]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/powerpc/mm/numa.c
powerpc/numa: Use form 1 affinity to setup node distance
[thirdparty/kernel/stable.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <asm/sparsemem.h>
24 #include <asm/prom.h>
25 #include <asm/system.h>
26 #include <asm/smp.h>
27
28 static int numa_enabled = 1;
29
30 static char *cmdline __initdata;
31
32 static int numa_debug;
33 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
34
35 int numa_cpu_lookup_table[NR_CPUS];
36 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
37 struct pglist_data *node_data[MAX_NUMNODES];
38
39 EXPORT_SYMBOL(numa_cpu_lookup_table);
40 EXPORT_SYMBOL(node_to_cpumask_map);
41 EXPORT_SYMBOL(node_data);
42
43 static int min_common_depth;
44 static int n_mem_addr_cells, n_mem_size_cells;
45 static int form1_affinity;
46
47 #define MAX_DISTANCE_REF_POINTS 4
48 static int distance_ref_points_depth;
49 static const unsigned int *distance_ref_points;
50 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
51
52 /*
53 * Allocate node_to_cpumask_map based on number of available nodes
54 * Requires node_possible_map to be valid.
55 *
56 * Note: node_to_cpumask() is not valid until after this is done.
57 */
58 static void __init setup_node_to_cpumask_map(void)
59 {
60 unsigned int node, num = 0;
61
62 /* setup nr_node_ids if not done yet */
63 if (nr_node_ids == MAX_NUMNODES) {
64 for_each_node_mask(node, node_possible_map)
65 num = node;
66 nr_node_ids = num + 1;
67 }
68
69 /* allocate the map */
70 for (node = 0; node < nr_node_ids; node++)
71 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
72
73 /* cpumask_of_node() will now work */
74 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
75 }
76
77 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
78 unsigned int *nid)
79 {
80 unsigned long long mem;
81 char *p = cmdline;
82 static unsigned int fake_nid;
83 static unsigned long long curr_boundary;
84
85 /*
86 * Modify node id, iff we started creating NUMA nodes
87 * We want to continue from where we left of the last time
88 */
89 if (fake_nid)
90 *nid = fake_nid;
91 /*
92 * In case there are no more arguments to parse, the
93 * node_id should be the same as the last fake node id
94 * (we've handled this above).
95 */
96 if (!p)
97 return 0;
98
99 mem = memparse(p, &p);
100 if (!mem)
101 return 0;
102
103 if (mem < curr_boundary)
104 return 0;
105
106 curr_boundary = mem;
107
108 if ((end_pfn << PAGE_SHIFT) > mem) {
109 /*
110 * Skip commas and spaces
111 */
112 while (*p == ',' || *p == ' ' || *p == '\t')
113 p++;
114
115 cmdline = p;
116 fake_nid++;
117 *nid = fake_nid;
118 dbg("created new fake_node with id %d\n", fake_nid);
119 return 1;
120 }
121 return 0;
122 }
123
124 /*
125 * get_active_region_work_fn - A helper function for get_node_active_region
126 * Returns datax set to the start_pfn and end_pfn if they contain
127 * the initial value of datax->start_pfn between them
128 * @start_pfn: start page(inclusive) of region to check
129 * @end_pfn: end page(exclusive) of region to check
130 * @datax: comes in with ->start_pfn set to value to search for and
131 * goes out with active range if it contains it
132 * Returns 1 if search value is in range else 0
133 */
134 static int __init get_active_region_work_fn(unsigned long start_pfn,
135 unsigned long end_pfn, void *datax)
136 {
137 struct node_active_region *data;
138 data = (struct node_active_region *)datax;
139
140 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
141 data->start_pfn = start_pfn;
142 data->end_pfn = end_pfn;
143 return 1;
144 }
145 return 0;
146
147 }
148
149 /*
150 * get_node_active_region - Return active region containing start_pfn
151 * Active range returned is empty if none found.
152 * @start_pfn: The page to return the region for.
