]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/mm/hugetlbpage.c
mm: migrate: check movability of hugepage in unmap_and_move_huge_page()
[thirdparty/kernel/stable.git] / arch / powerpc / mm / hugetlbpage.c
1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 #include <asm/hugetlb.h>
25
26 #ifdef CONFIG_HUGETLB_PAGE
27
28 #define PAGE_SHIFT_64K 16
29 #define PAGE_SHIFT_16M 24
30 #define PAGE_SHIFT_16G 34
31
32 unsigned int HPAGE_SHIFT;
33
34 /*
35 * Tracks gpages after the device tree is scanned and before the
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
40 */
41 #ifdef CONFIG_PPC_FSL_BOOK3E
42 #define MAX_NUMBER_GPAGES 128
43 struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46 };
47 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
48 #else
49 #define MAX_NUMBER_GPAGES 1024
50 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51 static unsigned nr_gpages;
52 #endif
53
54 #define hugepd_none(hpd) ((hpd).pd == 0)
55
56 #ifdef CONFIG_PPC_BOOK3S_64
57 /*
58 * At this point we do the placement change only for BOOK3S 64. This would
59 * possibly work on other subarchs.
60 */
61
62 /*
63 * We have PGD_INDEX_SIZ = 12 and PTE_INDEX_SIZE = 8, so that we can have
64 * 16GB hugepage pte in PGD and 16MB hugepage pte at PMD;
65 */
66 int pmd_huge(pmd_t pmd)
67 {
68 /*
69 * leaf pte for huge page, bottom two bits != 00
70 */
71 return ((pmd_val(pmd) & 0x3) != 0x0);
72 }
73
74 int pud_huge(pud_t pud)
75 {
76 /*
77 * leaf pte for huge page, bottom two bits != 00
78 */
79 return ((pud_val(pud) & 0x3) != 0x0);
80 }
81
82 int pgd_huge(pgd_t pgd)
83 {
84 /*
85 * leaf pte for huge page, bottom two bits != 00
86 */
87 return ((pgd_val(pgd) & 0x3) != 0x0);
88 }
89
90 int pmd_huge_support(void)
91 {
92 return 1;
93 }
94 #else
95 int pmd_huge(pmd_t pmd)
96 {
97 return 0;
98 }
99
100 int pud_huge(pud_t pud)
101 {
102 return 0;
103 }
104
105 int pgd_huge(pgd_t pgd)
106 {
107 return 0;
108 }
109
110 int pmd_huge_support(void)
111 {
112 return 0;
113 }
114 #endif
115
116 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
117 {
118 /* Only called for hugetlbfs pages, hence can ignore THP */
119 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
120 }
121
122 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
123 unsigned long address, unsigned pdshift, unsigned pshift)
124 {
125 struct kmem_cache *cachep;
126 pte_t *new;
127
128 #ifdef CONFIG_PPC_FSL_BOOK3E
129 int i;
130 int num_hugepd = 1 << (pshift - pdshift);
131 cachep = hugepte_cache;
132 #else
133 cachep = PGT_CACHE(pdshift - pshift);
134 #endif
135
136 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
137
138 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
139 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
140
141 if (! new)
142 return -ENOMEM;
143
144 spin_lock(&mm->page_table_lock);
145 #ifdef CONFIG_PPC_FSL_BOOK3E
146 /*
147 * We have multiple higher-level entries that point to the same
148 * actual pte location. Fill in each as we go and backtrack on error.
149 * We need all of these so the DTLB pgtable walk code can find the
150 * right higher-level entry without knowing if it's a hugepage or not.
