]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/mm/fault.c
sched/fair: Fix warning on non-SMP build
[thirdparty/kernel/stable.git] / arch / powerpc / mm / fault.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * Modified by Cort Dougan and Paul Mackerras.
9 *
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/pagemap.h>
26 #include <linux/ptrace.h>
27 #include <linux/mman.h>
28 #include <linux/mm.h>
29 #include <linux/interrupt.h>
30 #include <linux/highmem.h>
31 #include <linux/extable.h>
32 #include <linux/kprobes.h>
33 #include <linux/kdebug.h>
34 #include <linux/perf_event.h>
35 #include <linux/ratelimit.h>
36 #include <linux/context_tracking.h>
37 #include <linux/hugetlb.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/firmware.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/mmu.h>
44 #include <asm/mmu_context.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
47
48 static inline bool notify_page_fault(struct pt_regs *regs)
49 {
50 bool ret = false;
51
52 #ifdef CONFIG_KPROBES
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 ret = true;
58 preempt_enable();
59 }
60 #endif /* CONFIG_KPROBES */
61
62 if (unlikely(debugger_fault_handler(regs)))
63 ret = true;
64
65 return ret;
66 }
67
68 /*
69 * Check whether the instruction inst is a store using
70 * an update addressing form which will update r1.
71 */
72 static bool store_updates_sp(unsigned int inst)
73 {
74 /* check for 1 in the rA field */
75 if (((inst >> 16) & 0x1f) != 1)
76 return false;
77 /* check major opcode */
78 switch (inst >> 26) {
79 case OP_STWU:
80 case OP_STBU:
81 case OP_STHU:
82 case OP_STFSU:
83 case OP_STFDU:
84 return true;
85 case OP_STD: /* std or stdu */
86 return (inst & 3) == 1;
87 case OP_31:
88 /* check minor opcode */
89 switch ((inst >> 1) & 0x3ff) {
90 case OP_31_XOP_STDUX:
91 case OP_31_XOP_STWUX:
92 case OP_31_XOP_STBUX:
93 case OP_31_XOP_STHUX:
94 case OP_31_XOP_STFSUX:
95 case OP_31_XOP_STFDUX:
96 return true;
97 }
98 }
99 return false;
100 }
101 /*
102 * do_page_fault error handling helpers
103 */
104
105 static int
106 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
107 {
108 /*
109 * If we are in kernel mode, bail out with a SEGV, this will
110 * be caught by the assembly which will restore the non-volatile
111 * registers before calling bad_page_fault()
112 */
113 if (!user_mode(regs))
114 return SIGSEGV;
115
116 _exception(SIGSEGV, regs, si_code, address);
117
118 return 0;
119 }
120
121 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
122 {
123 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
124 }
125
126 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
127 {
128 struct mm_struct *mm = current->mm;
129
130 /*
131 * Something tried to access memory that isn't in our memory map..
132 * Fix it, but check if it's kernel or user first..
133 */
134 up_read(&mm->mmap_sem);
135
136 return __bad_area_nosemaphore(regs, address, si_code);
137 }
138
139 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
140 {
141 return __bad_area(regs, address, SEGV_MAPERR);
142 }
143
144 static int bad_key_fault_exception(struct pt_regs *regs, unsigned long address,
145 int pkey)
146 {
147 /*
148 * If we are in kernel mode, bail out with a SEGV, this will
149 * be caught by the assembly which will restore the non-volatile
150 * registers before calling bad_page_fault()
151 */
152 if (!user_mode(regs))
153 return SIGSEGV;
154
155 _exception_pkey(regs, address, pkey);
156
157 return 0;
158 }
159
160 static noinline int bad_access(struct pt_regs *regs, unsigned long address)
161 {
162 return __bad_area(regs, address, SEGV_ACCERR);
163 }
164
165 static int do_sigbus(struct pt_regs *regs, unsigned long address,
166 vm_fault_t fault)
167 {
168 if (!user_mode(regs))
169 return SIGBUS;
170
171 current->thread.trap_nr = BUS_ADRERR;
172 #ifdef CONFIG_MEMORY_FAILURE
173 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
174 unsigned int lsb = 0; /* shutup gcc */
175
176 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
177 current->comm, current->pid, address);
178
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183
184 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb,
185 current);
186 return 0;
187 }
188
189 #endif
190 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address, current);
191 return 0;
192 }
193
194 static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
195 vm_fault_t fault)
196 {
197 /*
198 * Kernel page fault interrupted by SIGKILL. We have no reason to
199 * continue processing.