153 * @node_ar: Returned set to the active region containing start_pfn
154 */
155 static void __init get_node_active_region(unsigned long start_pfn,
156 struct node_active_region *node_ar)
157 {
158 int nid = early_pfn_to_nid(start_pfn);
159
160 node_ar->nid = nid;
161 node_ar->start_pfn = start_pfn;
162 node_ar->end_pfn = start_pfn;
163 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
164 }
165
166 static void __cpuinit map_cpu_to_node(int cpu, int node)
167 {
168 numa_cpu_lookup_table[cpu] = node;
169
170 dbg("adding cpu %d to node %d\n", cpu, node);
171
172 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
173 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
174 }
175
176 #ifdef CONFIG_HOTPLUG_CPU
177 static void unmap_cpu_from_node(unsigned long cpu)
178 {
179 int node = numa_cpu_lookup_table[cpu];
180
181 dbg("removing cpu %lu from node %d\n", cpu, node);
182
183 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
184 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
185 } else {
186 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
187 cpu, node);
188 }
189 }
190 #endif /* CONFIG_HOTPLUG_CPU */
191
192 /* must hold reference to node during call */
193 static const int *of_get_associativity(struct device_node *dev)
194 {
195 return of_get_property(dev, "ibm,associativity", NULL);
196 }
197
198 /*
199 * Returns the property linux,drconf-usable-memory if
200 * it exists (the property exists only in kexec/kdump kernels,
201 * added by kexec-tools)
202 */
203 static const u32 *of_get_usable_memory(struct device_node *memory)
204 {
205 const u32 *prop;
206 u32 len;
207 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
208 if (!prop || len < sizeof(unsigned int))
209 return 0;
210 return prop;
211 }
212
213 int __node_distance(int a, int b)
214 {
215 int i;
216 int distance = LOCAL_DISTANCE;
217
218 if (!form1_affinity)
219 return distance;
220
221 for (i = 0; i < distance_ref_points_depth; i++) {
222 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
223 break;
224
225 /* Double the distance for each NUMA level */
226 distance *= 2;
227 }
228
229 return distance;
230 }
231
232 static void initialize_distance_lookup_table(int nid,
233 const unsigned int *associativity)
234 {
235 int i;
236
237 if (!form1_affinity)
238 return;
239
240 for (i = 0; i < distance_ref_points_depth; i++) {
241 distance_lookup_table[nid][i] =
242 associativity[distance_ref_points[i]];
243 }
244 }
245
246 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
247 * info is found.
248 */
249 static int of_node_to_nid_single(struct device_node *device)
250 {
251 int nid = -1;
252 const unsigned int *tmp;
253
254 if (min_common_depth == -1)
255 goto out;
256
257 tmp = of_get_associativity(device);
258 if (!tmp)
259 goto out;
260
261 if (tmp[0] >= min_common_depth)
262 nid = tmp[min_common_depth];
263
264 /* POWER4 LPAR uses 0xffff as invalid node */
265 if (nid == 0xffff || nid >= MAX_NUMNODES)
266 nid = -1;
267
268 if (nid > 0 && tmp[0] >= distance_ref_points_depth)
269 initialize_distance_lookup_table(nid, tmp);
270
271 out:
272 return nid;
273 }
274
275 /* Walk the device tree upwards, looking for an associativity id */
276 int of_node_to_nid(struct device_node *device)
277 {
278 struct device_node *tmp;
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 tmp = device;
288 device = of_get_parent(tmp);
289 of_node_put(tmp);
290 }
291 of_node_put(device);
292
293 return nid;
294 }
295 EXPORT_SYMBOL_GPL(of_node_to_nid);
296
297 static int __init find_min_common_depth(void)
298 {
299 int depth;
300 struct device_node *rtas_root;
301 struct device_node *chosen;
302 const char *vec5;
303
304 rtas_root = of_find_node_by_path("/rtas");
305
306 if (!rtas_root)
307 return -1;
308
309 /*
310 * This property is a set of 32-bit integers, each representing
311 * an index into the ibm,associativity nodes.
312 *
313 * With form 0 affinity the first integer is for an SMP configuration
314 * (should be all 0's) and the second is for a normal NUMA
315 * configuration. We have only one level of NUMA.
316 *
317 * With form 1 affinity the first integer is the most significant
318 * NUMA boundary and the following are progressively less significant
319 * boundaries. There can be more than one level of NUMA.
