]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kvm/book3s_hv_uvmem.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / arch / powerpc / kvm / book3s_hv_uvmem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Secure pages management: Migration of pages between normal and secure
4 * memory of KVM guests.
5 *
6 * Copyright 2018 Bharata B Rao, IBM Corp. <bharata@linux.ibm.com>
7 */
8
9 /*
10 * A pseries guest can be run as secure guest on Ultravisor-enabled
11 * POWER platforms. On such platforms, this driver will be used to manage
12 * the movement of guest pages between the normal memory managed by
13 * hypervisor (HV) and secure memory managed by Ultravisor (UV).
14 *
15 * The page-in or page-out requests from UV will come to HV as hcalls and
16 * HV will call back into UV via ultracalls to satisfy these page requests.
17 *
18 * Private ZONE_DEVICE memory equal to the amount of secure memory
19 * available in the platform for running secure guests is hotplugged.
20 * Whenever a page belonging to the guest becomes secure, a page from this
21 * private device memory is used to represent and track that secure page
22 * on the HV side. Some pages (like virtio buffers, VPA pages etc) are
23 * shared between UV and HV. However such pages aren't represented by
24 * device private memory and mappings to shared memory exist in both
25 * UV and HV page tables.
26 */
27
28 /*
29 * Notes on locking
30 *
31 * kvm->arch.uvmem_lock is a per-guest lock that prevents concurrent
32 * page-in and page-out requests for the same GPA. Concurrent accesses
33 * can either come via UV (guest vCPUs requesting for same page)
34 * or when HV and guest simultaneously access the same page.
35 * This mutex serializes the migration of page from HV(normal) to
36 * UV(secure) and vice versa. So the serialization points are around
37 * migrate_vma routines and page-in/out routines.
38 *
39 * Per-guest mutex comes with a cost though. Mainly it serializes the
40 * fault path as page-out can occur when HV faults on accessing secure
41 * guest pages. Currently UV issues page-in requests for all the guest
42 * PFNs one at a time during early boot (UV_ESM uvcall), so this is
43 * not a cause for concern. Also currently the number of page-outs caused
44 * by HV touching secure pages is very very low. If an when UV supports
45 * overcommitting, then we might see concurrent guest driven page-outs.
46 *
47 * Locking order
48 *
49 * 1. kvm->srcu - Protects KVM memslots
50 * 2. kvm->mm->mmap_lock - find_vma, migrate_vma_pages and helpers, ksm_madvise
51 * 3. kvm->arch.uvmem_lock - protects read/writes to uvmem slots thus acting
52 * as sync-points for page-in/out
53 */
54
55 /*
56 * Notes on page size
57 *
58 * Currently UV uses 2MB mappings internally, but will issue H_SVM_PAGE_IN
59 * and H_SVM_PAGE_OUT hcalls in PAGE_SIZE(64K) granularity. HV tracks
60 * secure GPAs at 64K page size and maintains one device PFN for each
61 * 64K secure GPA. UV_PAGE_IN and UV_PAGE_OUT calls by HV are also issued
62 * for 64K page at a time.
63 *
64 * HV faulting on secure pages: When HV touches any secure page, it
65 * faults and issues a UV_PAGE_OUT request with 64K page size. Currently
66 * UV splits and remaps the 2MB page if necessary and copies out the
67 * required 64K page contents.
68 *
69 * Shared pages: Whenever guest shares a secure page, UV will split and
70 * remap the 2MB page if required and issue H_SVM_PAGE_IN with 64K page size.
71 *
72 * HV invalidating a page: When a regular page belonging to secure
73 * guest gets unmapped, HV informs UV with UV_PAGE_INVAL of 64K
74 * page size. Using 64K page size is correct here because any non-secure
75 * page will essentially be of 64K page size. Splitting by UV during sharing
76 * and page-out ensures this.
77 *
78 * Page fault handling: When HV handles page fault of a page belonging
79 * to secure guest, it sends that to UV with a 64K UV_PAGE_IN request.