200 */
201 if (fatal_signal_pending(current) && !user_mode(regs))
202 return SIGKILL;
203
204 /* Out of memory */
205 if (fault & VM_FAULT_OOM) {
206 /*
207 * We ran out of memory, or some other thing happened to us that
208 * made us unable to handle the page fault gracefully.
209 */
210 if (!user_mode(regs))
211 return SIGSEGV;
212 pagefault_out_of_memory();
213 } else {
214 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
215 VM_FAULT_HWPOISON_LARGE))
216 return do_sigbus(regs, addr, fault);
217 else if (fault & VM_FAULT_SIGSEGV)
218 return bad_area_nosemaphore(regs, addr);
219 else
220 BUG();
221 }
222 return 0;
223 }
224
225 /* Is this a bad kernel fault ? */
226 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
227 unsigned long address)
228 {
229 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
230 printk_ratelimited(KERN_CRIT "kernel tried to execute"
231 " exec-protected page (%lx) -"
232 "exploit attempt? (uid: %d)\n",
233 address, from_kuid(&init_user_ns,
234 current_uid()));
235 }
236 return is_exec || (address >= TASK_SIZE);
237 }
238
239 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
240 struct vm_area_struct *vma, unsigned int flags,
241 bool *must_retry)
242 {
243 /*
244 * N.B. The POWER/Open ABI allows programs to access up to
245 * 288 bytes below the stack pointer.
246 * The kernel signal delivery code writes up to about 1.5kB
247 * below the stack pointer (r1) before decrementing it.
248 * The exec code can write slightly over 640kB to the stack
249 * before setting the user r1. Thus we allow the stack to
250 * expand to 1MB without further checks.
251 */
252 if (address + 0x100000 < vma->vm_end) {
253 unsigned int __user *nip = (unsigned int __user *)regs->nip;
254 /* get user regs even if this fault is in kernel mode */
255 struct pt_regs *uregs = current->thread.regs;
256 if (uregs == NULL)
257 return true;
258
259 /*
260 * A user-mode access to an address a long way below
261 * the stack pointer is only valid if the instruction
262 * is one which would update the stack pointer to the
263 * address accessed if the instruction completed,
264 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
265 * (or the byte, halfword, float or double forms).
266 *
267 * If we don't check this then any write to the area
268 * between the last mapped region and the stack will
269 * expand the stack rather than segfaulting.
270 */
271 if (address + 2048 >= uregs->gpr[1])
272 return false;
273
274 if ((flags & FAULT_FLAG_WRITE) && (flags & FAULT_FLAG_USER) &&
275 access_ok(VERIFY_READ, nip, sizeof(*nip))) {
276 unsigned int inst;
277 int res;
278
279 pagefault_disable();
280 res = __get_user_inatomic(inst, nip);
281 pagefault_enable();
282 if (!res)
283 return !store_updates_sp(inst);
284 *must_retry = true;
285 }
286 return true;
287 }
288 return false;
289 }
290
291 static bool access_error(bool is_write, bool is_exec,
292 struct vm_area_struct *vma)
293 {
294 /*
295 * Allow execution from readable areas if the MMU does not
296 * provide separate controls over reading and executing.
297 *
298 * Note: That code used to not be enabled for 4xx/BookE.
