]> git.ipfire.org Git - people/ms/linux.git/blob - arch/powerpc/kvm/powerpc.c
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
[people/ms/linux.git] / arch / powerpc / kvm / powerpc.c
1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
14 *
15 * Copyright IBM Corp. 2007
16 *
17 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19 */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/sched/signal.h>
27 #include <linux/fs.h>
28 #include <linux/slab.h>
29 #include <linux/file.h>
30 #include <linux/module.h>
31 #include <linux/irqbypass.h>
32 #include <linux/kvm_irqfd.h>
33 #include <asm/cputable.h>
34 #include <linux/uaccess.h>
35 #include <asm/kvm_ppc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/cputhreads.h>
38 #include <asm/irqflags.h>
39 #include <asm/iommu.h>
40 #include <asm/switch_to.h>
41 #include <asm/xive.h>
42
43 #include "timing.h"
44 #include "irq.h"
45 #include "../mm/mmu_decl.h"
46
47 #define CREATE_TRACE_POINTS
48 #include "trace.h"
49
50 struct kvmppc_ops *kvmppc_hv_ops;
51 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
52 struct kvmppc_ops *kvmppc_pr_ops;
53 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
54
55
56 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
57 {
58 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
59 }
60
61 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
62 {
63 return false;
64 }
65
66 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
67 {
68 return 1;
69 }
70
71 /*
72 * Common checks before entering the guest world. Call with interrupts
73 * disabled.
74 *
75 * returns:
76 *
77 * == 1 if we're ready to go into guest state
78 * <= 0 if we need to go back to the host with return value
79 */
80 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
81 {
82 int r;
83
84 WARN_ON(irqs_disabled());
85 hard_irq_disable();
86
87 while (true) {
88 if (need_resched()) {
89 local_irq_enable();
90 cond_resched();
91 hard_irq_disable();
92 continue;
93 }
94
95 if (signal_pending(current)) {
96 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
97 vcpu->run->exit_reason = KVM_EXIT_INTR;
98 r = -EINTR;
99 break;
100 }
101
102 vcpu->mode = IN_GUEST_MODE;
103
104 /*
105 * Reading vcpu->requests must happen after setting vcpu->mode,
106 * so we don't miss a request because the requester sees
107 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
108 * before next entering the guest (and thus doesn't IPI).
109 * This also orders the write to mode from any reads
110 * to the page tables done while the VCPU is running.
111 * Please see the comment in kvm_flush_remote_tlbs.
112 */
113 smp_mb();
114
115 if (kvm_request_pending(vcpu)) {
116 /* Make sure we process requests preemptable */
117 local_irq_enable();
118 trace_kvm_check_requests(vcpu);
119 r = kvmppc_core_check_requests(vcpu);
120 hard_irq_disable();
121 if (r > 0)
122 continue;
123 break;
124 }
125
126 if (kvmppc_core_prepare_to_enter(vcpu)) {
127 /* interrupts got enabled in between, so we
128 are back at square 1 */
129 continue;
130 }
131
132 guest_enter_irqoff();
133 return 1;
134 }
135
136 /* return to host */
137 local_irq_enable();
138 return r;
139 }
140 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
141
142 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
143 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
144 {
145 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
146 int i;
147
148 shared->sprg0 = swab64(shared->sprg0);
149 shared->sprg1 = swab64(shared->sprg1);
150 shared->sprg2 = swab64(shared->sprg2);
151 shared->sprg3 = swab64(shared->sprg3);
152 shared->srr0 = swab64(shared->srr0);
153 shared->srr1 = swab64(shared->srr1);
154 shared->dar = swab64(shared->dar);
155 shared->msr = swab64(shared->msr);
156 shared->dsisr = swab32(shared->dsisr);
157 shared->int_pending = swab32(shared->int_pending);
158 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
159 shared->sr[i] = swab32(shared->sr[i]);
160 }
161 #endif
162
163 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
164 {
165 int nr = kvmppc_get_gpr(vcpu, 11);
166 int r;
167 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
168 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
169 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
170 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
171 unsigned long r2 = 0;
172
173 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
174 /* 32 bit mode */
175 param1 &= 0xffffffff;
176 param2 &= 0xffffffff;
177 param3 &= 0xffffffff;
178 param4 &= 0xffffffff;
179 }
180
181 switch (nr) {
182 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
183 {
184 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
185 /* Book3S can be little endian, find it out here */
186 int shared_big_endian = true;
187 if (vcpu->arch.intr_msr & MSR_LE)
188 shared_big_endian = false;
189 if (shared_big_endian != vcpu->arch.shared_big_endian)
190 kvmppc_swab_shared(vcpu);
191 vcpu->arch.shared_big_endian = shared_big_endian;
192 #endif
193
194 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
195 /*
196 * Older versions of the Linux magic page code had
197 * a bug where they would map their trampoline code
198 * NX. If that's the case, remove !PR NX capability.
199 */
200 vcpu->arch.disable_kernel_nx = true;
201 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
202 }
203
204 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
205 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
206
207 #ifdef CONFIG_PPC_64K_PAGES
208 /*
209 * Make sure our 4k magic page is in the same window of a 64k
210 * page within the guest and within the host's page.
