]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/lib/qspinlock.c
KVM: x86/mmu: Remove unnecessary ‘NULL’ values from sptep
[thirdparty/kernel/stable.git] / arch / powerpc / lib / qspinlock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 #include <linux/bug.h>
3 #include <linux/compiler.h>
4 #include <linux/export.h>
5 #include <linux/percpu.h>
6 #include <linux/processor.h>
7 #include <linux/smp.h>
8 #include <linux/topology.h>
9 #include <linux/sched/clock.h>
10 #include <asm/qspinlock.h>
11 #include <asm/paravirt.h>
12
13 #define MAX_NODES 4
14
15 struct qnode {
16 struct qnode *next;
17 struct qspinlock *lock;
18 int cpu;
19 int yield_cpu;
20 u8 locked; /* 1 if lock acquired */
21 };
22
23 struct qnodes {
24 int count;
25 struct qnode nodes[MAX_NODES];
26 };
27
28 /* Tuning parameters */
29 static int steal_spins __read_mostly = (1 << 5);
30 static int remote_steal_spins __read_mostly = (1 << 2);
31 #if _Q_SPIN_TRY_LOCK_STEAL == 1
32 static const bool maybe_stealers = true;
33 #else
34 static bool maybe_stealers __read_mostly = true;
35 #endif
36 static int head_spins __read_mostly = (1 << 8);
37
38 static bool pv_yield_owner __read_mostly = true;
39 static bool pv_yield_allow_steal __read_mostly = false;
40 static bool pv_spin_on_preempted_owner __read_mostly = false;
41 static bool pv_sleepy_lock __read_mostly = true;
42 static bool pv_sleepy_lock_sticky __read_mostly = false;
43 static u64 pv_sleepy_lock_interval_ns __read_mostly = 0;
44 static int pv_sleepy_lock_factor __read_mostly = 256;
45 static bool pv_yield_prev __read_mostly = true;
46 static bool pv_yield_propagate_owner __read_mostly = true;
47 static bool pv_prod_head __read_mostly = false;
48
49 static DEFINE_PER_CPU_ALIGNED(struct qnodes, qnodes);
50 static DEFINE_PER_CPU_ALIGNED(u64, sleepy_lock_seen_clock);
51
52 #if _Q_SPIN_SPEC_BARRIER == 1
53 #define spec_barrier() do { asm volatile("ori 31,31,0" ::: "memory"); } while (0)
54 #else
55 #define spec_barrier() do { } while (0)
56 #endif
57
58 static __always_inline bool recently_sleepy(void)
59 {
60 /* pv_sleepy_lock is true when this is called */
61 if (pv_sleepy_lock_interval_ns) {
62 u64 seen = this_cpu_read(sleepy_lock_seen_clock);
63
64 if (seen) {
65 u64 delta = sched_clock() - seen;
66 if (delta < pv_sleepy_lock_interval_ns)
67 return true;
68 this_cpu_write(sleepy_lock_seen_clock, 0);
69 }
70 }
71
72 return false;
73 }
74
75 static __always_inline int get_steal_spins(bool paravirt, bool sleepy)
76 {
77 if (paravirt && sleepy)
78 return steal_spins * pv_sleepy_lock_factor;
79 else
80 return steal_spins;
81 }
82
83 static __always_inline int get_remote_steal_spins(bool paravirt, bool sleepy)
84 {
85 if (paravirt && sleepy)
86 return remote_steal_spins * pv_sleepy_lock_factor;
87 else
88 return remote_steal_spins;
89 }
90
91 static __always_inline int get_head_spins(bool paravirt, bool sleepy)
92 {
93 if (paravirt && sleepy)
94 return head_spins * pv_sleepy_lock_factor;
95 else
96 return head_spins;
97 }
98
99 static inline u32 encode_tail_cpu(int cpu)
100 {
101 return (cpu + 1) << _Q_TAIL_CPU_OFFSET;
102 }
103
104 static inline int decode_tail_cpu(u32 val)
105 {
106 return (val >> _Q_TAIL_CPU_OFFSET) - 1;
107 }
108
109 static inline int get_owner_cpu(u32 val)
110 {
111 return (val & _Q_OWNER_CPU_MASK) >> _Q_OWNER_CPU_OFFSET;
112 }
113
114 /*
115 * Try to acquire the lock if it was not already locked. If the tail matches
116 * mytail then clear it, otherwise leave it unchnaged. Return previous value.
