]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/mm/book3s64/pgtable.c
Merge tag 'powerpc-6.6-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[thirdparty/linux.git] / arch / powerpc / mm / book3s64 / pgtable.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/mm_types.h>
8 #include <linux/memblock.h>
9 #include <linux/memremap.h>
10 #include <linux/pkeys.h>
11 #include <linux/debugfs.h>
12 #include <linux/proc_fs.h>
13 #include <misc/cxl-base.h>
14
15 #include <asm/pgalloc.h>
16 #include <asm/tlb.h>
17 #include <asm/trace.h>
18 #include <asm/powernv.h>
19 #include <asm/firmware.h>
20 #include <asm/ultravisor.h>
21 #include <asm/kexec.h>
22
23 #include <mm/mmu_decl.h>
24 #include <trace/events/thp.h>
25
26 #include "internal.h"
27
28 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
29 EXPORT_SYMBOL_GPL(mmu_psize_defs);
30
31 #ifdef CONFIG_SPARSEMEM_VMEMMAP
32 int mmu_vmemmap_psize = MMU_PAGE_4K;
33 #endif
34
35 unsigned long __pmd_frag_nr;
36 EXPORT_SYMBOL(__pmd_frag_nr);
37 unsigned long __pmd_frag_size_shift;
38 EXPORT_SYMBOL(__pmd_frag_size_shift);
39
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
41 /*
42 * This is called when relaxing access to a hugepage. It's also called in the page
43 * fault path when we don't hit any of the major fault cases, ie, a minor
44 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
45 * handled those two for us, we additionally deal with missing execute
46 * permission here on some processors
47 */
48 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
49 pmd_t *pmdp, pmd_t entry, int dirty)
50 {
51 int changed;
52 #ifdef CONFIG_DEBUG_VM
53 WARN_ON(!pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
54 assert_spin_locked(pmd_lockptr(vma->vm_mm, pmdp));
55 #endif
56 changed = !pmd_same(*(pmdp), entry);
57 if (changed) {
58 /*
59 * We can use MMU_PAGE_2M here, because only radix
60 * path look at the psize.
61 */
62 __ptep_set_access_flags(vma, pmdp_ptep(pmdp),
63 pmd_pte(entry), address, MMU_PAGE_2M);
64 }
65 return changed;
66 }
67
68 int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
69 pud_t *pudp, pud_t entry, int dirty)
70 {
71 int changed;
72 #ifdef CONFIG_DEBUG_VM
73 WARN_ON(!pud_devmap(*pudp));
74 assert_spin_locked(pud_lockptr(vma->vm_mm, pudp));
75 #endif
76 changed = !pud_same(*(pudp), entry);
77 if (changed) {
78 /*
79 * We can use MMU_PAGE_1G here, because only radix
80 * path look at the psize.
81 */
82 __ptep_set_access_flags(vma, pudp_ptep(pudp),
83 pud_pte(entry), address, MMU_PAGE_1G);
84 }
85 return changed;
86 }
87
88
89 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
90 unsigned long address, pmd_t *pmdp)
91 {
92 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
93 }
94
95 int pudp_test_and_clear_young(struct vm_area_struct *vma,
96 unsigned long address, pud_t *pudp)
97 {
98 return __pudp_test_and_clear_young(vma->vm_mm, address, pudp);
99 }
100
101 /*
102 * set a new huge pmd. We should not be called for updating
103 * an existing pmd entry. That should go via pmd_hugepage_update.
104 */
105 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
106 pmd_t *pmdp, pmd_t pmd)
107 {
108 #ifdef CONFIG_DEBUG_VM
109 /*
110 * Make sure hardware valid bit is not set. We don't do
111 * tlb flush for this update.
112 */
113
114 WARN_ON(pte_hw_valid(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
115 assert_spin_locked(pmd_lockptr(mm, pmdp));
116 WARN_ON(!(pmd_large(pmd)));
117 #endif
118 trace_hugepage_set_pmd(addr, pmd_val(pmd));
119 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
120 }
121
122 void set_pud_at(struct mm_struct *mm, unsigned long addr,
123 pud_t *pudp, pud_t pud)
124 {
125 #ifdef CONFIG_DEBUG_VM
126 /*
127 * Make sure hardware valid bit is not set. We don't do
128 * tlb flush for this update.