151 */
152 for (i = 0; i < num_hugepd; i++, hpdp++) {
153 if (unlikely(!hugepd_none(*hpdp)))
154 break;
155 else
156 /* We use the old format for PPC_FSL_BOOK3E */
157 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
158 }
159 /* If we bailed from the for loop early, an error occurred, clean up */
160 if (i < num_hugepd) {
161 for (i = i - 1 ; i >= 0; i--, hpdp--)
162 hpdp->pd = 0;
163 kmem_cache_free(cachep, new);
164 }
165 #else
166 if (!hugepd_none(*hpdp))
167 kmem_cache_free(cachep, new);
168 else {
169 #ifdef CONFIG_PPC_BOOK3S_64
170 hpdp->pd = (unsigned long)new |
171 (shift_to_mmu_psize(pshift) << 2);
172 #else
173 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
174 #endif
175 }
176 #endif
177 spin_unlock(&mm->page_table_lock);
178 return 0;
179 }
180
181 /*
182 * These macros define how to determine which level of the page table holds
183 * the hpdp.
184 */
185 #ifdef CONFIG_PPC_FSL_BOOK3E
186 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
187 #define HUGEPD_PUD_SHIFT PUD_SHIFT
188 #else
189 #define HUGEPD_PGD_SHIFT PUD_SHIFT
190 #define HUGEPD_PUD_SHIFT PMD_SHIFT
191 #endif
192
193 #ifdef CONFIG_PPC_BOOK3S_64
194 /*
195 * At this point we do the placement change only for BOOK3S 64. This would
196 * possibly work on other subarchs.
197 */
198 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
199 {
200 pgd_t *pg;
201 pud_t *pu;
202 pmd_t *pm;
203 hugepd_t *hpdp = NULL;
204 unsigned pshift = __ffs(sz);
205 unsigned pdshift = PGDIR_SHIFT;
206
207 addr &= ~(sz-1);
208 pg = pgd_offset(mm, addr);
209
210 if (pshift == PGDIR_SHIFT)
211 /* 16GB huge page */
212 return (pte_t *) pg;
213 else if (pshift > PUD_SHIFT)
214 /*
215 * We need to use hugepd table
216 */
217 hpdp = (hugepd_t *)pg;
218 else {
219 pdshift = PUD_SHIFT;
220 pu = pud_alloc(mm, pg, addr);
221 if (pshift == PUD_SHIFT)
222 return (pte_t *)pu;
223 else if (pshift > PMD_SHIFT)
224 hpdp = (hugepd_t *)pu;
225 else {
226 pdshift = PMD_SHIFT;
227 pm = pmd_alloc(mm, pu, addr);
228 if (pshift == PMD_SHIFT)
229 /* 16MB hugepage */
230 return (pte_t *)pm;
231 else
232 hpdp = (hugepd_t *)pm;
233 }
234 }
235 if (!hpdp)
236 return NULL;
237
238 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
239
240 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
241 return NULL;
242
243 return hugepte_offset(hpdp, addr, pdshift);
244 }
245
246 #else
247
248 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
249 {
250 pgd_t *pg;
251 pud_t *pu;
252 pmd_t *pm;
253 hugepd_t *hpdp = NULL;
254 unsigned pshift = __ffs(sz);
255 unsigned pdshift = PGDIR_SHIFT;
256
257 addr &= ~(sz-1);
258
259 pg = pgd_offset(mm, addr);
260
261 if (pshift >= HUGEPD_PGD_SHIFT) {
262 hpdp = (hugepd_t *)pg;
263 } else {
264 pdshift = PUD_SHIFT;
265 pu = pud_alloc(mm, pg, addr);
266 if (pshift >= HUGEPD_PUD_SHIFT) {
267 hpdp = (hugepd_t *)pu;
268 } else {
269 pdshift = PMD_SHIFT;
270 pm = pmd_alloc(mm, pu, addr);
271 hpdp = (hugepd_t *)pm;
272 }
273 }
274
275 if (!hpdp)
276 return NULL;
277
278 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
279
280 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
281 return NULL;
282
283 return hugepte_offset(hpdp, addr, pdshift);
284 }
285 #endif
286
287 #ifdef CONFIG_PPC_FSL_BOOK3E
288 /* Build list of addresses of gigantic pages. This function is used in early
289 * boot before the buddy or bootmem allocator is setup.