117 *
118 * This is used by the head of the queue to acquire the lock and clean up
119 * its tail if it was the last one queued.
120 */
121 static __always_inline u32 trylock_clean_tail(struct qspinlock *lock, u32 tail)
122 {
123 u32 newval = queued_spin_encode_locked_val();
124 u32 prev, tmp;
125
126 asm volatile(
127 "1: lwarx %0,0,%2,%7 # trylock_clean_tail \n"
128 /* This test is necessary if there could be stealers */
129 " andi. %1,%0,%5 \n"
130 " bne 3f \n"
131 /* Test whether the lock tail == mytail */
132 " and %1,%0,%6 \n"
133 " cmpw 0,%1,%3 \n"
134 /* Merge the new locked value */
135 " or %1,%1,%4 \n"
136 " bne 2f \n"
137 /* If the lock tail matched, then clear it, otherwise leave it. */
138 " andc %1,%1,%6 \n"
139 "2: stwcx. %1,0,%2 \n"
140 " bne- 1b \n"
141 "\t" PPC_ACQUIRE_BARRIER " \n"
142 "3: \n"
143 : "=&r" (prev), "=&r" (tmp)
144 : "r" (&lock->val), "r"(tail), "r" (newval),
145 "i" (_Q_LOCKED_VAL),
146 "r" (_Q_TAIL_CPU_MASK),
147 "i" (_Q_SPIN_EH_HINT)
148 : "cr0", "memory");
149
150 return prev;
151 }
152
153 /*
154 * Publish our tail, replacing previous tail. Return previous value.
155 *
156 * This provides a release barrier for publishing node, this pairs with the
157 * acquire barrier in get_tail_qnode() when the next CPU finds this tail
158 * value.
159 */
160 static __always_inline u32 publish_tail_cpu(struct qspinlock *lock, u32 tail)
161 {
162 u32 prev, tmp;
163
164 kcsan_release();
165
166 asm volatile(
167 "\t" PPC_RELEASE_BARRIER " \n"
168 "1: lwarx %0,0,%2 # publish_tail_cpu \n"
169 " andc %1,%0,%4 \n"
170 " or %1,%1,%3 \n"
171 " stwcx. %1,0,%2 \n"
172 " bne- 1b \n"
173 : "=&r" (prev), "=&r"(tmp)
174 : "r" (&lock->val), "r" (tail), "r"(_Q_TAIL_CPU_MASK)
175 : "cr0", "memory");
176
177 return prev;
178 }
179
180 static __always_inline u32 set_mustq(struct qspinlock *lock)
181 {
182 u32 prev;
183
184 asm volatile(
185 "1: lwarx %0,0,%1 # set_mustq \n"
186 " or %0,%0,%2 \n"
187 " stwcx. %0,0,%1 \n"
188 " bne- 1b \n"
189 : "=&r" (prev)
190 : "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
191 : "cr0", "memory");
192
193 return prev;
194 }
195
196 static __always_inline u32 clear_mustq(struct qspinlock *lock)
197 {
198 u32 prev;
199
200 asm volatile(
201 "1: lwarx %0,0,%1 # clear_mustq \n"
202 " andc %0,%0,%2 \n"
203 " stwcx. %0,0,%1 \n"
204 " bne- 1b \n"
205 : "=&r" (prev)
206 : "r" (&lock->val), "r" (_Q_MUST_Q_VAL)
207 : "cr0", "memory");
208
209 return prev;
210 }
211
212 static __always_inline bool try_set_sleepy(struct qspinlock *lock, u32 old)
213 {
214 u32 prev;
215 u32 new = old | _Q_SLEEPY_VAL;
216
217 BUG_ON(!(old & _Q_LOCKED_VAL));
218 BUG_ON(old & _Q_SLEEPY_VAL);
219
220 asm volatile(