80 * Using 64K size is correct here too as UV would have split the 2MB page
81 * into 64k mappings and would have done page-outs earlier.
82 *
83 * In summary, the current secure pages handling code in HV assumes
84 * 64K page size and in fact fails any page-in/page-out requests of
85 * non-64K size upfront. If and when UV starts supporting multiple
86 * page-sizes, we need to break this assumption.
87 */
88
89 #include <linux/pagemap.h>
90 #include <linux/migrate.h>
91 #include <linux/kvm_host.h>
92 #include <linux/ksm.h>
93 #include <asm/ultravisor.h>
94 #include <asm/mman.h>
95 #include <asm/kvm_ppc.h>
96
97 static struct dev_pagemap kvmppc_uvmem_pgmap;
98 static unsigned long *kvmppc_uvmem_bitmap;
99 static DEFINE_SPINLOCK(kvmppc_uvmem_bitmap_lock);
100
101 #define KVMPPC_UVMEM_PFN (1UL << 63)
102
103 struct kvmppc_uvmem_slot {
104 struct list_head list;
105 unsigned long nr_pfns;
106 unsigned long base_pfn;
107 unsigned long *pfns;
108 };
109
110 struct kvmppc_uvmem_page_pvt {
111 struct kvm *kvm;
112 unsigned long gpa;
113 bool skip_page_out;
114 };
115
116 bool kvmppc_uvmem_available(void)
117 {
118 /*
119 * If kvmppc_uvmem_bitmap != NULL, then there is an ultravisor
120 * and our data structures have been initialized successfully.
121 */
122 return !!kvmppc_uvmem_bitmap;
123 }
124
125 int kvmppc_uvmem_slot_init(struct kvm *kvm, const struct kvm_memory_slot *slot)
126 {
127 struct kvmppc_uvmem_slot *p;
128
129 p = kzalloc(sizeof(*p), GFP_KERNEL);
130 if (!p)
131 return -ENOMEM;
132 p->pfns = vzalloc(array_size(slot->npages, sizeof(*p->pfns)));
133 if (!p->pfns) {
134 kfree(p);
135 return -ENOMEM;
136 }
137 p->nr_pfns = slot->npages;
138 p->base_pfn = slot->base_gfn;
139
140 mutex_lock(&kvm->arch.uvmem_lock);
141 list_add(&p->list, &kvm->arch.uvmem_pfns);
142 mutex_unlock(&kvm->arch.uvmem_lock);
143
144 return 0;
145 }
146
147 /*
148 * All device PFNs are already released by the time we come here.
149 */
150 void kvmppc_uvmem_slot_free(struct kvm *kvm, const struct kvm_memory_slot *slot)
151 {
152 struct kvmppc_uvmem_slot *p, *next;
153
154 mutex_lock(&kvm->arch.uvmem_lock);
155 list_for_each_entry_safe(p, next, &kvm->arch.uvmem_pfns, list) {
156 if (p->base_pfn == slot->base_gfn) {
157 vfree(p->pfns);
158 list_del(&p->list);
159 kfree(p);
160 break;
161 }
162 }
163 mutex_unlock(&kvm->arch.uvmem_lock);
164 }
165
166 static void kvmppc_uvmem_pfn_insert(unsigned long gfn, unsigned long uvmem_pfn,
167 struct kvm *kvm)
168 {
169 struct kvmppc_uvmem_slot *p;
170
171 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
172 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
173 unsigned long index = gfn - p->base_pfn;
174
175 p->pfns[index] = uvmem_pfn | KVMPPC_UVMEM_PFN;
176 return;
177 }
178 }
179 }
180
181 static void kvmppc_uvmem_pfn_remove(unsigned long gfn, struct kvm *kvm)
182 {
183 struct kvmppc_uvmem_slot *p;
184
185 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
186 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
187 p->pfns[gfn - p->base_pfn] = 0;
188 return;
189 }
190 }
191 }
192
193 static bool kvmppc_gfn_is_uvmem_pfn(unsigned long gfn, struct kvm *kvm,