129 */
130
131 WARN_ON(pte_hw_valid(pud_pte(*pudp)));
132 assert_spin_locked(pud_lockptr(mm, pudp));
133 WARN_ON(!(pud_large(pud)));
134 #endif
135 trace_hugepage_set_pud(addr, pud_val(pud));
136 return set_pte_at(mm, addr, pudp_ptep(pudp), pud_pte(pud));
137 }
138
139 static void do_serialize(void *arg)
140 {
141 /* We've taken the IPI, so try to trim the mask while here */
142 if (radix_enabled()) {
143 struct mm_struct *mm = arg;
144 exit_lazy_flush_tlb(mm, false);
145 }
146 }
147
148 /*
149 * Serialize against __find_linux_pte() which does lock-less
150 * lookup in page tables with local interrupts disabled. For huge pages
151 * it casts pmd_t to pte_t. Since format of pte_t is different from
152 * pmd_t we want to prevent transit from pmd pointing to page table
153 * to pmd pointing to huge page (and back) while interrupts are disabled.
154 * We clear pmd to possibly replace it with page table pointer in
155 * different code paths. So make sure we wait for the parallel
156 * __find_linux_pte() to finish.
157 */
158 void serialize_against_pte_lookup(struct mm_struct *mm)
159 {
160 smp_mb();
161 smp_call_function_many(mm_cpumask(mm), do_serialize, mm, 1);
162 }
163
164 /*
165 * We use this to invalidate a pmdp entry before switching from a
166 * hugepte to regular pmd entry.
167 */
168 pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
169 pmd_t *pmdp)
170 {
171 unsigned long old_pmd;
172
173 old_pmd = pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, _PAGE_INVALID);
174 flush_pmd_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
175 return __pmd(old_pmd);
176 }
177
178 pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
179 unsigned long addr, pmd_t *pmdp, int full)
180 {
181 pmd_t pmd;
182 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
183 VM_BUG_ON((pmd_present(*pmdp) && !pmd_trans_huge(*pmdp) &&
184 !pmd_devmap(*pmdp)) || !pmd_present(*pmdp));
185 pmd = pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
186 /*
187 * if it not a fullmm flush, then we can possibly end up converting
188 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
189 * Make sure we flush the tlb in this case.
190 */
191 if (!full)
192 flush_pmd_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
193 return pmd;
194 }
195
196 pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
197 unsigned long addr, pud_t *pudp, int full)
198 {
199 pud_t pud;
200
201 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
202 VM_BUG_ON((pud_present(*pudp) && !pud_devmap(*pudp)) ||
203 !pud_present(*pudp));
204 pud = pudp_huge_get_and_clear(vma->vm_mm, addr, pudp);
205 /*
206 * if it not a fullmm flush, then we can possibly end up converting
207 * this PMD pte entry to a regular level 0 PTE by a parallel page fault.
208 * Make sure we flush the tlb in this case.
209 */
210 if (!full)
211 flush_pud_tlb_range(vma, addr, addr + HPAGE_PUD_SIZE);
212 return pud;
213 }
214
215 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
216 {
217 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
218 }
219
220 static pud_t pud_set_protbits(pud_t pud, pgprot_t pgprot)
221 {
222 return __pud(pud_val(pud) | pgprot_val(pgprot));
223 }
224
225 /*
226 * At some point we should be able to get rid of
227 * pmd_mkhuge() and mk_huge_pmd() when we update all the
228 * other archs to mark the pmd huge in pfn_pmd()
229 */
230 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
231 {
232 unsigned long pmdv;
233
234 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
235
236 return __pmd_mkhuge(pmd_set_protbits(__pmd(pmdv), pgprot));
237 }
238
239 pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot)
240 {
241 unsigned long pudv;
242
243 pudv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
244
245 return __pud_mkhuge(pud_set_protbits(__pud(pudv), pgprot));
246 }
247
248 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
249 {
250 return pfn_pmd(page_to_pfn(page), pgprot);
251 }
252
253 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
254 {
255 unsigned long pmdv;
256
257 pmdv = pmd_val(pmd);
258 pmdv &= _HPAGE_CHG_MASK;
259 return pmd_set_protbits(__pmd(pmdv), newprot);
260 }
261 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
262
263 /* For use by kexec, called with MMU off */
264 notrace void mmu_cleanup_all(void)
265 {
266 if (radix_enabled())
