]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/powerpc/perf/imc-pmu.c
x86/fpu/xstate: Restore supervisor states for signal return
[thirdparty/linux.git] / arch / powerpc / perf / imc-pmu.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * In-Memory Collection (IMC) Performance Monitor counter support.
4 *
5 * Copyright (C) 2017 Madhavan Srinivasan, IBM Corporation.
6 * (C) 2017 Anju T Sudhakar, IBM Corporation.
7 * (C) 2017 Hemant K Shaw, IBM Corporation.
8 */
9 #include <linux/perf_event.h>
10 #include <linux/slab.h>
11 #include <asm/opal.h>
12 #include <asm/imc-pmu.h>
13 #include <asm/cputhreads.h>
14 #include <asm/smp.h>
15 #include <linux/string.h>
16
17 /* Nest IMC data structures and variables */
18
19 /*
20 * Used to avoid races in counting the nest-pmu units during hotplug
21 * register and unregister
22 */
23 static DEFINE_MUTEX(nest_init_lock);
24 static DEFINE_PER_CPU(struct imc_pmu_ref *, local_nest_imc_refc);
25 static struct imc_pmu **per_nest_pmu_arr;
26 static cpumask_t nest_imc_cpumask;
27 static struct imc_pmu_ref *nest_imc_refc;
28 static int nest_pmus;
29
30 /* Core IMC data structures and variables */
31
32 static cpumask_t core_imc_cpumask;
33 static struct imc_pmu_ref *core_imc_refc;
34 static struct imc_pmu *core_imc_pmu;
35
36 /* Thread IMC data structures and variables */
37
38 static DEFINE_PER_CPU(u64 *, thread_imc_mem);
39 static struct imc_pmu *thread_imc_pmu;
40 static int thread_imc_mem_size;
41
42 /* Trace IMC data structures */
43 static DEFINE_PER_CPU(u64 *, trace_imc_mem);
44 static struct imc_pmu_ref *trace_imc_refc;
45 static int trace_imc_mem_size;
46
47 /*
48 * Global data structure used to avoid races between thread,
49 * core and trace-imc
50 */
51 static struct imc_pmu_ref imc_global_refc = {
52 .lock = __MUTEX_INITIALIZER(imc_global_refc.lock),
53 .id = 0,
54 .refc = 0,
55 };
56
57 static struct imc_pmu *imc_event_to_pmu(struct perf_event *event)
58 {
59 return container_of(event->pmu, struct imc_pmu, pmu);
60 }
61
62 PMU_FORMAT_ATTR(event, "config:0-61");
63 PMU_FORMAT_ATTR(offset, "config:0-31");
64 PMU_FORMAT_ATTR(rvalue, "config:32");
65 PMU_FORMAT_ATTR(mode, "config:33-40");
66 static struct attribute *imc_format_attrs[] = {
67 &format_attr_event.attr,
68 &format_attr_offset.attr,
69 &format_attr_rvalue.attr,
70 &format_attr_mode.attr,
71 NULL,
72 };
73
74 static struct attribute_group imc_format_group = {
75 .name = "format",
76 .attrs = imc_format_attrs,
77 };
78
79 /* Format attribute for imc trace-mode */
80 PMU_FORMAT_ATTR(cpmc_reserved, "config:0-19");
81 PMU_FORMAT_ATTR(cpmc_event, "config:20-27");
82 PMU_FORMAT_ATTR(cpmc_samplesel, "config:28-29");
83 PMU_FORMAT_ATTR(cpmc_load, "config:30-61");
84 static struct attribute *trace_imc_format_attrs[] = {
85 &format_attr_event.attr,
86 &format_attr_cpmc_reserved.attr,
87 &format_attr_cpmc_event.attr,
88 &format_attr_cpmc_samplesel.attr,
89 &format_attr_cpmc_load.attr,
90 NULL,
91 };
92
93 static struct attribute_group trace_imc_format_group = {
94 .name = "format",
95 .attrs = trace_imc_format_attrs,
96 };
97
98 /* Get the cpumask printed to a buffer "buf" */
99 static ssize_t imc_pmu_cpumask_get_attr(struct device *dev,
100 struct device_attribute *attr,
101 char *buf)
102 {
103 struct pmu *pmu = dev_get_drvdata(dev);
104 struct imc_pmu *imc_pmu = container_of(pmu, struct imc_pmu, pmu);
105 cpumask_t *active_mask;
106
107 switch(imc_pmu->domain){
108 case IMC_DOMAIN_NEST:
109 active_mask = &nest_imc_cpumask;
110 break;
111 case IMC_DOMAIN_CORE:
112 active_mask = &core_imc_cpumask;
113 break;
114 default:
115 return 0;
116 }
117
118 return cpumap_print_to_pagebuf(true, buf, active_mask);
119 }
120
121 static DEVICE_ATTR(cpumask, S_IRUGO, imc_pmu_cpumask_get_attr, NULL);
122
123 static struct attribute *imc_pmu_cpumask_attrs[] = {
124 &dev_attr_cpumask.attr,
125 NULL,
126 };
127
128 static struct attribute_group imc_pmu_cpumask_attr_group = {
129 .attrs = imc_pmu_cpumask_attrs,
130 };
131
132 /* device_str_attr_create : Populate event "name" and string "str" in attribute */
133 static struct attribute *device_str_attr_create(const char *name, const char *str)
134 {
135 struct perf_pmu_events_attr *attr;
136
137 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
138 if (!attr)
139 return NULL;
140 sysfs_attr_init(&attr->attr.attr);
141
142 attr->event_str = str;
143 attr->attr.attr.name = name;
144 attr->attr.attr.mode = 0444;
145 attr->attr.show = perf_event_sysfs_show;
146
147 return &attr->attr.attr;
148 }
149
150 static int imc_parse_event(struct device_node *np, const char *scale,
151 const char *unit, const char *prefix,
152 u32 base, struct imc_events *event)
153 {
154 const char *s;
155 u32 reg;
156
157 if (of_property_read_u32(np, "reg", &reg))
158 goto error;
159 /* Add the base_reg value to the "reg" */
160 event->value = base + reg;
161
162 if (of_property_read_string(np, "event-name", &s))
163 goto error;
164
165 event->name = kasprintf(GFP_KERNEL, "%s%s", prefix, s);
166 if (!event->name)
167 goto error;
168
169 if (of_property_read_string(np, "scale", &s))
170 s = scale;
171
172 if (s) {
173 event->scale = kstrdup(s, GFP_KERNEL);
174 if (!event->scale)
175 goto error;
176 }
177
178 if (of_property_read_string(np, "unit", &s))
179 s = unit;
180
181 if (s) {
182 event->unit = kstrdup(s, GFP_KERNEL);
183 if (!event->unit)
184 goto error;
185 }
186
187 return 0;
188 error:
189 kfree(event->unit);
190 kfree(event->scale);
191 kfree(event->name);
192 return -EINVAL;
193 }
194
195 /*
196 * imc_free_events: Function to cleanup the events list, having
197 * "nr_entries".
198 */
199 static void imc_free_events(struct imc_events *events, int nr_entries)
200 {
201 int i;
202
203 /* Nothing to clean, return */
204 if (!events)
205 return;
206 for (i = 0; i < nr_entries; i++) {
207 kfree(events[i].unit);
208 kfree(events[i].scale);
209 kfree(events[i].name);
210 }
211
212 kfree(events);
213 }
214
215 /*
216 * update_events_in_group: Update the "events" information in an attr_group
217 * and assign the attr_group to the pmu "pmu".