221 "1: lwarx %0,0,%1 # try_set_sleepy \n"
222 " cmpw 0,%0,%2 \n"
223 " bne- 2f \n"
224 " stwcx. %3,0,%1 \n"
225 " bne- 1b \n"
226 "2: \n"
227 : "=&r" (prev)
228 : "r" (&lock->val), "r"(old), "r" (new)
229 : "cr0", "memory");
230
231 return likely(prev == old);
232 }
233
234 static __always_inline void seen_sleepy_owner(struct qspinlock *lock, u32 val)
235 {
236 if (pv_sleepy_lock) {
237 if (pv_sleepy_lock_interval_ns)
238 this_cpu_write(sleepy_lock_seen_clock, sched_clock());
239 if (!(val & _Q_SLEEPY_VAL))
240 try_set_sleepy(lock, val);
241 }
242 }
243
244 static __always_inline void seen_sleepy_lock(void)
245 {
246 if (pv_sleepy_lock && pv_sleepy_lock_interval_ns)
247 this_cpu_write(sleepy_lock_seen_clock, sched_clock());
248 }
249
250 static __always_inline void seen_sleepy_node(struct qspinlock *lock, u32 val)
251 {
252 if (pv_sleepy_lock) {
253 if (pv_sleepy_lock_interval_ns)
254 this_cpu_write(sleepy_lock_seen_clock, sched_clock());
255 if (val & _Q_LOCKED_VAL) {
256 if (!(val & _Q_SLEEPY_VAL))
257 try_set_sleepy(lock, val);
258 }
259 }
260 }
261
262 static struct qnode *get_tail_qnode(struct qspinlock *lock, u32 val)
263 {
264 int cpu = decode_tail_cpu(val);
265 struct qnodes *qnodesp = per_cpu_ptr(&qnodes, cpu);
266 int idx;
267
268 /*
269 * After publishing the new tail and finding a previous tail in the
270 * previous val (which is the control dependency), this barrier
271 * orders the release barrier in publish_tail_cpu performed by the
272 * last CPU, with subsequently looking at its qnode structures
273 * after the barrier.
274 */
275 smp_acquire__after_ctrl_dep();
276
277 for (idx = 0; idx < MAX_NODES; idx++) {
278 struct qnode *qnode = &qnodesp->nodes[idx];
279 if (qnode->lock == lock)
280 return qnode;
281 }
282
283 BUG();
284 }
285
286 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
287 static __always_inline bool __yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt, bool mustq)
288 {
289 int owner;
290 u32 yield_count;
291 bool preempted = false;
292
293 BUG_ON(!(val & _Q_LOCKED_VAL));
294
295 if (!paravirt)
296 goto relax;
297
298 if (!pv_yield_owner)
299 goto relax;
300
301 owner = get_owner_cpu(val);
302 yield_count = yield_count_of(owner);
303
304 if ((yield_count & 1) == 0)
305 goto relax; /* owner vcpu is running */
306
307 spin_end();
308
309 seen_sleepy_owner(lock, val);
310 preempted = true;
311
312 /*
313 * Read the lock word after sampling the yield count. On the other side
314 * there may a wmb because the yield count update is done by the
315 * hypervisor preemption and the value update by the OS, however this
316 * ordering might reduce the chance of out of order accesses and
317 * improve the heuristic.