267 radix__mmu_cleanup_all();
268 else if (mmu_hash_ops.hpte_clear_all)
269 mmu_hash_ops.hpte_clear_all();
270
271 reset_sprs();
272 }
273
274 #ifdef CONFIG_MEMORY_HOTPLUG
275 int __meminit create_section_mapping(unsigned long start, unsigned long end,
276 int nid, pgprot_t prot)
277 {
278 if (radix_enabled())
279 return radix__create_section_mapping(start, end, nid, prot);
280
281 return hash__create_section_mapping(start, end, nid, prot);
282 }
283
284 int __meminit remove_section_mapping(unsigned long start, unsigned long end)
285 {
286 if (radix_enabled())
287 return radix__remove_section_mapping(start, end);
288
289 return hash__remove_section_mapping(start, end);
290 }
291 #endif /* CONFIG_MEMORY_HOTPLUG */
292
293 void __init mmu_partition_table_init(void)
294 {
295 unsigned long patb_size = 1UL << PATB_SIZE_SHIFT;
296 unsigned long ptcr;
297
298 /* Initialize the Partition Table with no entries */
299 partition_tb = memblock_alloc(patb_size, patb_size);
300 if (!partition_tb)
301 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
302 __func__, patb_size, patb_size);
303
304 ptcr = __pa(partition_tb) | (PATB_SIZE_SHIFT - 12);
305 set_ptcr_when_no_uv(ptcr);
306 powernv_set_nmmu_ptcr(ptcr);
307 }
308
309 static void flush_partition(unsigned int lpid, bool radix)
310 {
311 if (radix) {
312 radix__flush_all_lpid(lpid);
313 radix__flush_all_lpid_guest(lpid);
314 } else {
315 asm volatile("ptesync" : : : "memory");
316 asm volatile(PPC_TLBIE_5(%0,%1,2,0,0) : :
317 "r" (TLBIEL_INVAL_SET_LPID), "r" (lpid));
318 /* do we need fixup here ?*/
319 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
320 trace_tlbie(lpid, 0, TLBIEL_INVAL_SET_LPID, lpid, 2, 0, 0);
321 }
322 }
323
324 void mmu_partition_table_set_entry(unsigned int lpid, unsigned long dw0,
325 unsigned long dw1, bool flush)
326 {
327 unsigned long old = be64_to_cpu(partition_tb[lpid].patb0);
328
329 /*
330 * When ultravisor is enabled, the partition table is stored in secure
331 * memory and can only be accessed doing an ultravisor call. However, we
332 * maintain a copy of the partition table in normal memory to allow Nest
333 * MMU translations to occur (for normal VMs).
334 *
335 * Therefore, here we always update partition_tb, regardless of whether
336 * we are running under an ultravisor or not.
337 */
338 partition_tb[lpid].patb0 = cpu_to_be64(dw0);
339 partition_tb[lpid].patb1 = cpu_to_be64(dw1);
340
341 /*
342 * If ultravisor is enabled, we do an ultravisor call to register the
343 * partition table entry (PATE), which also do a global flush of TLBs
344 * and partition table caches for the lpid. Otherwise, just do the
345 * flush. The type of flush (hash or radix) depends on what the previous
346 * use of the partition ID was, not the new use.
347 */
348 if (firmware_has_feature(FW_FEATURE_ULTRAVISOR)) {
349 uv_register_pate(lpid, dw0, dw1);
350 pr_info("PATE registered by ultravisor: dw0 = 0x%lx, dw1 = 0x%lx\n",
351 dw0, dw1);
352 } else if (flush) {
353 /*
354 * Boot does not need to flush, because MMU is off and each
355 * CPU does a tlbiel_all() before switching them on, which
356 * flushes everything.
357 */
358 flush_partition(lpid, (old & PATB_HR));
359 }
360 }
361 EXPORT_SYMBOL_GPL(mmu_partition_table_set_entry);
362
363 static pmd_t *get_pmd_from_cache(struct mm_struct *mm)
364 {
365 void *pmd_frag, *ret;
366
367 if (PMD_FRAG_NR == 1)
368 return NULL;
369
370 spin_lock(&mm->page_table_lock);
371 ret = mm->context.pmd_frag;
372 if (ret) {
373 pmd_frag = ret + PMD_FRAG_SIZE;
374 /*
375 * If we have taken up all the fragments mark PTE page NULL
376 */
377 if (((unsigned long)pmd_frag & ~PAGE_MASK) == 0)
378 pmd_frag = NULL;
379 mm->context.pmd_frag = pmd_frag;
380 }
381 spin_unlock(&mm->page_table_lock);
382 return (pmd_t *)ret;
383 }
384
385 static pmd_t *__alloc_for_pmdcache(struct mm_struct *mm)
386 {
387 void *ret = NULL;
388 struct ptdesc *ptdesc;
389 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO;
390
391 if (mm == &init_mm)
392 gfp &= ~__GFP_ACCOUNT;
393 ptdesc = pagetable_alloc(gfp, 0);
394 if (!ptdesc)
395 return NULL;
396 if (!pagetable_pmd_ctor(ptdesc)) {
397 pagetable_free(ptdesc);
398 return NULL;
399 }
400
401 atomic_set(&ptdesc->pt_frag_refcount, 1);
402
403 ret = ptdesc_address(ptdesc);
404 /*
405 * if we support only one fragment just return the
406 * allocated page.
