .init_vm = kvmppc_core_init_vm_hv,
5543 .destroy_vm = kvmppc_core_destroy_vm_hv,
5544 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5545 .emulate_op = kvmppc_core_emulate_op_hv,
5546 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5547 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5548 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5549 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5550 .hcall_implemented = kvmppc_hcall_impl_hv,
5551 #ifdef CONFIG_KVM_XICS
5552 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5553 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5554 #endif
5555 .configure_mmu = kvmhv_configure_mmu,
5556 .get_rmmu_info = kvmhv_get_rmmu_info,
5557 .set_smt_mode = kvmhv_set_smt_mode,
5558 .enable_nested = kvmhv_enable_nested,
5559 .load_from_eaddr = kvmhv_load_from_eaddr,
5560 .store_to_eaddr = kvmhv_store_to_eaddr,
5561 .enable_svm = kvmhv_enable_svm,
5562 .svm_off = kvmhv_svm_off,
5563 };
5564
5565 static int kvm_init_subcore_bitmap(void)
5566 {
5567 int i, j;
5568 int nr_cores = cpu_nr_cores();
5569 struct sibling_subcore_state *sibling_subcore_state;
5570
5571 for (i = 0; i < nr_cores; i++) {
5572 int first_cpu = i * threads_per_core;
5573 int node = cpu_to_node(first_cpu);
5574
5575 /* Ignore if it is already allocated. */
5576 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5577 continue;
5578
5579 sibling_subcore_state =
5580 kzalloc_node(sizeof(struct sibling_subcore_state),
5581 GFP_KERNEL, node);
5582 if (!sibling_subcore_state)
5583 return -ENOMEM;
5584
5585
5586 for (j = 0; j < threads_per_core; j++) {
5587 int cpu = first_cpu + j;
5588
5589 paca_ptrs[cpu]->sibling_subcore_state =
5590 sibling_subcore_state;
5591 }
5592 }
5593 return 0;
5594 }
5595
5596 static int kvmppc_radix_possible(void)
5597 {
5598 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5599 }
5600
5601 static int kvmppc_book3s_init_hv(void)
5602 {
5603 int r;
5604
5605 if (!tlbie_capable) {
5606 pr_err("KVM-HV: Host does not support TLBIE\n");
5607 return -ENODEV;
5608 }
5609
5610 /*
5611 * FIXME!! Do we need to check on all cpus ?
5612 */
5613 r = kvmppc_core_check_processor_compat_hv();
5614 if (r < 0)
5615 return -ENODEV;
5616
5617 r = kvmhv_nested_init();
5618 if (r)
5619 return r;
5620
5621 r = kvm_init_subcore_bitmap();
5622 if (r)
5623 return r;
5624
5625 /*
5626 * We need a way of accessing the XICS interrupt controller,
5627 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5628 * indirectly, via OPAL.
5629 */
5630 #ifdef CONFIG_SMP
5631 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5632 !local_paca->kvm_hstate.xics_phys) {
5633 struct device_node *np;
5634
5635 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5636 if (!np) {
5637 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5638 return -ENODEV;
5639 }
5640 /* presence of intc confirmed - node can be dropped again */
5641 of_node_put(np);
5642 }
5643 #endif
5644
5645 kvm_ops_hv.owner = THIS_MODULE;
5646 kvmppc_hv_ops = &kvm_ops_hv;
5647
5648 init_default_hcalls();
5649
5650 init_vcore_lists();
5651
5652 r = kvmppc_mmu_hv_init();
5653 if (r)
5654 return r;
5655
5656 if (kvmppc_radix_possible())
5657 r = kvmppc_radix_init();
5658
5659 /*
5660 * POWER9 chips before version 2.02 can't have some threads in
5661 * HPT mode and some in radix mode on the same core.
5662 */
5663 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5664 unsigned int pvr = mfspr(SPRN_PVR);
5665 if ((pvr >> 16) == PVR_POWER9 &&
5666 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5667 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5668 no_mixing_hpt_and_radix = true;
5669 }
5670
5671 r = kvmppc_uvmem_init();
5672 if (r < 0)
5673 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5674
5675 return r;
5676 }
5677
5678 static void kvmppc_book3s_exit_hv(void)
5679 {
5680 kvmppc_uvmem_free();
5681 kvmppc_free_host_rm_ops();
5682 if (kvmppc_radix_possible())
5683 kvmppc_radix_exit();
5684 kvmppc_hv_ops = NULL;
5685 kvmhv_nested_exit();
5686 }
5687
5688 module_init(kvmppc_book3s_init_hv);
5689 module_exit(kvmppc_book3s_exit_hv);
5690 MODULE_LICENSE("GPL");
5691 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5692 MODULE_ALIAS("devname:kvm");