318 */
319 smp_rmb();
320
321 if (READ_ONCE(lock->val) == val) {
322 if (mustq)
323 clear_mustq(lock);
324 yield_to_preempted(owner, yield_count);
325 if (mustq)
326 set_mustq(lock);
327 spin_begin();
328
329 /* Don't relax if we yielded. Maybe we should? */
330 return preempted;
331 }
332 spin_begin();
333 relax:
334 spin_cpu_relax();
335
336 return preempted;
337 }
338
339 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
340 static __always_inline bool yield_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
341 {
342 return __yield_to_locked_owner(lock, val, paravirt, false);
343 }
344
345 /* Called inside spin_begin(). Returns whether or not the vCPU was preempted. */
346 static __always_inline bool yield_head_to_locked_owner(struct qspinlock *lock, u32 val, bool paravirt)
347 {
348 bool mustq = false;
349
350 if ((val & _Q_MUST_Q_VAL) && pv_yield_allow_steal)
351 mustq = true;
352
353 return __yield_to_locked_owner(lock, val, paravirt, mustq);
354 }
355
356 static __always_inline void propagate_yield_cpu(struct qnode *node, u32 val, int *set_yield_cpu, bool paravirt)
357 {
358 struct qnode *next;
359 int owner;
360
361 if (!paravirt)
362 return;
363 if (!pv_yield_propagate_owner)
364 return;
365
366 owner = get_owner_cpu(val);
367 if (*set_yield_cpu == owner)
368 return;
369
370 next = READ_ONCE(node->next);
371 if (!next)
372 return;
373
374 if (vcpu_is_preempted(owner)) {
375 next->yield_cpu = owner;
376 *set_yield_cpu = owner;
377 } else if (*set_yield_cpu != -1) {
378 next->yield_cpu = owner;
379 *set_yield_cpu = owner;
380 }
381 }
382
383 /* Called inside spin_begin() */
384 static __always_inline bool yield_to_prev(struct qspinlock *lock, struct qnode *node, u32 val, bool paravirt)
385 {
386 int prev_cpu = decode_tail_cpu(val);
387 u32 yield_count;
388 int yield_cpu;
389 bool preempted = false;
390
391 if (!paravirt)
392 goto relax;
393
394 if (!pv_yield_propagate_owner)
395 goto yield_prev;
396
397 yield_cpu = READ_ONCE(node->yield_cpu);
398 if (yield_cpu == -1) {
399 /* Propagate back the -1 CPU */
400 if (node->next && node->next->yield_cpu != -1)
401 node->next->yield_cpu = yield_cpu;
402 goto yield_prev;
403 }
404
405 yield_count = yield_count_of(yield_cpu);
406 if ((yield_count & 1) == 0)
407 goto yield_prev; /* owner vcpu is running */
408
409 spin_end();
410
411 preempted = true;
412 seen_sleepy_node(lock, val);
413
414 smp_rmb();
415
416 if (yield_cpu == node->yield_cpu) {
417 if (node->next && node->next->yield_cpu != yield_cpu)
418 node->next->yield_cpu = yield_cpu;
419 yield_to_preempted(yield_cpu, yield_count);
420 spin_begin();
421 return preempted;
422 }
423 spin_begin();
424
425 yield_prev:
426 if (!pv_yield_prev)
427 goto relax;
428
429 yield_count = yield_count_of(prev_cpu);
430 if ((yield_count & 1) == 0)
431 goto relax; /* owner vcpu is running */
432
433 spin_end();
434
435 preempted = true;
436 seen_sleepy_node(lock, val);
437
438 smp_rmb(); /* See __yield_to_locked_owner comment */
439
440 if (!READ_ONCE(node->locked)) {
441 yield_to_preempted(prev_cpu, yield_count);
442 spin_begin();
443 return preempted;
444 }
445 spin_begin();
446
447 relax:
448 spin_cpu_relax();
449
450 return preempted;
451 }
452
453 static __always_inline bool steal_break(u32 val, int iters, bool paravirt, bool sleepy)
454 {
455 if (iters >= get_steal_spins(paravirt, sleepy))
456 return true;
457
458 if (IS_ENABLED(CONFIG_NUMA) &&
459 (iters >= get_remote_steal_spins(paravirt, sleepy))) {
460 int cpu = get_owner_cpu(val);
461 if (numa_node_id() != cpu_to_node(cpu))
462 return true;
463 }
464 return false;
465 }
466
467 static __always_inline bool try_to_steal_lock(struct qspinlock *lock, bool paravirt)
468 {
469 bool seen_preempted = false;
470 bool sleepy = false;
471 int iters = 0;
472 u32 val;
473
474 if (!steal_spins) {
475 /* XXX: should spin_on_preempted_owner do anything here? */
476 return false;
477 }
478
479 /* Attempt to steal the lock */
480 spin_begin();
481 do {
482 bool preempted = false;
483
484 val = READ_ONCE(lock->val);
485 if (val & _Q_MUST_Q_VAL)
486 break;
487 spec_barrier();
488
489 if (unlikely(!(val & _Q_LOCKED_VAL))) {
490 spin_end();
491 if (__queued_spin_trylock_steal(lock))
492 return true;
493 spin_begin();
494 } else {
495 preempted = yield_to_locked_owner(lock, val, paravirt);
496 }
497
498 if (paravirt && pv_sleepy_lock) {
499 if (!sleepy) {
500 if (val & _Q_SLEEPY_VAL) {
501 seen_sleepy_lock();
502 sleepy = true;
503 } else if (recently_sleepy()) {
504 sleepy = true;
505 }
506 }
507 if (pv_sleepy_lock_sticky && seen_preempted &&
508 !(val & _Q_SLEEPY_VAL)) {
509 if (try_set_sleepy(lock, val))
510 val |= _Q_SLEEPY_VAL;
511 }
512 }
513
514 if (preempted) {
515 seen_preempted = true;
516 sleepy = true;
517 if (!pv_spin_on_preempted_owner)
518 iters++;
519 /*
520 * pv_spin_on_preempted_owner don't increase iters
521 * while the owner is preempted -- we won't interfere
522 * with it by definition. This could introduce some
523 * latency issue if we continually observe preempted
524 * owners, but hopefully that's a rare corner case of
525 * a badly oversubscribed system.