407 */
408 if (PMD_FRAG_NR == 1)
409 return ret;
410
411 spin_lock(&mm->page_table_lock);
412 /*
413 * If we find ptdesc_page set, we return
414 * the allocated page with single fragment
415 * count.
416 */
417 if (likely(!mm->context.pmd_frag)) {
418 atomic_set(&ptdesc->pt_frag_refcount, PMD_FRAG_NR);
419 mm->context.pmd_frag = ret + PMD_FRAG_SIZE;
420 }
421 spin_unlock(&mm->page_table_lock);
422
423 return (pmd_t *)ret;
424 }
425
426 pmd_t *pmd_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr)
427 {
428 pmd_t *pmd;
429
430 pmd = get_pmd_from_cache(mm);
431 if (pmd)
432 return pmd;
433
434 return __alloc_for_pmdcache(mm);
435 }
436
437 void pmd_fragment_free(unsigned long *pmd)
438 {
439 struct ptdesc *ptdesc = virt_to_ptdesc(pmd);
440
441 if (pagetable_is_reserved(ptdesc))
442 return free_reserved_ptdesc(ptdesc);
443
444 BUG_ON(atomic_read(&ptdesc->pt_frag_refcount) <= 0);
445 if (atomic_dec_and_test(&ptdesc->pt_frag_refcount)) {
446 pagetable_pmd_dtor(ptdesc);
447 pagetable_free(ptdesc);
448 }
449 }
450
451 static inline void pgtable_free(void *table, int index)
452 {
453 switch (index) {
454 case PTE_INDEX:
455 pte_fragment_free(table, 0);
456 break;
457 case PMD_INDEX:
458 pmd_fragment_free(table);
459 break;
460 case PUD_INDEX:
461 __pud_free(table);
462 break;
463 #if defined(CONFIG_PPC_4K_PAGES) && defined(CONFIG_HUGETLB_PAGE)
464 /* 16M hugepd directory at pud level */
465 case HTLB_16M_INDEX:
466 BUILD_BUG_ON(H_16M_CACHE_INDEX <= 0);
467 kmem_cache_free(PGT_CACHE(H_16M_CACHE_INDEX), table);
468 break;
469 /* 16G hugepd directory at the pgd level */
470 case HTLB_16G_INDEX:
471 BUILD_BUG_ON(H_16G_CACHE_INDEX <= 0);
472 kmem_cache_free(PGT_CACHE(H_16G_CACHE_INDEX), table);
473 break;
474 #endif
475 /* We don't free pgd table via RCU callback */
476 default:
477 BUG();
478 }
479 }
480
481 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int index)
482 {
483 unsigned long pgf = (unsigned long)table;
484
485 BUG_ON(index > MAX_PGTABLE_INDEX_SIZE);
486 pgf |= index;
487 tlb_remove_table(tlb, (void *)pgf);
488 }
489
490 void __tlb_remove_table(void *_table)
491 {
492 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
493 unsigned int index = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
494
495 return pgtable_free(table, index);
496 }
497
498 #ifdef CONFIG_PROC_FS
499 atomic_long_t direct_pages_count[MMU_PAGE_COUNT];
500
501 void arch_report_meminfo(struct seq_file *m)
502 {
503 /*
504 * Hash maps the memory with one size mmu_linear_psize.
505 * So don't bother to print these on hash
506 */
507 if (!radix_enabled())
508 return;
509 seq_printf(m, "DirectMap4k: %8lu kB\n",
510 atomic_long_read(&direct_pages_count[MMU_PAGE_4K]) << 2);
511 seq_printf(m, "DirectMap64k: %8lu kB\n",
512 atomic_long_read(&direct_pages_count[MMU_PAGE_64K]) << 6);
513 seq_printf(m, "DirectMap2M: %8lu kB\n",
514 atomic_long_read(&direct_pages_count[MMU_PAGE_2M]) << 11);
515 seq_printf(m, "DirectMap1G: %8lu kB\n",
516 atomic_long_read(&direct_pages_count[MMU_PAGE_1G]) << 20);
517 }
518 #endif /* CONFIG_PROC_FS */
519
520 pte_t ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr,
521 pte_t *ptep)
522 {
523 unsigned long pte_val;
524
525 /*
526 * Clear the _PAGE_PRESENT so that no hardware parallel update is
527 * possible. Also keep the pte_present true so that we don't take
528 * wrong fault.