299 * It is now as I/D cache coherency for these is done at
300 * set_pte_at() time and I see no reason why the test
301 * below wouldn't be valid on those processors. This -may-
302 * break programs compiled with a really old ABI though.
303 */
304 if (is_exec) {
305 return !(vma->vm_flags & VM_EXEC) &&
306 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
307 !(vma->vm_flags & (VM_READ | VM_WRITE)));
308 }
309
310 if (is_write) {
311 if (unlikely(!(vma->vm_flags & VM_WRITE)))
312 return true;
313 return false;
314 }
315
316 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
317 return true;
318 /*
319 * We should ideally do the vma pkey access check here. But in the
320 * fault path, handle_mm_fault() also does the same check. To avoid
321 * these multiple checks, we skip it here and handle access error due
322 * to pkeys later.
323 */
324 return false;
325 }
326
327 #ifdef CONFIG_PPC_SMLPAR
328 static inline void cmo_account_page_fault(void)
329 {
330 if (firmware_has_feature(FW_FEATURE_CMO)) {
331 u32 page_ins;
332
333 preempt_disable();
334 page_ins = be32_to_cpu(get_lppaca()->page_ins);
335 page_ins += 1 << PAGE_FACTOR;
336 get_lppaca()->page_ins = cpu_to_be32(page_ins);
337 preempt_enable();
338 }
339 }
340 #else
341 static inline void cmo_account_page_fault(void) { }
342 #endif /* CONFIG_PPC_SMLPAR */
343
344 #ifdef CONFIG_PPC_STD_MMU
345 static void sanity_check_fault(bool is_write, unsigned long error_code)
346 {
347 /*
348 * For hash translation mode, we should never get a
349 * PROTFAULT. Any update to pte to reduce access will result in us
350 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
351 * fault instead of DSISR_PROTFAULT.
352 *
353 * A pte update to relax the access will not result in a hash page table
354 * entry invalidate and hence can result in DSISR_PROTFAULT.
355 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
356 * the special !is_write in the below conditional.
357 *
358 * For platforms that doesn't supports coherent icache and do support
359 * per page noexec bit, we do setup things such that we do the
360 * sync between D/I cache via fault. But that is handled via low level
361 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
362 * here in such case.
363 *
364 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
365 * check should handle those and hence we should fall to the bad_area
366 * handling correctly.
367 *
368 * For embedded with per page exec support that doesn't support coherent
369 * icache we do get PROTFAULT and we handle that D/I cache sync in
370 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
371 * is conditional for server MMU.
372 *
373 * For radix, we can get prot fault for autonuma case, because radix
374 * page table will have them marked noaccess for user.
375 */
376 if (!radix_enabled() && !is_write)
377 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
378 }
379 #else
380 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
381 #endif /* CONFIG_PPC_STD_MMU */
382
383 /*
384 * Define the correct "is_write" bit in error_code based
385 * on the processor family
386 */
387 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
388 #define page_fault_is_write(__err) ((__err) & ESR_DST)
389 #define page_fault_is_bad(__err) (0)
390 #else
391 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
392 #if defined(CONFIG_PPC_8xx)
393 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
394 #elif defined(CONFIG_PPC64)
395 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
396 #else
397 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
398 #endif
399 #endif
400
401 /*
402 * For 600- and 800-family processors, the error_code parameter is DSISR
403 * for a data fault, SRR1 for an instruction fault. For 400-family processors
404 * the error_code parameter is ESR for a data fault, 0 for an instruction
405 * fault.
406 * For 64-bit processors, the error_code parameter is
407 * - DSISR for a non-SLB data access fault,
408 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
409 * - 0 any SLB fault.
410 *
411 * The return value is 0 if the fault was handled, or the signal
412 * number if this is a kernel fault that can't be handled here.