218 */
219 static int update_events_in_group(struct device_node *node, struct imc_pmu *pmu)
220 {
221 struct attribute_group *attr_group;
222 struct attribute **attrs, *dev_str;
223 struct device_node *np, *pmu_events;
224 u32 handle, base_reg;
225 int i = 0, j = 0, ct, ret;
226 const char *prefix, *g_scale, *g_unit;
227 const char *ev_val_str, *ev_scale_str, *ev_unit_str;
228
229 if (!of_property_read_u32(node, "events", &handle))
230 pmu_events = of_find_node_by_phandle(handle);
231 else
232 return 0;
233
234 /* Did not find any node with a given phandle */
235 if (!pmu_events)
236 return 0;
237
238 /* Get a count of number of child nodes */
239 ct = of_get_child_count(pmu_events);
240
241 /* Get the event prefix */
242 if (of_property_read_string(node, "events-prefix", &prefix))
243 return 0;
244
245 /* Get a global unit and scale data if available */
246 if (of_property_read_string(node, "scale", &g_scale))
247 g_scale = NULL;
248
249 if (of_property_read_string(node, "unit", &g_unit))
250 g_unit = NULL;
251
252 /* "reg" property gives out the base offset of the counters data */
253 of_property_read_u32(node, "reg", &base_reg);
254
255 /* Allocate memory for the events */
256 pmu->events = kcalloc(ct, sizeof(struct imc_events), GFP_KERNEL);
257 if (!pmu->events)
258 return -ENOMEM;
259
260 ct = 0;
261 /* Parse the events and update the struct */
262 for_each_child_of_node(pmu_events, np) {
263 ret = imc_parse_event(np, g_scale, g_unit, prefix, base_reg, &pmu->events[ct]);
264 if (!ret)
265 ct++;
266 }
267
268 /* Allocate memory for attribute group */
269 attr_group = kzalloc(sizeof(*attr_group), GFP_KERNEL);
270 if (!attr_group) {
271 imc_free_events(pmu->events, ct);
272 return -ENOMEM;
273 }
274
275 /*
276 * Allocate memory for attributes.
277 * Since we have count of events for this pmu, we also allocate
278 * memory for the scale and unit attribute for now.
279 * "ct" has the total event structs added from the events-parent node.
280 * So allocate three times the "ct" (this includes event, event_scale and
281 * event_unit).
282 */
283 attrs = kcalloc(((ct * 3) + 1), sizeof(struct attribute *), GFP_KERNEL);
284 if (!attrs) {
285 kfree(attr_group);
286 imc_free_events(pmu->events, ct);
287 return -ENOMEM;
288 }
289
290 attr_group->name = "events";
291 attr_group->attrs = attrs;
292 do {
293 ev_val_str = kasprintf(GFP_KERNEL, "event=0x%x", pmu->events[i].value);
294 dev_str = device_str_attr_create(pmu->events[i].name, ev_val_str);
295 if (!dev_str)
296 continue;
297
298 attrs[j++] = dev_str;
299 if (pmu->events[i].scale) {
300 ev_scale_str = kasprintf(GFP_KERNEL, "%s.scale", pmu->events[i].name);
301 dev_str = device_str_attr_create(ev_scale_str, pmu->events[i].scale);
302 if (!dev_str)
303 continue;
304
305 attrs[j++] = dev_str;
306 }
307
308 if (pmu->events[i].unit) {
309 ev_unit_str = kasprintf(GFP_KERNEL, "%s.unit", pmu->events[i].name);
310 dev_str = device_str_attr_create(ev_unit_str, pmu->events[i].unit);
311 if (!dev_str)
312 continue;
313
314 attrs[j++] = dev_str;
315 }
316 } while (++i < ct);
317
318 /* Save the event attribute */
319 pmu->attr_groups[IMC_EVENT_ATTR] = attr_group;
320
321 return 0;
322 }
323
324 /* get_nest_pmu_ref: Return the imc_pmu_ref struct for the given node */
325 static struct imc_pmu_ref *get_nest_pmu_ref(int cpu)
326 {
327 return per_cpu(local_nest_imc_refc, cpu);
328 }
329
330 static void nest_change_cpu_context(int old_cpu, int new_cpu)
331 {
332 struct imc_pmu **pn = per_nest_pmu_arr;
333
334 if (old_cpu < 0 || new_cpu < 0)
335 return;
336
337 while (*pn) {
338 perf_pmu_migrate_context(&(*pn)->pmu, old_cpu, new_cpu);
339 pn++;
340 }
341 }
342
343 static int ppc_nest_imc_cpu_offline(unsigned int cpu)
344 {
345 int nid, target = -1;
346 const struct cpumask *l_cpumask;
347 struct imc_pmu_ref *ref;
348
349 /*
350 * Check in the designated list for this cpu. Dont bother
351 * if not one of them.
352 */
353 if (!cpumask_test_and_clear_cpu(cpu, &nest_imc_cpumask))
354 return 0;
355
356 /*
357 * Check whether nest_imc is registered. We could end up here if the
358 * cpuhotplug callback registration fails. i.e, callback invokes the
359 * offline path for all successfully registered nodes. At this stage,
360 * nest_imc pmu will not be registered and we should return here.
361 *
362 * We return with a zero since this is not an offline failure. And
363 * cpuhp_setup_state() returns the actual failure reason to the caller,
364 * which in turn will call the cleanup routine.
365 */
366 if (!nest_pmus)
367 return 0;
368
369 /*
370 * Now that this cpu is one of the designated,
371 * find a next cpu a) which is online and b) in same chip.
372 */
373 nid = cpu_to_node(cpu);
374 l_cpumask = cpumask_of_node(nid);
375 target = cpumask_last(l_cpumask);
376
377 /*
378 * If this(target) is the last cpu in the cpumask for this chip,
379 * check for any possible online cpu in the chip.
380 */
381 if (unlikely(target == cpu))
382 target = cpumask_any_but(l_cpumask, cpu);
383
384 /*
385 * Update the cpumask with the target cpu and
386 * migrate the context if needed
387 */
388 if (target >= 0 && target < nr_cpu_ids) {
389 cpumask_set_cpu(target, &nest_imc_cpumask);
390 nest_change_cpu_context(cpu, target);
391 } else {
392 opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
393 get_hard_smp_processor_id(cpu));
394 /*
395 * If this is the last cpu in this chip then, skip the reference
396 * count mutex lock and make the reference count on this chip zero.
397 */
398 ref = get_nest_pmu_ref(cpu);
399 if (!ref)
400 return -EINVAL;
401
402 ref->refc = 0;
403 }
404 return 0;
405 }
406
407 static int ppc_nest_imc_cpu_online(unsigned int cpu)
408 {
409 const struct cpumask *l_cpumask;
410 static struct cpumask tmp_mask;
411 int res;
412
413 /* Get the cpumask of this node */
414 l_cpumask = cpumask_of_node(cpu_to_node(cpu));
415
416 /*
417 * If this is not the first online CPU on this node, then
418 * just return.
419 */
420 if (cpumask_and(&tmp_mask, l_cpumask, &nest_imc_cpumask))
421 return 0;
422
423 /*
424 * If this is the first online cpu on this node
425 * disable the nest counters by making an OPAL call.
426 */
427 res = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
428 get_hard_smp_processor_id(cpu));
429 if (res)
430 return res;
431
432 /* Make this CPU the designated target for counter collection */
433 cpumask_set_cpu(cpu, &nest_imc_cpumask);
434 return 0;
435 }
436
437 static int nest_pmu_cpumask_init(void)
438 {
439 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE,
440 "perf/powerpc/imc:online",
441 ppc_nest_imc_cpu_online,
442 ppc_nest_imc_cpu_offline);
443 }
444
445 static void nest_imc_counters_release(struct perf_event *event)
446 {
447 int rc, node_id;
448 struct imc_pmu_ref *ref;
449
450 if (event->cpu < 0)
451 return;
452
453 node_id = cpu_to_node(event->cpu);
454
455 /*
456 * See if we need to disable the nest PMU.
457 * If no events are currently in use, then we have to take a
458 * mutex to ensure that we don't race with another task doing
459 * enable or disable the nest counters.
460 */
461 ref = get_nest_pmu_ref(event->cpu);
462 if (!ref)
463 return;
464
465 /* Take the mutex lock for this node and then decrement the reference count */
466 mutex_lock(&ref->lock);
467 if (ref->refc == 0) {
468 /*
469 * The scenario where this is true is, when perf session is
470 * started, followed by offlining of all cpus in a given node.