211 */
212 if ((vcpu->arch.magic_page_pa & 0xf000) !=
213 ((ulong)vcpu->arch.shared & 0xf000)) {
214 void *old_shared = vcpu->arch.shared;
215 ulong shared = (ulong)vcpu->arch.shared;
216 void *new_shared;
217
218 shared &= PAGE_MASK;
219 shared |= vcpu->arch.magic_page_pa & 0xf000;
220 new_shared = (void*)shared;
221 memcpy(new_shared, old_shared, 0x1000);
222 vcpu->arch.shared = new_shared;
223 }
224 #endif
225
226 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
227
228 r = EV_SUCCESS;
229 break;
230 }
231 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
232 r = EV_SUCCESS;
233 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
234 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
235 #endif
236
237 /* Second return value is in r4 */
238 break;
239 case EV_HCALL_TOKEN(EV_IDLE):
240 r = EV_SUCCESS;
241 kvm_vcpu_block(vcpu);
242 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
243 break;
244 default:
245 r = EV_UNIMPLEMENTED;
246 break;
247 }
248
249 kvmppc_set_gpr(vcpu, 4, r2);
250
251 return r;
252 }
253 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
254
255 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
256 {
257 int r = false;
258
259 /* We have to know what CPU to virtualize */
260 if (!vcpu->arch.pvr)
261 goto out;
262
263 /* PAPR only works with book3s_64 */
264 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
265 goto out;
266
267 /* HV KVM can only do PAPR mode for now */
268 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
269 goto out;
270
271 #ifdef CONFIG_KVM_BOOKE_HV
272 if (!cpu_has_feature(CPU_FTR_EMB_HV))
273 goto out;
274 #endif
275
276 r = true;
277
278 out:
279 vcpu->arch.sane = r;
280 return r ? 0 : -EINVAL;
281 }
282 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
283
284 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
285 {
286 enum emulation_result er;
287 int r;
288
289 er = kvmppc_emulate_loadstore(vcpu);
290 switch (er) {
291 case EMULATE_DONE:
292 /* Future optimization: only reload non-volatiles if they were
293 * actually modified. */
294 r = RESUME_GUEST_NV;
295 break;
296 case EMULATE_AGAIN:
297 r = RESUME_GUEST;
298 break;
299 case EMULATE_DO_MMIO:
300 run->exit_reason = KVM_EXIT_MMIO;
301 /* We must reload nonvolatiles because "update" load/store
302 * instructions modify register state. */
303 /* Future optimization: only reload non-volatiles if they were
304 * actually modified. */
305 r = RESUME_HOST_NV;
306 break;
307 case EMULATE_FAIL:
308 {
309 u32 last_inst;
310
311 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
312 /* XXX Deliver Program interrupt to guest. */
313 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
314 r = RESUME_HOST;
315 break;
316 }
317 default:
318 WARN_ON(1);
319 r = RESUME_GUEST;
320 }
321
322 return r;
323 }
324 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
325
326 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
327 bool data)
328 {
329 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
330 struct kvmppc_pte pte;
331 int r;
332
333 vcpu->stat.st++;
334
335 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
336 XLATE_WRITE, &pte);
337 if (r < 0)
338 return r;
339
340 *eaddr = pte.raddr;
341
342 if (!pte.may_write)
343 return -EPERM;
344
345 /* Magic page override */
346 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
347 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
348 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
349 void *magic = vcpu->arch.shared;
350 magic += pte.eaddr & 0xfff;
351 memcpy(magic, ptr, size);
352 return EMULATE_DONE;
353 }
354
355 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
356 return EMULATE_DO_MMIO;
357
358 return EMULATE_DONE;
359 }
360 EXPORT_SYMBOL_GPL(kvmppc_st);
361
362 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
363 bool data)
364 {
365 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
366 struct kvmppc_pte pte;
367 int rc;
368
369 vcpu->stat.ld++;
370
371 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
372 XLATE_READ, &pte);
373 if (rc)
374 return rc;
375
376 *eaddr = pte.raddr;
377
378 if (!pte.may_read)
379 return -EPERM;
380
381 if (!data && !pte.may_execute)
382 return -ENOEXEC;
383
384 /* Magic page override */
385 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
386 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
387 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
388 void *magic = vcpu->arch.shared;
389 magic += pte.eaddr & 0xfff;
390 memcpy(ptr, magic, size);
391 return EMULATE_DONE;
392 }
393
394 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
395 return EMULATE_DO_MMIO;
396
397 return EMULATE_DONE;
398 }
399 EXPORT_SYMBOL_GPL(kvmppc_ld);
400
401 int kvm_arch_hardware_enable(void)
402 {
403 return 0;
404 }
405
406 int kvm_arch_hardware_setup(void)
407 {
408 return 0;
409 }
410
411 void kvm_arch_check_processor_compat(void *rtn)
412 {
413 *(int *)rtn = kvmppc_core_check_processor_compat();
414 }
415
416 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
417 {
418 struct kvmppc_ops *kvm_ops = NULL;
419 /*
420 * if we have both HV and PR enabled, default is HV
421 */
422 if (type == 0) {
423 if (kvmppc_hv_ops)
424 kvm_ops = kvmppc_hv_ops;
425 else
426 kvm_ops = kvmppc_pr_ops;
427 if (!kvm_ops)
428 goto err_out;
429 } else if (type == KVM_VM_PPC_HV) {
430 if (!kvmppc_hv_ops)
431 goto err_out;
432 kvm_ops = kvmppc_hv_ops;
433 } else if (type == KVM_VM_PPC_PR) {
434 if (!kvmppc_pr_ops)
435 goto err_out;
436 kvm_ops = kvmppc_pr_ops;
437 } else
438 goto err_out;
439
440 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
441 return -ENOENT;
442
443 kvm->arch.kvm_ops = kvm_ops;
444 return kvmppc_core_init_vm(kvm);
445 err_out:
446 return -EINVAL;
447 }
448
449 bool kvm_arch_has_vcpu_debugfs(void)
450 {
451 return false;
452 }
453
454 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
455 {
456 return 0;
457 }
458
459 void kvm_arch_destroy_vm(struct kvm *kvm)
460 {
461 unsigned int i;
462 struct kvm_vcpu *vcpu;
463
464 #ifdef CONFIG_KVM_XICS
465 /*
466 * We call kick_all_cpus_sync() to ensure that all
467 * CPUs have executed any pending IPIs before we
468 * continue and free VCPUs structures below.
469 */
470 if (is_kvmppc_hv_enabled(kvm))
471 kick_all_cpus_sync();
472 #endif
473
474 kvm_for_each_vcpu(i, vcpu, kvm)
475 kvm_arch_vcpu_free(vcpu);
476
477 mutex_lock(&kvm->lock);
478 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
479 kvm->vcpus[i] = NULL;
480
481 atomic_set(&kvm->online_vcpus, 0);
482
483 kvmppc_core_destroy_vm(kvm);
484
485 mutex_unlock(&kvm->lock);
486
487 /* drop the module reference */
488 module_put(kvm->arch.kvm_ops->owner);
489 }
490
491 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
492 {
493 int r;
494 /* Assume we're using HV mode when the HV module is loaded */
495 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
496
497 if (kvm) {
498 /*
499 * Hooray - we know which VM type we're running on. Depend on
500 * that rather than the guess above.
