]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/kvm/powerpc.c
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / powerpc / kvm / powerpc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright IBM Corp. 2007
5 *
6 * Authors: Hollis Blanchard <hollisb@us.ibm.com>
7 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
8 */
9
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/vmalloc.h>
14 #include <linux/hrtimer.h>
15 #include <linux/sched/signal.h>
16 #include <linux/fs.h>
17 #include <linux/slab.h>
18 #include <linux/file.h>
19 #include <linux/module.h>
20 #include <linux/irqbypass.h>
21 #include <linux/kvm_irqfd.h>
22 #include <asm/cputable.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_ppc.h>
25 #include <asm/cputhreads.h>
26 #include <asm/irqflags.h>
27 #include <asm/iommu.h>
28 #include <asm/switch_to.h>
29 #include <asm/xive.h>
30 #ifdef CONFIG_PPC_PSERIES
31 #include <asm/hvcall.h>
32 #include <asm/plpar_wrappers.h>
33 #endif
34 #include <asm/ultravisor.h>
35
36 #include "timing.h"
37 #include "irq.h"
38 #include "../mm/mmu_decl.h"
39
40 #define CREATE_TRACE_POINTS
41 #include "trace.h"
42
43 struct kvmppc_ops *kvmppc_hv_ops;
44 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
45 struct kvmppc_ops *kvmppc_pr_ops;
46 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
47
48
49 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
50 {
51 return !!(v->arch.pending_exceptions) || kvm_request_pending(v);
52 }
53
54 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
55 {
56 return kvm_arch_vcpu_runnable(vcpu);
57 }
58
59 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
60 {
61 return false;
62 }
63
64 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65 {
66 return 1;
67 }
68
69 /*
70 * Common checks before entering the guest world. Call with interrupts
71 * disabled.
72 *
73 * returns:
74 *
75 * == 1 if we're ready to go into guest state
76 * <= 0 if we need to go back to the host with return value
77 */
78 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
79 {
80 int r;
81
82 WARN_ON(irqs_disabled());
83 hard_irq_disable();
84
85 while (true) {
86 if (need_resched()) {
87 local_irq_enable();
88 cond_resched();
89 hard_irq_disable();
90 continue;
91 }
92
93 if (signal_pending(current)) {
94 kvmppc_account_exit(vcpu, SIGNAL_EXITS);
95 vcpu->run->exit_reason = KVM_EXIT_INTR;
96 r = -EINTR;
97 break;
98 }
99
100 vcpu->mode = IN_GUEST_MODE;
101
102 /*
103 * Reading vcpu->requests must happen after setting vcpu->mode,
104 * so we don't miss a request because the requester sees
105 * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
106 * before next entering the guest (and thus doesn't IPI).
107 * This also orders the write to mode from any reads
108 * to the page tables done while the VCPU is running.
109 * Please see the comment in kvm_flush_remote_tlbs.
110 */
111 smp_mb();
112
113 if (kvm_request_pending(vcpu)) {
114 /* Make sure we process requests preemptable */
115 local_irq_enable();
116 trace_kvm_check_requests(vcpu);
117 r = kvmppc_core_check_requests(vcpu);
118 hard_irq_disable();
119 if (r > 0)
120 continue;
121 break;
122 }
123
124 if (kvmppc_core_prepare_to_enter(vcpu)) {
125 /* interrupts got enabled in between, so we
126 are back at square 1 */
127 continue;
128 }
129
130 guest_enter_irqoff();
131 return 1;
132 }
133
134 /* return to host */
135 local_irq_enable();
136 return r;
137 }
138 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
139
140 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
141 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
142 {
143 struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
144 int i;
145
146 shared->sprg0 = swab64(shared->sprg0);
147 shared->sprg1 = swab64(shared->sprg1);
148 shared->sprg2 = swab64(shared->sprg2);
149 shared->sprg3 = swab64(shared->sprg3);
150 shared->srr0 = swab64(shared->srr0);
151 shared->srr1 = swab64(shared->srr1);
152 shared->dar = swab64(shared->dar);
153 shared->msr = swab64(shared->msr);
154 shared->dsisr = swab32(shared->dsisr);
155 shared->int_pending = swab32(shared->int_pending);
156 for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
157 shared->sr[i] = swab32(shared->sr[i]);
158 }
159 #endif
160
161 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
162 {
163 int nr = kvmppc_get_gpr(vcpu, 11);
164 int r;
165 unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
166 unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
167 unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
168 unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
169 unsigned long r2 = 0;
170
171 if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
172 /* 32 bit mode */
173 param1 &= 0xffffffff;
174 param2 &= 0xffffffff;
175 param3 &= 0xffffffff;
176 param4 &= 0xffffffff;
177 }
178
179 switch (nr) {
180 case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
181 {
182 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
183 /* Book3S can be little endian, find it out here */
184 int shared_big_endian = true;
185 if (vcpu->arch.intr_msr & MSR_LE)
186 shared_big_endian = false;
187 if (shared_big_endian != vcpu->arch.shared_big_endian)
188 kvmppc_swab_shared(vcpu);
189 vcpu->arch.shared_big_endian = shared_big_endian;
190 #endif
191
192 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
193 /*
194 * Older versions of the Linux magic page code had
195 * a bug where they would map their trampoline code
196 * NX. If that's the case, remove !PR NX capability.
197 */
198 vcpu->arch.disable_kernel_nx = true;
199 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
200 }
201
202 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
203 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
204
205 #ifdef CONFIG_PPC_64K_PAGES
206 /*
207 * Make sure our 4k magic page is in the same window of a 64k
208 * page within the guest and within the host's page.
209 */
210 if ((vcpu->arch.magic_page_pa & 0xf000) !=
211 ((ulong)vcpu->arch.shared & 0xf000)) {
212 void *old_shared = vcpu->arch.shared;
213 ulong shared = (ulong)vcpu->arch.shared;
214 void *new_shared;
215
216 shared &= PAGE_MASK;
217 shared |= vcpu->arch.magic_page_pa & 0xf000;
218 new_shared = (void*)shared;
219 memcpy(new_shared, old_shared, 0x1000);
220 vcpu->arch.shared = new_shared;
221 }
222 #endif
223
224 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
225
226 r = EV_SUCCESS;
227 break;
228 }
229 case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
230 r = EV_SUCCESS;
231 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
232 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
233 #endif
234
235 /* Second return value is in r4 */
236 break;
237 case EV_HCALL_TOKEN(EV_IDLE):
238 r = EV_SUCCESS;
239 kvm_vcpu_block(vcpu);
240 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
241 break;
242 default:
243 r = EV_UNIMPLEMENTED;
244 break;
245 }
246
247 kvmppc_set_gpr(vcpu, 4, r2);
248
249 return r;
250 }
251 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
252
253 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
254 {
255 int r = false;
256
257 /* We have to know what CPU to virtualize */
258 if (!vcpu->arch.pvr)
259 goto out;
260
261 /* PAPR only works with book3s_64 */
262 if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
263 goto out;
264
265 /* HV KVM can only do PAPR mode for now */
266 if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
267 goto out;
268
269 #ifdef CONFIG_KVM_BOOKE_HV
270 if (!cpu_has_feature(CPU_FTR_EMB_HV))
271 goto out;
272 #endif
273
274 r = true;
275
276 out:
277 vcpu->arch.sane = r;
278 return r ? 0 : -EINVAL;
279 }
280 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
281
282 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
283 {
284 enum emulation_result er;
285 int r;
286
287 er = kvmppc_emulate_loadstore(vcpu);
288 switch (er) {
289 case EMULATE_DONE:
290 /* Future optimization: only reload non-volatiles if they were
291 * actually modified. */
292 r = RESUME_GUEST_NV;
293 break;
294 case EMULATE_AGAIN:
295 r = RESUME_GUEST;
296 break;
297 case EMULATE_DO_MMIO:
298 run->exit_reason = KVM_EXIT_MMIO;
299 /* We must reload nonvolatiles because "update" load/store
300 * instructions modify register state. */
301 /* Future optimization: only reload non-volatiles if they were
302 * actually modified. */
303 r = RESUME_HOST_NV;
304 break;
305 case EMULATE_FAIL:
306 {
307 u32 last_inst;
308
309 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
310 /* XXX Deliver Program interrupt to guest. */
311 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
312 r = RESUME_HOST;
313 break;
314 }
315 default:
316 WARN_ON(1);
317 r = RESUME_GUEST;
318 }
319
320 return r;
321 }
322 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
323
324 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
325 bool data)
326 {
327 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
328 struct kvmppc_pte pte;
329 int r = -EINVAL;
330
331 vcpu->stat.st++;
332
333 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->store_to_eaddr)
334 r = vcpu->kvm->arch.kvm_ops->store_to_eaddr(vcpu, eaddr, ptr,
335 size);
336
337 if ((!r) || (r == -EAGAIN))
338 return r;
339
340 r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
341 XLATE_WRITE, &pte);
342 if (r < 0)
343 return r;
344
345 *eaddr = pte.raddr;
346
347 if (!pte.may_write)
348 return -EPERM;
349
350 /* Magic page override */
351 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
352 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
353 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
354 void *magic = vcpu->arch.shared;
355 magic += pte.eaddr & 0xfff;
356 memcpy(magic, ptr, size);
357 return EMULATE_DONE;
358 }
359
360 if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
361 return EMULATE_DO_MMIO;
362
363 return EMULATE_DONE;
364 }
365 EXPORT_SYMBOL_GPL(kvmppc_st);
366
367 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
368 bool data)
369 {
370 ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
371 struct kvmppc_pte pte;
372 int rc = -EINVAL;
373
374 vcpu->stat.ld++;
375
376 if (vcpu->kvm->arch.kvm_ops && vcpu->kvm->arch.kvm_ops->load_from_eaddr)
377 rc = vcpu->kvm->arch.kvm_ops->load_from_eaddr(vcpu, eaddr, ptr,
378 size);
379
380 if ((!rc) || (rc == -EAGAIN))
381 return rc;
382
383 rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
384 XLATE_READ, &pte);
385 if (rc)
386 return rc;
387
388 *eaddr = pte.raddr;
389
390 if (!pte.may_read)
391 return -EPERM;
392
393 if (!data && !pte.may_execute)
394 return -ENOEXEC;
395
396 /* Magic page override */
397 if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
398 ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
399 !(kvmppc_get_msr(vcpu) & MSR_PR)) {
400 void *magic = vcpu->arch.shared;
401 magic += pte.eaddr & 0xfff;
402 memcpy(ptr, magic, size);
403 return EMULATE_DONE;
404 }
405
406 if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
407 return EMULATE_DO_MMIO;
408
409 return EMULATE_DONE;
410 }
411 EXPORT_SYMBOL_GPL(kvmppc_ld);
412
413 int kvm_arch_hardware_enable(void)
414 {
415 return 0;
416 }
417
418 int kvm_arch_hardware_setup(void *opaque)
419 {
420 return 0;
421 }
422
423 int kvm_arch_check_processor_compat(void *opaque)
424 {
425 return kvmppc_core_check_processor_compat();
426 }
427
428 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
429 {
430 struct kvmppc_ops *kvm_ops = NULL;
431 /*
432 * if we have both HV and PR enabled, default is HV
433 */
434 if (type == 0) {
435 if (kvmppc_hv_ops)
436 kvm_ops = kvmppc_hv_ops;
437 else
438 kvm_ops = kvmppc_pr_ops;
439 if (!kvm_ops)
440 goto err_out;
441 } else if (type == KVM_VM_PPC_HV) {
442 if (!kvmppc_hv_ops)
443 goto err_out;
444 kvm_ops = kvmppc_hv_ops;
445 } else if (type == KVM_VM_PPC_PR) {
446 if (!kvmppc_pr_ops)
447 goto err_out;
448 kvm_ops = kvmppc_pr_ops;
449 } else
450 goto err_out;
451
452 if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
453 return -ENOENT;
454
455 kvm->arch.kvm_ops = kvm_ops;
456 return kvmppc_core_init_vm(kvm);
457 err_out:
458 return -EINVAL;
459 }
460
461 void kvm_arch_destroy_vm(struct kvm *kvm)
462 {
463 unsigned int i;
464 struct kvm_vcpu *vcpu;
465
466 #ifdef CONFIG_KVM_XICS
467 /*
468 * We call kick_all_cpus_sync() to ensure that all
469 * CPUs have executed any pending IPIs before we
470 * continue and free VCPUs structures below.