471 *
472 * In the cpuhotplug offline path, ppc_nest_imc_cpu_offline()
473 * function set the ref->count to zero, if the cpu which is
474 * about to offline is the last cpu in a given node and make
475 * an OPAL call to disable the engine in that node.
476 *
477 */
478 mutex_unlock(&ref->lock);
479 return;
480 }
481 ref->refc--;
482 if (ref->refc == 0) {
483 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_NEST,
484 get_hard_smp_processor_id(event->cpu));
485 if (rc) {
486 mutex_unlock(&ref->lock);
487 pr_err("nest-imc: Unable to stop the counters for core %d\n", node_id);
488 return;
489 }
490 } else if (ref->refc < 0) {
491 WARN(1, "nest-imc: Invalid event reference count\n");
492 ref->refc = 0;
493 }
494 mutex_unlock(&ref->lock);
495 }
496
497 static int nest_imc_event_init(struct perf_event *event)
498 {
499 int chip_id, rc, node_id;
500 u32 l_config, config = event->attr.config;
501 struct imc_mem_info *pcni;
502 struct imc_pmu *pmu;
503 struct imc_pmu_ref *ref;
504 bool flag = false;
505
506 if (event->attr.type != event->pmu->type)
507 return -ENOENT;
508
509 /* Sampling not supported */
510 if (event->hw.sample_period)
511 return -EINVAL;
512
513 if (event->cpu < 0)
514 return -EINVAL;
515
516 pmu = imc_event_to_pmu(event);
517
518 /* Sanity check for config (event offset) */
519 if ((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size)
520 return -EINVAL;
521
522 /*
523 * Nest HW counter memory resides in a per-chip reserve-memory (HOMER).
524 * Get the base memory addresss for this cpu.
525 */
526 chip_id = cpu_to_chip_id(event->cpu);
527
528 /* Return, if chip_id is not valid */
529 if (chip_id < 0)
530 return -ENODEV;
531
532 pcni = pmu->mem_info;
533 do {
534 if (pcni->id == chip_id) {
535 flag = true;
536 break;
537 }
538 pcni++;
539 } while (pcni->vbase != 0);
540
541 if (!flag)
542 return -ENODEV;
543
544 /*
545 * Add the event offset to the base address.
546 */
547 l_config = config & IMC_EVENT_OFFSET_MASK;
548 event->hw.event_base = (u64)pcni->vbase + l_config;
549 node_id = cpu_to_node(event->cpu);
550
551 /*
552 * Get the imc_pmu_ref struct for this node.
553 * Take the mutex lock and then increment the count of nest pmu events
554 * inited.
555 */
556 ref = get_nest_pmu_ref(event->cpu);
557 if (!ref)
558 return -EINVAL;
559
560 mutex_lock(&ref->lock);
561 if (ref->refc == 0) {
562 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_NEST,
563 get_hard_smp_processor_id(event->cpu));
564 if (rc) {
565 mutex_unlock(&ref->lock);
566 pr_err("nest-imc: Unable to start the counters for node %d\n",
567 node_id);
568 return rc;
569 }
570 }
571 ++ref->refc;
572 mutex_unlock(&ref->lock);
573
574 event->destroy = nest_imc_counters_release;
575 return 0;
576 }
577
578 /*
579 * core_imc_mem_init : Initializes memory for the current core.
580 *
581 * Uses alloc_pages_node() and uses the returned address as an argument to
582 * an opal call to configure the pdbar. The address sent as an argument is
583 * converted to physical address before the opal call is made. This is the
584 * base address at which the core imc counters are populated.
585 */
586 static int core_imc_mem_init(int cpu, int size)
587 {
588 int nid, rc = 0, core_id = (cpu / threads_per_core);
589 struct imc_mem_info *mem_info;
590 struct page *page;
591
592 /*
593 * alloc_pages_node() will allocate memory for core in the
594 * local node only.
595 */
596 nid = cpu_to_node(cpu);
597 mem_info = &core_imc_pmu->mem_info[core_id];
598 mem_info->id = core_id;
599
600 /* We need only vbase for core counters */
601 page = alloc_pages_node(nid,
602 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
603 __GFP_NOWARN, get_order(size));
604 if (!page)
605 return -ENOMEM;
606 mem_info->vbase = page_address(page);
607
608 /* Init the mutex */
609 core_imc_refc[core_id].id = core_id;
610 mutex_init(&core_imc_refc[core_id].lock);
611
612 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_CORE,
613 __pa((void *)mem_info->vbase),
614 get_hard_smp_processor_id(cpu));
615 if (rc) {
616 free_pages((u64)mem_info->vbase, get_order(size));
617 mem_info->vbase = NULL;
618 }
619
620 return rc;
621 }
622
623 static bool is_core_imc_mem_inited(int cpu)
624 {
625 struct imc_mem_info *mem_info;
626 int core_id = (cpu / threads_per_core);
627
628 mem_info = &core_imc_pmu->mem_info[core_id];
629 if (!mem_info->vbase)
630 return false;
631
632 return true;
633 }
634
635 static int ppc_core_imc_cpu_online(unsigned int cpu)
636 {
637 const struct cpumask *l_cpumask;
638 static struct cpumask tmp_mask;
639 int ret = 0;
640
641 /* Get the cpumask for this core */
642 l_cpumask = cpu_sibling_mask(cpu);
643
644 /* If a cpu for this core is already set, then, don't do anything */
645 if (cpumask_and(&tmp_mask, l_cpumask, &core_imc_cpumask))
646 return 0;
647
648 if (!is_core_imc_mem_inited(cpu)) {
649 ret = core_imc_mem_init(cpu, core_imc_pmu->counter_mem_size);
650 if (ret) {
651 pr_info("core_imc memory allocation for cpu %d failed\n", cpu);
652 return ret;
653 }
654 }
655
656 /* set the cpu in the mask */
657 cpumask_set_cpu(cpu, &core_imc_cpumask);
658 return 0;
659 }
660
661 static int ppc_core_imc_cpu_offline(unsigned int cpu)
662 {
663 unsigned int core_id;
664 int ncpu;
665 struct imc_pmu_ref *ref;
666
667 /*
668 * clear this cpu out of the mask, if not present in the mask,
669 * don't bother doing anything.
670 */
671 if (!cpumask_test_and_clear_cpu(cpu, &core_imc_cpumask))
672 return 0;
673
674 /*
675 * Check whether core_imc is registered. We could end up here
676 * if the cpuhotplug callback registration fails. i.e, callback
677 * invokes the offline path for all sucessfully registered cpus.
678 * At this stage, core_imc pmu will not be registered and we
679 * should return here.
680 *
681 * We return with a zero since this is not an offline failure.
682 * And cpuhp_setup_state() returns the actual failure reason
683 * to the caller, which inturn will call the cleanup routine.
684 */
685 if (!core_imc_pmu->pmu.event_init)
686 return 0;
687
688 /* Find any online cpu in that core except the current "cpu" */
689 ncpu = cpumask_last(cpu_sibling_mask(cpu));
690
691 if (unlikely(ncpu == cpu))
692 ncpu = cpumask_any_but(cpu_sibling_mask(cpu), cpu);
693
694 if (ncpu >= 0 && ncpu < nr_cpu_ids) {
695 cpumask_set_cpu(ncpu, &core_imc_cpumask);
696 perf_pmu_migrate_context(&core_imc_pmu->pmu, cpu, ncpu);
697 } else {
698 /*
699 * If this is the last cpu in this core then, skip taking refernce
700 * count mutex lock for this core and directly zero "refc" for
701 * this core.
702 */
703 opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
704 get_hard_smp_processor_id(cpu));
705 core_id = cpu / threads_per_core;
706 ref = &core_imc_refc[core_id];
707 if (!ref)
708 return -EINVAL;
709
710 ref->refc = 0;
711 /*
712 * Reduce the global reference count, if this is the
713 * last cpu in this core and core-imc event running
714 * in this cpu.