501 */
502 hv_enabled = is_kvmppc_hv_enabled(kvm);
503 }
504
505 switch (ext) {
506 #ifdef CONFIG_BOOKE
507 case KVM_CAP_PPC_BOOKE_SREGS:
508 case KVM_CAP_PPC_BOOKE_WATCHDOG:
509 case KVM_CAP_PPC_EPR:
510 #else
511 case KVM_CAP_PPC_SEGSTATE:
512 case KVM_CAP_PPC_HIOR:
513 case KVM_CAP_PPC_PAPR:
514 #endif
515 case KVM_CAP_PPC_UNSET_IRQ:
516 case KVM_CAP_PPC_IRQ_LEVEL:
517 case KVM_CAP_ENABLE_CAP:
518 case KVM_CAP_ENABLE_CAP_VM:
519 case KVM_CAP_ONE_REG:
520 case KVM_CAP_IOEVENTFD:
521 case KVM_CAP_DEVICE_CTRL:
522 case KVM_CAP_IMMEDIATE_EXIT:
523 r = 1;
524 break;
525 case KVM_CAP_PPC_PAIRED_SINGLES:
526 case KVM_CAP_PPC_OSI:
527 case KVM_CAP_PPC_GET_PVINFO:
528 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
529 case KVM_CAP_SW_TLB:
530 #endif
531 /* We support this only for PR */
532 r = !hv_enabled;
533 break;
534 #ifdef CONFIG_KVM_MPIC
535 case KVM_CAP_IRQ_MPIC:
536 r = 1;
537 break;
538 #endif
539
540 #ifdef CONFIG_PPC_BOOK3S_64
541 case KVM_CAP_SPAPR_TCE:
542 case KVM_CAP_SPAPR_TCE_64:
543 /* fallthrough */
544 case KVM_CAP_SPAPR_TCE_VFIO:
545 case KVM_CAP_PPC_RTAS:
546 case KVM_CAP_PPC_FIXUP_HCALL:
547 case KVM_CAP_PPC_ENABLE_HCALL:
548 #ifdef CONFIG_KVM_XICS
549 case KVM_CAP_IRQ_XICS:
550 #endif
551 r = 1;
552 break;
553
554 case KVM_CAP_PPC_ALLOC_HTAB:
555 r = hv_enabled;
556 break;
557 #endif /* CONFIG_PPC_BOOK3S_64 */
558 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
559 case KVM_CAP_PPC_SMT:
560 r = 0;
561 if (kvm) {
562 if (kvm->arch.emul_smt_mode > 1)
563 r = kvm->arch.emul_smt_mode;
564 else
565 r = kvm->arch.smt_mode;
566 } else if (hv_enabled) {
567 if (cpu_has_feature(CPU_FTR_ARCH_300))
568 r = 1;
569 else
570 r = threads_per_subcore;
571 }
572 break;
573 case KVM_CAP_PPC_SMT_POSSIBLE:
574 r = 1;
575 if (hv_enabled) {
576 if (!cpu_has_feature(CPU_FTR_ARCH_300))
577 r = ((threads_per_subcore << 1) - 1);
578 else
579 /* P9 can emulate dbells, so allow any mode */
580 r = 8 | 4 | 2 | 1;
581 }
582 break;
583 case KVM_CAP_PPC_RMA:
584 r = 0;
585 break;
586 case KVM_CAP_PPC_HWRNG:
587 r = kvmppc_hwrng_present();
588 break;
589 case KVM_CAP_PPC_MMU_RADIX:
590 r = !!(hv_enabled && radix_enabled());
591 break;
592 case KVM_CAP_PPC_MMU_HASH_V3:
593 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300));
594 break;
595 #endif
596 case KVM_CAP_SYNC_MMU:
597 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
598 r = hv_enabled;
599 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
600 r = 1;
601 #else
602 r = 0;
603 #endif
604 break;
605 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
606 case KVM_CAP_PPC_HTAB_FD:
607 r = hv_enabled;
608 break;
609 #endif
610 case KVM_CAP_NR_VCPUS:
611 /*
612 * Recommending a number of CPUs is somewhat arbitrary; we
613 * return the number of present CPUs for -HV (since a host
614 * will have secondary threads "offline"), and for other KVM
615 * implementations just count online CPUs.
616 */
617 if (hv_enabled)
618 r = num_present_cpus();
619 else
620 r = num_online_cpus();
621 break;
622 case KVM_CAP_NR_MEMSLOTS:
623 r = KVM_USER_MEM_SLOTS;
624 break;
625 case KVM_CAP_MAX_VCPUS:
626 r = KVM_MAX_VCPUS;
627 break;
628 #ifdef CONFIG_PPC_BOOK3S_64
629 case KVM_CAP_PPC_GET_SMMU_INFO:
630 r = 1;
631 break;
632 case KVM_CAP_SPAPR_MULTITCE:
633 r = 1;
634 break;
635 case KVM_CAP_SPAPR_RESIZE_HPT:
636 r = !!hv_enabled;
637 break;
638 #endif
639 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
640 case KVM_CAP_PPC_FWNMI:
641 r = hv_enabled;
642 break;
643 #endif
644 case KVM_CAP_PPC_HTM:
645 r = hv_enabled &&
646 (cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM_COMP);
647 break;
648 default:
649 r = 0;
650 break;
651 }
652 return r;
653
654 }
655
656 long kvm_arch_dev_ioctl(struct file *filp,
657 unsigned int ioctl, unsigned long arg)
658 {
659 return -EINVAL;
660 }
661
662 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
663 struct kvm_memory_slot *dont)
664 {
665 kvmppc_core_free_memslot(kvm, free, dont);
666 }
667
668 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
669 unsigned long npages)
670 {
671 return kvmppc_core_create_memslot(kvm, slot, npages);
672 }
673
674 int kvm_arch_prepare_memory_region(struct kvm *kvm,
675 struct kvm_memory_slot *memslot,
676 const struct kvm_userspace_memory_region *mem,
677 enum kvm_mr_change change)
678 {
679 return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
680 }
681
682 void kvm_arch_commit_memory_region(struct kvm *kvm,
683 const struct kvm_userspace_memory_region *mem,
684 const struct kvm_memory_slot *old,
685 const struct kvm_memory_slot *new,
686 enum kvm_mr_change change)
687 {
688 kvmppc_core_commit_memory_region(kvm, mem, old, new);
689 }
690
691 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
692 struct kvm_memory_slot *slot)
693 {
694 kvmppc_core_flush_memslot(kvm, slot);
695 }
696
697 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
698 {
699 struct kvm_vcpu *vcpu;
700 vcpu = kvmppc_core_vcpu_create(kvm, id);
701 if (!IS_ERR(vcpu)) {
702 vcpu->arch.wqp = &vcpu->wq;
703 kvmppc_create_vcpu_debugfs(vcpu, id);
704 }
705 return vcpu;
706 }
707
708 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
709 {
710 }
711
712 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
713 {
714 /* Make sure we're not using the vcpu anymore */
715 hrtimer_cancel(&vcpu->arch.dec_timer);
716
717 kvmppc_remove_vcpu_debugfs(vcpu);
718
719 switch (vcpu->arch.irq_type) {
720 case KVMPPC_IRQ_MPIC:
721 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
722 break;
723 case KVMPPC_IRQ_XICS:
724 if (xive_enabled())
725 kvmppc_xive_cleanup_vcpu(vcpu);
726 else
727 kvmppc_xics_free_icp(vcpu);
728 break;
729 }
730
731 kvmppc_core_vcpu_free(vcpu);
732 }
733
734 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
735 {
736 kvm_arch_vcpu_free(vcpu);
737 }
738
739 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
740 {
741 return kvmppc_core_pending_dec(vcpu);
742 }
743
744 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
745 {
746 struct kvm_vcpu *vcpu;
747
748 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
749 kvmppc_decrementer_func(vcpu);
750
751 return HRTIMER_NORESTART;
752 }
753
754 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
755 {
756 int ret;
757
758 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
759 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
760 vcpu->arch.dec_expires = get_tb();
761
762 #ifdef CONFIG_KVM_EXIT_TIMING
763 mutex_init(&vcpu->arch.exit_timing_lock);
764 #endif
765 ret = kvmppc_subarch_vcpu_init(vcpu);
766 return ret;
767 }
768
769 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
770 {
771 kvmppc_mmu_destroy(vcpu);
772 kvmppc_subarch_vcpu_uninit(vcpu);
773 }
774
775 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
776 {
777 #ifdef CONFIG_BOOKE
778 /*
779 * vrsave (formerly usprg0) isn't used by Linux, but may
780 * be used by the guest.