290 */
291 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
292 {
293 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
294 int i;
295
296 if (addr == 0)
297 return;
298
299 gpage_freearray[idx].nr_gpages = number_of_pages;
300
301 for (i = 0; i < number_of_pages; i++) {
302 gpage_freearray[idx].gpage_list[i] = addr;
303 addr += page_size;
304 }
305 }
306
307 /*
308 * Moves the gigantic page addresses from the temporary list to the
309 * huge_boot_pages list.
310 */
311 int alloc_bootmem_huge_page(struct hstate *hstate)
312 {
313 struct huge_bootmem_page *m;
314 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
315 int nr_gpages = gpage_freearray[idx].nr_gpages;
316
317 if (nr_gpages == 0)
318 return 0;
319
320 #ifdef CONFIG_HIGHMEM
321 /*
322 * If gpages can be in highmem we can't use the trick of storing the
323 * data structure in the page; allocate space for this
324 */
325 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
326 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
327 #else
328 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
329 #endif
330
331 list_add(&m->list, &huge_boot_pages);
332 gpage_freearray[idx].nr_gpages = nr_gpages;
333 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
334 m->hstate = hstate;
335
336 return 1;
337 }
338 /*
339 * Scan the command line hugepagesz= options for gigantic pages; store those in
340 * a list that we use to allocate the memory once all options are parsed.
341 */
342
343 unsigned long gpage_npages[MMU_PAGE_COUNT];
344
345 static int __init do_gpage_early_setup(char *param, char *val,
346 const char *unused)
347 {
348 static phys_addr_t size;
349 unsigned long npages;
350
351 /*
352 * The hugepagesz and hugepages cmdline options are interleaved. We
353 * use the size variable to keep track of whether or not this was done
354 * properly and skip over instances where it is incorrect. Other
355 * command-line parsing code will issue warnings, so we don't need to.
356 *
357 */
358 if ((strcmp(param, "default_hugepagesz") == 0) ||
359 (strcmp(param, "hugepagesz") == 0)) {
360 size = memparse(val, NULL);
361 } else if (strcmp(param, "hugepages") == 0) {
362 if (size != 0) {
363 if (sscanf(val, "%lu", &npages) <= 0)
364 npages = 0;
365 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
366 size = 0;
367 }
368 }
369 return 0;
370 }
371
372
373 /*
374 * This function allocates physical space for pages that are larger than the
375 * buddy allocator can handle. We want to allocate these in highmem because
376 * the amount of lowmem is limited. This means that this function MUST be
377 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
378 * allocate to grab highmem.
379 */
380 void __init reserve_hugetlb_gpages(void)
381 {
382 static __initdata char cmdline[COMMAND_LINE_SIZE];
383 phys_addr_t size, base;
384 int i;
385
386 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
387 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
388 &do_gpage_early_setup);
389
390 /*
391 * Walk gpage list in reverse, allocating larger page sizes first.
392 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
393 * When we reach the point in the list where pages are no longer
394 * considered gpages, we're done.
395 */
396 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
397 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
398 continue;
399 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
400 break;
401
402 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
403 base = memblock_alloc_base(size * gpage_npages[i], size,
404 MEMBLOCK_ALLOC_ANYWHERE);
405 add_gpage(base, size, gpage_npages[i]);
406 }
407 }
408
409 #else /* !PPC_FSL_BOOK3E */
410
411 /* Build list of addresses of gigantic pages. This function is used in early
412 * boot before the buddy or bootmem allocator is setup.
413 */
414 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
415 {
416 if (!addr)
417 return;
418 while (number_of_pages > 0) {
419 gpage_freearray[nr_gpages] = addr;
420 nr_gpages++;
421 number_of_pages--;
422 addr += page_size;
423 }
424 }
425
426 /* Moves the gigantic page addresses from the temporary list to the
427 * huge_boot_pages list.