471 */
472 if (is_kvmppc_hv_enabled(kvm))
473 kick_all_cpus_sync();
474 #endif
475
476 kvm_for_each_vcpu(i, vcpu, kvm)
477 kvm_vcpu_destroy(vcpu);
478
479 mutex_lock(&kvm->lock);
480 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
481 kvm->vcpus[i] = NULL;
482
483 atomic_set(&kvm->online_vcpus, 0);
484
485 kvmppc_core_destroy_vm(kvm);
486
487 mutex_unlock(&kvm->lock);
488
489 /* drop the module reference */
490 module_put(kvm->arch.kvm_ops->owner);
491 }
492
493 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
494 {
495 int r;
496 /* Assume we're using HV mode when the HV module is loaded */
497 int hv_enabled = kvmppc_hv_ops ? 1 : 0;
498
499 if (kvm) {
500 /*
501 * Hooray - we know which VM type we're running on. Depend on
502 * that rather than the guess above.
503 */
504 hv_enabled = is_kvmppc_hv_enabled(kvm);
505 }
506
507 switch (ext) {
508 #ifdef CONFIG_BOOKE
509 case KVM_CAP_PPC_BOOKE_SREGS:
510 case KVM_CAP_PPC_BOOKE_WATCHDOG:
511 case KVM_CAP_PPC_EPR:
512 #else
513 case KVM_CAP_PPC_SEGSTATE:
514 case KVM_CAP_PPC_HIOR:
515 case KVM_CAP_PPC_PAPR:
516 #endif
517 case KVM_CAP_PPC_UNSET_IRQ:
518 case KVM_CAP_PPC_IRQ_LEVEL:
519 case KVM_CAP_ENABLE_CAP:
520 case KVM_CAP_ONE_REG:
521 case KVM_CAP_IOEVENTFD:
522 case KVM_CAP_DEVICE_CTRL:
523 case KVM_CAP_IMMEDIATE_EXIT:
524 r = 1;
525 break;
526 case KVM_CAP_PPC_GUEST_DEBUG_SSTEP:
527 case KVM_CAP_PPC_PAIRED_SINGLES:
528 case KVM_CAP_PPC_OSI:
529 case KVM_CAP_PPC_GET_PVINFO:
530 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
531 case KVM_CAP_SW_TLB:
532 #endif
533 /* We support this only for PR */
534 r = !hv_enabled;
535 break;
536 #ifdef CONFIG_KVM_MPIC
537 case KVM_CAP_IRQ_MPIC:
538 r = 1;
539 break;
540 #endif
541
542 #ifdef CONFIG_PPC_BOOK3S_64
543 case KVM_CAP_SPAPR_TCE:
544 case KVM_CAP_SPAPR_TCE_64:
545 r = 1;
546 break;
547 case KVM_CAP_SPAPR_TCE_VFIO:
548 r = !!cpu_has_feature(CPU_FTR_HVMODE);
549 break;
550 case KVM_CAP_PPC_RTAS:
551 case KVM_CAP_PPC_FIXUP_HCALL:
552 case KVM_CAP_PPC_ENABLE_HCALL:
553 #ifdef CONFIG_KVM_XICS
554 case KVM_CAP_IRQ_XICS:
555 #endif
556 case KVM_CAP_PPC_GET_CPU_CHAR:
557 r = 1;
558 break;
559 #ifdef CONFIG_KVM_XIVE
560 case KVM_CAP_PPC_IRQ_XIVE:
561 /*
562 * We need XIVE to be enabled on the platform (implies
563 * a POWER9 processor) and the PowerNV platform, as
564 * nested is not yet supported.
565 */
566 r = xive_enabled() && !!cpu_has_feature(CPU_FTR_HVMODE) &&
567 kvmppc_xive_native_supported();
568 break;
569 #endif
570
571 case KVM_CAP_PPC_ALLOC_HTAB:
572 r = hv_enabled;
573 break;
574 #endif /* CONFIG_PPC_BOOK3S_64 */
575 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
576 case KVM_CAP_PPC_SMT:
577 r = 0;
578 if (kvm) {
579 if (kvm->arch.emul_smt_mode > 1)
580 r = kvm->arch.emul_smt_mode;
581 else
582 r = kvm->arch.smt_mode;
583 } else if (hv_enabled) {
584 if (cpu_has_feature(CPU_FTR_ARCH_300))
585 r = 1;
586 else
587 r = threads_per_subcore;
588 }
589 break;
590 case KVM_CAP_PPC_SMT_POSSIBLE:
591 r = 1;
592 if (hv_enabled) {
593 if (!cpu_has_feature(CPU_FTR_ARCH_300))
594 r = ((threads_per_subcore << 1) - 1);
595 else
596 /* P9 can emulate dbells, so allow any mode */
597 r = 8 | 4 | 2 | 1;
598 }
599 break;
600 case KVM_CAP_PPC_RMA:
601 r = 0;
602 break;
603 case KVM_CAP_PPC_HWRNG:
604 r = kvmppc_hwrng_present();
605 break;
606 case KVM_CAP_PPC_MMU_RADIX:
607 r = !!(hv_enabled && radix_enabled());
608 break;
609 case KVM_CAP_PPC_MMU_HASH_V3:
610 r = !!(hv_enabled && cpu_has_feature(CPU_FTR_ARCH_300) &&
611 cpu_has_feature(CPU_FTR_HVMODE));
612 break;
613 case KVM_CAP_PPC_NESTED_HV:
614 r = !!(hv_enabled && kvmppc_hv_ops->enable_nested &&
615 !kvmppc_hv_ops->enable_nested(NULL));
616 break;
617 #endif
618 case KVM_CAP_SYNC_MMU:
619 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
620 r = hv_enabled;
621 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
622 r = 1;
623 #else
624 r = 0;
625 #endif
626 break;
627 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
628 case KVM_CAP_PPC_HTAB_FD:
629 r = hv_enabled;
630 break;
631 #endif
632 case KVM_CAP_NR_VCPUS:
633 /*
634 * Recommending a number of CPUs is somewhat arbitrary; we
635 * return the number of present CPUs for -HV (since a host
636 * will have secondary threads "offline"), and for other KVM
637 * implementations just count online CPUs.