526 */
527 } else {
528 iters++;
529 }
530 } while (!steal_break(val, iters, paravirt, sleepy));
531
532 spin_end();
533
534 return false;
535 }
536
537 static __always_inline void queued_spin_lock_mcs_queue(struct qspinlock *lock, bool paravirt)
538 {
539 struct qnodes *qnodesp;
540 struct qnode *next, *node;
541 u32 val, old, tail;
542 bool seen_preempted = false;
543 bool sleepy = false;
544 bool mustq = false;
545 int idx;
546 int set_yield_cpu = -1;
547 int iters = 0;
548
549 BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));
550
551 qnodesp = this_cpu_ptr(&qnodes);
552 if (unlikely(qnodesp->count >= MAX_NODES)) {
553 spec_barrier();
554 while (!queued_spin_trylock(lock))
555 cpu_relax();
556 return;
557 }
558
559 idx = qnodesp->count++;
560 /*
561 * Ensure that we increment the head node->count before initialising
562 * the actual node. If the compiler is kind enough to reorder these
563 * stores, then an IRQ could overwrite our assignments.
564 */
565 barrier();
566 node = &qnodesp->nodes[idx];
567 node->next = NULL;
568 node->lock = lock;
569 node->cpu = smp_processor_id();
570 node->yield_cpu = -1;
571 node->locked = 0;
572
573 tail = encode_tail_cpu(node->cpu);
574
575 /*
576 * Assign all attributes of a node before it can be published.
577 * Issues an lwsync, serving as a release barrier, as well as a
578 * compiler barrier.
579 */
580 old = publish_tail_cpu(lock, tail);
581
582 /*
583 * If there was a previous node; link it and wait until reaching the
584 * head of the waitqueue.
585 */
586 if (old & _Q_TAIL_CPU_MASK) {
587 struct qnode *prev = get_tail_qnode(lock, old);
588
589 /* Link @node into the waitqueue. */
590 WRITE_ONCE(prev->next, node);
591
592 /* Wait for mcs node lock to be released */
593 spin_begin();
594 while (!READ_ONCE(node->locked)) {
595 spec_barrier();
596
597 if (yield_to_prev(lock, node, old, paravirt))
598 seen_preempted = true;
599 }
600 spec_barrier();
601 spin_end();
602
603 /* Clear out stale propagated yield_cpu */
604 if (paravirt && pv_yield_propagate_owner && node->yield_cpu != -1)
605 node->yield_cpu = -1;
606
607 smp_rmb(); /* acquire barrier for the mcs lock */
608
609 /*
610 * Generic qspinlocks have this prefetch here, but it seems
611 * like it could cause additional line transitions because
612 * the waiter will keep loading from it.