428 */
429 int alloc_bootmem_huge_page(struct hstate *hstate)
430 {
431 struct huge_bootmem_page *m;
432 if (nr_gpages == 0)
433 return 0;
434 m = phys_to_virt(gpage_freearray[--nr_gpages]);
435 gpage_freearray[nr_gpages] = 0;
436 list_add(&m->list, &huge_boot_pages);
437 m->hstate = hstate;
438 return 1;
439 }
440 #endif
441
442 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
443 {
444 return 0;
445 }
446
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 #define HUGEPD_FREELIST_SIZE \
449 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
450
451 struct hugepd_freelist {
452 struct rcu_head rcu;
453 unsigned int index;
454 void *ptes[0];
455 };
456
457 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
458
459 static void hugepd_free_rcu_callback(struct rcu_head *head)
460 {
461 struct hugepd_freelist *batch =
462 container_of(head, struct hugepd_freelist, rcu);
463 unsigned int i;
464
465 for (i = 0; i < batch->index; i++)
466 kmem_cache_free(hugepte_cache, batch->ptes[i]);
467
468 free_page((unsigned long)batch);
469 }
470
471 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
472 {
473 struct hugepd_freelist **batchp;
474
475 batchp = &__get_cpu_var(hugepd_freelist_cur);
476
477 if (atomic_read(&tlb->mm->mm_users) < 2 ||
478 cpumask_equal(mm_cpumask(tlb->mm),
479 cpumask_of(smp_processor_id()))) {
480 kmem_cache_free(hugepte_cache, hugepte);
481 return;
482 }
483
484 if (*batchp == NULL) {
485 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
486 (*batchp)->index = 0;
487 }
488
489 (*batchp)->ptes[(*batchp)->index++] = hugepte;
490 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
491 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
492 *batchp = NULL;
493 }
494 }
495 #endif
496
497 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
498 unsigned long start, unsigned long end,
499 unsigned long floor, unsigned long ceiling)
500 {
501 pte_t *hugepte = hugepd_page(*hpdp);
502 int i;
503
504 unsigned long pdmask = ~((1UL << pdshift) - 1);
505 unsigned int num_hugepd = 1;
506
507 #ifdef CONFIG_PPC_FSL_BOOK3E
508 /* Note: On fsl the hpdp may be the first of several */
509 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
510 #else
511 unsigned int shift = hugepd_shift(*hpdp);
512 #endif
513
514 start &= pdmask;
515 if (start < floor)
516 return;
517 if (ceiling) {
518 ceiling &= pdmask;
519 if (! ceiling)
520 return;
521 }
522 if (end - 1 > ceiling - 1)
523 return;
524
525 for (i = 0; i < num_hugepd; i++, hpdp++)
526 hpdp->pd = 0;
527
528 tlb->need_flush = 1;
529
530 #ifdef CONFIG_PPC_FSL_BOOK3E
531 hugepd_free(tlb, hugepte);
532 #else
533 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
534 #endif
535 }
536
537 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
538 unsigned long addr, unsigned long end,
539 unsigned long floor, unsigned long ceiling)
540 {
541 pmd_t *pmd;
542 unsigned long next;
543 unsigned long start;
544
545 start = addr;
546 do {
547 pmd = pmd_offset(pud, addr);
548 next = pmd_addr_end(addr, end);
549 if (!is_hugepd(pmd)) {
550 /*
551 * if it is not hugepd pointer, we should already find
552 * it cleared.
553 */
554 WARN_ON(!pmd_none_or_clear_bad(pmd));
555 continue;
556 }
557 #ifdef CONFIG_PPC_FSL_BOOK3E
558 /*
559 * Increment next by the size of the huge mapping since
560 * there may be more than one entry at this level for a
561 * single hugepage, but all of them point to
562 * the same kmem cache that holds the hugepte.