638 */
639 if (hv_enabled)
640 r = num_present_cpus();
641 else
642 r = num_online_cpus();
643 break;
644 case KVM_CAP_MAX_VCPUS:
645 r = KVM_MAX_VCPUS;
646 break;
647 case KVM_CAP_MAX_VCPU_ID:
648 r = KVM_MAX_VCPU_ID;
649 break;
650 #ifdef CONFIG_PPC_BOOK3S_64
651 case KVM_CAP_PPC_GET_SMMU_INFO:
652 r = 1;
653 break;
654 case KVM_CAP_SPAPR_MULTITCE:
655 r = 1;
656 break;
657 case KVM_CAP_SPAPR_RESIZE_HPT:
658 r = !!hv_enabled;
659 break;
660 #endif
661 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
662 case KVM_CAP_PPC_FWNMI:
663 r = hv_enabled;
664 break;
665 #endif
666 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
667 case KVM_CAP_PPC_HTM:
668 r = !!(cur_cpu_spec->cpu_user_features2 & PPC_FEATURE2_HTM) ||
669 (hv_enabled && cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST));
670 break;
671 #endif
672 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
673 case KVM_CAP_PPC_SECURE_GUEST:
674 r = hv_enabled && kvmppc_hv_ops->enable_svm &&
675 !kvmppc_hv_ops->enable_svm(NULL);
676 break;
677 #endif
678 default:
679 r = 0;
680 break;
681 }
682 return r;
683
684 }
685
686 long kvm_arch_dev_ioctl(struct file *filp,
687 unsigned int ioctl, unsigned long arg)
688 {
689 return -EINVAL;
690 }
691
692 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
693 {
694 kvmppc_core_free_memslot(kvm, slot);
695 }
696
697 int kvm_arch_prepare_memory_region(struct kvm *kvm,
698 struct kvm_memory_slot *memslot,
699 const struct kvm_userspace_memory_region *mem,
700 enum kvm_mr_change change)
701 {
702 return kvmppc_core_prepare_memory_region(kvm, memslot, mem, change);
703 }
704
705 void kvm_arch_commit_memory_region(struct kvm *kvm,
706 const struct kvm_userspace_memory_region *mem,
707 struct kvm_memory_slot *old,
708 const struct kvm_memory_slot *new,
709 enum kvm_mr_change change)
710 {
711 kvmppc_core_commit_memory_region(kvm, mem, old, new, change);
712 }
713
714 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
715 struct kvm_memory_slot *slot)
716 {
717 kvmppc_core_flush_memslot(kvm, slot);
718 }
719
720 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
721 {
722 return 0;
723 }
724
725 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
726 {
727 struct kvm_vcpu *vcpu;
728
729 vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
730 kvmppc_decrementer_func(vcpu);
731
732 return HRTIMER_NORESTART;
733 }
734
735 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
736 {
737 int err;
738
739 hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
740 vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
741 vcpu->arch.dec_expires = get_tb();
742
743 #ifdef CONFIG_KVM_EXIT_TIMING
744 mutex_init(&vcpu->arch.exit_timing_lock);
745 #endif
746 err = kvmppc_subarch_vcpu_init(vcpu);
747 if (err)
748 return err;
749
750 err = kvmppc_core_vcpu_create(vcpu);
751 if (err)
752 goto out_vcpu_uninit;
753
754 vcpu->arch.wqp = &vcpu->wq;
755 kvmppc_create_vcpu_debugfs(vcpu, vcpu->vcpu_id);
756 return 0;
757
758 out_vcpu_uninit:
759 kvmppc_subarch_vcpu_uninit(vcpu);
760 return err;
761 }
762
763 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
764 {
765 }
766
767 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
768 {
769 /* Make sure we're not using the vcpu anymore */
770 hrtimer_cancel(&vcpu->arch.dec_timer);
771
772 kvmppc_remove_vcpu_debugfs(vcpu);
773
774 switch (vcpu->arch.irq_type) {
775 case KVMPPC_IRQ_MPIC:
776 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
777 break;
778 case KVMPPC_IRQ_XICS:
779 if (xics_on_xive())
780 kvmppc_xive_cleanup_vcpu(vcpu);
781 else
782 kvmppc_xics_free_icp(vcpu);
783 break;
784 case KVMPPC_IRQ_XIVE:
785 kvmppc_xive_native_cleanup_vcpu(vcpu);
786 break;
787 }
788
789 kvmppc_core_vcpu_free(vcpu);
790
791 kvmppc_subarch_vcpu_uninit(vcpu);
792 }
793
794 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
795 {
796 return kvmppc_core_pending_dec(vcpu);
797 }
798
799 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
800 {
801 #ifdef CONFIG_BOOKE
802 /*
803 * vrsave (formerly usprg0) isn't used by Linux, but may
804 * be used by the guest.
805 *
806 * On non-booke this is associated with Altivec and
807 * is handled by code in book3s.c.
808 */
809 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
810 #endif
811 kvmppc_core_vcpu_load(vcpu, cpu);
812 }
813
814 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
815 {
816 kvmppc_core_vcpu_put(vcpu);
817 #ifdef CONFIG_BOOKE
818 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
819 #endif
820 }
821
822 /*
823 * irq_bypass_add_producer and irq_bypass_del_producer are only
824 * useful if the architecture supports PCI passthrough.
825 * irq_bypass_stop and irq_bypass_start are not needed and so
826 * kvm_ops are not defined for them.
827 */
828 bool kvm_arch_has_irq_bypass(void)
829 {
830 return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
831 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
832 }
833
834 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
835 struct irq_bypass_producer *prod)
836 {
837 struct kvm_kernel_irqfd *irqfd =
838 container_of(cons, struct kvm_kernel_irqfd, consumer);
839 struct kvm *kvm = irqfd->kvm;
840
841 if (kvm->arch.kvm_ops->irq_bypass_add_producer)
842 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
843
844 return 0;
845 }
846
847 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
848 struct irq_bypass_producer *prod)
849 {
850 struct kvm_kernel_irqfd *irqfd =
851 container_of(cons, struct kvm_kernel_irqfd, consumer);
852 struct kvm *kvm = irqfd->kvm;
853
854 if (kvm->arch.kvm_ops->irq_bypass_del_producer)
855 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
856 }
857
858 #ifdef CONFIG_VSX
859 static inline int kvmppc_get_vsr_dword_offset(int index)
860 {
861 int offset;
862
863 if ((index != 0) && (index != 1))
864 return -1;
865
866 #ifdef __BIG_ENDIAN
867 offset = index;
868 #else
869 offset = 1 - index;
870 #endif
871
872 return offset;
873 }
874
875 static inline int kvmppc_get_vsr_word_offset(int index)
876 {
877 int offset;
878
879 if ((index > 3) || (index < 0))
880 return -1;
881
882 #ifdef __BIG_ENDIAN
883 offset = index;
884 #else
885 offset = 3 - index;
886 #endif
887 return offset;
888 }
889
890 static inline void kvmppc_set_vsr_dword(struct kvm_vcpu *vcpu,
891 u64 gpr)
892 {
893 union kvmppc_one_reg val;
894 int offset = kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
895 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
896
897 if (offset == -1)
898 return;
899
900 if (index >= 32) {
901 val.vval = VCPU_VSX_VR(vcpu, index - 32);
902 val.vsxval[offset] = gpr;
903 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
904 } else {
905 VCPU_VSX_FPR(vcpu, index, offset) = gpr;
906 }
907 }
908
909 static inline void kvmppc_set_vsr_dword_dump(struct kvm_vcpu *vcpu,
910 u64 gpr)
911 {
912 union kvmppc_one_reg val;
913 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
914
915 if (index >= 32) {
916 val.vval = VCPU_VSX_VR(vcpu, index - 32);
917 val.vsxval[0] = gpr;
918 val.vsxval[1] = gpr;
919 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
920 } else {
921 VCPU_VSX_FPR(vcpu, index, 0) = gpr;
922 VCPU_VSX_FPR(vcpu, index, 1) = gpr;
923 }
924 }
925
926 static inline void kvmppc_set_vsr_word_dump(struct kvm_vcpu *vcpu,
927 u32 gpr)
928 {
929 union kvmppc_one_reg val;
930 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
931
932 if (index >= 32) {
933 val.vsx32val[0] = gpr;
934 val.vsx32val[1] = gpr;
935 val.vsx32val[2] = gpr;
936 val.vsx32val[3] = gpr;
937 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
938 } else {
939 val.vsx32val[0] = gpr;
940 val.vsx32val[1] = gpr;
941 VCPU_VSX_FPR(vcpu, index, 0) = val.vsxval[0];
942 VCPU_VSX_FPR(vcpu, index, 1) = val.vsxval[0];
943 }
944 }
945
946 static inline void kvmppc_set_vsr_word(struct kvm_vcpu *vcpu,
947 u32 gpr32)
948 {
949 union kvmppc_one_reg val;
950 int offset = kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
951 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
952 int dword_offset, word_offset;
953
954 if (offset == -1)
955 return;