320 */
321 distance_ref_points = of_get_property(rtas_root,
322 "ibm,associativity-reference-points",
323 &distance_ref_points_depth);
324
325 if (!distance_ref_points) {
326 dbg("NUMA: ibm,associativity-reference-points not found.\n");
327 goto err;
328 }
329
330 distance_ref_points_depth /= sizeof(int);
331
332 #define VEC5_AFFINITY_BYTE 5
333 #define VEC5_AFFINITY 0x80
334 chosen = of_find_node_by_path("/chosen");
335 if (chosen) {
336 vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
337 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
338 dbg("Using form 1 affinity\n");
339 form1_affinity = 1;
340 }
341 }
342
343 if (form1_affinity) {
344 depth = distance_ref_points[0];
345 } else {
346 if (distance_ref_points_depth < 2) {
347 printk(KERN_WARNING "NUMA: "
348 "short ibm,associativity-reference-points\n");
349 goto err;
350 }
351
352 depth = distance_ref_points[1];
353 }
354
355 /*
356 * Warn and cap if the hardware supports more than
357 * MAX_DISTANCE_REF_POINTS domains.
358 */
359 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
360 printk(KERN_WARNING "NUMA: distance array capped at "
361 "%d entries\n", MAX_DISTANCE_REF_POINTS);
362 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
363 }
364
365 of_node_put(rtas_root);
366 return depth;
367
368 err:
369 of_node_put(rtas_root);
370 return -1;
371 }
372
373 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
374 {
375 struct device_node *memory = NULL;
376
377 memory = of_find_node_by_type(memory, "memory");
378 if (!memory)
379 panic("numa.c: No memory nodes found!");
380
381 *n_addr_cells = of_n_addr_cells(memory);
382 *n_size_cells = of_n_size_cells(memory);
383 of_node_put(memory);
384 }
385
386 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
387 {
388 unsigned long result = 0;
389
390 while (n--) {
391 result = (result << 32) | **buf;
392 (*buf)++;
393 }
394 return result;
395 }
396
397 struct of_drconf_cell {
398 u64 base_addr;
399 u32 drc_index;
400 u32 reserved;
401 u32 aa_index;
402 u32 flags;
403 };
404
405 #define DRCONF_MEM_ASSIGNED 0x00000008
406 #define DRCONF_MEM_AI_INVALID 0x00000040
407 #define DRCONF_MEM_RESERVED 0x00000080
408
409 /*
410 * Read the next lmb list entry from the ibm,dynamic-memory property
411 * and return the information in the provided of_drconf_cell structure.
412 */
413 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
414 {
415 const u32 *cp;
416
417 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
418
419 cp = *cellp;
420 drmem->drc_index = cp[0];
421 drmem->reserved = cp[1];
422 drmem->aa_index = cp[2];
423 drmem->flags = cp[3];
424
425 *cellp = cp + 4;
426 }
427
428 /*
429 * Retreive and validate the ibm,dynamic-memory property of the device tree.
430 *
431 * The layout of the ibm,dynamic-memory property is a number N of lmb
432 * list entries followed by N lmb list entries. Each lmb list entry
433 * contains information as layed out in the of_drconf_cell struct above.
434 */
435 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
436 {
437 const u32 *prop;
438 u32 len, entries;
439
440 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
441 if (!prop || len < sizeof(unsigned int))
442 return 0;
443
444 entries = *prop++;
445
446 /* Now that we know the number of entries, revalidate the size
447 * of the property read in to ensure we have everything
448 */
449 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
450 return 0;
451
452 *dm = prop;
453 return entries;
454 }
455
456 /*
457 * Retreive and validate the ibm,lmb-size property for drconf memory
458 * from the device tree.
459 */
460 static u64 of_get_lmb_size(struct device_node *memory)
461 {
462 const u32 *prop;
463 u32 len;
464
465 prop = of_get_property(memory, "ibm,lmb-size", &len);
466 if (!prop || len < sizeof(unsigned int))
467 return 0;
468
469 return read_n_cells(n_mem_size_cells, &prop);
470 }
471
472 struct assoc_arrays {
473 u32 n_arrays;
474 u32 array_sz;
475 const u32 *arrays;
476 };
477
478 /*
479 * Retreive and validate the list of associativity arrays for drconf
480 * memory from the ibm,associativity-lookup-arrays property of the
481 * device tree..
482 *
483 * The layout of the ibm,associativity-lookup-arrays property is a number N
484 * indicating the number of associativity arrays, followed by a number M
485 * indicating the size of each associativity array, followed by a list
486 * of N associativity arrays.