194 unsigned long *uvmem_pfn)
195 {
196 struct kvmppc_uvmem_slot *p;
197
198 list_for_each_entry(p, &kvm->arch.uvmem_pfns, list) {
199 if (gfn >= p->base_pfn && gfn < p->base_pfn + p->nr_pfns) {
200 unsigned long index = gfn - p->base_pfn;
201
202 if (p->pfns[index] & KVMPPC_UVMEM_PFN) {
203 if (uvmem_pfn)
204 *uvmem_pfn = p->pfns[index] &
205 ~KVMPPC_UVMEM_PFN;
206 return true;
207 } else
208 return false;
209 }
210 }
211 return false;
212 }
213
214 unsigned long kvmppc_h_svm_init_start(struct kvm *kvm)
215 {
216 struct kvm_memslots *slots;
217 struct kvm_memory_slot *memslot;
218 int ret = H_SUCCESS;
219 int srcu_idx;
220
221 kvm->arch.secure_guest = KVMPPC_SECURE_INIT_START;
222
223 if (!kvmppc_uvmem_bitmap)
224 return H_UNSUPPORTED;
225
226 /* Only radix guests can be secure guests */
227 if (!kvm_is_radix(kvm))
228 return H_UNSUPPORTED;
229
230 /* NAK the transition to secure if not enabled */
231 if (!kvm->arch.svm_enabled)
232 return H_AUTHORITY;
233
234 srcu_idx = srcu_read_lock(&kvm->srcu);
235 slots = kvm_memslots(kvm);
236 kvm_for_each_memslot(memslot, slots) {
237 if (kvmppc_uvmem_slot_init(kvm, memslot)) {
238 ret = H_PARAMETER;
239 goto out;
240 }
241 ret = uv_register_mem_slot(kvm->arch.lpid,
242 memslot->base_gfn << PAGE_SHIFT,
243 memslot->npages * PAGE_SIZE,
244 0, memslot->id);
245 if (ret < 0) {
246 kvmppc_uvmem_slot_free(kvm, memslot);
247 ret = H_PARAMETER;
248 goto out;
249 }
250 }
251 out:
252 srcu_read_unlock(&kvm->srcu, srcu_idx);
253 return ret;
254 }
255
256 unsigned long kvmppc_h_svm_init_done(struct kvm *kvm)
257 {
258 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
259 return H_UNSUPPORTED;
260
261 kvm->arch.secure_guest |= KVMPPC_SECURE_INIT_DONE;
262 pr_info("LPID %d went secure\n", kvm->arch.lpid);
263 return H_SUCCESS;
264 }
265
266 /*
267 * Drop device pages that we maintain for the secure guest
268 *
269 * We first mark the pages to be skipped from UV_PAGE_OUT when there
270 * is HV side fault on these pages. Next we *get* these pages, forcing
271 * fault on them, do fault time migration to replace the device PTEs in
272 * QEMU page table with normal PTEs from newly allocated pages.
273 */
274 void kvmppc_uvmem_drop_pages(const struct kvm_memory_slot *free,
275 struct kvm *kvm, bool skip_page_out)
276 {
277 int i;
278 struct kvmppc_uvmem_page_pvt *pvt;
279 unsigned long pfn, uvmem_pfn;
280 unsigned long gfn = free->base_gfn;
281
282 for (i = free->npages; i; --i, ++gfn) {
283 struct page *uvmem_page;
284
285 mutex_lock(&kvm->arch.uvmem_lock);
286 if (!kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
287 mutex_unlock(&kvm->arch.uvmem_lock);
288 continue;
289 }
290
291 uvmem_page = pfn_to_page(uvmem_pfn);
292 pvt = uvmem_page->zone_device_data;
293 pvt->skip_page_out = skip_page_out;
294 mutex_unlock(&kvm->arch.uvmem_lock);
295
296 pfn = gfn_to_pfn(kvm, gfn);
297 if (is_error_noslot_pfn(pfn))
298 continue;
299 kvm_release_pfn_clean(pfn);
300 }
301 }
302
303 unsigned long kvmppc_h_svm_init_abort(struct kvm *kvm)
304 {
305 int srcu_idx;
306 struct kvm_memory_slot *memslot;
307
308 /*
309 * Expect to be called only after INIT_START and before INIT_DONE.