613 */
614 if (_Q_SPIN_PREFETCH_NEXT) {
615 next = READ_ONCE(node->next);
616 if (next)
617 prefetchw(next);
618 }
619 }
620
621 /* We're at the head of the waitqueue, wait for the lock. */
622 again:
623 spin_begin();
624 for (;;) {
625 bool preempted;
626
627 val = READ_ONCE(lock->val);
628 if (!(val & _Q_LOCKED_VAL))
629 break;
630 spec_barrier();
631
632 if (paravirt && pv_sleepy_lock && maybe_stealers) {
633 if (!sleepy) {
634 if (val & _Q_SLEEPY_VAL) {
635 seen_sleepy_lock();
636 sleepy = true;
637 } else if (recently_sleepy()) {
638 sleepy = true;
639 }
640 }
641 if (pv_sleepy_lock_sticky && seen_preempted &&
642 !(val & _Q_SLEEPY_VAL)) {
643 if (try_set_sleepy(lock, val))
644 val |= _Q_SLEEPY_VAL;
645 }
646 }
647
648 propagate_yield_cpu(node, val, &set_yield_cpu, paravirt);
649 preempted = yield_head_to_locked_owner(lock, val, paravirt);
650 if (!maybe_stealers)
651 continue;
652
653 if (preempted)
654 seen_preempted = true;
655
656 if (paravirt && preempted) {
657 sleepy = true;
658
659 if (!pv_spin_on_preempted_owner)
660 iters++;
661 } else {
662 iters++;
663 }
664
665 if (!mustq && iters >= get_head_spins(paravirt, sleepy)) {
666 mustq = true;
667 set_mustq(lock);
668 val |= _Q_MUST_Q_VAL;
669 }
670 }
671 spec_barrier();
672 spin_end();
673
674 /* If we're the last queued, must clean up the tail. */
675 old = trylock_clean_tail(lock, tail);
676 if (unlikely(old & _Q_LOCKED_VAL)) {
677 BUG_ON(!maybe_stealers);
678 goto again; /* Can only be true if maybe_stealers. */
679 }
680
681 if ((old & _Q_TAIL_CPU_MASK) == tail)
682 goto release; /* We were the tail, no next. */
683
684 /* There is a next, must wait for node->next != NULL (MCS protocol) */
685 next = READ_ONCE(node->next);
686 if (!next) {
687 spin_begin();
688 while (!(next = READ_ONCE(node->next)))
689 cpu_relax();
690 spin_end();
691 }
692 spec_barrier();
693
694 /*
695 * Unlock the next mcs waiter node. Release barrier is not required
696 * here because the acquirer is only accessing the lock word, and
697 * the acquire barrier we took the lock with orders that update vs
698 * this store to locked. The corresponding barrier is the smp_rmb()
699 * acquire barrier for mcs lock, above.
700 */
701 if (paravirt && pv_prod_head) {
702 int next_cpu = next->cpu;
703 WRITE_ONCE(next->locked, 1);
704 if (_Q_SPIN_MISO)
705 asm volatile("miso" ::: "memory");
706 if (vcpu_is_preempted(next_cpu))
707 prod_cpu(next_cpu);
708 } else {
709 WRITE_ONCE(next->locked, 1);
710 if (_Q_SPIN_MISO)
711 asm volatile("miso" ::: "memory");
712 }
713
714 release:
715 qnodesp->count--; /* release the node */
716 }
717
718 void queued_spin_lock_slowpath(struct qspinlock *lock)
719 {
720 /*
721 * This looks funny, but it induces the compiler to inline both
722 * sides of the branch rather than share code as when the condition
723 * is passed as the paravirt argument to the functions.
724 */
725 if (IS_ENABLED(CONFIG_PARAVIRT_SPINLOCKS) && is_shared_processor()) {
726 if (try_to_steal_lock(lock, true)) {
727 spec_barrier();
728 return;
729 }
730 queued_spin_lock_mcs_queue(lock, true);
731 } else {
732 if (try_to_steal_lock(lock, false)) {
733 spec_barrier();
734 return;
735 }
736 queued_spin_lock_mcs_queue(lock, false);
737 }
738 }
739 EXPORT_SYMBOL(queued_spin_lock_slowpath);
740
741 #ifdef CONFIG_PARAVIRT_SPINLOCKS
742 void pv_spinlocks_init(void)
743 {
744 }
745 #endif
746
747 #include <linux/debugfs.h>
748 static int steal_spins_set(void *data, u64 val)
749 {
750 #if _Q_SPIN_TRY_LOCK_STEAL == 1
751 /* MAYBE_STEAL remains true */
752 steal_spins = val;
753 #else
754 static DEFINE_MUTEX(lock);
755
756 /*
757 * The lock slow path has a !maybe_stealers case that can assume
758 * the head of queue will not see concurrent waiters. That waiter
759 * is unsafe in the presence of stealers, so must keep them away
760 * from one another.