956
957 if (index >= 32) {
958 val.vval = VCPU_VSX_VR(vcpu, index - 32);
959 val.vsx32val[offset] = gpr32;
960 VCPU_VSX_VR(vcpu, index - 32) = val.vval;
961 } else {
962 dword_offset = offset / 2;
963 word_offset = offset % 2;
964 val.vsxval[0] = VCPU_VSX_FPR(vcpu, index, dword_offset);
965 val.vsx32val[word_offset] = gpr32;
966 VCPU_VSX_FPR(vcpu, index, dword_offset) = val.vsxval[0];
967 }
968 }
969 #endif /* CONFIG_VSX */
970
971 #ifdef CONFIG_ALTIVEC
972 static inline int kvmppc_get_vmx_offset_generic(struct kvm_vcpu *vcpu,
973 int index, int element_size)
974 {
975 int offset;
976 int elts = sizeof(vector128)/element_size;
977
978 if ((index < 0) || (index >= elts))
979 return -1;
980
981 if (kvmppc_need_byteswap(vcpu))
982 offset = elts - index - 1;
983 else
984 offset = index;
985
986 return offset;
987 }
988
989 static inline int kvmppc_get_vmx_dword_offset(struct kvm_vcpu *vcpu,
990 int index)
991 {
992 return kvmppc_get_vmx_offset_generic(vcpu, index, 8);
993 }
994
995 static inline int kvmppc_get_vmx_word_offset(struct kvm_vcpu *vcpu,
996 int index)
997 {
998 return kvmppc_get_vmx_offset_generic(vcpu, index, 4);
999 }
1000
1001 static inline int kvmppc_get_vmx_hword_offset(struct kvm_vcpu *vcpu,
1002 int index)
1003 {
1004 return kvmppc_get_vmx_offset_generic(vcpu, index, 2);
1005 }
1006
1007 static inline int kvmppc_get_vmx_byte_offset(struct kvm_vcpu *vcpu,
1008 int index)
1009 {
1010 return kvmppc_get_vmx_offset_generic(vcpu, index, 1);
1011 }
1012
1013
1014 static inline void kvmppc_set_vmx_dword(struct kvm_vcpu *vcpu,
1015 u64 gpr)
1016 {
1017 union kvmppc_one_reg val;
1018 int offset = kvmppc_get_vmx_dword_offset(vcpu,
1019 vcpu->arch.mmio_vmx_offset);
1020 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1021
1022 if (offset == -1)
1023 return;
1024
1025 val.vval = VCPU_VSX_VR(vcpu, index);
1026 val.vsxval[offset] = gpr;
1027 VCPU_VSX_VR(vcpu, index) = val.vval;
1028 }
1029
1030 static inline void kvmppc_set_vmx_word(struct kvm_vcpu *vcpu,
1031 u32 gpr32)
1032 {
1033 union kvmppc_one_reg val;
1034 int offset = kvmppc_get_vmx_word_offset(vcpu,
1035 vcpu->arch.mmio_vmx_offset);
1036 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1037
1038 if (offset == -1)
1039 return;
1040
1041 val.vval = VCPU_VSX_VR(vcpu, index);
1042 val.vsx32val[offset] = gpr32;
1043 VCPU_VSX_VR(vcpu, index) = val.vval;
1044 }
1045
1046 static inline void kvmppc_set_vmx_hword(struct kvm_vcpu *vcpu,
1047 u16 gpr16)
1048 {
1049 union kvmppc_one_reg val;
1050 int offset = kvmppc_get_vmx_hword_offset(vcpu,
1051 vcpu->arch.mmio_vmx_offset);
1052 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1053
1054 if (offset == -1)
1055 return;
1056
1057 val.vval = VCPU_VSX_VR(vcpu, index);
1058 val.vsx16val[offset] = gpr16;
1059 VCPU_VSX_VR(vcpu, index) = val.vval;
1060 }
1061
1062 static inline void kvmppc_set_vmx_byte(struct kvm_vcpu *vcpu,
1063 u8 gpr8)
1064 {
1065 union kvmppc_one_reg val;
1066 int offset = kvmppc_get_vmx_byte_offset(vcpu,
1067 vcpu->arch.mmio_vmx_offset);
1068 int index = vcpu->arch.io_gpr & KVM_MMIO_REG_MASK;
1069
1070 if (offset == -1)
1071 return;
1072
1073 val.vval = VCPU_VSX_VR(vcpu, index);
1074 val.vsx8val[offset] = gpr8;
1075 VCPU_VSX_VR(vcpu, index) = val.vval;
1076 }
1077 #endif /* CONFIG_ALTIVEC */
1078
1079 #ifdef CONFIG_PPC_FPU
1080 static inline u64 sp_to_dp(u32 fprs)
1081 {
1082 u64 fprd;
1083
1084 preempt_disable();
1085 enable_kernel_fp();
1086 asm ("lfs%U1%X1 0,%1; stfd%U0%X0 0,%0" : "=m" (fprd) : "m" (fprs)
1087 : "fr0");
1088 preempt_enable();
1089 return fprd;
1090 }
1091
1092 static inline u32 dp_to_sp(u64 fprd)
1093 {
1094 u32 fprs;
1095
1096 preempt_disable();
1097 enable_kernel_fp();
1098 asm ("lfd%U1%X1 0,%1; stfs%U0%X0 0,%0" : "=m" (fprs) : "m" (fprd)
1099 : "fr0");
1100 preempt_enable();
1101 return fprs;
1102 }
1103
1104 #else
1105 #define sp_to_dp(x) (x)
1106 #define dp_to_sp(x) (x)
1107 #endif /* CONFIG_PPC_FPU */
1108
1109 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
1110 struct kvm_run *run)
1111 {
1112 u64 uninitialized_var(gpr);
1113
1114 if (run->mmio.len > sizeof(gpr)) {
1115 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
1116 return;
1117 }
1118
1119 if (!vcpu->arch.mmio_host_swabbed) {
1120 switch (run->mmio.len) {
1121 case 8: gpr = *(u64 *)run->mmio.data; break;
1122 case 4: gpr = *(u32 *)run->mmio.data; break;
1123 case 2: gpr = *(u16 *)run->mmio.data; break;
1124 case 1: gpr = *(u8 *)run->mmio.data; break;
1125 }
1126 } else {
1127 switch (run->mmio.len) {
1128 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
1129 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
1130 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
1131 case 1: gpr = *(u8 *)run->mmio.data; break;
1132 }
1133 }
1134
1135 /* conversion between single and double precision */
1136 if ((vcpu->arch.mmio_sp64_extend) && (run->mmio.len == 4))
1137 gpr = sp_to_dp(gpr);
1138
1139 if (vcpu->arch.mmio_sign_extend) {
1140 switch (run->mmio.len) {
1141 #ifdef CONFIG_PPC64
1142 case 4:
1143 gpr = (s64)(s32)gpr;
1144 break;
1145 #endif
1146 case 2:
1147 gpr = (s64)(s16)gpr;
1148 break;
1149 case 1:
1150 gpr = (s64)(s8)gpr;
1151 break;
1152 }
1153 }
1154
1155 switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
1156 case KVM_MMIO_REG_GPR:
1157 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
1158 break;
1159 case KVM_MMIO_REG_FPR:
1160 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1161 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_FP);
1162
1163 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1164 break;
1165 #ifdef CONFIG_PPC_BOOK3S
1166 case KVM_MMIO_REG_QPR:
1167 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1168 break;
1169 case KVM_MMIO_REG_FQPR:
1170 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
1171 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
1172 break;
1173 #endif
1174 #ifdef CONFIG_VSX
1175 case KVM_MMIO_REG_VSX:
1176 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1177 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VSX);
1178
1179 if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_DWORD)
1180 kvmppc_set_vsr_dword(vcpu, gpr);
1181 else if (vcpu->arch.mmio_copy_type == KVMPPC_VSX_COPY_WORD)
1182 kvmppc_set_vsr_word(vcpu, gpr);
1183 else if (vcpu->arch.mmio_copy_type ==
1184 KVMPPC_VSX_COPY_DWORD_LOAD_DUMP)
1185 kvmppc_set_vsr_dword_dump(vcpu, gpr);
1186 else if (vcpu->arch.mmio_copy_type ==
1187 KVMPPC_VSX_COPY_WORD_LOAD_DUMP)
1188 kvmppc_set_vsr_word_dump(vcpu, gpr);
1189 break;
1190 #endif
1191 #ifdef CONFIG_ALTIVEC
1192 case KVM_MMIO_REG_VMX:
1193 if (vcpu->kvm->arch.kvm_ops->giveup_ext)
1194 vcpu->kvm->arch.kvm_ops->giveup_ext(vcpu, MSR_VEC);
1195
1196 if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_DWORD)
1197 kvmppc_set_vmx_dword(vcpu, gpr);
1198 else if (vcpu->arch.mmio_copy_type == KVMPPC_VMX_COPY_WORD)
1199 kvmppc_set_vmx_word(vcpu, gpr);
1200 else if (vcpu->arch.mmio_copy_type ==
1201 KVMPPC_VMX_COPY_HWORD)
1202 kvmppc_set_vmx_hword(vcpu, gpr);
1203 else if (vcpu->arch.mmio_copy_type ==
1204 KVMPPC_VMX_COPY_BYTE)
1205 kvmppc_set_vmx_byte(vcpu, gpr);
1206 break;
1207 #endif
1208 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1209 case KVM_MMIO_REG_NESTED_GPR:
1210 if (kvmppc_need_byteswap(vcpu))
1211 gpr = swab64(gpr);
1212 kvm_vcpu_write_guest(vcpu, vcpu->arch.nested_io_gpr, &gpr,
1213 sizeof(gpr));
1214 break;
1215 #endif
1216 default:
1217 BUG();
1218 }
1219 }
1220
1221 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1222 unsigned int rt, unsigned int bytes,
1223 int is_default_endian, int sign_extend)
1224 {
1225 int idx, ret;
1226 bool host_swabbed;
1227
1228 /* Pity C doesn't have a logical XOR operator */
1229 if (kvmppc_need_byteswap(vcpu)) {
1230 host_swabbed = is_default_endian;
1231 } else {
1232 host_swabbed = !is_default_endian;
1233 }
1234
1235 if (bytes > sizeof(run->mmio.data)) {
1236 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1237 run->mmio.len);
1238 }
1239
1240 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1241 run->mmio.len = bytes;