781 *
782 * On non-booke this is associated with Altivec and
783 * is handled by code in book3s.c.
784 */
785 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
786 #endif
787 kvmppc_core_vcpu_load(vcpu, cpu);
788 }
789
790 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
791 {
792 kvmppc_core_vcpu_put(vcpu);
793 #ifdef CONFIG_BOOKE
794 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
795 #endif
796 }
797
798 /*
799 * irq_bypass_add_producer and irq_bypass_del_producer are only
800 * useful if the architecture supports PCI passthrough.
801 * irq_bypass_stop and irq_bypass_start are not needed and so
802 * kvm_ops are not defined for them.
803 */
804 bool kvm_arch_has_irq_bypass(void)
805 {
806 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
807 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
808 }
809
810 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
811 struct irq_bypass_producer *prod)
812 {
813 struct kvm_kernel_irqfd *irqfd =
814 container_of(cons, struct kvm_kernel_irqfd, consumer);
815 struct kvm *kvm = irqfd->kvm;
816
817 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
818 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
819
820 return 0;
821 }
822
823 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
824 struct irq_bypass_producer *prod)
825 {
826 struct kvm_kernel_irqfd *irqfd =
827 container_of(cons, struct kvm_kernel_irqfd, consumer);
828 struct kvm *kvm = irqfd->kvm;
829
830 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
831 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
832 }
833
834 #ifdef CONFIG_VSX
835 static inline int kvmppc_get_vsr_dword_offset(int index)
836 {
837 int offset;
838
839 if ((index != 0) && (index != 1))
840 return -1;
841
842 #ifdef __BIG_ENDIAN
843 offset = index;
844 #else
845 offset = 1 - index;
846 #endif
847
848 return offset;
849 }
850
851 static inline int kvmppc_get_vsr_word_offset(int index)
852 {
853 int offset;
854
855 if ((index > 3) || (index < 0))
856 return -1;
857
858 #ifdef __BIG_ENDIAN
859 offset = index;
860 #else
861 offset = 3 - index;
862 #endif
863 return offset;
864 }
865
866 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
867 u64 gpr)
868 {
869 union kvmppc_one_reg val;
870 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
871 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
872
873 if (offset == -1)
874 return;
875
876 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
877 val.vval = VCPU_VSX_VR(vcpu, index);
878 val.vsxval[offset] = gpr;
879 VCPU_VSX_VR(vcpu, index) = val.vval;
880 } else {
881 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
882 }
883 }
884
885 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
886 u64 gpr)
887 {
888 union kvmppc_one_reg val;
889 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
890
891 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
892 val.vval = VCPU_VSX_VR(vcpu, index);
893 val.vsxval[0] = gpr;
894 val.vsxval[1] = gpr;
895 VCPU_VSX_VR(vcpu, index) = val.vval;
896 } else {
897 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
898 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
899 }
900 }
901
902 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
903 u32 gpr32)
904 {
905 union kvmppc_one_reg val;
906 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
907 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
908 int dword_offset, word_offset;
909
910 if (offset == -1)
911 return;
912
913 if (vcpu->arch.mmio_vsx_tx_sx_enabled) {
914 val.vval = VCPU_VSX_VR(vcpu, index);
915 val.vsx32val[offset] = gpr32;
916 VCPU_VSX_VR(vcpu, index) = val.vval;
917 } else {
918 dword_offset = offset / 2;
919 word_offset = offset % 2;
920 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
921 val.vsx32val[word_offset] = gpr32;
922 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
923 }
924 }
925 #endif /* CONFIG_VSX */
926
927 #ifdef CONFIG_ALTIVEC
928 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
929 u64 gpr)
930 {
931 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
932 u32 hi, lo;
933 u32 di;
934
935 #ifdef __BIG_ENDIAN
936 hi = gpr >> 32;
937 lo = gpr & 0xffffffff;
938 #else
939 lo = gpr >> 32;
940 hi = gpr & 0xffffffff;
941 #endif
942
943 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
944 if (di > 1)
945 return;
946
947 if (vcpu->arch.mmio_host_swabbed)
948 di = 1 - di;
949
950 VCPU_VSX_VR(vcpu, index).u[di * 2] = hi;
951 VCPU_VSX_VR(vcpu, index).u[di * 2 + 1] = lo;
952 }
953 #endif /* CONFIG_ALTIVEC */
954
955 #ifdef CONFIG_PPC_FPU
956 static inline u64 sp_to_dp(u32 fprs)
957 {
958 u64 fprd;
959
960 preempt_disable();
961 enable_kernel_fp();
962 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
963 : "fr0");
964 preempt_enable();
965 return fprd;
966 }
967
968 static inline u32 dp_to_sp(u64 fprd)
969 {
970 u32 fprs;
971
972 preempt_disable();
973 enable_kernel_fp();
974 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
975 : "fr0");
976 preempt_enable();
977 return fprs;
978 }
979
980 #else
981 #define sp_to_dp(x) (x)
982 #define dp_to_sp(x) (x)
983 #endif /* CONFIG_PPC_FPU */
984
985 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
986 struct kvm_run *run)
987 {
988 u64 uninitialized_var(gpr);
989
990 if (run->mmio.len > sizeof(gpr)) {
991 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
992 return;
993 }
994
995 if (!vcpu->arch.mmio_host_swabbed) {
996 switch (run->mmio.len) {
997 case 8: gpr = *(u64 *)run->mmio.data; break;
998 case 4: gpr = *(u32 *)run->mmio.data; break;
999 case 2: gpr = *(u16 *)run->mmio.data; break;
1000 case 1: gpr = *(u8 *)run->mmio.data; break;
1001 }
1002 } else {
1003 switch (run->mmio.len) {
1004 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1005 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1006 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1007 case 1: gpr = *(u8 *)run->mmio.data; break;
1008 }
1009 }
1010
1011 /* conversion between single and double precision */
1012 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1013 gpr = sp_to_dp(gpr);
1014
1015 if (vcpu->arch.mmio_sign_extend) {
1016 switch (run->mmio.len) {
1017 #ifdef CONFIG_PPC64
1018 case 4:
1019 gpr = (s64)(s32)gpr;
1020 break;
1021 #endif
1022 case 2:
1023 gpr = (s64)(s16)gpr;
1024 break;
1025 case 1:
1026 gpr = (s64)(s8)gpr;
1027 break;
1028 }
1029 }
1030
1031 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1032 case KVM_MMIO_REG_GPR:
1033 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1034 break;
1035 case KVM_MMIO_REG_FPR:
1036 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1037 break;