563 */
564 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
565 #endif
566 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
567 addr, next, floor, ceiling);
568 } while (addr = next, addr != end);
569
570 start &= PUD_MASK;
571 if (start < floor)
572 return;
573 if (ceiling) {
574 ceiling &= PUD_MASK;
575 if (!ceiling)
576 return;
577 }
578 if (end - 1 > ceiling - 1)
579 return;
580
581 pmd = pmd_offset(pud, start);
582 pud_clear(pud);
583 pmd_free_tlb(tlb, pmd, start);
584 }
585
586 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
587 unsigned long addr, unsigned long end,
588 unsigned long floor, unsigned long ceiling)
589 {
590 pud_t *pud;
591 unsigned long next;
592 unsigned long start;
593
594 start = addr;
595 do {
596 pud = pud_offset(pgd, addr);
597 next = pud_addr_end(addr, end);
598 if (!is_hugepd(pud)) {
599 if (pud_none_or_clear_bad(pud))
600 continue;
601 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
602 ceiling);
603 } else {
604 #ifdef CONFIG_PPC_FSL_BOOK3E
605 /*
606 * Increment next by the size of the huge mapping since
607 * there may be more than one entry at this level for a
608 * single hugepage, but all of them point to
609 * the same kmem cache that holds the hugepte.
610 */
611 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
612 #endif
613 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
614 addr, next, floor, ceiling);
615 }
616 } while (addr = next, addr != end);
617
618 start &= PGDIR_MASK;
619 if (start < floor)
620 return;
621 if (ceiling) {
622 ceiling &= PGDIR_MASK;
623 if (!ceiling)
624 return;
625 }
626 if (end - 1 > ceiling - 1)
627 return;
628
629 pud = pud_offset(pgd, start);
630 pgd_clear(pgd);
631 pud_free_tlb(tlb, pud, start);
632 }
633
634 /*
635 * This function frees user-level page tables of a process.
636 *
637 * Must be called with pagetable lock held.
638 */
639 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
640 unsigned long addr, unsigned long end,
641 unsigned long floor, unsigned long ceiling)
642 {
643 pgd_t *pgd;
644 unsigned long next;
645
646 /*
647 * Because there are a number of different possible pagetable
648 * layouts for hugepage ranges, we limit knowledge of how
649 * things should be laid out to the allocation path
650 * (huge_pte_alloc(), above). Everything else works out the
651 * structure as it goes from information in the hugepd
652 * pointers. That means that we can't here use the
653 * optimization used in the normal page free_pgd_range(), of
654 * checking whether we're actually covering a large enough
655 * range to have to do anything at the top level of the walk
656 * instead of at the bottom.
657 *
658 * To make sense of this, you should probably go read the big
659 * block comment at the top of the normal free_pgd_range(),
660 * too.
661 */
662
663 do {
664 next = pgd_addr_end(addr, end);
665 pgd = pgd_offset(tlb->mm, addr);
666 if (!is_hugepd(pgd)) {
667 if (pgd_none_or_clear_bad(pgd))
668 continue;
669 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
670 } else {
671 #ifdef CONFIG_PPC_FSL_BOOK3E
672 /*
673 * Increment next by the size of the huge mapping since
674 * there may be more than one entry at the pgd level
675 * for a single hugepage, but all of them point to the
676 * same kmem cache that holds the hugepte.
677 */
678 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
679 #endif
680 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
681 addr, next, floor, ceiling);
682 }
683 } while (addr = next, addr != end);
684 }
685
686 struct page *
687 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
688 {
689 pte_t *ptep;
690 struct page *page;
691 unsigned shift;
692 unsigned long mask;
693 /*
694 * Transparent hugepages are handled by generic code. We can skip them
695 * here.