487 */
488 static int of_get_assoc_arrays(struct device_node *memory,
489 struct assoc_arrays *aa)
490 {
491 const u32 *prop;
492 u32 len;
493
494 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
495 if (!prop || len < 2 * sizeof(unsigned int))
496 return -1;
497
498 aa->n_arrays = *prop++;
499 aa->array_sz = *prop++;
500
501 /* Now that we know the number of arrrays and size of each array,
502 * revalidate the size of the property read in.
503 */
504 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
505 return -1;
506
507 aa->arrays = prop;
508 return 0;
509 }
510
511 /*
512 * This is like of_node_to_nid_single() for memory represented in the
513 * ibm,dynamic-reconfiguration-memory node.
514 */
515 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
516 struct assoc_arrays *aa)
517 {
518 int default_nid = 0;
519 int nid = default_nid;
520 int index;
521
522 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
523 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
524 drmem->aa_index < aa->n_arrays) {
525 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
526 nid = aa->arrays[index];
527
528 if (nid == 0xffff || nid >= MAX_NUMNODES)
529 nid = default_nid;
530 }
531
532 return nid;
533 }
534
535 /*
536 * Figure out to which domain a cpu belongs and stick it there.
537 * Return the id of the domain used.
538 */
539 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
540 {
541 int nid = 0;
542 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
543
544 if (!cpu) {
545 WARN_ON(1);
546 goto out;
547 }
548
549 nid = of_node_to_nid_single(cpu);
550
551 if (nid < 0 || !node_online(nid))
552 nid = first_online_node;
553 out:
554 map_cpu_to_node(lcpu, nid);
555
556 of_node_put(cpu);
557
558 return nid;
559 }
560
561 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
562 unsigned long action,
563 void *hcpu)
564 {
565 unsigned long lcpu = (unsigned long)hcpu;
566 int ret = NOTIFY_DONE;
567
568 switch (action) {
569 case CPU_UP_PREPARE:
570 case CPU_UP_PREPARE_FROZEN:
571 numa_setup_cpu(lcpu);
572 ret = NOTIFY_OK;
573 break;
574 #ifdef CONFIG_HOTPLUG_CPU
575 case CPU_DEAD:
576 case CPU_DEAD_FROZEN:
577 case CPU_UP_CANCELED:
578 case CPU_UP_CANCELED_FROZEN:
579 unmap_cpu_from_node(lcpu);
580 break;
581 ret = NOTIFY_OK;
582 #endif
583 }
584 return ret;
585 }
586
587 /*
588 * Check and possibly modify a memory region to enforce the memory limit.
589 *
590 * Returns the size the region should have to enforce the memory limit.
591 * This will either be the original value of size, a truncated value,
592 * or zero. If the returned value of size is 0 the region should be
593 * discarded as it lies wholy above the memory limit.
594 */
595 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
596 unsigned long size)
597 {
598 /*
599 * We use lmb_end_of_DRAM() in here instead of memory_limit because
600 * we've already adjusted it for the limit and it takes care of
601 * having memory holes below the limit. Also, in the case of
602 * iommu_is_off, memory_limit is not set but is implicitly enforced.
603 */
604
605 if (start + size <= lmb_end_of_DRAM())
606 return size;
607
608 if (start >= lmb_end_of_DRAM())
609 return 0;
610
611 return lmb_end_of_DRAM() - start;
612 }
613
614 /*
615 * Reads the counter for a given entry in
616 * linux,drconf-usable-memory property
617 */
618 static inline int __init read_usm_ranges(const u32 **usm)
619 {
620 /*
621 * For each lmb in ibm,dynamic-memory a corresponding
622 * entry in linux,drconf-usable-memory property contains
623 * a counter followed by that many (base, size) duple.
624 * read the counter from linux,drconf-usable-memory
625 */
626 return read_n_cells(n_mem_size_cells, usm);
627 }
628
629 /*
630 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
631 * node. This assumes n_mem_{addr,size}_cells have been set.