715 */
716 mutex_lock(&imc_global_refc.lock);
717 if (imc_global_refc.id == IMC_DOMAIN_CORE)
718 imc_global_refc.refc--;
719
720 mutex_unlock(&imc_global_refc.lock);
721 }
722 return 0;
723 }
724
725 static int core_imc_pmu_cpumask_init(void)
726 {
727 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE,
728 "perf/powerpc/imc_core:online",
729 ppc_core_imc_cpu_online,
730 ppc_core_imc_cpu_offline);
731 }
732
733 static void reset_global_refc(struct perf_event *event)
734 {
735 mutex_lock(&imc_global_refc.lock);
736 imc_global_refc.refc--;
737
738 /*
739 * If no other thread is running any
740 * event for this domain(thread/core/trace),
741 * set the global id to zero.
742 */
743 if (imc_global_refc.refc <= 0) {
744 imc_global_refc.refc = 0;
745 imc_global_refc.id = 0;
746 }
747 mutex_unlock(&imc_global_refc.lock);
748 }
749
750 static void core_imc_counters_release(struct perf_event *event)
751 {
752 int rc, core_id;
753 struct imc_pmu_ref *ref;
754
755 if (event->cpu < 0)
756 return;
757 /*
758 * See if we need to disable the IMC PMU.
759 * If no events are currently in use, then we have to take a
760 * mutex to ensure that we don't race with another task doing
761 * enable or disable the core counters.
762 */
763 core_id = event->cpu / threads_per_core;
764
765 /* Take the mutex lock and decrement the refernce count for this core */
766 ref = &core_imc_refc[core_id];
767 if (!ref)
768 return;
769
770 mutex_lock(&ref->lock);
771 if (ref->refc == 0) {
772 /*
773 * The scenario where this is true is, when perf session is
774 * started, followed by offlining of all cpus in a given core.
775 *
776 * In the cpuhotplug offline path, ppc_core_imc_cpu_offline()
777 * function set the ref->count to zero, if the cpu which is
778 * about to offline is the last cpu in a given core and make
779 * an OPAL call to disable the engine in that core.
780 *
781 */
782 mutex_unlock(&ref->lock);
783 return;
784 }
785 ref->refc--;
786 if (ref->refc == 0) {
787 rc = opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
788 get_hard_smp_processor_id(event->cpu));
789 if (rc) {
790 mutex_unlock(&ref->lock);
791 pr_err("IMC: Unable to stop the counters for core %d\n", core_id);
792 return;
793 }
794 } else if (ref->refc < 0) {
795 WARN(1, "core-imc: Invalid event reference count\n");
796 ref->refc = 0;
797 }
798 mutex_unlock(&ref->lock);
799
800 reset_global_refc(event);
801 }
802
803 static int core_imc_event_init(struct perf_event *event)
804 {
805 int core_id, rc;
806 u64 config = event->attr.config;
807 struct imc_mem_info *pcmi;
808 struct imc_pmu *pmu;
809 struct imc_pmu_ref *ref;
810
811 if (event->attr.type != event->pmu->type)
812 return -ENOENT;
813
814 /* Sampling not supported */
815 if (event->hw.sample_period)
816 return -EINVAL;
817
818 if (event->cpu < 0)
819 return -EINVAL;
820
821 event->hw.idx = -1;
822 pmu = imc_event_to_pmu(event);
823
824 /* Sanity check for config (event offset) */
825 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
826 return -EINVAL;
827
828 if (!is_core_imc_mem_inited(event->cpu))
829 return -ENODEV;
830
831 core_id = event->cpu / threads_per_core;
832 pcmi = &core_imc_pmu->mem_info[core_id];
833 if ((!pcmi->vbase))
834 return -ENODEV;
835
836 /* Get the core_imc mutex for this core */
837 ref = &core_imc_refc[core_id];
838 if (!ref)
839 return -EINVAL;
840
841 /*
842 * Core pmu units are enabled only when it is used.
843 * See if this is triggered for the first time.
844 * If yes, take the mutex lock and enable the core counters.
845 * If not, just increment the count in core_imc_refc struct.
846 */
847 mutex_lock(&ref->lock);
848 if (ref->refc == 0) {
849 rc = opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
850 get_hard_smp_processor_id(event->cpu));
851 if (rc) {
852 mutex_unlock(&ref->lock);
853 pr_err("core-imc: Unable to start the counters for core %d\n",
854 core_id);
855 return rc;
856 }
857 }
858 ++ref->refc;
859 mutex_unlock(&ref->lock);
860
861 /*
862 * Since the system can run either in accumulation or trace-mode
863 * of IMC at a time, core-imc events are allowed only if no other
864 * trace/thread imc events are enabled/monitored.
865 *
866 * Take the global lock, and check the refc.id
867 * to know whether any other trace/thread imc
868 * events are running.
869 */
870 mutex_lock(&imc_global_refc.lock);
871 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_CORE) {
872 /*
873 * No other trace/thread imc events are running in
874 * the system, so set the refc.id to core-imc.
875 */
876 imc_global_refc.id = IMC_DOMAIN_CORE;
877 imc_global_refc.refc++;
878 } else {
879 mutex_unlock(&imc_global_refc.lock);
880 return -EBUSY;
881 }
882 mutex_unlock(&imc_global_refc.lock);
883
884 event->hw.event_base = (u64)pcmi->vbase + (config & IMC_EVENT_OFFSET_MASK);
885 event->destroy = core_imc_counters_release;
886 return 0;
887 }
888
889 /*
890 * Allocates a page of memory for each of the online cpus, and load
891 * LDBAR with 0.
892 * The physical base address of the page allocated for a cpu will be
893 * written to the LDBAR for that cpu, when the thread-imc event
894 * is added.
895 *
896 * LDBAR Register Layout:
897 *
898 * 0 4 8 12 16 20 24 28
899 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
900 * | | [ ] [ Counter Address [8:50]
901 * | * Mode |
902 * | * PB Scope
903 * * Enable/Disable
904 *
905 * 32 36 40 44 48 52 56 60
906 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
907 * Counter Address [8:50] ]
908 *
909 */
910 static int thread_imc_mem_alloc(int cpu_id, int size)
911 {
912 u64 *local_mem = per_cpu(thread_imc_mem, cpu_id);
913 int nid = cpu_to_node(cpu_id);
914
915 if (!local_mem) {
916 struct page *page;
917 /*
918 * This case could happen only once at start, since we dont
919 * free the memory in cpu offline path.
920 */
921 page = alloc_pages_node(nid,
922 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
923 __GFP_NOWARN, get_order(size));
924 if (!page)
925 return -ENOMEM;
926 local_mem = page_address(page);
927
928 per_cpu(thread_imc_mem, cpu_id) = local_mem;
929 }
930
931 mtspr(SPRN_LDBAR, 0);
932 return 0;
933 }
934
935 static int ppc_thread_imc_cpu_online(unsigned int cpu)
936 {
937 return thread_imc_mem_alloc(cpu, thread_imc_mem_size);
938 }
939
940 static int ppc_thread_imc_cpu_offline(unsigned int cpu)
941 {
942 /*
943 * Set the bit 0 of LDBAR to zero.
944 *
945 * If bit 0 of LDBAR is unset, it will stop posting
946 * the counter data to memory.
947 * For thread-imc, bit 0 of LDBAR will be set to 1 in the
948 * event_add function. So reset this bit here, to stop the updates
949 * to memory in the cpu_offline path.