1242 run->mmio.is_write = 0;
1243
1244 vcpu->arch.io_gpr = rt;
1245 vcpu->arch.mmio_host_swabbed = host_swabbed;
1246 vcpu->mmio_needed = 1;
1247 vcpu->mmio_is_write = 0;
1248 vcpu->arch.mmio_sign_extend = sign_extend;
1249
1250 idx = srcu_read_lock(&vcpu->kvm->srcu);
1251
1252 ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1253 bytes, &run->mmio.data);
1254
1255 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1256
1257 if (!ret) {
1258 kvmppc_complete_mmio_load(vcpu, run);
1259 vcpu->mmio_needed = 0;
1260 return EMULATE_DONE;
1261 }
1262
1263 return EMULATE_DO_MMIO;
1264 }
1265
1266 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1267 unsigned int rt, unsigned int bytes,
1268 int is_default_endian)
1269 {
1270 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
1273
1274 /* Same as above, but sign extends */
1275 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
1276 unsigned int rt, unsigned int bytes,
1277 int is_default_endian)
1278 {
1279 return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
1280 }
1281
1282 #ifdef CONFIG_VSX
1283 int kvmppc_handle_vsx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1284 unsigned int rt, unsigned int bytes,
1285 int is_default_endian, int mmio_sign_extend)
1286 {
1287 enum emulation_result emulated = EMULATE_DONE;
1288
1289 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1290 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1291 return EMULATE_FAIL;
1292
1293 while (vcpu->arch.mmio_vsx_copy_nums) {
1294 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1295 is_default_endian, mmio_sign_extend);
1296
1297 if (emulated != EMULATE_DONE)
1298 break;
1299
1300 vcpu->arch.paddr_accessed += run->mmio.len;
1301
1302 vcpu->arch.mmio_vsx_copy_nums--;
1303 vcpu->arch.mmio_vsx_offset++;
1304 }
1305 return emulated;
1306 }
1307 #endif /* CONFIG_VSX */
1308
1309 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1310 u64 val, unsigned int bytes, int is_default_endian)
1311 {
1312 void *data = run->mmio.data;
1313 int idx, ret;
1314 bool host_swabbed;
1315
1316 /* Pity C doesn't have a logical XOR operator */
1317 if (kvmppc_need_byteswap(vcpu)) {
1318 host_swabbed = is_default_endian;
1319 } else {
1320 host_swabbed = !is_default_endian;
1321 }
1322
1323 if (bytes > sizeof(run->mmio.data)) {
1324 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
1325 run->mmio.len);
1326 }
1327
1328 run->mmio.phys_addr = vcpu->arch.paddr_accessed;
1329 run->mmio.len = bytes;
1330 run->mmio.is_write = 1;
1331 vcpu->mmio_needed = 1;
1332 vcpu->mmio_is_write = 1;
1333
1334 if ((vcpu->arch.mmio_sp64_extend) && (bytes == 4))
1335 val = dp_to_sp(val);
1336
1337 /* Store the value at the lowest bytes in 'data'. */
1338 if (!host_swabbed) {
1339 switch (bytes) {
1340 case 8: *(u64 *)data = val; break;
1341 case 4: *(u32 *)data = val; break;
1342 case 2: *(u16 *)data = val; break;
1343 case 1: *(u8 *)data = val; break;
1344 }
1345 } else {
1346 switch (bytes) {
1347 case 8: *(u64 *)data = swab64(val); break;
1348 case 4: *(u32 *)data = swab32(val); break;
1349 case 2: *(u16 *)data = swab16(val); break;
1350 case 1: *(u8 *)data = val; break;
1351 }
1352 }
1353
1354 idx = srcu_read_lock(&vcpu->kvm->srcu);
1355
1356 ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
1357 bytes, &run->mmio.data);
1358
1359 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1360
1361 if (!ret) {
1362 vcpu->mmio_needed = 0;
1363 return EMULATE_DONE;
1364 }
1365
1366 return EMULATE_DO_MMIO;
1367 }
1368 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
1369
1370 #ifdef CONFIG_VSX
1371 static inline int kvmppc_get_vsr_data(struct kvm_vcpu *vcpu, int rs, u64 *val)
1372 {
1373 u32 dword_offset, word_offset;
1374 union kvmppc_one_reg reg;
1375 int vsx_offset = 0;
1376 int copy_type = vcpu->arch.mmio_copy_type;
1377 int result = 0;
1378
1379 switch (copy_type) {
1380 case KVMPPC_VSX_COPY_DWORD:
1381 vsx_offset =
1382 kvmppc_get_vsr_dword_offset(vcpu->arch.mmio_vsx_offset);
1383
1384 if (vsx_offset == -1) {
1385 result = -1;
1386 break;
1387 }
1388
1389 if (rs < 32) {
1390 *val = VCPU_VSX_FPR(vcpu, rs, vsx_offset);
1391 } else {
1392 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1393 *val = reg.vsxval[vsx_offset];
1394 }
1395 break;
1396
1397 case KVMPPC_VSX_COPY_WORD:
1398 vsx_offset =
1399 kvmppc_get_vsr_word_offset(vcpu->arch.mmio_vsx_offset);
1400
1401 if (vsx_offset == -1) {
1402 result = -1;
1403 break;
1404 }
1405
1406 if (rs < 32) {
1407 dword_offset = vsx_offset / 2;
1408 word_offset = vsx_offset % 2;
1409 reg.vsxval[0] = VCPU_VSX_FPR(vcpu, rs, dword_offset);
1410 *val = reg.vsx32val[word_offset];
1411 } else {
1412 reg.vval = VCPU_VSX_VR(vcpu, rs - 32);
1413 *val = reg.vsx32val[vsx_offset];
1414 }
1415 break;
1416
1417 default:
1418 result = -1;
1419 break;
1420 }
1421
1422 return result;
1423 }
1424
1425 int kvmppc_handle_vsx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1426 int rs, unsigned int bytes, int is_default_endian)
1427 {
1428 u64 val;
1429 enum emulation_result emulated = EMULATE_DONE;
1430
1431 vcpu->arch.io_gpr = rs;
1432
1433 /* Currently, mmio_vsx_copy_nums only allowed to be 4 or less */
1434 if (vcpu->arch.mmio_vsx_copy_nums > 4)
1435 return EMULATE_FAIL;
1436
1437 while (vcpu->arch.mmio_vsx_copy_nums) {
1438 if (kvmppc_get_vsr_data(vcpu, rs, &val) == -1)
1439 return EMULATE_FAIL;
1440
1441 emulated = kvmppc_handle_store(run, vcpu,
1442 val, bytes, is_default_endian);
1443
1444 if (emulated != EMULATE_DONE)
1445 break;
1446
1447 vcpu->arch.paddr_accessed += run->mmio.len;
1448
1449 vcpu->arch.mmio_vsx_copy_nums--;
1450 vcpu->arch.mmio_vsx_offset++;
1451 }
1452
1453 return emulated;
1454 }
1455
1456 static int kvmppc_emulate_mmio_vsx_loadstore(struct kvm_vcpu *vcpu,
1457 struct kvm_run *run)
1458 {
1459 enum emulation_result emulated = EMULATE_FAIL;
1460 int r;
1461
1462 vcpu->arch.paddr_accessed += run->mmio.len;
1463
1464 if (!vcpu->mmio_is_write) {
1465 emulated = kvmppc_handle_vsx_load(run, vcpu, vcpu->arch.io_gpr,
1466 run->mmio.len, 1, vcpu->arch.mmio_sign_extend);
1467 } else {
1468 emulated = kvmppc_handle_vsx_store(run, vcpu,
1469 vcpu->arch.io_gpr, run->mmio.len, 1);
1470 }
1471
1472 switch (emulated) {
1473 case EMULATE_DO_MMIO:
1474 run->exit_reason = KVM_EXIT_MMIO;
1475 r = RESUME_HOST;
1476 break;
1477 case EMULATE_FAIL:
1478 pr_info("KVM: MMIO emulation failed (VSX repeat)\n");
1479 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1480 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1481 r = RESUME_HOST;
1482 break;
1483 default:
1484 r = RESUME_GUEST;
1485 break;
1486 }
1487 return r;
1488 }
1489 #endif /* CONFIG_VSX */
1490
1491 #ifdef CONFIG_ALTIVEC
1492 int kvmppc_handle_vmx_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
1493 unsigned int rt, unsigned int bytes, int is_default_endian)
1494 {
1495 enum emulation_result emulated = EMULATE_DONE;
1496
1497 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1498 return EMULATE_FAIL;
1499
1500 while (vcpu->arch.mmio_vmx_copy_nums) {
1501 emulated = __kvmppc_handle_load(run, vcpu, rt, bytes,
1502 is_default_endian, 0);
1503
1504 if (emulated != EMULATE_DONE)
1505 break;
1506
1507 vcpu->arch.paddr_accessed += run->mmio.len;
1508 vcpu->arch.mmio_vmx_copy_nums--;
1509 vcpu->arch.mmio_vmx_offset++;
1510 }
1511
1512 return emulated;
1513 }
1514
1515 int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val)
1516 {
1517 union kvmppc_one_reg reg;
1518 int vmx_offset = 0;
1519 int result = 0;
1520
1521 vmx_offset =
1522 kvmppc_get_vmx_dword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1523
1524 if (vmx_offset == -1)
1525 return -1;
1526
1527 reg.vval = VCPU_VSX_VR(vcpu, index);
1528 *val = reg.vsxval[vmx_offset];
1529
1530 return result;
1531 }
1532
1533 int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val)
1534 {
1535 union kvmppc_one_reg reg;
1536 int vmx_offset = 0;
1537 int result = 0;
1538
1539 vmx_offset =
1540 kvmppc_get_vmx_word_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1541
1542 if (vmx_offset == -1)
1543 return -1;
1544