632 */
633 static void __init parse_drconf_memory(struct device_node *memory)
634 {
635 const u32 *dm, *usm;
636 unsigned int n, rc, ranges, is_kexec_kdump = 0;
637 unsigned long lmb_size, base, size, sz;
638 int nid;
639 struct assoc_arrays aa;
640
641 n = of_get_drconf_memory(memory, &dm);
642 if (!n)
643 return;
644
645 lmb_size = of_get_lmb_size(memory);
646 if (!lmb_size)
647 return;
648
649 rc = of_get_assoc_arrays(memory, &aa);
650 if (rc)
651 return;
652
653 /* check if this is a kexec/kdump kernel */
654 usm = of_get_usable_memory(memory);
655 if (usm != NULL)
656 is_kexec_kdump = 1;
657
658 for (; n != 0; --n) {
659 struct of_drconf_cell drmem;
660
661 read_drconf_cell(&drmem, &dm);
662
663 /* skip this block if the reserved bit is set in flags (0x80)
664 or if the block is not assigned to this partition (0x8) */
665 if ((drmem.flags & DRCONF_MEM_RESERVED)
666 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
667 continue;
668
669 base = drmem.base_addr;
670 size = lmb_size;
671 ranges = 1;
672
673 if (is_kexec_kdump) {
674 ranges = read_usm_ranges(&usm);
675 if (!ranges) /* there are no (base, size) duple */
676 continue;
677 }
678 do {
679 if (is_kexec_kdump) {
680 base = read_n_cells(n_mem_addr_cells, &usm);
681 size = read_n_cells(n_mem_size_cells, &usm);
682 }
683 nid = of_drconf_to_nid_single(&drmem, &aa);
684 fake_numa_create_new_node(
685 ((base + size) >> PAGE_SHIFT),
686 &nid);
687 node_set_online(nid);
688 sz = numa_enforce_memory_limit(base, size);
689 if (sz)
690 add_active_range(nid, base >> PAGE_SHIFT,
691 (base >> PAGE_SHIFT)
692 + (sz >> PAGE_SHIFT));
693 } while (--ranges);
694 }
695 }
696
697 static int __init parse_numa_properties(void)
698 {
699 struct device_node *cpu = NULL;
700 struct device_node *memory = NULL;
701 int default_nid = 0;
702 unsigned long i;
703
704 if (numa_enabled == 0) {
705 printk(KERN_WARNING "NUMA disabled by user\n");
706 return -1;
707 }
708
709 min_common_depth = find_min_common_depth();
710
711 if (min_common_depth < 0)
712 return min_common_depth;
713
714 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
715
716 /*
717 * Even though we connect cpus to numa domains later in SMP
718 * init, we need to know the node ids now. This is because
719 * each node to be onlined must have NODE_DATA etc backing it.
720 */
721 for_each_present_cpu(i) {
722 int nid;
723
724 cpu = of_get_cpu_node(i, NULL);
725 BUG_ON(!cpu);
726 nid = of_node_to_nid_single(cpu);
727 of_node_put(cpu);
728
729 /*
730 * Don't fall back to default_nid yet -- we will plug
731 * cpus into nodes once the memory scan has discovered
732 * the topology.
733 */
734 if (nid < 0)
735 continue;
736 node_set_online(nid);
737 }
738
739 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
740 memory = NULL;
741 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
742 unsigned long start;
743 unsigned long size;
744 int nid;
745 int ranges;
746 const unsigned int *memcell_buf;
747 unsigned int len;
748
749 memcell_buf = of_get_property(memory,
750 "linux,usable-memory", &len);
751 if (!memcell_buf || len <= 0)
752 memcell_buf = of_get_property(memory, "reg", &len);
753 if (!memcell_buf || len <= 0)
754 continue;
755
756 /* ranges in cell */
757 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
758 new_range:
759 /* these are order-sensitive, and modify the buffer pointer */
760 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
761 size = read_n_cells(n_mem_size_cells, &memcell_buf);
762
763 /*
764 * Assumption: either all memory nodes or none will
765 * have associativity properties. If none, then
766 * everything goes to default_nid.
767 */
768 nid = of_node_to_nid_single(memory);
769 if (nid < 0)
770 nid = default_nid;
771
772 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
773 node_set_online(nid);
774
775 if (!(size = numa_enforce_memory_limit(start, size))) {
776 if (--ranges)
777 goto new_range;
778 else
779 continue;
780 }
781
782 add_active_range(nid, start >> PAGE_SHIFT,
783 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
784
785 if (--ranges)
786 goto new_range;
787 }
788
789 /*
790 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
791 * property in the ibm,dynamic-reconfiguration-memory node.