950 */
951 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
952
953 /* Reduce the refc if thread-imc event running on this cpu */
954 mutex_lock(&imc_global_refc.lock);
955 if (imc_global_refc.id == IMC_DOMAIN_THREAD)
956 imc_global_refc.refc--;
957 mutex_unlock(&imc_global_refc.lock);
958
959 return 0;
960 }
961
962 static int thread_imc_cpu_init(void)
963 {
964 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE,
965 "perf/powerpc/imc_thread:online",
966 ppc_thread_imc_cpu_online,
967 ppc_thread_imc_cpu_offline);
968 }
969
970 static int thread_imc_event_init(struct perf_event *event)
971 {
972 u32 config = event->attr.config;
973 struct task_struct *target;
974 struct imc_pmu *pmu;
975
976 if (event->attr.type != event->pmu->type)
977 return -ENOENT;
978
979 if (!capable(CAP_SYS_ADMIN))
980 return -EACCES;
981
982 /* Sampling not supported */
983 if (event->hw.sample_period)
984 return -EINVAL;
985
986 event->hw.idx = -1;
987 pmu = imc_event_to_pmu(event);
988
989 /* Sanity check for config offset */
990 if (((config & IMC_EVENT_OFFSET_MASK) > pmu->counter_mem_size))
991 return -EINVAL;
992
993 target = event->hw.target;
994 if (!target)
995 return -EINVAL;
996
997 mutex_lock(&imc_global_refc.lock);
998 /*
999 * Check if any other trace/core imc events are running in the
1000 * system, if not set the global id to thread-imc.
1001 */
1002 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_THREAD) {
1003 imc_global_refc.id = IMC_DOMAIN_THREAD;
1004 imc_global_refc.refc++;
1005 } else {
1006 mutex_unlock(&imc_global_refc.lock);
1007 return -EBUSY;
1008 }
1009 mutex_unlock(&imc_global_refc.lock);
1010
1011 event->pmu->task_ctx_nr = perf_sw_context;
1012 event->destroy = reset_global_refc;
1013 return 0;
1014 }
1015
1016 static bool is_thread_imc_pmu(struct perf_event *event)
1017 {
1018 if (!strncmp(event->pmu->name, "thread_imc", strlen("thread_imc")))
1019 return true;
1020
1021 return false;
1022 }
1023
1024 static u64 * get_event_base_addr(struct perf_event *event)
1025 {
1026 u64 addr;
1027
1028 if (is_thread_imc_pmu(event)) {
1029 addr = (u64)per_cpu(thread_imc_mem, smp_processor_id());
1030 return (u64 *)(addr + (event->attr.config & IMC_EVENT_OFFSET_MASK));
1031 }
1032
1033 return (u64 *)event->hw.event_base;
1034 }
1035
1036 static void thread_imc_pmu_start_txn(struct pmu *pmu,
1037 unsigned int txn_flags)
1038 {
1039 if (txn_flags & ~PERF_PMU_TXN_ADD)
1040 return;
1041 perf_pmu_disable(pmu);
1042 }
1043
1044 static void thread_imc_pmu_cancel_txn(struct pmu *pmu)
1045 {
1046 perf_pmu_enable(pmu);
1047 }
1048
1049 static int thread_imc_pmu_commit_txn(struct pmu *pmu)
1050 {
1051 perf_pmu_enable(pmu);
1052 return 0;
1053 }
1054
1055 static u64 imc_read_counter(struct perf_event *event)
1056 {
1057 u64 *addr, data;
1058
1059 /*
1060 * In-Memory Collection (IMC) counters are free flowing counters.
1061 * So we take a snapshot of the counter value on enable and save it
1062 * to calculate the delta at later stage to present the event counter
1063 * value.
1064 */
1065 addr = get_event_base_addr(event);
1066 data = be64_to_cpu(READ_ONCE(*addr));
1067 local64_set(&event->hw.prev_count, data);
1068
1069 return data;
1070 }
1071
1072 static void imc_event_update(struct perf_event *event)
1073 {
1074 u64 counter_prev, counter_new, final_count;
1075
1076 counter_prev = local64_read(&event->hw.prev_count);
1077 counter_new = imc_read_counter(event);
1078 final_count = counter_new - counter_prev;
1079
1080 /* Update the delta to the event count */
1081 local64_add(final_count, &event->count);
1082 }
1083
1084 static void imc_event_start(struct perf_event *event, int flags)
1085 {
1086 /*
1087 * In Memory Counters are free flowing counters. HW or the microcode
1088 * keeps adding to the counter offset in memory. To get event
1089 * counter value, we snapshot the value here and we calculate
1090 * delta at later point.
1091 */
1092 imc_read_counter(event);
1093 }
1094
1095 static void imc_event_stop(struct perf_event *event, int flags)
1096 {
1097 /*
1098 * Take a snapshot and calculate the delta and update
1099 * the event counter values.
1100 */
1101 imc_event_update(event);
1102 }
1103
1104 static int imc_event_add(struct perf_event *event, int flags)
1105 {
1106 if (flags & PERF_EF_START)
1107 imc_event_start(event, flags);
1108
1109 return 0;
1110 }
1111
1112 static int thread_imc_event_add(struct perf_event *event, int flags)
1113 {
1114 int core_id;
1115 struct imc_pmu_ref *ref;
1116 u64 ldbar_value, *local_mem = per_cpu(thread_imc_mem, smp_processor_id());
1117
1118 if (flags & PERF_EF_START)
1119 imc_event_start(event, flags);
1120
1121 if (!is_core_imc_mem_inited(smp_processor_id()))
1122 return -EINVAL;
1123
1124 core_id = smp_processor_id() / threads_per_core;
1125 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | THREAD_IMC_ENABLE;
1126 mtspr(SPRN_LDBAR, ldbar_value);
1127
1128 /*
1129 * imc pmus are enabled only when it is used.
1130 * See if this is triggered for the first time.
1131 * If yes, take the mutex lock and enable the counters.
1132 * If not, just increment the count in ref count struct.
1133 */
1134 ref = &core_imc_refc[core_id];
1135 if (!ref)
1136 return -EINVAL;
1137
1138 mutex_lock(&ref->lock);
1139 if (ref->refc == 0) {
1140 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_CORE,
1141 get_hard_smp_processor_id(smp_processor_id()))) {
1142 mutex_unlock(&ref->lock);
1143 pr_err("thread-imc: Unable to start the counter\
1144 for core %d\n", core_id);
1145 return -EINVAL;
1146 }
1147 }
1148 ++ref->refc;
1149 mutex_unlock(&ref->lock);
1150 return 0;
1151 }
1152
1153 static void thread_imc_event_del(struct perf_event *event, int flags)
1154 {
1155
1156 int core_id;
1157 struct imc_pmu_ref *ref;
1158
1159 core_id = smp_processor_id() / threads_per_core;
1160 ref = &core_imc_refc[core_id];
1161 if (!ref) {
1162 pr_debug("imc: Failed to get event reference count\n");
1163 return;
1164 }
1165
1166 mutex_lock(&ref->lock);
1167 ref->refc--;
1168 if (ref->refc == 0) {
1169 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_CORE,
1170 get_hard_smp_processor_id(smp_processor_id()))) {
1171 mutex_unlock(&ref->lock);
1172 pr_err("thread-imc: Unable to stop the counters\
1173 for core %d\n", core_id);
1174 return;
1175 }
1176 } else if (ref->refc < 0) {
1177 ref->refc = 0;
1178 }
1179 mutex_unlock(&ref->lock);
1180
1181 /* Set bit 0 of LDBAR to zero, to stop posting updates to memory */
1182 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1183
1184 /*
1185 * Take a snapshot and calculate the delta and update
1186 * the event counter values.
1187 */
1188 imc_event_update(event);
1189 }
1190
1191 /*
1192 * Allocate a page of memory for each cpu, and load LDBAR with 0.