413 */
414 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
415 unsigned long error_code)
416 {
417 struct vm_area_struct * vma;
418 struct mm_struct *mm = current->mm;
419 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
420 int is_exec = TRAP(regs) == 0x400;
421 int is_user = user_mode(regs);
422 int is_write = page_fault_is_write(error_code);
423 vm_fault_t fault, major = 0;
424 bool must_retry = false;
425
426 if (notify_page_fault(regs))
427 return 0;
428
429 if (unlikely(page_fault_is_bad(error_code))) {
430 if (is_user) {
431 _exception(SIGBUS, regs, BUS_OBJERR, address);
432 return 0;
433 }
434 return SIGBUS;
435 }
436
437 /* Additional sanity check(s) */
438 sanity_check_fault(is_write, error_code);
439
440 /*
441 * The kernel should never take an execute fault nor should it
442 * take a page fault to a kernel address.
443 */
444 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
445 return SIGSEGV;
446
447 /*
448 * If we're in an interrupt, have no user context or are running
449 * in a region with pagefaults disabled then we must not take the fault
450 */
451 if (unlikely(faulthandler_disabled() || !mm)) {
452 if (is_user)
453 printk_ratelimited(KERN_ERR "Page fault in user mode"
454 " with faulthandler_disabled()=%d"
455 " mm=%p\n",
456 faulthandler_disabled(), mm);
457 return bad_area_nosemaphore(regs, address);
458 }
459
460 /* We restore the interrupt state now */
461 if (!arch_irq_disabled_regs(regs))
462 local_irq_enable();
463
464 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
465
466 if (error_code & DSISR_KEYFAULT)
467 return bad_key_fault_exception(regs, address,
468 get_mm_addr_key(mm, address));
469
470 /*
471 * We want to do this outside mmap_sem, because reading code around nip
472 * can result in fault, which will cause a deadlock when called with
473 * mmap_sem held
474 */
475 if (is_user)
476 flags |= FAULT_FLAG_USER;
477 if (is_write)
478 flags |= FAULT_FLAG_WRITE;
479 if (is_exec)
480 flags |= FAULT_FLAG_INSTRUCTION;
481
482 /* When running in the kernel we expect faults to occur only to
483 * addresses in user space. All other faults represent errors in the
484 * kernel and should generate an OOPS. Unfortunately, in the case of an
485 * erroneous fault occurring in a code path which already holds mmap_sem
486 * we will deadlock attempting to validate the fault against the
487 * address space. Luckily the kernel only validly references user
488 * space from well defined areas of code, which are listed in the
489 * exceptions table.
490 *
491 * As the vast majority of faults will be valid we will only perform
492 * the source reference check when there is a possibility of a deadlock.
493 * Attempt to lock the address space, if we cannot we then validate the
494 * source. If this is invalid we can skip the address space check,
495 * thus avoiding the deadlock.
496 */
497 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
498 if (!is_user && !search_exception_tables(regs->nip))
499 return bad_area_nosemaphore(regs, address);
500
501 retry:
502 down_read(&mm->mmap_sem);
503 } else {
504 /*
505 * The above down_read_trylock() might have succeeded in
506 * which case we'll have missed the might_sleep() from
507 * down_read():
508 */
509 might_sleep();
510 }
511
512 vma = find_vma(mm, address);
513 if (unlikely(!vma))
514 return bad_area(regs, address);
515 if (likely(vma->vm_start <= address))
516 goto good_area;
517 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
518 return bad_area(regs, address);
519
520 /* The stack is being expanded, check if it's valid */
521 if (unlikely(bad_stack_expansion(regs, address, vma, flags,
522 &must_retry))) {
523 if (!must_retry)
524 return bad_area(regs, address);
525
526 up_read(&mm->mmap_sem);
527 if (fault_in_pages_readable((const char __user *)regs->nip,
528 sizeof(unsigned int)))
529 return bad_area_nosemaphore(regs, address);
530 goto retry;
531 }
532
533 /* Try to expand it */
534 if (unlikely(expand_stack(vma, address)))
535 return bad_area(regs, address);
536
537 good_area:
538 if (unlikely(access_error(is_write, is_exec, vma)))
539 return bad_access(regs, address);
540
541 /*
542 * If for any reason at all we couldn't handle the fault,
543 * make sure we exit gracefully rather than endlessly redo
544 * the fault.