1545 reg.vval = VCPU_VSX_VR(vcpu, index);
1546 *val = reg.vsx32val[vmx_offset];
1547
1548 return result;
1549 }
1550
1551 int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val)
1552 {
1553 union kvmppc_one_reg reg;
1554 int vmx_offset = 0;
1555 int result = 0;
1556
1557 vmx_offset =
1558 kvmppc_get_vmx_hword_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1559
1560 if (vmx_offset == -1)
1561 return -1;
1562
1563 reg.vval = VCPU_VSX_VR(vcpu, index);
1564 *val = reg.vsx16val[vmx_offset];
1565
1566 return result;
1567 }
1568
1569 int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val)
1570 {
1571 union kvmppc_one_reg reg;
1572 int vmx_offset = 0;
1573 int result = 0;
1574
1575 vmx_offset =
1576 kvmppc_get_vmx_byte_offset(vcpu, vcpu->arch.mmio_vmx_offset);
1577
1578 if (vmx_offset == -1)
1579 return -1;
1580
1581 reg.vval = VCPU_VSX_VR(vcpu, index);
1582 *val = reg.vsx8val[vmx_offset];
1583
1584 return result;
1585 }
1586
1587 int kvmppc_handle_vmx_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
1588 unsigned int rs, unsigned int bytes, int is_default_endian)
1589 {
1590 u64 val = 0;
1591 unsigned int index = rs & KVM_MMIO_REG_MASK;
1592 enum emulation_result emulated = EMULATE_DONE;
1593
1594 if (vcpu->arch.mmio_vsx_copy_nums > 2)
1595 return EMULATE_FAIL;
1596
1597 vcpu->arch.io_gpr = rs;
1598
1599 while (vcpu->arch.mmio_vmx_copy_nums) {
1600 switch (vcpu->arch.mmio_copy_type) {
1601 case KVMPPC_VMX_COPY_DWORD:
1602 if (kvmppc_get_vmx_dword(vcpu, index, &val) == -1)
1603 return EMULATE_FAIL;
1604
1605 break;
1606 case KVMPPC_VMX_COPY_WORD:
1607 if (kvmppc_get_vmx_word(vcpu, index, &val) == -1)
1608 return EMULATE_FAIL;
1609 break;
1610 case KVMPPC_VMX_COPY_HWORD:
1611 if (kvmppc_get_vmx_hword(vcpu, index, &val) == -1)
1612 return EMULATE_FAIL;
1613 break;
1614 case KVMPPC_VMX_COPY_BYTE:
1615 if (kvmppc_get_vmx_byte(vcpu, index, &val) == -1)
1616 return EMULATE_FAIL;
1617 break;
1618 default:
1619 return EMULATE_FAIL;
1620 }
1621
1622 emulated = kvmppc_handle_store(run, vcpu, val, bytes,
1623 is_default_endian);
1624 if (emulated != EMULATE_DONE)
1625 break;
1626
1627 vcpu->arch.paddr_accessed += run->mmio.len;
1628 vcpu->arch.mmio_vmx_copy_nums--;
1629 vcpu->arch.mmio_vmx_offset++;
1630 }
1631
1632 return emulated;
1633 }
1634
1635 static int kvmppc_emulate_mmio_vmx_loadstore(struct kvm_vcpu *vcpu,
1636 struct kvm_run *run)
1637 {
1638 enum emulation_result emulated = EMULATE_FAIL;
1639 int r;
1640
1641 vcpu->arch.paddr_accessed += run->mmio.len;
1642
1643 if (!vcpu->mmio_is_write) {
1644 emulated = kvmppc_handle_vmx_load(run, vcpu,
1645 vcpu->arch.io_gpr, run->mmio.len, 1);
1646 } else {
1647 emulated = kvmppc_handle_vmx_store(run, vcpu,
1648 vcpu->arch.io_gpr, run->mmio.len, 1);
1649 }
1650
1651 switch (emulated) {
1652 case EMULATE_DO_MMIO:
1653 run->exit_reason = KVM_EXIT_MMIO;
1654 r = RESUME_HOST;
1655 break;
1656 case EMULATE_FAIL:
1657 pr_info("KVM: MMIO emulation failed (VMX repeat)\n");
1658 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1659 run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1660 r = RESUME_HOST;
1661 break;
1662 default:
1663 r = RESUME_GUEST;
1664 break;
1665 }
1666 return r;
1667 }
1668 #endif /* CONFIG_ALTIVEC */
1669
1670 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1671 {
1672 int r = 0;
1673 union kvmppc_one_reg val;
1674 int size;
1675
1676 size = one_reg_size(reg->id);
1677 if (size > sizeof(val))
1678 return -EINVAL;
1679
1680 r = kvmppc_get_one_reg(vcpu, reg->id, &val);
1681 if (r == -EINVAL) {
1682 r = 0;
1683 switch (reg->id) {
1684 #ifdef CONFIG_ALTIVEC
1685 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1686 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1687 r = -ENXIO;
1688 break;
1689 }
1690 val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
1691 break;
1692 case KVM_REG_PPC_VSCR:
1693 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1694 r = -ENXIO;
1695 break;
1696 }
1697 val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1698 break;
1699 case KVM_REG_PPC_VRSAVE:
1700 val = get_reg_val(reg->id, vcpu->arch.vrsave);
1701 break;
1702 #endif /* CONFIG_ALTIVEC */
1703 default:
1704 r = -EINVAL;
1705 break;
1706 }
1707 }
1708
1709 if (r)
1710 return r;
1711
1712 if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1713 r = -EFAULT;
1714
1715 return r;
1716 }
1717
1718 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1719 {
1720 int r;
1721 union kvmppc_one_reg val;
1722 int size;
1723
1724 size = one_reg_size(reg->id);
1725 if (size > sizeof(val))
1726 return -EINVAL;
1727
1728 if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1729 return -EFAULT;
1730
1731 r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1732 if (r == -EINVAL) {
1733 r = 0;
1734 switch (reg->id) {
1735 #ifdef CONFIG_ALTIVEC
1736 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1737 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1738 r = -ENXIO;
1739 break;
1740 }
1741 vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1742 break;
1743 case KVM_REG_PPC_VSCR:
1744 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1745 r = -ENXIO;
1746 break;
1747 }
1748 vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1749 break;
1750 case KVM_REG_PPC_VRSAVE:
1751 if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1752 r = -ENXIO;
1753 break;
1754 }
1755 vcpu->arch.vrsave = set_reg_val(reg->id, val);
1756 break;
1757 #endif /* CONFIG_ALTIVEC */
1758 default:
1759 r = -EINVAL;
1760 break;
1761 }
1762 }
1763
1764 return r;
1765 }
1766
1767 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1768 {
1769 int r;
1770
1771 vcpu_load(vcpu);
1772
1773 if (vcpu->mmio_needed) {
1774 vcpu->mmio_needed = 0;
1775 if (!vcpu->mmio_is_write)
1776 kvmppc_complete_mmio_load(vcpu, run);
1777 #ifdef CONFIG_VSX
1778 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1779 vcpu->arch.mmio_vsx_copy_nums--;
1780 vcpu->arch.mmio_vsx_offset++;
1781 }
1782
1783 if (vcpu->arch.mmio_vsx_copy_nums > 0) {
1784 r = kvmppc_emulate_mmio_vsx_loadstore(vcpu, run);
1785 if (r == RESUME_HOST) {
1786 vcpu->mmio_needed = 1;
1787 goto out;
1788 }
1789 }
1790 #endif
1791 #ifdef CONFIG_ALTIVEC
1792 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1793 vcpu->arch.mmio_vmx_copy_nums--;
1794 vcpu->arch.mmio_vmx_offset++;
1795 }
1796
1797 if (vcpu->arch.mmio_vmx_copy_nums > 0) {
1798 r = kvmppc_emulate_mmio_vmx_loadstore(vcpu, run);
1799 if (r == RESUME_HOST) {
1800 vcpu->mmio_needed = 1;
1801 goto out;
1802 }
1803 }
1804 #endif
1805 } else if (vcpu->arch.osi_needed) {
1806 u64 *gprs = run->osi.gprs;
1807 int i;
1808
1809 for (i = 0; i < 32; i++)
1810 kvmppc_set_gpr(vcpu, i, gprs[i]);
1811 vcpu->arch.osi_needed = 0;
1812 } else if (vcpu->arch.hcall_needed) {
1813 int i;
1814
1815 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1816 for (i = 0; i < 9; ++i)
1817 kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1818 vcpu->arch.hcall_needed = 0;
1819 #ifdef CONFIG_BOOKE
1820 } else if (vcpu->arch.epr_needed) {
1821 kvmppc_set_epr(vcpu, run->epr.epr);
1822 vcpu->arch.epr_needed = 0;
1823 #endif
1824 }
1825
1826 kvm_sigset_activate(vcpu);
1827
1828 if (run->immediate_exit)
1829 r = -EINTR;
1830 else
1831 r = kvmppc_vcpu_run(run, vcpu);
1832
1833 kvm_sigset_deactivate(vcpu);
1834
1835 #ifdef CONFIG_ALTIVEC
1836 out:
1837 #endif
1838 vcpu_put(vcpu);
1839 return r;
1840 }
1841
1842 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1843 {
1844 if (irq->irq == KVM_INTERRUPT_UNSET) {
1845 kvmppc_core_dequeue_external(vcpu);
1846 return 0;
1847 }
1848
1849 kvmppc_core_queue_external(vcpu, irq);
1850
1851 kvm_vcpu_kick(vcpu);
1852
1853 return 0;
1854 }
1855
1856 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1857 struct kvm_enable_cap *cap)
1858 {
1859 int r;
1860
1861 if (cap->flags)
1862 return -EINVAL;
1863
1864 switch (cap->cap) {
1865 case KVM_CAP_PPC_OSI:
1866 r = 0;
1867 vcpu->arch.osi_enabled = true;
1868 break;
1869 case KVM_CAP_PPC_PAPR:
1870 r = 0;
1871 vcpu->arch.papr_enabled = true;
1872 break;
1873 case KVM_CAP_PPC_EPR:
1874 r = 0;
1875 if (cap->args[0])