1193 */
1194 static int trace_imc_mem_alloc(int cpu_id, int size)
1195 {
1196 u64 *local_mem = per_cpu(trace_imc_mem, cpu_id);
1197 int phys_id = cpu_to_node(cpu_id), rc = 0;
1198 int core_id = (cpu_id / threads_per_core);
1199
1200 if (!local_mem) {
1201 struct page *page;
1202
1203 page = alloc_pages_node(phys_id,
1204 GFP_KERNEL | __GFP_ZERO | __GFP_THISNODE |
1205 __GFP_NOWARN, get_order(size));
1206 if (!page)
1207 return -ENOMEM;
1208 local_mem = page_address(page);
1209 per_cpu(trace_imc_mem, cpu_id) = local_mem;
1210
1211 /* Initialise the counters for trace mode */
1212 rc = opal_imc_counters_init(OPAL_IMC_COUNTERS_TRACE, __pa((void *)local_mem),
1213 get_hard_smp_processor_id(cpu_id));
1214 if (rc) {
1215 pr_info("IMC:opal init failed for trace imc\n");
1216 return rc;
1217 }
1218 }
1219
1220 /* Init the mutex, if not already */
1221 trace_imc_refc[core_id].id = core_id;
1222 mutex_init(&trace_imc_refc[core_id].lock);
1223
1224 mtspr(SPRN_LDBAR, 0);
1225 return 0;
1226 }
1227
1228 static int ppc_trace_imc_cpu_online(unsigned int cpu)
1229 {
1230 return trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1231 }
1232
1233 static int ppc_trace_imc_cpu_offline(unsigned int cpu)
1234 {
1235 /*
1236 * No need to set bit 0 of LDBAR to zero, as
1237 * it is set to zero for imc trace-mode
1238 *
1239 * Reduce the refc if any trace-imc event running
1240 * on this cpu.
1241 */
1242 mutex_lock(&imc_global_refc.lock);
1243 if (imc_global_refc.id == IMC_DOMAIN_TRACE)
1244 imc_global_refc.refc--;
1245 mutex_unlock(&imc_global_refc.lock);
1246
1247 return 0;
1248 }
1249
1250 static int trace_imc_cpu_init(void)
1251 {
1252 return cpuhp_setup_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE,
1253 "perf/powerpc/imc_trace:online",
1254 ppc_trace_imc_cpu_online,
1255 ppc_trace_imc_cpu_offline);
1256 }
1257
1258 static u64 get_trace_imc_event_base_addr(void)
1259 {
1260 return (u64)per_cpu(trace_imc_mem, smp_processor_id());
1261 }
1262
1263 /*
1264 * Function to parse trace-imc data obtained
1265 * and to prepare the perf sample.
1266 */
1267 static int trace_imc_prepare_sample(struct trace_imc_data *mem,
1268 struct perf_sample_data *data,
1269 u64 *prev_tb,
1270 struct perf_event_header *header,
1271 struct perf_event *event)
1272 {
1273 /* Sanity checks for a valid record */
1274 if (be64_to_cpu(READ_ONCE(mem->tb1)) > *prev_tb)
1275 *prev_tb = be64_to_cpu(READ_ONCE(mem->tb1));
1276 else
1277 return -EINVAL;
1278
1279 if ((be64_to_cpu(READ_ONCE(mem->tb1)) & IMC_TRACE_RECORD_TB1_MASK) !=
1280 be64_to_cpu(READ_ONCE(mem->tb2)))
1281 return -EINVAL;
1282
1283 /* Prepare perf sample */
1284 data->ip = be64_to_cpu(READ_ONCE(mem->ip));
1285 data->period = event->hw.last_period;
1286
1287 header->type = PERF_RECORD_SAMPLE;
1288 header->size = sizeof(*header) + event->header_size;
1289 header->misc = 0;
1290
1291 if (is_kernel_addr(data->ip))
1292 header->misc |= PERF_RECORD_MISC_KERNEL;
1293 else
1294 header->misc |= PERF_RECORD_MISC_USER;
1295
1296 perf_event_header__init_id(header, data, event);
1297
1298 return 0;
1299 }
1300
1301 static void dump_trace_imc_data(struct perf_event *event)
1302 {
1303 struct trace_imc_data *mem;
1304 int i, ret;
1305 u64 prev_tb = 0;
1306
1307 mem = (struct trace_imc_data *)get_trace_imc_event_base_addr();
1308 for (i = 0; i < (trace_imc_mem_size / sizeof(struct trace_imc_data));
1309 i++, mem++) {
1310 struct perf_sample_data data;
1311 struct perf_event_header header;
1312
1313 ret = trace_imc_prepare_sample(mem, &data, &prev_tb, &header, event);
1314 if (ret) /* Exit, if not a valid record */
1315 break;
1316 else {
1317 /* If this is a valid record, create the sample */
1318 struct perf_output_handle handle;
1319
1320 if (perf_output_begin(&handle, event, header.size))
1321 return;
1322
1323 perf_output_sample(&handle, &header, &data, event);
1324 perf_output_end(&handle);
1325 }
1326 }
1327 }
1328
1329 static int trace_imc_event_add(struct perf_event *event, int flags)
1330 {
1331 int core_id = smp_processor_id() / threads_per_core;
1332 struct imc_pmu_ref *ref = NULL;
1333 u64 local_mem, ldbar_value;
1334
1335 /* Set trace-imc bit in ldbar and load ldbar with per-thread memory address */
1336 local_mem = get_trace_imc_event_base_addr();
1337 ldbar_value = ((u64)local_mem & THREAD_IMC_LDBAR_MASK) | TRACE_IMC_ENABLE;
1338
1339 /* trace-imc reference count */
1340 if (trace_imc_refc)
1341 ref = &trace_imc_refc[core_id];
1342 if (!ref) {
1343 pr_debug("imc: Failed to get the event reference count\n");
1344 return -EINVAL;
1345 }
1346
1347 mtspr(SPRN_LDBAR, ldbar_value);
1348 mutex_lock(&ref->lock);
1349 if (ref->refc == 0) {
1350 if (opal_imc_counters_start(OPAL_IMC_COUNTERS_TRACE,
1351 get_hard_smp_processor_id(smp_processor_id()))) {
1352 mutex_unlock(&ref->lock);
1353 pr_err("trace-imc: Unable to start the counters for core %d\n", core_id);
1354 return -EINVAL;
1355 }
1356 }
1357 ++ref->refc;
1358 mutex_unlock(&ref->lock);
1359 return 0;
1360 }
1361
1362 static void trace_imc_event_read(struct perf_event *event)
1363 {
1364 return;
1365 }
1366
1367 static void trace_imc_event_stop(struct perf_event *event, int flags)
1368 {
1369 u64 local_mem = get_trace_imc_event_base_addr();
1370 dump_trace_imc_data(event);
1371 memset((void *)local_mem, 0, sizeof(u64));
1372 }
1373
1374 static void trace_imc_event_start(struct perf_event *event, int flags)
1375 {
1376 return;
1377 }
1378
1379 static void trace_imc_event_del(struct perf_event *event, int flags)
1380 {
1381 int core_id = smp_processor_id() / threads_per_core;
1382 struct imc_pmu_ref *ref = NULL;
1383
1384 if (trace_imc_refc)
1385 ref = &trace_imc_refc[core_id];
1386 if (!ref) {
1387 pr_debug("imc: Failed to get event reference count\n");
1388 return;
1389 }
1390
1391 mutex_lock(&ref->lock);
1392 ref->refc--;
1393 if (ref->refc == 0) {
1394 if (opal_imc_counters_stop(OPAL_IMC_COUNTERS_TRACE,
1395 get_hard_smp_processor_id(smp_processor_id()))) {
1396 mutex_unlock(&ref->lock);
1397 pr_err("trace-imc: Unable to stop the counters for core %d\n", core_id);
1398 return;
1399 }
1400 } else if (ref->refc < 0) {
1401 ref->refc = 0;
1402 }
1403 mutex_unlock(&ref->lock);
1404
1405 trace_imc_event_stop(event, flags);
1406 }
1407
1408 static int trace_imc_event_init(struct perf_event *event)
1409 {
1410 struct task_struct *target;
1411
1412 if (event->attr.type != event->pmu->type)
1413 return -ENOENT;
1414
1415 if (!capable(CAP_SYS_ADMIN))
1416 return -EACCES;
1417
1418 /* Return if this is a couting event */
1419 if (event->attr.sample_period == 0)
1420 return -ENOENT;
1421
1422 /*
1423 * Take the global lock, and make sure
1424 * no other thread is running any core/thread imc
1425 * events
1426 */
1427 mutex_lock(&imc_global_refc.lock);
1428 if (imc_global_refc.id == 0 || imc_global_refc.id == IMC_DOMAIN_TRACE) {
1429 /*
1430 * No core/thread imc events are running in the
1431 * system, so set the refc.id to trace-imc.
