]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/s390/crypto/crc32le-vx.S
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / s390 / crypto / crc32le-vx.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Hardware-accelerated CRC-32 variants for Linux on z Systems
4 *
5 * Use the z/Architecture Vector Extension Facility to accelerate the
6 * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet
7 * and Castagnoli.
8 *
9 * This CRC-32 implementation algorithm is bitreflected and processes
10 * the least-significant bit first (Little-Endian).
11 *
12 * Copyright IBM Corp. 2015
13 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
14 */
15
16 #include <linux/linkage.h>
17 #include <asm/vx-insn.h>
18
19 /* Vector register range containing CRC-32 constants */
20 #define CONST_PERM_LE2BE %v9
21 #define CONST_R2R1 %v10
22 #define CONST_R4R3 %v11
23 #define CONST_R5 %v12
24 #define CONST_RU_POLY %v13
25 #define CONST_CRC_POLY %v14
26
27 .data
28 .align 8
29
30 /*
31 * The CRC-32 constant block contains reduction constants to fold and
32 * process particular chunks of the input data stream in parallel.
33 *
34 * For the CRC-32 variants, the constants are precomputed according to
35 * these definitions:
36 *
37 * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1
38 * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1
39 * R3 = [(x128+32 mod P'(x) << 32)]' << 1
40 * R4 = [(x128-32 mod P'(x) << 32)]' << 1
41 * R5 = [(x64 mod P'(x) << 32)]' << 1
42 * R6 = [(x32 mod P'(x) << 32)]' << 1
43 *
44 * The bitreflected Barret reduction constant, u', is defined as
45 * the bit reversal of floor(x**64 / P(x)).
46 *
47 * where P(x) is the polynomial in the normal domain and the P'(x) is the
48 * polynomial in the reversed (bitreflected) domain.
49 *
50 * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials:
51 *
52 * P(x) = 0x04C11DB7
53 * P'(x) = 0xEDB88320
54 *
55 * CRC-32C (Castagnoli) polynomials:
56 *
57 * P(x) = 0x1EDC6F41
58 * P'(x) = 0x82F63B78
59 */
60
61 .Lconstants_CRC_32_LE:
62 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
63 .quad 0x1c6e41596, 0x154442bd4 # R2, R1
64 .quad 0x0ccaa009e, 0x1751997d0 # R4, R3
65 .octa 0x163cd6124 # R5
66 .octa 0x1F7011641 # u'
67 .octa 0x1DB710641 # P'(x) << 1
68
69 .Lconstants_CRC_32C_LE:
70 .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask
71 .quad 0x09e4addf8, 0x740eef02 # R2, R1
72 .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3
73 .octa 0x0dd45aab8 # R5
74 .octa 0x0dea713f1 # u'
75 .octa 0x105ec76f0 # P'(x) << 1
76
77 .previous
78
79
80 .text
81
82 /*
83 * The CRC-32 functions use these calling conventions:
84 *
85 * Parameters:
86 *
87 * %r2: Initial CRC value, typically ~0; and final CRC (return) value.
88 * %r3: Input buffer pointer, performance might be improved if the
89 * buffer is on a doubleword boundary.
90 * %r4: Length of the buffer, must be 64 bytes or greater.
91 *
92 * Register usage:
93 *
94 * %r5: CRC-32 constant pool base pointer.
95 * V0: Initial CRC value and intermediate constants and results.
96 * V1..V4: Data for CRC computation.
97 * V5..V8: Next data chunks that are fetched from the input buffer.
98 * V9: Constant for BE->LE conversion and shift operations
99 *
100 * V10..V14: CRC-32 constants.
101 */
102
103 ENTRY(crc32_le_vgfm_16)
104 larl %r5,.Lconstants_CRC_32_LE
105 j crc32_le_vgfm_generic
106
107 ENTRY(crc32c_le_vgfm_16)
108 larl %r5,.Lconstants_CRC_32C_LE
109 j crc32_le_vgfm_generic
110
111
112 crc32_le_vgfm_generic:
113 /* Load CRC-32 constants */
114 VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5
115
116 /*
117 * Load the initial CRC value.
118 *
119 * The CRC value is loaded into the rightmost word of the
120 * vector register and is later XORed with the LSB portion
121 * of the loaded input data.
122 */
123 VZERO %v0 /* Clear V0 */
124 VLVGF %v0,%r2,3 /* Load CRC into rightmost word */
125
126 /* Load a 64-byte data chunk and XOR with CRC */
127 VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */
128 VPERM %v1,%v1,%v1,CONST_PERM_LE2BE
129 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
130 VPERM %v3,%v3,%v3,CONST_PERM_LE2BE
131 VPERM %v4,%v4,%v4,CONST_PERM_LE2BE
132
133 VX %v1,%v0,%v1 /* V1 ^= CRC */
134 aghi %r3,64 /* BUF = BUF + 64 */
135 aghi %r4,-64 /* LEN = LEN - 64 */
136
137 cghi %r4,64
138 jl .Lless_than_64bytes
139
140 .Lfold_64bytes_loop:
141 /* Load the next 64-byte data chunk into V5 to V8 */
142 VLM %v5,%v8,0,%r3
143 VPERM %v5,%v5,%v5,CONST_PERM_LE2BE
144 VPERM %v6,%v6,%v6,CONST_PERM_LE2BE
145 VPERM %v7,%v7,%v7,CONST_PERM_LE2BE
146 VPERM %v8,%v8,%v8,CONST_PERM_LE2BE
147
148 /*
149 * Perform a GF(2) multiplication of the doublewords in V1 with
150 * the R1 and R2 reduction constants in V0. The intermediate result
151 * is then folded (accumulated) with the next data chunk in V5 and
152 * stored in V1. Repeat this step for the register contents
153 * in V2, V3, and V4 respectively.