761 */
762
763 mutex_lock(&lock);
764 if (val && !steal_spins) {
765 maybe_stealers = true;
766 /* wait for queue head waiter to go away */
767 synchronize_rcu();
768 steal_spins = val;
769 } else if (!val && steal_spins) {
770 steal_spins = val;
771 /* wait for all possible stealers to go away */
772 synchronize_rcu();
773 maybe_stealers = false;
774 } else {
775 steal_spins = val;
776 }
777 mutex_unlock(&lock);
778 #endif
779
780 return 0;
781 }
782
783 static int steal_spins_get(void *data, u64 *val)
784 {
785 *val = steal_spins;
786
787 return 0;
788 }
789
790 DEFINE_SIMPLE_ATTRIBUTE(fops_steal_spins, steal_spins_get, steal_spins_set, "%llu\n");
791
792 static int remote_steal_spins_set(void *data, u64 val)
793 {
794 remote_steal_spins = val;
795
796 return 0;
797 }
798
799 static int remote_steal_spins_get(void *data, u64 *val)
800 {
801 *val = remote_steal_spins;
802
803 return 0;
804 }
805
806 DEFINE_SIMPLE_ATTRIBUTE(fops_remote_steal_spins, remote_steal_spins_get, remote_steal_spins_set, "%llu\n");
807
808 static int head_spins_set(void *data, u64 val)
809 {
810 head_spins = val;
811
812 return 0;
813 }
814
815 static int head_spins_get(void *data, u64 *val)
816 {
817 *val = head_spins;
818
819 return 0;
820 }
821
822 DEFINE_SIMPLE_ATTRIBUTE(fops_head_spins, head_spins_get, head_spins_set, "%llu\n");
823
824 static int pv_yield_owner_set(void *data, u64 val)
825 {
826 pv_yield_owner = !!val;
827
828 return 0;
829 }
830
831 static int pv_yield_owner_get(void *data, u64 *val)
832 {
833 *val = pv_yield_owner;
834
835 return 0;
836 }
837
838 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_owner, pv_yield_owner_get, pv_yield_owner_set, "%llu\n");
839
840 static int pv_yield_allow_steal_set(void *data, u64 val)
841 {
842 pv_yield_allow_steal = !!val;
843
844 return 0;
845 }
846
847 static int pv_yield_allow_steal_get(void *data, u64 *val)
848 {
849 *val = pv_yield_allow_steal;
850
851 return 0;
852 }
853
854 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_allow_steal, pv_yield_allow_steal_get, pv_yield_allow_steal_set, "%llu\n");
855
856 static int pv_spin_on_preempted_owner_set(void *data, u64 val)
857 {
858 pv_spin_on_preempted_owner = !!val;
859
860 return 0;
861 }
862
863 static int pv_spin_on_preempted_owner_get(void *data, u64 *val)
864 {
865 *val = pv_spin_on_preempted_owner;
866
867 return 0;
868 }
869
870 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_spin_on_preempted_owner, pv_spin_on_preempted_owner_get, pv_spin_on_preempted_owner_set, "%llu\n");
871
872 static int pv_sleepy_lock_set(void *data, u64 val)
873 {
874 pv_sleepy_lock = !!val;
875
876 return 0;
877 }
878
879 static int pv_sleepy_lock_get(void *data, u64 *val)
880 {
881 *val = pv_sleepy_lock;
882
883 return 0;
884 }
885
886 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock, pv_sleepy_lock_get, pv_sleepy_lock_set, "%llu\n");
887
888 static int pv_sleepy_lock_sticky_set(void *data, u64 val)
889 {
890 pv_sleepy_lock_sticky = !!val;
891
892 return 0;
893 }
894
895 static int pv_sleepy_lock_sticky_get(void *data, u64 *val)
896 {
897 *val = pv_sleepy_lock_sticky;
898
899 return 0;
900 }
901
902 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_sticky, pv_sleepy_lock_sticky_get, pv_sleepy_lock_sticky_set, "%llu\n");
903
904 static int pv_sleepy_lock_interval_ns_set(void *data, u64 val)
905 {
906 pv_sleepy_lock_interval_ns = val;
907
908 return 0;