696 */
697 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
698
699 /* Verify it is a huge page else bail. */
700 if (!ptep || !shift || pmd_trans_huge(*(pmd_t *)ptep))
701 return ERR_PTR(-EINVAL);
702
703 mask = (1UL << shift) - 1;
704 page = pte_page(*ptep);
705 if (page)
706 page += (address & mask) / PAGE_SIZE;
707
708 return page;
709 }
710
711 struct page *
712 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
713 pmd_t *pmd, int write)
714 {
715 BUG();
716 return NULL;
717 }
718
719 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
720 unsigned long sz)
721 {
722 unsigned long __boundary = (addr + sz) & ~(sz-1);
723 return (__boundary - 1 < end - 1) ? __boundary : end;
724 }
725
726 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
727 unsigned long addr, unsigned long end,
728 int write, struct page **pages, int *nr)
729 {
730 pte_t *ptep;
731 unsigned long sz = 1UL << hugepd_shift(*hugepd);
732 unsigned long next;
733
734 ptep = hugepte_offset(hugepd, addr, pdshift);
735 do {
736 next = hugepte_addr_end(addr, end, sz);
737 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
738 return 0;
739 } while (ptep++, addr = next, addr != end);
740
741 return 1;
742 }
743
744 #ifdef CONFIG_PPC_MM_SLICES
745 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
746 unsigned long len, unsigned long pgoff,
747 unsigned long flags)
748 {
749 struct hstate *hstate = hstate_file(file);
750 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
751
752 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
753 }
754 #endif
755
756 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
757 {
758 #ifdef CONFIG_PPC_MM_SLICES
759 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
760
761 return 1UL << mmu_psize_to_shift(psize);
762 #else
763 if (!is_vm_hugetlb_page(vma))
764 return PAGE_SIZE;
765
766 return huge_page_size(hstate_vma(vma));
767 #endif
768 }
769
770 static inline bool is_power_of_4(unsigned long x)
771 {
772 if (is_power_of_2(x))
773 return (__ilog2(x) % 2) ? false : true;
774 return false;
775 }
776
777 static int __init add_huge_page_size(unsigned long long size)
778 {
779 int shift = __ffs(size);
780 int mmu_psize;
781
782 /* Check that it is a page size supported by the hardware and
783 * that it fits within pagetable and slice limits. */
784 #ifdef CONFIG_PPC_FSL_BOOK3E
785 if ((size < PAGE_SIZE) || !is_power_of_4(size))
786 return -EINVAL;
787 #else
788 if (!is_power_of_2(size)
789 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
790 return -EINVAL;
791 #endif
792
793 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
794 return -EINVAL;
795
796 #ifdef CONFIG_SPU_FS_64K_LS
797 /* Disable support for 64K huge pages when 64K SPU local store
798 * support is enabled as the current implementation conflicts.
799 */
800 if (shift == PAGE_SHIFT_64K)
801 return -EINVAL;
802 #endif /* CONFIG_SPU_FS_64K_LS */
803
804 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
805
806 /* Return if huge page size has already been setup */
807 if (size_to_hstate(size))
808 return 0;
809
810 hugetlb_add_hstate(shift - PAGE_SHIFT);
811
812 return 0;
813 }
814
815 static int __init hugepage_setup_sz(char *str)
816 {
817 unsigned long long size;
818
819 size = memparse(str, &str);
820
821 if (add_huge_page_size(size) != 0)
822 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
823
824 return 1;
825 }
826 __setup("hugepagesz=", hugepage_setup_sz);
827
828 #ifdef CONFIG_PPC_FSL_BOOK3E
829 struct kmem_cache *hugepte_cache;
830 static int __init hugetlbpage_init(void)
831 {
832 int psize;
833
834 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
835 unsigned shift;