1876 vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1877 else
1878 vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1879 break;
1880 #ifdef CONFIG_BOOKE
1881 case KVM_CAP_PPC_BOOKE_WATCHDOG:
1882 r = 0;
1883 vcpu->arch.watchdog_enabled = true;
1884 break;
1885 #endif
1886 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1887 case KVM_CAP_SW_TLB: {
1888 struct kvm_config_tlb cfg;
1889 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1890
1891 r = -EFAULT;
1892 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1893 break;
1894
1895 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1896 break;
1897 }
1898 #endif
1899 #ifdef CONFIG_KVM_MPIC
1900 case KVM_CAP_IRQ_MPIC: {
1901 struct fd f;
1902 struct kvm_device *dev;
1903
1904 r = -EBADF;
1905 f = fdget(cap->args[0]);
1906 if (!f.file)
1907 break;
1908
1909 r = -EPERM;
1910 dev = kvm_device_from_filp(f.file);
1911 if (dev)
1912 r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1913
1914 fdput(f);
1915 break;
1916 }
1917 #endif
1918 #ifdef CONFIG_KVM_XICS
1919 case KVM_CAP_IRQ_XICS: {
1920 struct fd f;
1921 struct kvm_device *dev;
1922
1923 r = -EBADF;
1924 f = fdget(cap->args[0]);
1925 if (!f.file)
1926 break;
1927
1928 r = -EPERM;
1929 dev = kvm_device_from_filp(f.file);
1930 if (dev) {
1931 if (xics_on_xive())
1932 r = kvmppc_xive_connect_vcpu(dev, vcpu, cap->args[1]);
1933 else
1934 r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1935 }
1936
1937 fdput(f);
1938 break;
1939 }
1940 #endif /* CONFIG_KVM_XICS */
1941 #ifdef CONFIG_KVM_XIVE
1942 case KVM_CAP_PPC_IRQ_XIVE: {
1943 struct fd f;
1944 struct kvm_device *dev;
1945
1946 r = -EBADF;
1947 f = fdget(cap->args[0]);
1948 if (!f.file)
1949 break;
1950
1951 r = -ENXIO;
1952 if (!xive_enabled())
1953 break;
1954
1955 r = -EPERM;
1956 dev = kvm_device_from_filp(f.file);
1957 if (dev)
1958 r = kvmppc_xive_native_connect_vcpu(dev, vcpu,
1959 cap->args[1]);
1960
1961 fdput(f);
1962 break;
1963 }
1964 #endif /* CONFIG_KVM_XIVE */
1965 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
1966 case KVM_CAP_PPC_FWNMI:
1967 r = -EINVAL;
1968 if (!is_kvmppc_hv_enabled(vcpu->kvm))
1969 break;
1970 r = 0;
1971 vcpu->kvm->arch.fwnmi_enabled = true;
1972 break;
1973 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
1974 default:
1975 r = -EINVAL;
1976 break;
1977 }
1978
1979 if (!r)
1980 r = kvmppc_sanity_check(vcpu);
1981
1982 return r;
1983 }
1984
1985 bool kvm_arch_intc_initialized(struct kvm *kvm)
1986 {
1987 #ifdef CONFIG_KVM_MPIC
1988 if (kvm->arch.mpic)
1989 return true;
1990 #endif
1991 #ifdef CONFIG_KVM_XICS
1992 if (kvm->arch.xics || kvm->arch.xive)
1993 return true;
1994 #endif
1995 return false;
1996 }
1997
1998 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1999 struct kvm_mp_state *mp_state)
2000 {
2001 return -EINVAL;
2002 }
2003
2004 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2005 struct kvm_mp_state *mp_state)
2006 {
2007 return -EINVAL;
2008 }
2009
2010 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2011 unsigned int ioctl, unsigned long arg)
2012 {
2013 struct kvm_vcpu *vcpu = filp->private_data;
2014 void __user *argp = (void __user *)arg;
2015
2016 if (ioctl == KVM_INTERRUPT) {
2017 struct kvm_interrupt irq;
2018 if (copy_from_user(&irq, argp, sizeof(irq)))
2019 return -EFAULT;
2020 return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2021 }
2022 return -ENOIOCTLCMD;
2023 }
2024
2025 long kvm_arch_vcpu_ioctl(struct file *filp,
2026 unsigned int ioctl, unsigned long arg)
2027 {
2028 struct kvm_vcpu *vcpu = filp->private_data;
2029 void __user *argp = (void __user *)arg;
2030 long r;
2031
2032 switch (ioctl) {
2033 case KVM_ENABLE_CAP:
2034 {
2035 struct kvm_enable_cap cap;
2036 r = -EFAULT;
2037 vcpu_load(vcpu);
2038 if (copy_from_user(&cap, argp, sizeof(cap)))
2039 goto out;
2040 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2041 vcpu_put(vcpu);
2042 break;
2043 }
2044
2045 case KVM_SET_ONE_REG:
2046 case KVM_GET_ONE_REG:
2047 {
2048 struct kvm_one_reg reg;
2049 r = -EFAULT;
2050 if (copy_from_user(&reg, argp, sizeof(reg)))
2051 goto out;
2052 if (ioctl == KVM_SET_ONE_REG)
2053 r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
2054 else
2055 r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
2056 break;
2057 }
2058
2059 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
2060 case KVM_DIRTY_TLB: {
2061 struct kvm_dirty_tlb dirty;
2062 r = -EFAULT;
2063 vcpu_load(vcpu);
2064 if (copy_from_user(&dirty, argp, sizeof(dirty)))
2065 goto out;
2066 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
2067 vcpu_put(vcpu);
2068 break;
2069 }
2070 #endif
2071 default:
2072 r = -EINVAL;
2073 }
2074
2075 out:
2076 return r;
2077 }
2078
2079 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2080 {
2081 return VM_FAULT_SIGBUS;
2082 }
2083
2084 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
2085 {
2086 u32 inst_nop = 0x60000000;
2087 #ifdef CONFIG_KVM_BOOKE_HV
2088 u32 inst_sc1 = 0x44000022;
2089 pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
2090 pvinfo->hcall[1] = cpu_to_be32(inst_nop);
2091 pvinfo->hcall[2] = cpu_to_be32(inst_nop);
2092 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2093 #else
2094 u32 inst_lis = 0x3c000000;
2095 u32 inst_ori = 0x60000000;
2096 u32 inst_sc = 0x44000002;
2097 u32 inst_imm_mask = 0xffff;
2098
2099 /*
2100 * The hypercall to get into KVM from within guest context is as
2101 * follows:
2102 *
2103 * lis r0, r0, KVM_SC_MAGIC_R0@h
2104 * ori r0, KVM_SC_MAGIC_R0@l
2105 * sc
2106 * nop
2107 */
2108 pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
2109 pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
2110 pvinfo->hcall[2] = cpu_to_be32(inst_sc);
2111 pvinfo->hcall[3] = cpu_to_be32(inst_nop);
2112 #endif
2113
2114 pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
2115
2116 return 0;
2117 }
2118
2119 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
2120 bool line_status)
2121 {
2122 if (!irqchip_in_kernel(kvm))
2123 return -ENXIO;
2124
2125 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
2126 irq_event->irq, irq_event->level,
2127 line_status);
2128 return 0;
2129 }
2130
2131
2132 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
2133 struct kvm_enable_cap *cap)
2134 {
2135 int r;
2136
2137 if (cap->flags)
2138 return -EINVAL;
2139
2140 switch (cap->cap) {
2141 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
2142 case KVM_CAP_PPC_ENABLE_HCALL: {
2143 unsigned long hcall = cap->args[0];
2144
2145 r = -EINVAL;
2146 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
2147 cap->args[1] > 1)
2148 break;
2149 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
2150 break;
2151 if (cap->args[1])
2152 set_bit(hcall / 4, kvm->arch.enabled_hcalls);
2153 else
2154 clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
2155 r = 0;
2156 break;
2157 }
2158 case KVM_CAP_PPC_SMT: {
2159 unsigned long mode = cap->args[0];
2160 unsigned long flags = cap->args[1];
2161
2162 r = -EINVAL;
2163 if (kvm->arch.kvm_ops->set_smt_mode)
2164 r = kvm->arch.kvm_ops->set_smt_mode(kvm, mode, flags);
2165 break;
2166 }
2167
2168 case KVM_CAP_PPC_NESTED_HV:
2169 r = -EINVAL;
2170 if (!is_kvmppc_hv_enabled(kvm) ||
2171 !kvm->arch.kvm_ops->enable_nested)
2172 break;
2173 r = kvm->arch.kvm_ops->enable_nested(kvm);
2174 break;
2175 #endif
2176 #if defined(CONFIG_KVM_BOOK3S_HV_POSSIBLE)
2177 case KVM_CAP_PPC_SECURE_GUEST:
2178 r = -EINVAL;
2179 if (!is_kvmppc_hv_enabled(kvm) || !kvm->arch.kvm_ops->enable_svm)
2180 break;
2181 r = kvm->arch.kvm_ops->enable_svm(kvm);
2182 break;
2183 #endif
2184 default:
2185 r = -EINVAL;
2186 break;
2187 }
2188
2189 return r;
2190 }
2191
2192 #ifdef CONFIG_PPC_BOOK3S_64
2193 /*
2194 * These functions check whether the underlying hardware is safe
2195 * against attacks based on observing the effects of speculatively
2196 * executed instructions, and whether it supplies instructions for
2197 * use in workarounds. The information comes from firmware, either
2198 * via the device tree on powernv platforms or from an hcall on
2199 * pseries platforms.