310 * If INIT_DONE was completed, use normal VM termination sequence.
311 */
312 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
313 return H_UNSUPPORTED;
314
315 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
316 return H_STATE;
317
318 srcu_idx = srcu_read_lock(&kvm->srcu);
319
320 kvm_for_each_memslot(memslot, kvm_memslots(kvm))
321 kvmppc_uvmem_drop_pages(memslot, kvm, false);
322
323 srcu_read_unlock(&kvm->srcu, srcu_idx);
324
325 kvm->arch.secure_guest = 0;
326 uv_svm_terminate(kvm->arch.lpid);
327
328 return H_PARAMETER;
329 }
330
331 /*
332 * Get a free device PFN from the pool
333 *
334 * Called when a normal page is moved to secure memory (UV_PAGE_IN). Device
335 * PFN will be used to keep track of the secure page on HV side.
336 *
337 * Called with kvm->arch.uvmem_lock held
338 */
339 static struct page *kvmppc_uvmem_get_page(unsigned long gpa, struct kvm *kvm)
340 {
341 struct page *dpage = NULL;
342 unsigned long bit, uvmem_pfn;
343 struct kvmppc_uvmem_page_pvt *pvt;
344 unsigned long pfn_last, pfn_first;
345
346 pfn_first = kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT;
347 pfn_last = pfn_first +
348 (resource_size(&kvmppc_uvmem_pgmap.res) >> PAGE_SHIFT);
349
350 spin_lock(&kvmppc_uvmem_bitmap_lock);
351 bit = find_first_zero_bit(kvmppc_uvmem_bitmap,
352 pfn_last - pfn_first);
353 if (bit >= (pfn_last - pfn_first))
354 goto out;
355 bitmap_set(kvmppc_uvmem_bitmap, bit, 1);
356 spin_unlock(&kvmppc_uvmem_bitmap_lock);
357
358 pvt = kzalloc(sizeof(*pvt), GFP_KERNEL);
359 if (!pvt)
360 goto out_clear;
361
362 uvmem_pfn = bit + pfn_first;
363 kvmppc_uvmem_pfn_insert(gpa >> PAGE_SHIFT, uvmem_pfn, kvm);
364
365 pvt->gpa = gpa;
366 pvt->kvm = kvm;
367
368 dpage = pfn_to_page(uvmem_pfn);
369 dpage->zone_device_data = pvt;
370 get_page(dpage);
371 lock_page(dpage);
372 return dpage;
373 out_clear:
374 spin_lock(&kvmppc_uvmem_bitmap_lock);
375 bitmap_clear(kvmppc_uvmem_bitmap, bit, 1);
376 out:
377 spin_unlock(&kvmppc_uvmem_bitmap_lock);
378 return NULL;
379 }
380
381 /*
382 * Alloc a PFN from private device memory pool and copy page from normal
383 * memory to secure memory using UV_PAGE_IN uvcall.
384 */
385 static int
386 kvmppc_svm_page_in(struct vm_area_struct *vma, unsigned long start,
387 unsigned long end, unsigned long gpa, struct kvm *kvm,
388 unsigned long page_shift, bool *downgrade)
389 {
390 unsigned long src_pfn, dst_pfn = 0;
391 struct migrate_vma mig;
392 struct page *spage;
393 unsigned long pfn;
394 struct page *dpage;
395 int ret = 0;
396
397 memset(&mig, 0, sizeof(mig));
398 mig.vma = vma;
399 mig.start = start;
400 mig.end = end;
401 mig.src = &src_pfn;
402 mig.dst = &dst_pfn;
403
404 /*
405 * We come here with mmap_lock write lock held just for
406 * ksm_madvise(), otherwise we only need read mmap_lock.