836
837 if (!mmu_psize_defs[psize].shift)
838 continue;
839
840 shift = mmu_psize_to_shift(psize);
841
842 /* Don't treat normal page sizes as huge... */
843 if (shift != PAGE_SHIFT)
844 if (add_huge_page_size(1ULL << shift) < 0)
845 continue;
846 }
847
848 /*
849 * Create a kmem cache for hugeptes. The bottom bits in the pte have
850 * size information encoded in them, so align them to allow this
851 */
852 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
853 HUGEPD_SHIFT_MASK + 1, 0, NULL);
854 if (hugepte_cache == NULL)
855 panic("%s: Unable to create kmem cache for hugeptes\n",
856 __func__);
857
858 /* Default hpage size = 4M */
859 if (mmu_psize_defs[MMU_PAGE_4M].shift)
860 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
861 else
862 panic("%s: Unable to set default huge page size\n", __func__);
863
864
865 return 0;
866 }
867 #else
868 static int __init hugetlbpage_init(void)
869 {
870 int psize;
871
872 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
873 return -ENODEV;
874
875 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
876 unsigned shift;
877 unsigned pdshift;
878
879 if (!mmu_psize_defs[psize].shift)
880 continue;
881
882 shift = mmu_psize_to_shift(psize);
883
884 if (add_huge_page_size(1ULL << shift) < 0)
885 continue;
886
887 if (shift < PMD_SHIFT)
888 pdshift = PMD_SHIFT;
889 else if (shift < PUD_SHIFT)
890 pdshift = PUD_SHIFT;
891 else
892 pdshift = PGDIR_SHIFT;
893 /*
894 * if we have pdshift and shift value same, we don't
895 * use pgt cache for hugepd.
896 */
897 if (pdshift != shift) {
898 pgtable_cache_add(pdshift - shift, NULL);
899 if (!PGT_CACHE(pdshift - shift))
900 panic("hugetlbpage_init(): could not create "
901 "pgtable cache for %d bit pagesize\n", shift);
902 }
903 }
904
905 /* Set default large page size. Currently, we pick 16M or 1M
906 * depending on what is available
907 */
908 if (mmu_psize_defs[MMU_PAGE_16M].shift)
909 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
910 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
911 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
912
913 return 0;
914 }
915 #endif
916 module_init(hugetlbpage_init);
917
918 void flush_dcache_icache_hugepage(struct page *page)
919 {
920 int i;
921 void *start;
922
923 BUG_ON(!PageCompound(page));
924
925 for (i = 0; i < (1UL << compound_order(page)); i++) {
926 if (!PageHighMem(page)) {
927 __flush_dcache_icache(page_address(page+i));
928 } else {
929 start = kmap_atomic(page+i);
930 __flush_dcache_icache(start);
931 kunmap_atomic(start);
932 }
933 }
934 }
935
936 #endif /* CONFIG_HUGETLB_PAGE */
937
938 /*
939 * We have 4 cases for pgds and pmds:
940 * (1) invalid (all zeroes)
941 * (2) pointer to next table, as normal; bottom 6 bits == 0
942 * (3) leaf pte for huge page, bottom two bits != 00
943 * (4) hugepd pointer, bottom two bits == 00, next 4 bits indicate size of table
944 *
945 * So long as we atomically load page table pointers we are safe against teardown,
946 * we can follow the address down to the the page and take a ref on it.
947 */
948
949 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
950 {
951 pgd_t pgd, *pgdp;
952 pud_t pud, *pudp;
953 pmd_t pmd, *pmdp;
954 pte_t *ret_pte;
955 hugepd_t *hpdp = NULL;
956 unsigned pdshift = PGDIR_SHIFT;
957
958 if (shift)
959 *shift = 0;
960
961 pgdp = pgdir + pgd_index(ea);
962 pgd = ACCESS_ONCE(*pgdp);
963 /*
964 * Always operate on the local stack value. This make sure the
965 * value don't get updated by a parallel THP split/collapse,
966 * page fault or a page unmap. The return pte_t * is still not
967 * stable. So should be checked there for above conditions.