792 */
793 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
794 if (memory)
795 parse_drconf_memory(memory);
796
797 return 0;
798 }
799
800 static void __init setup_nonnuma(void)
801 {
802 unsigned long top_of_ram = lmb_end_of_DRAM();
803 unsigned long total_ram = lmb_phys_mem_size();
804 unsigned long start_pfn, end_pfn;
805 unsigned int i, nid = 0;
806
807 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
808 top_of_ram, total_ram);
809 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
810 (top_of_ram - total_ram) >> 20);
811
812 for (i = 0; i < lmb.memory.cnt; ++i) {
813 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
814 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
815
816 fake_numa_create_new_node(end_pfn, &nid);
817 add_active_range(nid, start_pfn, end_pfn);
818 node_set_online(nid);
819 }
820 }
821
822 void __init dump_numa_cpu_topology(void)
823 {
824 unsigned int node;
825 unsigned int cpu, count;
826
827 if (min_common_depth == -1 || !numa_enabled)
828 return;
829
830 for_each_online_node(node) {
831 printk(KERN_DEBUG "Node %d CPUs:", node);
832
833 count = 0;
834 /*
835 * If we used a CPU iterator here we would miss printing
836 * the holes in the cpumap.
837 */
838 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
839 if (cpumask_test_cpu(cpu,
840 node_to_cpumask_map[node])) {
841 if (count == 0)
842 printk(" %u", cpu);
843 ++count;
844 } else {
845 if (count > 1)
846 printk("-%u", cpu - 1);
847 count = 0;
848 }
849 }
850
851 if (count > 1)
852 printk("-%u", nr_cpu_ids - 1);
853 printk("\n");
854 }
855 }
856
857 static void __init dump_numa_memory_topology(void)
858 {
859 unsigned int node;
860 unsigned int count;
861
862 if (min_common_depth == -1 || !numa_enabled)
863 return;
864
865 for_each_online_node(node) {
866 unsigned long i;
867
868 printk(KERN_DEBUG "Node %d Memory:", node);
869
870 count = 0;
871
872 for (i = 0; i < lmb_end_of_DRAM();
873 i += (1 << SECTION_SIZE_BITS)) {
874 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
875 if (count == 0)
876 printk(" 0x%lx", i);
877 ++count;
878 } else {
879 if (count > 0)
880 printk("-0x%lx", i);
881 count = 0;
882 }
883 }
884
885 if (count > 0)
886 printk("-0x%lx", i);
887 printk("\n");
888 }
889 }
890
891 /*
892 * Allocate some memory, satisfying the lmb or bootmem allocator where
893 * required. nid is the preferred node and end is the physical address of
894 * the highest address in the node.
895 *
896 * Returns the virtual address of the memory.
897 */
898 static void __init *careful_zallocation(int nid, unsigned long size,
899 unsigned long align,
900 unsigned long end_pfn)
901 {
902 void *ret;
903 int new_nid;
904 unsigned long ret_paddr;
905
906 ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
907
908 /* retry over all memory */
909 if (!ret_paddr)
910 ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
911
912 if (!ret_paddr)
913 panic("numa.c: cannot allocate %lu bytes for node %d",
914 size, nid);
915
916 ret = __va(ret_paddr);
917
918 /*
919 * We initialize the nodes in numeric order: 0, 1, 2...
920 * and hand over control from the LMB allocator to the
921 * bootmem allocator. If this function is called for
922 * node 5, then we know that all nodes <5 are using the
923 * bootmem allocator instead of the LMB allocator.
924 *
925 * So, check the nid from which this allocation came
926 * and double check to see if we need to use bootmem
927 * instead of the LMB. We don't free the LMB memory
928 * since it would be useless.
929 */
930 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
931 if (new_nid < nid) {
932 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
933 size, align, 0);
934
935 dbg("alloc_bootmem %p %lx\n", ret, size);
936 }
937
938 memset(ret, 0, size);
939 return ret;
940 }
941
942 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
943 .notifier_call = cpu_numa_callback,
944 .priority = 1 /* Must run before sched domains notifier. */
945 };
946
947 static void mark_reserved_regions_for_nid(int nid)
948 {
949 struct pglist_data *node = NODE_DATA(nid);
950 int i;
951
952 for (i = 0; i < lmb.reserved.cnt; i++) {
953 unsigned long physbase = lmb.reserved.region[i].base;
954 unsigned long size = lmb.reserved.region[i].size;
955 unsigned long start_pfn = physbase >> PAGE_SHIFT;
956 unsigned long end_pfn = PFN_UP(physbase + size);
957 struct node_active_region node_ar;
958 unsigned long node_end_pfn = node->node_start_pfn +
959 node->node_spanned_pages;
960
961 /*
962 * Check to make sure that this lmb.reserved area is
963 * within the bounds of the node that we care about.