407 * Hence downgrade to read lock once ksm_madvise() is done.
408 */
409 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
410 MADV_UNMERGEABLE, &vma->vm_flags);
411 mmap_write_downgrade(kvm->mm);
412 *downgrade = true;
413 if (ret)
414 return ret;
415
416 ret = migrate_vma_setup(&mig);
417 if (ret)
418 return ret;
419
420 if (!(*mig.src & MIGRATE_PFN_MIGRATE)) {
421 ret = -1;
422 goto out_finalize;
423 }
424
425 dpage = kvmppc_uvmem_get_page(gpa, kvm);
426 if (!dpage) {
427 ret = -1;
428 goto out_finalize;
429 }
430
431 pfn = *mig.src >> MIGRATE_PFN_SHIFT;
432 spage = migrate_pfn_to_page(*mig.src);
433 if (spage)
434 uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0,
435 page_shift);
436
437 *mig.dst = migrate_pfn(page_to_pfn(dpage)) | MIGRATE_PFN_LOCKED;
438 migrate_vma_pages(&mig);
439 out_finalize:
440 migrate_vma_finalize(&mig);
441 return ret;
442 }
443
444 /*
445 * Shares the page with HV, thus making it a normal page.
446 *
447 * - If the page is already secure, then provision a new page and share
448 * - If the page is a normal page, share the existing page
449 *
450 * In the former case, uses dev_pagemap_ops.migrate_to_ram handler
451 * to unmap the device page from QEMU's page tables.
452 */
453 static unsigned long
454 kvmppc_share_page(struct kvm *kvm, unsigned long gpa, unsigned long page_shift)
455 {
456
457 int ret = H_PARAMETER;
458 struct page *uvmem_page;
459 struct kvmppc_uvmem_page_pvt *pvt;
460 unsigned long pfn;
461 unsigned long gfn = gpa >> page_shift;
462 int srcu_idx;
463 unsigned long uvmem_pfn;
464
465 srcu_idx = srcu_read_lock(&kvm->srcu);
466 mutex_lock(&kvm->arch.uvmem_lock);
467 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
468 uvmem_page = pfn_to_page(uvmem_pfn);
469 pvt = uvmem_page->zone_device_data;
470 pvt->skip_page_out = true;
471 }
472
473 retry:
474 mutex_unlock(&kvm->arch.uvmem_lock);
475 pfn = gfn_to_pfn(kvm, gfn);
476 if (is_error_noslot_pfn(pfn))
477 goto out;
478
479 mutex_lock(&kvm->arch.uvmem_lock);
480 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, &uvmem_pfn)) {
481 uvmem_page = pfn_to_page(uvmem_pfn);
482 pvt = uvmem_page->zone_device_data;
483 pvt->skip_page_out = true;
484 kvm_release_pfn_clean(pfn);
485 goto retry;
486 }
487
488 if (!uv_page_in(kvm->arch.lpid, pfn << page_shift, gpa, 0, page_shift))
489 ret = H_SUCCESS;
490 kvm_release_pfn_clean(pfn);
491 mutex_unlock(&kvm->arch.uvmem_lock);
492 out:
493 srcu_read_unlock(&kvm->srcu, srcu_idx);
494 return ret;
495 }
496
497 /*
498 * H_SVM_PAGE_IN: Move page from normal memory to secure memory.
499 *
500 * H_PAGE_IN_SHARED flag makes the page shared which means that the same
501 * memory in is visible from both UV and HV.