909 }
910
911 static int pv_sleepy_lock_interval_ns_get(void *data, u64 *val)
912 {
913 *val = pv_sleepy_lock_interval_ns;
914
915 return 0;
916 }
917
918 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_interval_ns, pv_sleepy_lock_interval_ns_get, pv_sleepy_lock_interval_ns_set, "%llu\n");
919
920 static int pv_sleepy_lock_factor_set(void *data, u64 val)
921 {
922 pv_sleepy_lock_factor = val;
923
924 return 0;
925 }
926
927 static int pv_sleepy_lock_factor_get(void *data, u64 *val)
928 {
929 *val = pv_sleepy_lock_factor;
930
931 return 0;
932 }
933
934 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_sleepy_lock_factor, pv_sleepy_lock_factor_get, pv_sleepy_lock_factor_set, "%llu\n");
935
936 static int pv_yield_prev_set(void *data, u64 val)
937 {
938 pv_yield_prev = !!val;
939
940 return 0;
941 }
942
943 static int pv_yield_prev_get(void *data, u64 *val)
944 {
945 *val = pv_yield_prev;
946
947 return 0;
948 }
949
950 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_prev, pv_yield_prev_get, pv_yield_prev_set, "%llu\n");
951
952 static int pv_yield_propagate_owner_set(void *data, u64 val)
953 {
954 pv_yield_propagate_owner = !!val;
955
956 return 0;
957 }
958
959 static int pv_yield_propagate_owner_get(void *data, u64 *val)
960 {
961 *val = pv_yield_propagate_owner;
962
963 return 0;
964 }
965
966 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_yield_propagate_owner, pv_yield_propagate_owner_get, pv_yield_propagate_owner_set, "%llu\n");
967
968 static int pv_prod_head_set(void *data, u64 val)
969 {
970 pv_prod_head = !!val;
971
972 return 0;
973 }
974
975 static int pv_prod_head_get(void *data, u64 *val)
976 {
977 *val = pv_prod_head;
978
979 return 0;
980 }
981
982 DEFINE_SIMPLE_ATTRIBUTE(fops_pv_prod_head, pv_prod_head_get, pv_prod_head_set, "%llu\n");
983
984 static __init int spinlock_debugfs_init(void)
985 {
986 debugfs_create_file("qspl_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_steal_spins);
987 debugfs_create_file("qspl_remote_steal_spins", 0600, arch_debugfs_dir, NULL, &fops_remote_steal_spins);
988 debugfs_create_file("qspl_head_spins", 0600, arch_debugfs_dir, NULL, &fops_head_spins);
989 if (is_shared_processor()) {
990 debugfs_create_file("qspl_pv_yield_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_owner);
991 debugfs_create_file("qspl_pv_yield_allow_steal", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_allow_steal);
992 debugfs_create_file("qspl_pv_spin_on_preempted_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_spin_on_preempted_owner);
993 debugfs_create_file("qspl_pv_sleepy_lock", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock);
994 debugfs_create_file("qspl_pv_sleepy_lock_sticky", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_sticky);
995 debugfs_create_file("qspl_pv_sleepy_lock_interval_ns", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_interval_ns);
996 debugfs_create_file("qspl_pv_sleepy_lock_factor", 0600, arch_debugfs_dir, NULL, &fops_pv_sleepy_lock_factor);
997 debugfs_create_file("qspl_pv_yield_prev", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_prev);
998 debugfs_create_file("qspl_pv_yield_propagate_owner", 0600, arch_debugfs_dir, NULL, &fops_pv_yield_propagate_owner);
999 debugfs_create_file("qspl_pv_prod_head", 0600, arch_debugfs_dir, NULL, &fops_pv_prod_head);
1000 }
1001
1002 return 0;
1003 }
1004 device_initcall(spinlock_debugfs_init);