1038 #ifdef CONFIG_PPC_BOOK3S
1039 case KVM_MMIO_REG_QPR:
1040 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1041 break;
1042 case KVM_MMIO_REG_FQPR:
1043 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1044 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1045 break;
1046 #endif
1047 #ifdef CONFIG_VSX
1048 case KVM_MMIO_REG_VSX:
1049 if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_DWORD)
1050 kvmppc_set_vsr_dword(vcpu, gpr);
1051 else if (vcpu->arch.mmio_vsx_copy_type == KVMPPC_VSX_COPY_WORD)
1052 kvmppc_set_vsr_word(vcpu, gpr);
1053 else if (vcpu->arch.mmio_vsx_copy_type ==
1054 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1055 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1056 break;
1057 #endif
1058 #ifdef CONFIG_ALTIVEC
1059 case KVM_MMIO_REG_VMX:
1060 kvmppc_set_vmx_dword(vcpu, gpr);
1061 break;
1062 #endif
1063 default:
1064 BUG();
1065 }
1066 }
1067
1068 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1069 unsigned int rt, unsigned int bytes,
1070 int is_default_endian, int sign_extend)
1071 {
1072 int idx, ret;
1073 bool host_swabbed;
1074
1075 /* Pity C doesn't have a logical XOR operator */
1076 if (kvmppc_need_byteswap(vcpu)) {
1077 host_swabbed = is_default_endian;
1078 } else {
1079 host_swabbed = !is_default_endian;
1080 }
1081
1082 if (bytes > sizeof(run->mmio.data)) {
1083 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1084 run->mmio.len);
1085 }
1086
1087 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1088 run->mmio.len = bytes;
1089 run->mmio.is_write = 0;
1090
1091 vcpu->arch.io_gpr = rt;
1092 vcpu->arch.mmio_host_swabbed = host_swabbed;
1093 vcpu->mmio_needed = 1;
1094 vcpu->mmio_is_write = 0;
1095 vcpu->arch.mmio_sign_extend = sign_extend;
1096
1097 idx = srcu_read_lock(&vcpu->kvm->srcu);
1098
1099 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1100 bytes, &run->mmio.data);
1101
1102 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1103
1104 if (!ret) {
1105 kvmppc_complete_mmio_load(vcpu, run);
1106 vcpu->mmio_needed = 0;
1107 return EMULATE_DONE;
1108 }
1109
1110 return EMULATE_DO_MMIO;
1111 }
1112
1113 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1114 unsigned int rt, unsigned int bytes,
1115 int is_default_endian)
1116 {
1117 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1118 }
1119 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1120
1121 /* Same as above, but sign extends */
1122 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1123 unsigned int rt, unsigned int bytes,
1124 int is_default_endian)
1125 {
1126 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1127 }
1128
1129 #ifdef CONFIG_VSX
1130 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1131 unsigned int rt, unsigned int bytes,
1132 int is_default_endian, int mmio_sign_extend)
1133 {
1134 enum emulation_result emulated = EMULATE_DONE;
1135
1136 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1137 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1138 return EMULATE_FAIL;
1139
1140 while (vcpu->arch.mmio_vsx_copy_nums) {
1141 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1142 is_default_endian, mmio_sign_extend);
1143
1144 if (emulated != EMULATE_DONE)
1145 break;
1146
1147 vcpu->arch.paddr_accessed += run->mmio.len;
1148
1149 vcpu->arch.mmio_vsx_copy_nums--;
1150 vcpu->arch.mmio_vsx_offset++;
1151 }
1152 return emulated;
1153 }
1154 #endif /* CONFIG_VSX */
1155
1156 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1157 u64 val, unsigned int bytes, int is_default_endian)
1158 {
1159 void *data = run->mmio.data;
1160 int idx, ret;
1161 bool host_swabbed;
1162
1163 /* Pity C doesn't have a logical XOR operator */
1164 if (kvmppc_need_byteswap(vcpu)) {
1165 host_swabbed = is_default_endian;
1166 } else {
1167 host_swabbed = !is_default_endian;
1168 }
1169
1170 if (bytes > sizeof(run->mmio.data)) {
1171 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1172 run->mmio.len);
1173 }
1174
1175 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1176 run->mmio.len = bytes;
1177 run->mmio.is_write = 1;
1178 vcpu->mmio_needed = 1;
1179 vcpu->mmio_is_write = 1;
1180
1181 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1182 val = dp_to_sp(val);
1183
1184 /* Store the value at the lowest bytes in 'data'. */
1185 if (!host_swabbed) {
1186 switch (bytes) {
1187 case 8: *(u64 *)data = val; break;
1188 case 4: *(u32 *)data = val; break;
1189 case 2: *(u16 *)data = val; break;
1190 case 1: *(u8 *)data = val; break;
1191 }
1192 } else {
1193 switch (bytes) {
1194 case 8: *(u64 *)data = swab64(val); break;
1195 case 4: *(u32 *)data = swab32(val); break;
1196 case 2: *(u16 *)data = swab16(val); break;
1197 case 1: *(u8 *)data = val; break;
1198 }
1199 }
1200
1201 idx = srcu_read_lock(&vcpu->kvm->srcu);
1202
1203 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1204 bytes, &run->mmio.data);
1205
1206 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1207
1208 if (!ret) {
1209 vcpu->mmio_needed = 0;
1210 return EMULATE_DONE;
1211 }
1212
1213 return EMULATE_DO_MMIO;
1214 }
1215 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1216
1217 #ifdef CONFIG_VSX
1218 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1219 {
1220 u32 dword_offset, word_offset;
1221 union kvmppc_one_reg reg;
1222 int vsx_offset = 0;
1223 int copy_type = vcpu->arch.mmio_vsx_copy_type;
1224 int result = 0;
1225
1226 switch (copy_type) {
1227 case KVMPPC_VSX_COPY_DWORD:
1228 vsx_offset =
1229 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1230
1231 if (vsx_offset == -1) {
1232 result = -1;
1233 break;
1234 }
1235
1236 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1237 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1238 } else {
1239 reg.vval = VCPU_VSX_VR(vcpu, rs);
1240 *val = reg.vsxval[vsx_offset];
1241 }
1242 break;
1243
1244 case KVMPPC_VSX_COPY_WORD:
1245 vsx_offset =
1246 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1247
1248 if (vsx_offset == -1) {
1249 result = -1;
1250 break;
1251 }
1252
1253 if (!vcpu->arch.mmio_vsx_tx_sx_enabled) {
1254 dword_offset = vsx_offset / 2;
1255 word_offset = vsx_offset % 2;
1256 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1257 *val = reg.vsx32val[word_offset];
1258 } else {
1259 reg.vval = VCPU_VSX_VR(vcpu, rs);
1260 *val = reg.vsx32val[vsx_offset];
1261 }
1262 break;
1263
1264 default:
1265 result = -1;
1266 break;
1267 }
1268
1269 return result;
1270 }
1271
1272 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1273 int rs, unsigned int bytes, int is_default_endian)
1274 {
1275 u64 val;
1276 enum emulation_result emulated = EMULATE_DONE;