502 */
503 unsigned long
504 kvmppc_h_svm_page_in(struct kvm *kvm, unsigned long gpa,
505 unsigned long flags, unsigned long page_shift)
506 {
507 bool downgrade = false;
508 unsigned long start, end;
509 struct vm_area_struct *vma;
510 int srcu_idx;
511 unsigned long gfn = gpa >> page_shift;
512 int ret;
513
514 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
515 return H_UNSUPPORTED;
516
517 if (page_shift != PAGE_SHIFT)
518 return H_P3;
519
520 if (flags & ~H_PAGE_IN_SHARED)
521 return H_P2;
522
523 if (flags & H_PAGE_IN_SHARED)
524 return kvmppc_share_page(kvm, gpa, page_shift);
525
526 ret = H_PARAMETER;
527 srcu_idx = srcu_read_lock(&kvm->srcu);
528 mmap_write_lock(kvm->mm);
529
530 start = gfn_to_hva(kvm, gfn);
531 if (kvm_is_error_hva(start))
532 goto out;
533
534 mutex_lock(&kvm->arch.uvmem_lock);
535 /* Fail the page-in request of an already paged-in page */
536 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
537 goto out_unlock;
538
539 end = start + (1UL << page_shift);
540 vma = find_vma_intersection(kvm->mm, start, end);
541 if (!vma || vma->vm_start > start || vma->vm_end < end)
542 goto out_unlock;
543
544 if (!kvmppc_svm_page_in(vma, start, end, gpa, kvm, page_shift,
545 &downgrade))
546 ret = H_SUCCESS;
547 out_unlock:
548 mutex_unlock(&kvm->arch.uvmem_lock);
549 out:
550 if (downgrade)
551 mmap_read_unlock(kvm->mm);
552 else
553 mmap_write_unlock(kvm->mm);
554 srcu_read_unlock(&kvm->srcu, srcu_idx);
555 return ret;
556 }
557
558 /*
559 * Provision a new page on HV side and copy over the contents
560 * from secure memory using UV_PAGE_OUT uvcall.
561 */
562 static int
563 kvmppc_svm_page_out(struct vm_area_struct *vma, unsigned long start,
564 unsigned long end, unsigned long page_shift,
565 struct kvm *kvm, unsigned long gpa)
566 {
567 unsigned long src_pfn, dst_pfn = 0;
568 struct migrate_vma mig;
569 struct page *dpage, *spage;
570 struct kvmppc_uvmem_page_pvt *pvt;
571 unsigned long pfn;
572 int ret = U_SUCCESS;
573
574 memset(&mig, 0, sizeof(mig));
575 mig.vma = vma;
576 mig.start = start;
577 mig.end = end;
578 mig.src = &src_pfn;
579 mig.dst = &dst_pfn;
580 mig.src_owner = &kvmppc_uvmem_pgmap;
581
582 mutex_lock(&kvm->arch.uvmem_lock);
583 /* The requested page is already paged-out, nothing to do */
584 if (!kvmppc_gfn_is_uvmem_pfn(gpa >> page_shift, kvm, NULL))
585 goto out;
586
587 ret = migrate_vma_setup(&mig);
588 if (ret)
589 goto out;
590
591 spage = migrate_pfn_to_page(*mig.src);
592 if (!spage || !(*mig.src & MIGRATE_PFN_MIGRATE))
593 goto out_finalize;
594
595 if (!is_zone_device_page(spage))
596 goto out_finalize;
597
598 dpage = alloc_page_vma(GFP_HIGHUSER, vma, start);
599 if (!dpage) {
600 ret = -1;
601 goto out_finalize;
602 }
603
604 lock_page(dpage);
605 pvt = spage->zone_device_data;
606 pfn = page_to_pfn(dpage);
607
608 /*
609 * This function is used in two cases:
610 * - When HV touches a secure page, for which we do UV_PAGE_OUT
611 * - When a secure page is converted to shared page, we *get*
612 * the page to essentially unmap the device page. In this
613 * case we skip page-out.