964 * Checking the nid of the start and end points is not
965 * sufficient because the reserved area could span the
966 * entire node.
967 */
968 if (end_pfn <= node->node_start_pfn ||
969 start_pfn >= node_end_pfn)
970 continue;
971
972 get_node_active_region(start_pfn, &node_ar);
973 while (start_pfn < end_pfn &&
974 node_ar.start_pfn < node_ar.end_pfn) {
975 unsigned long reserve_size = size;
976 /*
977 * if reserved region extends past active region
978 * then trim size to active region
979 */
980 if (end_pfn > node_ar.end_pfn)
981 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
982 - physbase;
983 /*
984 * Only worry about *this* node, others may not
985 * yet have valid NODE_DATA().
986 */
987 if (node_ar.nid == nid) {
988 dbg("reserve_bootmem %lx %lx nid=%d\n",
989 physbase, reserve_size, node_ar.nid);
990 reserve_bootmem_node(NODE_DATA(node_ar.nid),
991 physbase, reserve_size,
992 BOOTMEM_DEFAULT);
993 }
994 /*
995 * if reserved region is contained in the active region
996 * then done.
997 */
998 if (end_pfn <= node_ar.end_pfn)
999 break;
1000
1001 /*
1002 * reserved region extends past the active region
1003 * get next active region that contains this
1004 * reserved region
1005 */
1006 start_pfn = node_ar.end_pfn;
1007 physbase = start_pfn << PAGE_SHIFT;
1008 size = size - reserve_size;
1009 get_node_active_region(start_pfn, &node_ar);
1010 }
1011 }
1012 }
1013
1014
1015 void __init do_init_bootmem(void)
1016 {
1017 int nid;
1018
1019 min_low_pfn = 0;
1020 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
1021 max_pfn = max_low_pfn;
1022
1023 if (parse_numa_properties())
1024 setup_nonnuma();
1025 else
1026 dump_numa_memory_topology();
1027
1028 for_each_online_node(nid) {
1029 unsigned long start_pfn, end_pfn;
1030 void *bootmem_vaddr;
1031 unsigned long bootmap_pages;
1032
1033 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1034
1035 /*
1036 * Allocate the node structure node local if possible
1037 *
1038 * Be careful moving this around, as it relies on all
1039 * previous nodes' bootmem to be initialized and have
1040 * all reserved areas marked.
1041 */
1042 NODE_DATA(nid) = careful_zallocation(nid,
1043 sizeof(struct pglist_data),
1044 SMP_CACHE_BYTES, end_pfn);
1045
1046 dbg("node %d\n", nid);
1047 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1048
1049 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1050 NODE_DATA(nid)->node_start_pfn = start_pfn;
1051 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1052
1053 if (NODE_DATA(nid)->node_spanned_pages == 0)
1054 continue;
1055
1056 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1057 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1058
1059 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1060 bootmem_vaddr = careful_zallocation(nid,
1061 bootmap_pages << PAGE_SHIFT,
1062 PAGE_SIZE, end_pfn);
1063
1064 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1065
1066 init_bootmem_node(NODE_DATA(nid),
1067 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1068 start_pfn, end_pfn);
1069
1070 free_bootmem_with_active_regions(nid, end_pfn);
1071 /*
1072 * Be very careful about moving this around. Future
1073 * calls to careful_zallocation() depend on this getting
1074 * done correctly.
1075 */
1076 mark_reserved_regions_for_nid(nid);
1077 sparse_memory_present_with_active_regions(nid);
1078 }
1079
1080 init_bootmem_done = 1;
1081
1082 /*
1083 * Now bootmem is initialised we can create the node to cpumask
1084 * lookup tables and setup the cpu callback to populate them.