1277
1278 vcpu->arch.io_gpr = rs;
1279
1280 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1281 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1282 return EMULATE_FAIL;
1283
1284 while (vcpu->arch.mmio_vsx_copy_nums) {
1285 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1286 return EMULATE_FAIL;
1287
1288 emulated = kvmppc_handle_store(run, vcpu,
1289 val, bytes, is_default_endian);
1290
1291 if (emulated != EMULATE_DONE)
1292 break;
1293
1294 vcpu->arch.paddr_accessed += run->mmio.len;
1295
1296 vcpu->arch.mmio_vsx_copy_nums--;
1297 vcpu->arch.mmio_vsx_offset++;
1298 }
1299
1300 return emulated;
1301 }
1302
1303 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1304 struct kvm_run *run)
1305 {
1306 enum emulation_result emulated = EMULATE_FAIL;
1307 int r;
1308
1309 vcpu->arch.paddr_accessed += run->mmio.len;
1310
1311 if (!vcpu->mmio_is_write) {
1312 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1313 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1314 } else {
1315 emulated = kvmppc_handle_vsx_store(run, vcpu,
1316 vcpu->arch.io_gpr, run->mmio.len, 1);
1317 }
1318
1319 switch (emulated) {
1320 case EMULATE_DO_MMIO:
1321 run->exit_reason = KVM_EXIT_MMIO;
1322 r = RESUME_HOST;
1323 break;
1324 case EMULATE_FAIL:
1325 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1326 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1327 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1328 r = RESUME_HOST;
1329 break;
1330 default:
1331 r = RESUME_GUEST;
1332 break;
1333 }
1334 return r;
1335 }
1336 #endif /* CONFIG_VSX */
1337
1338 #ifdef CONFIG_ALTIVEC
1339 /* handle quadword load access in two halves */
1340 int kvmppc_handle_load128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1341 unsigned int rt, int is_default_endian)
1342 {
1343 enum emulation_result emulated;
1344
1345 while (vcpu->arch.mmio_vmx_copy_nums) {
1346 emulated = __kvmppc_handle_load(run, vcpu, rt, 8,
1347 is_default_endian, 0);
1348
1349 if (emulated != EMULATE_DONE)
1350 break;
1351
1352 vcpu->arch.paddr_accessed += run->mmio.len;
1353 vcpu->arch.mmio_vmx_copy_nums--;
1354 }
1355
1356 return emulated;
1357 }
1358
1359 static inline int kvmppc_get_vmx_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1360 {
1361 vector128 vrs = VCPU_VSX_VR(vcpu, rs);
1362 u32 di;
1363 u64 w0, w1;
1364
1365 di = 2 - vcpu->arch.mmio_vmx_copy_nums; /* doubleword index */
1366 if (di > 1)
1367 return -1;
1368
1369 if (vcpu->arch.mmio_host_swabbed)
1370 di = 1 - di;
1371
1372 w0 = vrs.u[di * 2];
1373 w1 = vrs.u[di * 2 + 1];
1374
1375 #ifdef __BIG_ENDIAN
1376 *val = (w0 << 32) | w1;
1377 #else
1378 *val = (w1 << 32) | w0;
1379 #endif
1380 return 0;
1381 }
1382
1383 /* handle quadword store in two halves */
1384 int kvmppc_handle_store128_by2x64(struct kvm_run *run, struct kvm_vcpu *vcpu,
1385 unsigned int rs, int is_default_endian)
1386 {
1387 u64 val = 0;
1388 enum emulation_result emulated = EMULATE_DONE;
1389
1390 vcpu->arch.io_gpr = rs;
1391
1392 while (vcpu->arch.mmio_vmx_copy_nums) {
1393 if (kvmppc_get_vmx_data(vcpu, rs, &val) == -1)
1394 return EMULATE_FAIL;
1395
1396 emulated = kvmppc_handle_store(run, vcpu, val, 8,
1397 is_default_endian);
1398 if (emulated != EMULATE_DONE)
1399 break;
1400
1401 vcpu->arch.paddr_accessed += run->mmio.len;
1402 vcpu->arch.mmio_vmx_copy_nums--;
1403 }
1404
1405 return emulated;
1406 }
1407
1408 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1409 struct kvm_run *run)
1410 {
1411 enum emulation_result emulated = EMULATE_FAIL;
1412 int r;
1413
1414 vcpu->arch.paddr_accessed += run->mmio.len;
1415
1416 if (!vcpu->mmio_is_write) {
1417 emulated = kvmppc_handle_load128_by2x64(run, vcpu,
1418 vcpu->arch.io_gpr, 1);
1419 } else {
1420 emulated = kvmppc_handle_store128_by2x64(run, vcpu,
1421 vcpu->arch.io_gpr, 1);
1422 }
1423
1424 switch (emulated) {
1425 case EMULATE_DO_MMIO:
1426 run->exit_reason = KVM_EXIT_MMIO;
1427 r = RESUME_HOST;
1428 break;
1429 case EMULATE_FAIL:
1430 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1431 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1432 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1433 r = RESUME_HOST;
1434 break;
1435 default:
1436 r = RESUME_GUEST;
1437 break;
1438 }
1439 return r;
1440 }
1441 #endif /* CONFIG_ALTIVEC */
1442
1443 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1444 {
1445 int r = 0;
1446 union kvmppc_one_reg val;
1447 int size;
1448
1449 size = one_reg_size(reg->id);
1450 if (size > sizeof(val))
1451 return -EINVAL;
1452
1453 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1454 if (r == -EINVAL) {
1455 r = 0;
1456 switch (reg->id) {
1457 #ifdef CONFIG_ALTIVEC
1458 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1459 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1460 r = -ENXIO;
1461 break;
1462 }
1463 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1464 break;
1465 case KVM_REG_PPC_VSCR:
1466 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1467 r = -ENXIO;
1468 break;
1469 }
1470 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1471 break;
1472 case KVM_REG_PPC_VRSAVE:
1473 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1474 break;
1475 #endif /* CONFIG_ALTIVEC */
1476 default:
1477 r = -EINVAL;
1478 break;
1479 }
1480 }
1481
1482 if (r)
1483 return r;
1484
1485 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1486 r = -EFAULT;
1487
1488 return r;
1489 }
1490
1491 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1492 {
1493 int r;
1494 union kvmppc_one_reg val;
1495 int size;
1496
1497 size = one_reg_size(reg->id);
1498 if (size > sizeof(val))
1499 return -EINVAL;
1500
1501 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1502 return -EFAULT;
1503
1504 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1505 if (r == -EINVAL) {
1506 r = 0;
1507 switch (reg->id) {
1508 #ifdef CONFIG_ALTIVEC
1509 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1510 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1511 r = -ENXIO;
1512 break;
1513 }
1514 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1515 break;
1516 case KVM_REG_PPC_VSCR:
1517 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1518 r = -ENXIO;
1519 break;
1520 }
1521 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1522 break;
1523 case KVM_REG_PPC_VRSAVE:
1524 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1525 r = -ENXIO;
1526 break;
1527 }
1528 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1529 break;
1530 #endif /* CONFIG_ALTIVEC */
1531 default:
1532 r = -EINVAL;
1533 break;
1534 }
1535 }
1536
1537 return r;
1538 }