1432 */
1433 imc_global_refc.id = IMC_DOMAIN_TRACE;
1434 imc_global_refc.refc++;
1435 } else {
1436 mutex_unlock(&imc_global_refc.lock);
1437 return -EBUSY;
1438 }
1439 mutex_unlock(&imc_global_refc.lock);
1440
1441 event->hw.idx = -1;
1442 target = event->hw.target;
1443
1444 event->pmu->task_ctx_nr = perf_hw_context;
1445 event->destroy = reset_global_refc;
1446 return 0;
1447 }
1448
1449 /* update_pmu_ops : Populate the appropriate operations for "pmu" */
1450 static int update_pmu_ops(struct imc_pmu *pmu)
1451 {
1452 pmu->pmu.task_ctx_nr = perf_invalid_context;
1453 pmu->pmu.add = imc_event_add;
1454 pmu->pmu.del = imc_event_stop;
1455 pmu->pmu.start = imc_event_start;
1456 pmu->pmu.stop = imc_event_stop;
1457 pmu->pmu.read = imc_event_update;
1458 pmu->pmu.attr_groups = pmu->attr_groups;
1459 pmu->pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1460 pmu->attr_groups[IMC_FORMAT_ATTR] = &imc_format_group;
1461
1462 switch (pmu->domain) {
1463 case IMC_DOMAIN_NEST:
1464 pmu->pmu.event_init = nest_imc_event_init;
1465 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1466 break;
1467 case IMC_DOMAIN_CORE:
1468 pmu->pmu.event_init = core_imc_event_init;
1469 pmu->attr_groups[IMC_CPUMASK_ATTR] = &imc_pmu_cpumask_attr_group;
1470 break;
1471 case IMC_DOMAIN_THREAD:
1472 pmu->pmu.event_init = thread_imc_event_init;
1473 pmu->pmu.add = thread_imc_event_add;
1474 pmu->pmu.del = thread_imc_event_del;
1475 pmu->pmu.start_txn = thread_imc_pmu_start_txn;
1476 pmu->pmu.cancel_txn = thread_imc_pmu_cancel_txn;
1477 pmu->pmu.commit_txn = thread_imc_pmu_commit_txn;
1478 break;
1479 case IMC_DOMAIN_TRACE:
1480 pmu->pmu.event_init = trace_imc_event_init;
1481 pmu->pmu.add = trace_imc_event_add;
1482 pmu->pmu.del = trace_imc_event_del;
1483 pmu->pmu.start = trace_imc_event_start;
1484 pmu->pmu.stop = trace_imc_event_stop;
1485 pmu->pmu.read = trace_imc_event_read;
1486 pmu->attr_groups[IMC_FORMAT_ATTR] = &trace_imc_format_group;
1487 default:
1488 break;
1489 }
1490
1491 return 0;
1492 }
1493
1494 /* init_nest_pmu_ref: Initialize the imc_pmu_ref struct for all the nodes */
1495 static int init_nest_pmu_ref(void)
1496 {
1497 int nid, i, cpu;
1498
1499 nest_imc_refc = kcalloc(num_possible_nodes(), sizeof(*nest_imc_refc),
1500 GFP_KERNEL);
1501
1502 if (!nest_imc_refc)
1503 return -ENOMEM;
1504
1505 i = 0;
1506 for_each_node(nid) {
1507 /*
1508 * Mutex lock to avoid races while tracking the number of
1509 * sessions using the chip's nest pmu units.
1510 */
1511 mutex_init(&nest_imc_refc[i].lock);
1512
1513 /*
1514 * Loop to init the "id" with the node_id. Variable "i" initialized to
1515 * 0 and will be used as index to the array. "i" will not go off the
1516 * end of the array since the "for_each_node" loops for "N_POSSIBLE"
1517 * nodes only.
1518 */
1519 nest_imc_refc[i++].id = nid;
1520 }
1521
1522 /*
1523 * Loop to init the per_cpu "local_nest_imc_refc" with the proper
1524 * "nest_imc_refc" index. This makes get_nest_pmu_ref() alot simple.
1525 */
1526 for_each_possible_cpu(cpu) {
1527 nid = cpu_to_node(cpu);
1528 for (i = 0; i < num_possible_nodes(); i++) {
1529 if (nest_imc_refc[i].id == nid) {
1530 per_cpu(local_nest_imc_refc, cpu) = &nest_imc_refc[i];
1531 break;
1532 }
1533 }
1534 }
1535 return 0;
1536 }
1537
1538 static void cleanup_all_core_imc_memory(void)
1539 {
1540 int i, nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1541 struct imc_mem_info *ptr = core_imc_pmu->mem_info;
1542 int size = core_imc_pmu->counter_mem_size;
1543
1544 /* mem_info will never be NULL */
1545 for (i = 0; i < nr_cores; i++) {
1546 if (ptr[i].vbase)
1547 free_pages((u64)ptr[i].vbase, get_order(size));
1548 }
1549
1550 kfree(ptr);
1551 kfree(core_imc_refc);
1552 }
1553
1554 static void thread_imc_ldbar_disable(void *dummy)
1555 {
1556 /*
1557 * By setting 0th bit of LDBAR to zero, we disable thread-imc
1558 * updates to memory.
1559 */
1560 mtspr(SPRN_LDBAR, (mfspr(SPRN_LDBAR) & (~(1UL << 63))));
1561 }
1562
1563 void thread_imc_disable(void)
1564 {
1565 on_each_cpu(thread_imc_ldbar_disable, NULL, 1);
1566 }
1567
1568 static void cleanup_all_thread_imc_memory(void)
1569 {
1570 int i, order = get_order(thread_imc_mem_size);
1571
1572 for_each_online_cpu(i) {
1573 if (per_cpu(thread_imc_mem, i))
1574 free_pages((u64)per_cpu(thread_imc_mem, i), order);
1575
1576 }
1577 }
1578
1579 static void cleanup_all_trace_imc_memory(void)
1580 {
1581 int i, order = get_order(trace_imc_mem_size);
1582
1583 for_each_online_cpu(i) {
1584 if (per_cpu(trace_imc_mem, i))
1585 free_pages((u64)per_cpu(trace_imc_mem, i), order);
1586
1587 }
1588 kfree(trace_imc_refc);
1589 }
1590
1591 /* Function to free the attr_groups which are dynamically allocated */
1592 static void imc_common_mem_free(struct imc_pmu *pmu_ptr)
1593 {
1594 if (pmu_ptr->attr_groups[IMC_EVENT_ATTR])
1595 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]->attrs);
1596 kfree(pmu_ptr->attr_groups[IMC_EVENT_ATTR]);
1597 }
1598
1599 /*
1600 * Common function to unregister cpu hotplug callback and
1601 * free the memory.
1602 * TODO: Need to handle pmu unregistering, which will be
1603 * done in followup series.
1604 */
1605 static void imc_common_cpuhp_mem_free(struct imc_pmu *pmu_ptr)
1606 {
1607 if (pmu_ptr->domain == IMC_DOMAIN_NEST) {
1608 mutex_lock(&nest_init_lock);
1609 if (nest_pmus == 1) {
1610 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_NEST_IMC_ONLINE);
1611 kfree(nest_imc_refc);
1612 kfree(per_nest_pmu_arr);
1613 per_nest_pmu_arr = NULL;
1614 }
1615
1616 if (nest_pmus > 0)
1617 nest_pmus--;
1618 mutex_unlock(&nest_init_lock);
1619 }
1620
1621 /* Free core_imc memory */
1622 if (pmu_ptr->domain == IMC_DOMAIN_CORE) {
1623 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_CORE_IMC_ONLINE);
1624 cleanup_all_core_imc_memory();
1625 }
1626
1627 /* Free thread_imc memory */
1628 if (pmu_ptr->domain == IMC_DOMAIN_THREAD) {
1629 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_THREAD_IMC_ONLINE);
1630 cleanup_all_thread_imc_memory();
1631 }
1632
1633 if (pmu_ptr->domain == IMC_DOMAIN_TRACE) {
1634 cpuhp_remove_state(CPUHP_AP_PERF_POWERPC_TRACE_IMC_ONLINE);
1635 cleanup_all_trace_imc_memory();
1636 }
1637 }
1638
1639 /*
1640 * Function to unregister thread-imc if core-imc
1641 * is not registered.