529 */
530 pte_val = pte_update(vma->vm_mm, addr, ptep, _PAGE_PRESENT, _PAGE_INVALID, 0);
531
532 return __pte(pte_val);
533
534 }
535
536 void ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr,
537 pte_t *ptep, pte_t old_pte, pte_t pte)
538 {
539 if (radix_enabled())
540 return radix__ptep_modify_prot_commit(vma, addr,
541 ptep, old_pte, pte);
542 set_pte_at(vma->vm_mm, addr, ptep, pte);
543 }
544
545 /*
546 * For hash translation mode, we use the deposited table to store hash slot
547 * information and they are stored at PTRS_PER_PMD offset from related pmd
548 * location. Hence a pmd move requires deposit and withdraw.
549 *
550 * For radix translation with split pmd ptl, we store the deposited table in the
551 * pmd page. Hence if we have different pmd page we need to withdraw during pmd
552 * move.
553 *
554 * With hash we use deposited table always irrespective of anon or not.
555 * With radix we use deposited table only for anonymous mapping.
556 */
557 int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
558 struct spinlock *old_pmd_ptl,
559 struct vm_area_struct *vma)
560 {
561 if (radix_enabled())
562 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
563
564 return true;
565 }
566
567 /*
568 * Does the CPU support tlbie?
569 */
570 bool tlbie_capable __read_mostly = true;
571 EXPORT_SYMBOL(tlbie_capable);
572
573 /*
574 * Should tlbie be used for management of CPU TLBs, for kernel and process
575 * address spaces? tlbie may still be used for nMMU accelerators, and for KVM
576 * guest address spaces.
577 */
578 bool tlbie_enabled __read_mostly = true;
579
580 static int __init setup_disable_tlbie(char *str)
581 {
582 if (!radix_enabled()) {
583 pr_err("disable_tlbie: Unable to disable TLBIE with Hash MMU.\n");
584 return 1;
585 }
586
587 tlbie_capable = false;
588 tlbie_enabled = false;
589
590 return 1;
591 }
592 __setup("disable_tlbie", setup_disable_tlbie);
593
594 static int __init pgtable_debugfs_setup(void)
595 {
596 if (!tlbie_capable)
597 return 0;
598
599 /*
600 * There is no locking vs tlb flushing when changing this value.
601 * The tlb flushers will see one value or another, and use either
602 * tlbie or tlbiel with IPIs. In both cases the TLBs will be
603 * invalidated as expected.
604 */
605 debugfs_create_bool("tlbie_enabled", 0600,
606 arch_debugfs_dir,
607 &tlbie_enabled);
608
609 return 0;
610 }
611 arch_initcall(pgtable_debugfs_setup);
612
613 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_ARCH_HAS_MEMREMAP_COMPAT_ALIGN)
614 /*
615 * Override the generic version in mm/memremap.c.
616 *
617 * With hash translation, the direct-map range is mapped with just one
618 * page size selected by htab_init_page_sizes(). Consult
619 * mmu_psize_defs[] to determine the minimum page size alignment.
620 */
621 unsigned long memremap_compat_align(void)
622 {
623 if (!radix_enabled()) {
624 unsigned int shift = mmu_psize_defs[mmu_linear_psize].shift;
625 return max(SUBSECTION_SIZE, 1UL << shift);
626 }
627
628 return SUBSECTION_SIZE;
629 }
630 EXPORT_SYMBOL_GPL(memremap_compat_align);
631 #endif
632
633 pgprot_t vm_get_page_prot(unsigned long vm_flags)
634 {
635 unsigned long prot;
636
637 /* Radix supports execute-only, but protection_map maps X -> RX */
638 if (radix_enabled() && ((vm_flags & VM_ACCESS_FLAGS) == VM_EXEC)) {
639 prot = pgprot_val(PAGE_EXECONLY);
640 } else {
641 prot = pgprot_val(protection_map[vm_flags &
642 (VM_ACCESS_FLAGS | VM_SHARED)]);
643 }
644
645 if (vm_flags & VM_SAO)
646 prot |= _PAGE_SAO;
647
648 #ifdef CONFIG_PPC_MEM_KEYS
649 prot |= vmflag_to_pte_pkey_bits(vm_flags);
650 #endif
651
652 return __pgprot(prot);
653 }
654 EXPORT_SYMBOL(vm_get_page_prot);