968 */
969 if (pgd_none(pgd))
970 return NULL;
971 else if (pgd_huge(pgd)) {
972 ret_pte = (pte_t *) pgdp;
973 goto out;
974 } else if (is_hugepd(&pgd))
975 hpdp = (hugepd_t *)&pgd;
976 else {
977 /*
978 * Even if we end up with an unmap, the pgtable will not
979 * be freed, because we do an rcu free and here we are
980 * irq disabled
981 */
982 pdshift = PUD_SHIFT;
983 pudp = pud_offset(&pgd, ea);
984 pud = ACCESS_ONCE(*pudp);
985
986 if (pud_none(pud))
987 return NULL;
988 else if (pud_huge(pud)) {
989 ret_pte = (pte_t *) pudp;
990 goto out;
991 } else if (is_hugepd(&pud))
992 hpdp = (hugepd_t *)&pud;
993 else {
994 pdshift = PMD_SHIFT;
995 pmdp = pmd_offset(&pud, ea);
996 pmd = ACCESS_ONCE(*pmdp);
997 /*
998 * A hugepage collapse is captured by pmd_none, because
999 * it mark the pmd none and do a hpte invalidate.
1000 *
1001 * A hugepage split is captured by pmd_trans_splitting
1002 * because we mark the pmd trans splitting and do a
1003 * hpte invalidate
1004 *
1005 */
1006 if (pmd_none(pmd) || pmd_trans_splitting(pmd))
1007 return NULL;
1008
1009 if (pmd_huge(pmd) || pmd_large(pmd)) {
1010 ret_pte = (pte_t *) pmdp;
1011 goto out;
1012 } else if (is_hugepd(&pmd))
1013 hpdp = (hugepd_t *)&pmd;
1014 else
1015 return pte_offset_kernel(&pmd, ea);
1016 }
1017 }
1018 if (!hpdp)
1019 return NULL;
1020
1021 ret_pte = hugepte_offset(hpdp, ea, pdshift);
1022 pdshift = hugepd_shift(*hpdp);
1023 out:
1024 if (shift)
1025 *shift = pdshift;
1026 return ret_pte;
1027 }
1028 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
1029
1030 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1031 unsigned long end, int write, struct page **pages, int *nr)
1032 {
1033 unsigned long mask;
1034 unsigned long pte_end;
1035 struct page *head, *page, *tail;
1036 pte_t pte;
1037 int refs;
1038
1039 pte_end = (addr + sz) & ~(sz-1);
1040 if (pte_end < end)
1041 end = pte_end;
1042
1043 pte = ACCESS_ONCE(*ptep);
1044 mask = _PAGE_PRESENT | _PAGE_USER;
1045 if (write)
1046 mask |= _PAGE_RW;
1047
1048 if ((pte_val(pte) & mask) != mask)
1049 return 0;
1050
1051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1052 /*
1053 * check for splitting here
1054 */
1055 if (pmd_trans_splitting(pte_pmd(pte)))
1056 return 0;
1057 #endif
1058
1059 /* hugepages are never "special" */
1060 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1061
1062 refs = 0;
1063 head = pte_page(pte);
1064
1065 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1066 tail = page;
1067 do {
1068 VM_BUG_ON(compound_head(page) != head);
1069 pages[*nr] = page;
1070 (*nr)++;
1071 page++;
1072 refs++;
1073 } while (addr += PAGE_SIZE, addr != end);
1074
1075 if (!page_cache_add_speculative(head, refs)) {
1076 *nr -= refs;
1077 return 0;
1078 }
1079
1080 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1081 /* Could be optimized better */
1082 *nr -= refs;
1083 while (refs--)
1084 put_page(head);
1085 return 0;
1086 }
1087
1088 /*
1089 * Any tail page need their mapcount reference taken before we
1090 * return.
1091 */
1092 while (refs--) {
1093 if (PageTail(tail))
1094 get_huge_page_tail(tail);
1095 tail++;
1096 }
1097
1098 return 1;
1099 }