1642 */
1643 void unregister_thread_imc(void)
1644 {
1645 imc_common_cpuhp_mem_free(thread_imc_pmu);
1646 imc_common_mem_free(thread_imc_pmu);
1647 perf_pmu_unregister(&thread_imc_pmu->pmu);
1648 }
1649
1650 /*
1651 * imc_mem_init : Function to support memory allocation for core imc.
1652 */
1653 static int imc_mem_init(struct imc_pmu *pmu_ptr, struct device_node *parent,
1654 int pmu_index)
1655 {
1656 const char *s;
1657 int nr_cores, cpu, res = -ENOMEM;
1658
1659 if (of_property_read_string(parent, "name", &s))
1660 return -ENODEV;
1661
1662 switch (pmu_ptr->domain) {
1663 case IMC_DOMAIN_NEST:
1664 /* Update the pmu name */
1665 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s_imc", "nest_", s);
1666 if (!pmu_ptr->pmu.name)
1667 goto err;
1668
1669 /* Needed for hotplug/migration */
1670 if (!per_nest_pmu_arr) {
1671 per_nest_pmu_arr = kcalloc(get_max_nest_dev() + 1,
1672 sizeof(struct imc_pmu *),
1673 GFP_KERNEL);
1674 if (!per_nest_pmu_arr)
1675 goto err;
1676 }
1677 per_nest_pmu_arr[pmu_index] = pmu_ptr;
1678 break;
1679 case IMC_DOMAIN_CORE:
1680 /* Update the pmu name */
1681 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1682 if (!pmu_ptr->pmu.name)
1683 goto err;
1684
1685 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1686 pmu_ptr->mem_info = kcalloc(nr_cores, sizeof(struct imc_mem_info),
1687 GFP_KERNEL);
1688
1689 if (!pmu_ptr->mem_info)
1690 goto err;
1691
1692 core_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1693 GFP_KERNEL);
1694
1695 if (!core_imc_refc) {
1696 kfree(pmu_ptr->mem_info);
1697 goto err;
1698 }
1699
1700 core_imc_pmu = pmu_ptr;
1701 break;
1702 case IMC_DOMAIN_THREAD:
1703 /* Update the pmu name */
1704 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1705 if (!pmu_ptr->pmu.name)
1706 goto err;
1707
1708 thread_imc_mem_size = pmu_ptr->counter_mem_size;
1709 for_each_online_cpu(cpu) {
1710 res = thread_imc_mem_alloc(cpu, pmu_ptr->counter_mem_size);
1711 if (res) {
1712 cleanup_all_thread_imc_memory();
1713 goto err;
1714 }
1715 }
1716
1717 thread_imc_pmu = pmu_ptr;
1718 break;
1719 case IMC_DOMAIN_TRACE:
1720 /* Update the pmu name */
1721 pmu_ptr->pmu.name = kasprintf(GFP_KERNEL, "%s%s", s, "_imc");
1722 if (!pmu_ptr->pmu.name)
1723 return -ENOMEM;
1724
1725 nr_cores = DIV_ROUND_UP(num_possible_cpus(), threads_per_core);
1726 trace_imc_refc = kcalloc(nr_cores, sizeof(struct imc_pmu_ref),
1727 GFP_KERNEL);
1728 if (!trace_imc_refc)
1729 return -ENOMEM;
1730
1731 trace_imc_mem_size = pmu_ptr->counter_mem_size;
1732 for_each_online_cpu(cpu) {
1733 res = trace_imc_mem_alloc(cpu, trace_imc_mem_size);
1734 if (res) {
1735 cleanup_all_trace_imc_memory();
1736 goto err;
1737 }
1738 }
1739 break;
1740 default:
1741 return -EINVAL;
1742 }
1743
1744 return 0;
1745 err:
1746 return res;
1747 }
1748
1749 /*
1750 * init_imc_pmu : Setup and register the IMC pmu device.
1751 *
1752 * @parent: Device tree unit node
1753 * @pmu_ptr: memory allocated for this pmu
1754 * @pmu_idx: Count of nest pmc registered
1755 *
1756 * init_imc_pmu() setup pmu cpumask and registers for a cpu hotplug callback.
1757 * Handles failure cases and accordingly frees memory.
1758 */
1759 int init_imc_pmu(struct device_node *parent, struct imc_pmu *pmu_ptr, int pmu_idx)
1760 {
1761 int ret;
1762
1763 ret = imc_mem_init(pmu_ptr, parent, pmu_idx);
1764 if (ret)
1765 goto err_free_mem;
1766
1767 switch (pmu_ptr->domain) {
1768 case IMC_DOMAIN_NEST:
1769 /*
1770 * Nest imc pmu need only one cpu per chip, we initialize the
1771 * cpumask for the first nest imc pmu and use the same for the
1772 * rest. To handle the cpuhotplug callback unregister, we track
1773 * the number of nest pmus in "nest_pmus".
1774 */
1775 mutex_lock(&nest_init_lock);
1776 if (nest_pmus == 0) {
1777 ret = init_nest_pmu_ref();
1778 if (ret) {
1779 mutex_unlock(&nest_init_lock);
1780 kfree(per_nest_pmu_arr);
1781 per_nest_pmu_arr = NULL;
1782 goto err_free_mem;
1783 }
1784 /* Register for cpu hotplug notification. */
1785 ret = nest_pmu_cpumask_init();
1786 if (ret) {
1787 mutex_unlock(&nest_init_lock);
1788 kfree(nest_imc_refc);
1789 kfree(per_nest_pmu_arr);
1790 per_nest_pmu_arr = NULL;
1791 goto err_free_mem;
1792 }
1793 }
1794 nest_pmus++;
1795 mutex_unlock(&nest_init_lock);
1796 break;
1797 case IMC_DOMAIN_CORE:
1798 ret = core_imc_pmu_cpumask_init();
1799 if (ret) {
1800 cleanup_all_core_imc_memory();
1801 goto err_free_mem;
1802 }
1803
1804 break;
1805 case IMC_DOMAIN_THREAD:
1806 ret = thread_imc_cpu_init();
1807 if (ret) {
1808 cleanup_all_thread_imc_memory();
1809 goto err_free_mem;
1810 }
1811
1812 break;
1813 case IMC_DOMAIN_TRACE:
1814 ret = trace_imc_cpu_init();
1815 if (ret) {
1816 cleanup_all_trace_imc_memory();
1817 goto err_free_mem;
1818 }
1819
1820 break;
1821 default:
1822 return -EINVAL; /* Unknown domain */
1823 }
1824
1825 ret = update_events_in_group(parent, pmu_ptr);
1826 if (ret)
1827 goto err_free_cpuhp_mem;
1828
1829 ret = update_pmu_ops(pmu_ptr);
1830 if (ret)
1831 goto err_free_cpuhp_mem;
1832
1833 ret = perf_pmu_register(&pmu_ptr->pmu, pmu_ptr->pmu.name, -1);
1834 if (ret)
1835 goto err_free_cpuhp_mem;
1836
1837 pr_debug("%s performance monitor hardware support registered\n",
1838 pmu_ptr->pmu.name);
1839
1840 return 0;
1841
1842 err_free_cpuhp_mem:
1843 imc_common_cpuhp_mem_free(pmu_ptr);
1844 err_free_mem:
1845 imc_common_mem_free(pmu_ptr);
1846 return ret;
1847 }