2200 */
2201 #ifdef CONFIG_PPC_PSERIES
2202 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2203 {
2204 struct h_cpu_char_result c;
2205 unsigned long rc;
2206
2207 if (!machine_is(pseries))
2208 return -ENOTTY;
2209
2210 rc = plpar_get_cpu_characteristics(&c);
2211 if (rc == H_SUCCESS) {
2212 cp->character = c.character;
2213 cp->behaviour = c.behaviour;
2214 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2215 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2216 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2217 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2218 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2219 KVM_PPC_CPU_CHAR_BR_HINT_HONOURED |
2220 KVM_PPC_CPU_CHAR_MTTRIG_THR_RECONF |
2221 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2222 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2223 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2224 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2225 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2226 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2227 }
2228 return 0;
2229 }
2230 #else
2231 static int pseries_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2232 {
2233 return -ENOTTY;
2234 }
2235 #endif
2236
2237 static inline bool have_fw_feat(struct device_node *fw_features,
2238 const char *state, const char *name)
2239 {
2240 struct device_node *np;
2241 bool r = false;
2242
2243 np = of_get_child_by_name(fw_features, name);
2244 if (np) {
2245 r = of_property_read_bool(np, state);
2246 of_node_put(np);
2247 }
2248 return r;
2249 }
2250
2251 static int kvmppc_get_cpu_char(struct kvm_ppc_cpu_char *cp)
2252 {
2253 struct device_node *np, *fw_features;
2254 int r;
2255
2256 memset(cp, 0, sizeof(*cp));
2257 r = pseries_get_cpu_char(cp);
2258 if (r != -ENOTTY)
2259 return r;
2260
2261 np = of_find_node_by_name(NULL, "ibm,opal");
2262 if (np) {
2263 fw_features = of_get_child_by_name(np, "fw-features");
2264 of_node_put(np);
2265 if (!fw_features)
2266 return 0;
2267 if (have_fw_feat(fw_features, "enabled",
2268 "inst-spec-barrier-ori31,31,0"))
2269 cp->character |= KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31;
2270 if (have_fw_feat(fw_features, "enabled",
2271 "fw-bcctrl-serialized"))
2272 cp->character |= KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED;
2273 if (have_fw_feat(fw_features, "enabled",
2274 "inst-l1d-flush-ori30,30,0"))
2275 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30;
2276 if (have_fw_feat(fw_features, "enabled",
2277 "inst-l1d-flush-trig2"))
2278 cp->character |= KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2;
2279 if (have_fw_feat(fw_features, "enabled",
2280 "fw-l1d-thread-split"))
2281 cp->character |= KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV;
2282 if (have_fw_feat(fw_features, "enabled",
2283 "fw-count-cache-disabled"))
2284 cp->character |= KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS;
2285 if (have_fw_feat(fw_features, "enabled",
2286 "fw-count-cache-flush-bcctr2,0,0"))
2287 cp->character |= KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2288 cp->character_mask = KVM_PPC_CPU_CHAR_SPEC_BAR_ORI31 |
2289 KVM_PPC_CPU_CHAR_BCCTRL_SERIALISED |
2290 KVM_PPC_CPU_CHAR_L1D_FLUSH_ORI30 |
2291 KVM_PPC_CPU_CHAR_L1D_FLUSH_TRIG2 |
2292 KVM_PPC_CPU_CHAR_L1D_THREAD_PRIV |
2293 KVM_PPC_CPU_CHAR_COUNT_CACHE_DIS |
2294 KVM_PPC_CPU_CHAR_BCCTR_FLUSH_ASSIST;
2295
2296 if (have_fw_feat(fw_features, "enabled",
2297 "speculation-policy-favor-security"))
2298 cp->behaviour |= KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY;
2299 if (!have_fw_feat(fw_features, "disabled",
2300 "needs-l1d-flush-msr-pr-0-to-1"))
2301 cp->behaviour |= KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR;
2302 if (!have_fw_feat(fw_features, "disabled",
2303 "needs-spec-barrier-for-bound-checks"))
2304 cp->behaviour |= KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
2305 if (have_fw_feat(fw_features, "enabled",
2306 "needs-count-cache-flush-on-context-switch"))
2307 cp->behaviour |= KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2308 cp->behaviour_mask = KVM_PPC_CPU_BEHAV_FAVOUR_SECURITY |
2309 KVM_PPC_CPU_BEHAV_L1D_FLUSH_PR |
2310 KVM_PPC_CPU_BEHAV_BNDS_CHK_SPEC_BAR |
2311 KVM_PPC_CPU_BEHAV_FLUSH_COUNT_CACHE;
2312
2313 of_node_put(fw_features);
2314 }
2315
2316 return 0;
2317 }
2318 #endif
2319
2320 long kvm_arch_vm_ioctl(struct file *filp,
2321 unsigned int ioctl, unsigned long arg)
2322 {
2323 struct kvm *kvm __maybe_unused = filp->private_data;
2324 void __user *argp = (void __user *)arg;
2325 long r;
2326
2327 switch (ioctl) {
2328 case KVM_PPC_GET_PVINFO: {
2329 struct kvm_ppc_pvinfo pvinfo;
2330 memset(&pvinfo, 0, sizeof(pvinfo));
2331 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
2332 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
2333 r = -EFAULT;
2334 goto out;
2335 }
2336
2337 break;
2338 }
2339 #ifdef CONFIG_SPAPR_TCE_IOMMU
2340 case KVM_CREATE_SPAPR_TCE_64: {
2341 struct kvm_create_spapr_tce_64 create_tce_64;
2342
2343 r = -EFAULT;
2344 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
2345 goto out;
2346 if (create_tce_64.flags) {
2347 r = -EINVAL;
2348 goto out;
2349 }
2350 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2351 goto out;
2352 }
2353 case KVM_CREATE_SPAPR_TCE: {
2354 struct kvm_create_spapr_tce create_tce;
2355 struct kvm_create_spapr_tce_64 create_tce_64;
2356
2357 r = -EFAULT;
2358 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
2359 goto out;
2360
2361 create_tce_64.liobn = create_tce.liobn;
2362 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
2363 create_tce_64.offset = 0;
2364 create_tce_64.size = create_tce.window_size >>
2365 IOMMU_PAGE_SHIFT_4K;
2366 create_tce_64.flags = 0;
2367 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
2368 goto out;
2369 }
2370 #endif
2371 #ifdef CONFIG_PPC_BOOK3S_64
2372 case KVM_PPC_GET_SMMU_INFO: {
2373 struct kvm_ppc_smmu_info info;
2374 struct kvm *kvm = filp->private_data;
2375
2376 memset(&info, 0, sizeof(info));
2377 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
2378 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2379 r = -EFAULT;
2380 break;
2381 }
2382 case KVM_PPC_RTAS_DEFINE_TOKEN: {
2383 struct kvm *kvm = filp->private_data;
2384
2385 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
2386 break;
2387 }
2388 case KVM_PPC_CONFIGURE_V3_MMU: {
2389 struct kvm *kvm = filp->private_data;
2390 struct kvm_ppc_mmuv3_cfg cfg;
2391
2392 r = -EINVAL;
2393 if (!kvm->arch.kvm_ops->configure_mmu)
2394 goto out;
2395 r = -EFAULT;
2396 if (copy_from_user(&cfg, argp, sizeof(cfg)))
2397 goto out;
2398 r = kvm->arch.kvm_ops->configure_mmu(kvm, &cfg);
2399 break;
2400 }
2401 case KVM_PPC_GET_RMMU_INFO: {
2402 struct kvm *kvm = filp->private_data;
2403 struct kvm_ppc_rmmu_info info;
2404
2405 r = -EINVAL;
2406 if (!kvm->arch.kvm_ops->get_rmmu_info)
2407 goto out;
2408 r = kvm->arch.kvm_ops->get_rmmu_info(kvm, &info);
2409 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
2410 r = -EFAULT;
2411 break;
2412 }
2413 case KVM_PPC_GET_CPU_CHAR: {
2414 struct kvm_ppc_cpu_char cpuchar;
2415
2416 r = kvmppc_get_cpu_char(&cpuchar);
2417 if (r >= 0 && copy_to_user(argp, &cpuchar, sizeof(cpuchar)))
2418 r = -EFAULT;
2419 break;
2420 }
2421 case KVM_PPC_SVM_OFF: {
2422 struct kvm *kvm = filp->private_data;
2423
2424 r = 0;
2425 if (!kvm->arch.kvm_ops->svm_off)
2426 goto out;
2427
2428 r = kvm->arch.kvm_ops->svm_off(kvm);
2429 break;
2430 }
2431 default: {
2432 struct kvm *kvm = filp->private_data;
2433 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
2434 }
2435 #else /* CONFIG_PPC_BOOK3S_64 */
2436 default:
2437 r = -ENOTTY;
2438 #endif
2439 }
2440 out:
2441 return r;
2442 }
2443
2444 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
2445 static unsigned long nr_lpids;
2446
2447 long kvmppc_alloc_lpid(void)
2448 {
2449 long lpid;
2450
2451 do {
2452 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
2453 if (lpid >= nr_lpids) {
2454 pr_err("%s: No LPIDs free\n", __func__);
2455 return -ENOMEM;
2456 }
2457 } while (test_and_set_bit(lpid, lpid_inuse));
2458
2459 return lpid;
2460 }
2461 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
2462
2463 void kvmppc_claim_lpid(long lpid)
2464 {
2465 set_bit(lpid, lpid_inuse);
2466 }
2467 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
2468
2469 void kvmppc_free_lpid(long lpid)
2470 {
2471 clear_bit(lpid, lpid_inuse);
2472 }
2473 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
2474
2475 void kvmppc_init_lpid(unsigned long nr_lpids_param)
2476 {
2477 nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
2478 memset(lpid_inuse, 0, sizeof(lpid_inuse));
2479 }
2480 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
2481
2482 int kvm_arch_init(void *opaque)
2483 {
2484 return 0;
2485 }
2486
2487 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);