154 */
155 VGFMAG %v1,CONST_R2R1,%v1,%v5
156 VGFMAG %v2,CONST_R2R1,%v2,%v6
157 VGFMAG %v3,CONST_R2R1,%v3,%v7
158 VGFMAG %v4,CONST_R2R1,%v4,%v8
159
160 aghi %r3,64 /* BUF = BUF + 64 */
161 aghi %r4,-64 /* LEN = LEN - 64 */
162
163 cghi %r4,64
164 jnl .Lfold_64bytes_loop
165
166 .Lless_than_64bytes:
167 /*
168 * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3
169 * and R4 and accumulating the next 128-bit chunk until a single 128-bit
170 * value remains.
171 */
172 VGFMAG %v1,CONST_R4R3,%v1,%v2
173 VGFMAG %v1,CONST_R4R3,%v1,%v3
174 VGFMAG %v1,CONST_R4R3,%v1,%v4
175
176 cghi %r4,16
177 jl .Lfinal_fold
178
179 .Lfold_16bytes_loop:
180
181 VL %v2,0,,%r3 /* Load next data chunk */
182 VPERM %v2,%v2,%v2,CONST_PERM_LE2BE
183 VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */
184
185 aghi %r3,16
186 aghi %r4,-16
187
188 cghi %r4,16
189 jnl .Lfold_16bytes_loop
190
191 .Lfinal_fold:
192 /*
193 * Set up a vector register for byte shifts. The shift value must
194 * be loaded in bits 1-4 in byte element 7 of a vector register.
195 * Shift by 8 bytes: 0x40
196 * Shift by 4 bytes: 0x20
197 */
198 VLEIB %v9,0x40,7
199
200 /*
201 * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes
202 * to move R4 into the rightmost doubleword and set the leftmost
203 * doubleword to 0x1.
204 */
205 VSRLB %v0,CONST_R4R3,%v9
206 VLEIG %v0,1,0
207
208 /*
209 * Compute GF(2) product of V1 and V0. The rightmost doubleword
210 * of V1 is multiplied with R4. The leftmost doubleword of V1 is
211 * multiplied by 0x1 and is then XORed with rightmost product.
212 * Implicitly, the intermediate leftmost product becomes padded
213 */
214 VGFMG %v1,%v0,%v1
215
216 /*
217 * Now do the final 32-bit fold by multiplying the rightmost word
218 * in V1 with R5 and XOR the result with the remaining bits in V1.
219 *
220 * To achieve this by a single VGFMAG, right shift V1 by a word
221 * and store the result in V2 which is then accumulated. Use the
222 * vector unpack instruction to load the rightmost half of the
223 * doubleword into the rightmost doubleword element of V1; the other
224 * half is loaded in the leftmost doubleword.
225 * The vector register with CONST_R5 contains the R5 constant in the
226 * rightmost doubleword and the leftmost doubleword is zero to ignore
227 * the leftmost product of V1.
228 */
229 VLEIB %v9,0x20,7 /* Shift by words */
230 VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */
231 VUPLLF %v1,%v1 /* Split rightmost doubleword */
232 VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */
233
234 /*
235 * Apply a Barret reduction to compute the final 32-bit CRC value.
236 *
237 * The input values to the Barret reduction are the degree-63 polynomial
238 * in V1 (R(x)), degree-32 generator polynomial, and the reduction
239 * constant u. The Barret reduction result is the CRC value of R(x) mod
240 * P(x).
241 *
242 * The Barret reduction algorithm is defined as:
243 *
244 * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
245 * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
246 * 3. C(x) = R(x) XOR T2(x) mod x^32
247 *
248 * Note: The leftmost doubleword of vector register containing
249 * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product
250 * is zero and does not contribute to the final result.
251 */
252
253 /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */
254 VUPLLF %v2,%v1
255 VGFMG %v2,CONST_RU_POLY,%v2
256
257 /*
258 * Compute the GF(2) product of the CRC polynomial with T1(x) in
259 * V2 and XOR the intermediate result, T2(x), with the value in V1.
260 * The final result is stored in word element 2 of V2.
261 */
262 VUPLLF %v2,%v2
263 VGFMAG %v2,CONST_CRC_POLY,%v2,%v1
264
265 .Ldone:
266 VLGVF %r2,%v2,2
267 br %r14
268
269 .previous