1085 */
1086 setup_node_to_cpumask_map();
1087
1088 register_cpu_notifier(&ppc64_numa_nb);
1089 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1090 (void *)(unsigned long)boot_cpuid);
1091 }
1092
1093 void __init paging_init(void)
1094 {
1095 unsigned long max_zone_pfns[MAX_NR_ZONES];
1096 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1097 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
1098 free_area_init_nodes(max_zone_pfns);
1099 }
1100
1101 static int __init early_numa(char *p)
1102 {
1103 if (!p)
1104 return 0;
1105
1106 if (strstr(p, "off"))
1107 numa_enabled = 0;
1108
1109 if (strstr(p, "debug"))
1110 numa_debug = 1;
1111
1112 p = strstr(p, "fake=");
1113 if (p)
1114 cmdline = p + strlen("fake=");
1115
1116 return 0;
1117 }
1118 early_param("numa", early_numa);
1119
1120 #ifdef CONFIG_MEMORY_HOTPLUG
1121 /*
1122 * Find the node associated with a hot added memory section for
1123 * memory represented in the device tree by the property
1124 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1125 */
1126 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1127 unsigned long scn_addr)
1128 {
1129 const u32 *dm;
1130 unsigned int drconf_cell_cnt, rc;
1131 unsigned long lmb_size;
1132 struct assoc_arrays aa;
1133 int nid = -1;
1134
1135 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1136 if (!drconf_cell_cnt)
1137 return -1;
1138
1139 lmb_size = of_get_lmb_size(memory);
1140 if (!lmb_size)
1141 return -1;
1142
1143 rc = of_get_assoc_arrays(memory, &aa);
1144 if (rc)
1145 return -1;
1146
1147 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1148 struct of_drconf_cell drmem;
1149
1150 read_drconf_cell(&drmem, &dm);
1151
1152 /* skip this block if it is reserved or not assigned to
1153 * this partition */
1154 if ((drmem.flags & DRCONF_MEM_RESERVED)
1155 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1156 continue;
1157
1158 if ((scn_addr < drmem.base_addr)
1159 || (scn_addr >= (drmem.base_addr + lmb_size)))
1160 continue;
1161
1162 nid = of_drconf_to_nid_single(&drmem, &aa);
1163 break;
1164 }
1165
1166 return nid;
1167 }
1168
1169 /*
1170 * Find the node associated with a hot added memory section for memory
1171 * represented in the device tree as a node (i.e. memory@XXXX) for
1172 * each lmb.
1173 */
1174 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1175 {
1176 struct device_node *memory = NULL;
1177 int nid = -1;
1178
1179 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1180 unsigned long start, size;
1181 int ranges;
1182 const unsigned int *memcell_buf;
1183 unsigned int len;
1184
1185 memcell_buf = of_get_property(memory, "reg", &len);
1186 if (!memcell_buf || len <= 0)
1187 continue;
1188
1189 /* ranges in cell */
1190 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1191
1192 while (ranges--) {
1193 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1194 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1195
1196 if ((scn_addr < start) || (scn_addr >= (start + size)))
1197 continue;
1198
1199 nid = of_node_to_nid_single(memory);
1200 break;
1201 }
1202
1203 of_node_put(memory);
1204 if (nid >= 0)
1205 break;
1206 }
1207
1208 return nid;
1209 }
1210
1211 /*
1212 * Find the node associated with a hot added memory section. Section
1213 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
1214 * sections are fully contained within a single LMB.
1215 */
1216 int hot_add_scn_to_nid(unsigned long scn_addr)
1217 {
1218 struct device_node *memory = NULL;
1219 int nid, found = 0;
1220
1221 if (!numa_enabled || (min_common_depth < 0))
1222 return first_online_node;
1223
1224 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1225 if (memory) {
1226 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1227 of_node_put(memory);
1228 } else {
1229 nid = hot_add_node_scn_to_nid(scn_addr);
1230 }
1231
1232 if (nid < 0 || !node_online(nid))
1233 nid = first_online_node;
1234
1235 if (NODE_DATA(nid)->node_spanned_pages)
1236 return nid;
1237
1238 for_each_online_node(nid) {
1239 if (NODE_DATA(nid)->node_spanned_pages) {
1240 found = 1;
1241 break;
1242 }
1243 }
1244
1245 BUG_ON(!found);
1246 return nid;
1247 }
1248
1249 #endif /* CONFIG_MEMORY_HOTPLUG */