545 */
546 fault = handle_mm_fault(vma, address, flags);
547
548 #ifdef CONFIG_PPC_MEM_KEYS
549 /*
550 * we skipped checking for access error due to key earlier.
551 * Check that using handle_mm_fault error return.
552 */
553 if (unlikely(fault & VM_FAULT_SIGSEGV) &&
554 !arch_vma_access_permitted(vma, is_write, is_exec, 0)) {
555
556 int pkey = vma_pkey(vma);
557
558 up_read(&mm->mmap_sem);
559 return bad_key_fault_exception(regs, address, pkey);
560 }
561 #endif /* CONFIG_PPC_MEM_KEYS */
562
563 major |= fault & VM_FAULT_MAJOR;
564
565 /*
566 * Handle the retry right now, the mmap_sem has been released in that
567 * case.
568 */
569 if (unlikely(fault & VM_FAULT_RETRY)) {
570 /* We retry only once */
571 if (flags & FAULT_FLAG_ALLOW_RETRY) {
572 /*
573 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
574 * of starvation.
575 */
576 flags &= ~FAULT_FLAG_ALLOW_RETRY;
577 flags |= FAULT_FLAG_TRIED;
578 if (!fatal_signal_pending(current))
579 goto retry;
580 }
581
582 /*
583 * User mode? Just return to handle the fatal exception otherwise
584 * return to bad_page_fault
585 */
586 return is_user ? 0 : SIGBUS;
587 }
588
589 up_read(&current->mm->mmap_sem);
590
591 if (unlikely(fault & VM_FAULT_ERROR))
592 return mm_fault_error(regs, address, fault);
593
594 /*
595 * Major/minor page fault accounting.
596 */
597 if (major) {
598 current->maj_flt++;
599 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
600 cmo_account_page_fault();
601 } else {
602 current->min_flt++;
603 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
604 }
605 return 0;
606 }
607 NOKPROBE_SYMBOL(__do_page_fault);
608
609 int do_page_fault(struct pt_regs *regs, unsigned long address,
610 unsigned long error_code)
611 {
612 enum ctx_state prev_state = exception_enter();
613 int rc = __do_page_fault(regs, address, error_code);
614 exception_exit(prev_state);
615 return rc;
616 }
617 NOKPROBE_SYMBOL(do_page_fault);
618
619 /*
620 * bad_page_fault is called when we have a bad access from the kernel.
621 * It is called from the DSI and ISI handlers in head.S and from some
622 * of the procedures in traps.c.
623 */
624 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
625 {
626 const struct exception_table_entry *entry;
627
628 /* Are we prepared to handle this fault? */
629 if ((entry = search_exception_tables(regs->nip)) != NULL) {
630 regs->nip = extable_fixup(entry);
631 return;
632 }
633
634 /* kernel has accessed a bad area */
635
636 switch (TRAP(regs)) {
637 case 0x300:
638 case 0x380:
639 case 0xe00:
640 printk(KERN_ALERT "Unable to handle kernel paging request for "
641 "data at address 0x%08lx\n", regs->dar);
642 break;
643 case 0x400:
644 case 0x480:
645 printk(KERN_ALERT "Unable to handle kernel paging request for "
646 "instruction fetch\n");
647 break;
648 case 0x600:
649 printk(KERN_ALERT "Unable to handle kernel paging request for "
650 "unaligned access at address 0x%08lx\n", regs->dar);
651 break;
652 default:
653 printk(KERN_ALERT "Unable to handle kernel paging request for "
654 "unknown fault\n");
655 break;
656 }
657 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
658 regs->nip);
659
660 if (task_stack_end_corrupted(current))
661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
662
663 die("Kernel access of bad area", regs, sig);
664 }