1539
1540 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1541 {
1542 int r;
1543
1544 if (vcpu->mmio_needed) {
1545 vcpu->mmio_needed = 0;
1546 if (!vcpu->mmio_is_write)
1547 kvmppc_complete_mmio_load(vcpu, run);
1548 #ifdef CONFIG_VSX
1549 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1550 vcpu->arch.mmio_vsx_copy_nums--;
1551 vcpu->arch.mmio_vsx_offset++;
1552 }
1553
1554 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1555 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1556 if (r == RESUME_HOST) {
1557 vcpu->mmio_needed = 1;
1558 return r;
1559 }
1560 }
1561 #endif
1562 #ifdef CONFIG_ALTIVEC
1563 if (vcpu->arch.mmio_vmx_copy_nums > 0)
1564 vcpu->arch.mmio_vmx_copy_nums--;
1565
1566 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1567 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1568 if (r == RESUME_HOST) {
1569 vcpu->mmio_needed = 1;
1570 return r;
1571 }
1572 }
1573 #endif
1574 } else if (vcpu->arch.osi_needed) {
1575 u64 *gprs = run->osi.gprs;
1576 int i;
1577
1578 for (i = 0; i < 32; i++)
1579 kvmppc_set_gpr(vcpu, i, gprs[i]);
1580 vcpu->arch.osi_needed = 0;
1581 } else if (vcpu->arch.hcall_needed) {
1582 int i;
1583
1584 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1585 for (i = 0; i < 9; ++i)
1586 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1587 vcpu->arch.hcall_needed = 0;
1588 #ifdef CONFIG_BOOKE
1589 } else if (vcpu->arch.epr_needed) {
1590 kvmppc_set_epr(vcpu, run->epr.epr);
1591 vcpu->arch.epr_needed = 0;
1592 #endif
1593 }
1594
1595 kvm_sigset_activate(vcpu);
1596
1597 if (run->immediate_exit)
1598 r = -EINTR;
1599 else
1600 r = kvmppc_vcpu_run(run, vcpu);
1601
1602 kvm_sigset_deactivate(vcpu);
1603
1604 return r;
1605 }
1606
1607 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1608 {
1609 if (irq->irq == KVM_INTERRUPT_UNSET) {
1610 kvmppc_core_dequeue_external(vcpu);
1611 return 0;
1612 }
1613
1614 kvmppc_core_queue_external(vcpu, irq);
1615
1616 kvm_vcpu_kick(vcpu);
1617
1618 return 0;
1619 }
1620
1621 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1622 struct kvm_enable_cap *cap)
1623 {
1624 int r;
1625
1626 if (cap->flags)
1627 return -EINVAL;
1628
1629 switch (cap->cap) {
1630 case KVM_CAP_PPC_OSI:
1631 r = 0;
1632 vcpu->arch.osi_enabled = true;
1633 break;
1634 case KVM_CAP_PPC_PAPR:
1635 r = 0;
1636 vcpu->arch.papr_enabled = true;
1637 break;
1638 case KVM_CAP_PPC_EPR:
1639 r = 0;
1640 if (cap->args[0])
1641 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1642 else
1643 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1644 break;
1645 #ifdef CONFIG_BOOKE
1646 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1647 r = 0;
1648 vcpu->arch.watchdog_enabled = true;
1649 break;
1650 #endif
1651 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1652 case KVM_CAP_SW_TLB: {
1653 struct kvm_config_tlb cfg;
1654 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1655
1656 r = -EFAULT;
1657 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1658 break;
1659
1660 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1661 break;
1662 }
1663 #endif
1664 #ifdef CONFIG_KVM_MPIC
1665 case KVM_CAP_IRQ_MPIC: {
1666 struct fd f;
1667 struct kvm_device *dev;
1668
1669 r = -EBADF;
1670 f = fdget(cap->args[0]);
1671 if (!f.file)
1672 break;
1673
1674 r = -EPERM;
1675 dev = kvm_device_from_filp(f.file);
1676 if (dev)
1677 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1678
1679 fdput(f);
1680 break;
1681 }
1682 #endif
1683 #ifdef CONFIG_KVM_XICS
1684 case KVM_CAP_IRQ_XICS: {
1685 struct fd f;
1686 struct kvm_device *dev;
1687
1688 r = -EBADF;
1689 f = fdget(cap->args[0]);
1690 if (!f.file)
1691 break;
1692
1693 r = -EPERM;
1694 dev = kvm_device_from_filp(f.file);
1695 if (dev) {
1696 if (xive_enabled())
1697 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1698 else
1699 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1700 }
1701
1702 fdput(f);
1703 break;
1704 }
1705 #endif /* CONFIG_KVM_XICS */
1706 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1707 case KVM_CAP_PPC_FWNMI:
1708 r = -EINVAL;
1709 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1710 break;
1711 r = 0;
1712 vcpu->kvm->arch.fwnmi_enabled = true;
1713 break;
1714 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1715 default:
1716 r = -EINVAL;
1717 break;
1718 }
1719
1720 if (!r)
1721 r = kvmppc_sanity_check(vcpu);
1722
1723 return r;
1724 }
1725
1726 bool kvm_arch_intc_initialized(struct kvm *kvm)
1727 {
1728 #ifdef CONFIG_KVM_MPIC
1729 if (kvm->arch.mpic)
1730 return true;
1731 #endif
1732 #ifdef CONFIG_KVM_XICS
1733 if (kvm->arch.xics || kvm->arch.xive)
1734 return true;
1735 #endif
1736 return false;
1737 }
1738
1739 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1740 struct kvm_mp_state *mp_state)
1741 {
1742 return -EINVAL;
1743 }
1744
1745 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1746 struct kvm_mp_state *mp_state)
1747 {
1748 return -EINVAL;
1749 }
1750
1751 long kvm_arch_vcpu_ioctl(struct file *filp,
1752 unsigned int ioctl, unsigned long arg)
1753 {
1754 struct kvm_vcpu *vcpu = filp->private_data;
1755 void __user *argp = (void __user *)arg;
1756 long r;
1757
1758 switch (ioctl) {
1759 case KVM_INTERRUPT: {
1760 struct kvm_interrupt irq;
1761 r = -EFAULT;
1762 if (copy_from_user(&irq, argp, sizeof(irq)))
1763 goto out;
1764 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1765 goto out;
1766 }
1767
1768 case KVM_ENABLE_CAP:
1769 {
1770 struct kvm_enable_cap cap;
1771 r = -EFAULT;
1772 if (copy_from_user(&cap, argp, sizeof(cap)))
1773 goto out;
1774 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1775 break;
1776 }
1777
1778 case KVM_SET_ONE_REG:
1779 case KVM_GET_ONE_REG:
1780 {
1781 struct kvm_one_reg reg;
1782 r = -EFAULT;
1783 if (copy_from_user(&reg, argp, sizeof(reg)))
1784 goto out;
1785 if (ioctl == KVM_SET_ONE_REG)
1786 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1787 else
1788 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1789 break;
1790 }
1791
1792 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1793 case KVM_DIRTY_TLB: {
1794 struct kvm_dirty_tlb dirty;
1795 r = -EFAULT;
1796 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1797 goto out;
1798 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1799 break;
1800 }
1801 #endif
1802 default:
1803 r = -EINVAL;
1804 }
1805
1806 out:
1807 return r;
1808 }
1809
1810 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1811 {
1812 return VM_FAULT_SIGBUS;
1813 }
1814
1815 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1816 {
1817 u32 inst_nop = 0x60000000;
1818 #ifdef CONFIG_KVM_BOOKE_HV