614 */
615 if (!pvt->skip_page_out)
616 ret = uv_page_out(kvm->arch.lpid, pfn << page_shift,
617 gpa, 0, page_shift);
618
619 if (ret == U_SUCCESS)
620 *mig.dst = migrate_pfn(pfn) | MIGRATE_PFN_LOCKED;
621 else {
622 unlock_page(dpage);
623 __free_page(dpage);
624 goto out_finalize;
625 }
626
627 migrate_vma_pages(&mig);
628 out_finalize:
629 migrate_vma_finalize(&mig);
630 out:
631 mutex_unlock(&kvm->arch.uvmem_lock);
632 return ret;
633 }
634
635 /*
636 * Fault handler callback that gets called when HV touches any page that
637 * has been moved to secure memory, we ask UV to give back the page by
638 * issuing UV_PAGE_OUT uvcall.
639 *
640 * This eventually results in dropping of device PFN and the newly
641 * provisioned page/PFN gets populated in QEMU page tables.
642 */
643 static vm_fault_t kvmppc_uvmem_migrate_to_ram(struct vm_fault *vmf)
644 {
645 struct kvmppc_uvmem_page_pvt *pvt = vmf->page->zone_device_data;
646
647 if (kvmppc_svm_page_out(vmf->vma, vmf->address,
648 vmf->address + PAGE_SIZE, PAGE_SHIFT,
649 pvt->kvm, pvt->gpa))
650 return VM_FAULT_SIGBUS;
651 else
652 return 0;
653 }
654
655 /*
656 * Release the device PFN back to the pool
657 *
658 * Gets called when secure page becomes a normal page during H_SVM_PAGE_OUT.
659 * Gets called with kvm->arch.uvmem_lock held.
660 */
661 static void kvmppc_uvmem_page_free(struct page *page)
662 {
663 unsigned long pfn = page_to_pfn(page) -
664 (kvmppc_uvmem_pgmap.res.start >> PAGE_SHIFT);
665 struct kvmppc_uvmem_page_pvt *pvt;
666
667 spin_lock(&kvmppc_uvmem_bitmap_lock);
668 bitmap_clear(kvmppc_uvmem_bitmap, pfn, 1);
669 spin_unlock(&kvmppc_uvmem_bitmap_lock);
670
671 pvt = page->zone_device_data;
672 page->zone_device_data = NULL;
673 kvmppc_uvmem_pfn_remove(pvt->gpa >> PAGE_SHIFT, pvt->kvm);
674 kfree(pvt);
675 }
676
677 static const struct dev_pagemap_ops kvmppc_uvmem_ops = {
678 .page_free = kvmppc_uvmem_page_free,
679 .migrate_to_ram = kvmppc_uvmem_migrate_to_ram,
680 };
681
682 /*
683 * H_SVM_PAGE_OUT: Move page from secure memory to normal memory.
684 */
685 unsigned long
686 kvmppc_h_svm_page_out(struct kvm *kvm, unsigned long gpa,
687 unsigned long flags, unsigned long page_shift)
688 {
689 unsigned long gfn = gpa >> page_shift;
690 unsigned long start, end;
691 struct vm_area_struct *vma;
692 int srcu_idx;
693 int ret;
694
695 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
696 return H_UNSUPPORTED;
697
698 if (page_shift != PAGE_SHIFT)
699 return H_P3;
700
701 if (flags)
702 return H_P2;
703
704 ret = H_PARAMETER;
705 srcu_idx = srcu_read_lock(&kvm->srcu);
706 mmap_read_lock(kvm->mm);
707 start = gfn_to_hva(kvm, gfn);
708 if (kvm_is_error_hva(start))
709 goto out;
710
711 end = start + (1UL << page_shift);
712 vma = find_vma_intersection(kvm->mm, start, end);
713 if (!vma || vma->vm_start > start || vma->vm_end < end)
714 goto out;
715
716 if (!kvmppc_svm_page_out(vma, start, end, page_shift, kvm, gpa))
717 ret = H_SUCCESS;
718 out:
719 mmap_read_unlock(kvm->mm);
720 srcu_read_unlock(&kvm->srcu, srcu_idx);
721 return ret;
722 }
723
724 int kvmppc_send_page_to_uv(struct kvm *kvm, unsigned long gfn)
725 {
726 unsigned long pfn;
727 int ret = U_SUCCESS;
728
729 pfn = gfn_to_pfn(kvm, gfn);
730 if (is_error_noslot_pfn(pfn))
731 return -EFAULT;
732
733 mutex_lock(&kvm->arch.uvmem_lock);
734 if (kvmppc_gfn_is_uvmem_pfn(gfn, kvm, NULL))
735 goto out;
736
737 ret = uv_page_in(kvm->arch.lpid, pfn << PAGE_SHIFT, gfn << PAGE_SHIFT,
738 0, PAGE_SHIFT);
739 out:
740 kvm_release_pfn_clean(pfn);
741 mutex_unlock(&kvm->arch.uvmem_lock);
742 return (ret == U_SUCCESS) ? RESUME_GUEST : -EFAULT;
743 }
744
745 static u64 kvmppc_get_secmem_size(void)
746 {
747 struct device_node *np;
748 int i, len;
749 const __be32 *prop;
750 u64 size = 0;
751
752 np = of_find_compatible_node(NULL, NULL, "ibm,uv-firmware");
753 if (!np)
754 goto out;
755
756 prop = of_get_property(np, "secure-memory-ranges", &len);
757 if (!prop)
758 goto out_put;
759
760 for (i = 0; i < len / (sizeof(*prop) * 4); i++)
761 size += of_read_number(prop + (i * 4) + 2, 2);
762
763 out_put:
764 of_node_put(np);
765 out:
766 return size;
767 }
768
769 int kvmppc_uvmem_init(void)
770 {
771 int ret = 0;
772 unsigned long size;
773 struct resource *res;
774 void *addr;
775 unsigned long pfn_last, pfn_first;
776
777 size = kvmppc_get_secmem_size();
778 if (!size) {
779 /*
780 * Don't fail the initialization of kvm-hv module if
781 * the platform doesn't export ibm,uv-firmware node.
782 * Let normal guests run on such PEF-disabled platform.
783 */
784 pr_info("KVMPPC-UVMEM: No support for secure guests\n");
785 goto out;
786 }
787
788 res = request_free_mem_region(&iomem_resource, size, "kvmppc_uvmem");
789 if (IS_ERR(res)) {
790 ret = PTR_ERR(res);
791 goto out;
792 }
793
794 kvmppc_uvmem_pgmap.type = MEMORY_DEVICE_PRIVATE;
795 kvmppc_uvmem_pgmap.res = *res;
796 kvmppc_uvmem_pgmap.ops = &kvmppc_uvmem_ops;
797 /* just one global instance: */
798 kvmppc_uvmem_pgmap.owner = &kvmppc_uvmem_pgmap;
799 addr = memremap_pages(&kvmppc_uvmem_pgmap, NUMA_NO_NODE);
800 if (IS_ERR(addr)) {
801 ret = PTR_ERR(addr);
802 goto out_free_region;
803 }
804
805 pfn_first = res->start >> PAGE_SHIFT;
806 pfn_last = pfn_first + (resource_size(res) >> PAGE_SHIFT);
807 kvmppc_uvmem_bitmap = kcalloc(BITS_TO_LONGS(pfn_last - pfn_first),
808 sizeof(unsigned long), GFP_KERNEL);
809 if (!kvmppc_uvmem_bitmap) {
810 ret = -ENOMEM;
811 goto out_unmap;
812 }
813
814 pr_info("KVMPPC-UVMEM: Secure Memory size 0x%lx\n", size);
815 return ret;
816 out_unmap:
817 memunmap_pages(&kvmppc_uvmem_pgmap);
818 out_free_region:
819 release_mem_region(res->start, size);
820 out:
821 return ret;
822 }
823
824 void kvmppc_uvmem_free(void)
825 {
826 if (!kvmppc_uvmem_bitmap)
827 return;
828
829 memunmap_pages(&kvmppc_uvmem_pgmap);
830 release_mem_region(kvmppc_uvmem_pgmap.res.start,
831 resource_size(&kvmppc_uvmem_pgmap.res));
832 kfree(kvmppc_uvmem_bitmap);
833 }