1819 u32 inst_sc1 = 0x44000022;
1820 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1821 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1822 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1823 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1824 #else
1825 u32 inst_lis = 0x3c000000;
1826 u32 inst_ori = 0x60000000;
1827 u32 inst_sc = 0x44000002;
1828 u32 inst_imm_mask = 0xffff;
1829
1830 /*
1831 * The hypercall to get into KVM from within guest context is as
1832 * follows:
1833 *
1834 * lis r0, r0, KVM_SC_MAGIC_R0@h
1835 * ori r0, KVM_SC_MAGIC_R0@l
1836 * sc
1837 * nop
1838 */
1839 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1840 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1841 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1842 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1843 #endif
1844
1845 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1846
1847 return 0;
1848 }
1849
1850 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1851 bool line_status)
1852 {
1853 if (!irqchip_in_kernel(kvm))
1854 return -ENXIO;
1855
1856 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1857 irq_event->irq, irq_event->level,
1858 line_status);
1859 return 0;
1860 }
1861
1862
1863 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1864 struct kvm_enable_cap *cap)
1865 {
1866 int r;
1867
1868 if (cap->flags)
1869 return -EINVAL;
1870
1871 switch (cap->cap) {
1872 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1873 case KVM_CAP_PPC_ENABLE_HCALL: {
1874 unsigned long hcall = cap->args[0];
1875
1876 r = -EINVAL;
1877 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1878 cap->args[1] > 1)
1879 break;
1880 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1881 break;
1882 if (cap->args[1])
1883 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1884 else
1885 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1886 r = 0;
1887 break;
1888 }
1889 case KVM_CAP_PPC_SMT: {
1890 unsigned long mode = cap->args[0];
1891 unsigned long flags = cap->args[1];
1892
1893 r = -EINVAL;
1894 if (kvm->arch.kvm_ops->set_smt_mode)
1895 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
1896 break;
1897 }
1898 #endif
1899 default:
1900 r = -EINVAL;
1901 break;
1902 }
1903
1904 return r;
1905 }
1906
1907 long kvm_arch_vm_ioctl(struct file *filp,
1908 unsigned int ioctl, unsigned long arg)
1909 {
1910 struct kvm *kvm __maybe_unused = filp->private_data;
1911 void __user *argp = (void __user *)arg;
1912 long r;
1913
1914 switch (ioctl) {
1915 case KVM_PPC_GET_PVINFO: {
1916 struct kvm_ppc_pvinfo pvinfo;
1917 memset(&pvinfo, 0, sizeof(pvinfo));
1918 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1919 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1920 r = -EFAULT;
1921 goto out;
1922 }
1923
1924 break;
1925 }
1926 case KVM_ENABLE_CAP:
1927 {
1928 struct kvm_enable_cap cap;
1929 r = -EFAULT;
1930 if (copy_from_user(&cap, argp, sizeof(cap)))
1931 goto out;
1932 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1933 break;
1934 }
1935 #ifdef CONFIG_SPAPR_TCE_IOMMU
1936 case KVM_CREATE_SPAPR_TCE_64: {
1937 struct kvm_create_spapr_tce_64 create_tce_64;
1938
1939 r = -EFAULT;
1940 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1941 goto out;
1942 if (create_tce_64.flags) {
1943 r = -EINVAL;
1944 goto out;
1945 }
1946 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1947 goto out;
1948 }
1949 case KVM_CREATE_SPAPR_TCE: {
1950 struct kvm_create_spapr_tce create_tce;
1951 struct kvm_create_spapr_tce_64 create_tce_64;
1952
1953 r = -EFAULT;
1954 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1955 goto out;
1956
1957 create_tce_64.liobn = create_tce.liobn;
1958 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1959 create_tce_64.offset = 0;
1960 create_tce_64.size = create_tce.window_size >>
1961 IOMMU_PAGE_SHIFT_4K;
1962 create_tce_64.flags = 0;
1963 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1964 goto out;
1965 }
1966 #endif
1967 #ifdef CONFIG_PPC_BOOK3S_64
1968 case KVM_PPC_GET_SMMU_INFO: {
1969 struct kvm_ppc_smmu_info info;
1970 struct kvm *kvm = filp->private_data;
1971
1972 memset(&info, 0, sizeof(info));
1973 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1974 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1975 r = -EFAULT;
1976 break;
1977 }
1978 case KVM_PPC_RTAS_DEFINE_TOKEN: {
1979 struct kvm *kvm = filp->private_data;
1980
1981 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1982 break;
1983 }
1984 case KVM_PPC_CONFIGURE_V3_MMU: {
1985 struct kvm *kvm = filp->private_data;
1986 struct kvm_ppc_mmuv3_cfg cfg;
1987
1988 r = -EINVAL;
1989 if (!kvm->arch.kvm_ops->configure_mmu)
1990 goto out;
1991 r = -EFAULT;
1992 if (copy_from_user(&cfg, argp, sizeof(cfg)))
1993 goto out;
1994 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
1995 break;
1996 }
1997 case KVM_PPC_GET_RMMU_INFO: {
1998 struct kvm *kvm = filp->private_data;
1999 struct kvm_ppc_rmmu_info info;
2000
2001 r = -EINVAL;
2002 if (!kvm->arch.kvm_ops->get_rmmu_info)
2003 goto out;
2004 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2005 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2006 r = -EFAULT;
2007 break;
2008 }
2009 default: {
2010 struct kvm *kvm = filp->private_data;
2011 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2012 }
2013 #else /* CONFIG_PPC_BOOK3S_64 */
2014 default:
2015 r = -ENOTTY;
2016 #endif
2017 }
2018 out:
2019 return r;
2020 }
2021
2022 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2023 static unsigned long nr_lpids;
2024
2025 long kvmppc_alloc_lpid(void)
2026 {
2027 long lpid;
2028
2029 do {
2030 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2031 if (lpid >= nr_lpids) {
2032 pr_err("%s: No LPIDs free\n", __func__);
2033 return -ENOMEM;
2034 }
2035 } while (test_and_set_bit(lpid, lpid_inuse));
2036
2037 return lpid;
2038 }
2039 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2040
2041 void kvmppc_claim_lpid(long lpid)
2042 {
2043 set_bit(lpid, lpid_inuse);
2044 }
2045 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2046
2047 void kvmppc_free_lpid(long lpid)
2048 {
2049 clear_bit(lpid, lpid_inuse);
2050 }
2051 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2052
2053 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2054 {
2055 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2056 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2057 }
2058 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2059
2060 int kvm_arch_init(void *opaque)
2061 {
2062 return 0;
2063 }
2064
2065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);