]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/s390/include/asm/pgtable.h
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[thirdparty/linux.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <asm-generic/5level-fixup.h>
28 #include <linux/sched.h>
29 #include <linux/mm_types.h>
30 #include <linux/page-flags.h>
31 #include <linux/radix-tree.h>
32 #include <linux/atomic.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35
36 extern pgd_t swapper_pg_dir[];
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39 pmd_t *vmem_pmd_alloc(void);
40 pte_t *vmem_pte_alloc(void);
41
42 enum {
43 PG_DIRECT_MAP_4K = 0,
44 PG_DIRECT_MAP_1M,
45 PG_DIRECT_MAP_2G,
46 PG_DIRECT_MAP_MAX
47 };
48
49 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
50
51 static inline void update_page_count(int level, long count)
52 {
53 if (IS_ENABLED(CONFIG_PROC_FS))
54 atomic_long_add(count, &direct_pages_count[level]);
55 }
56
57 struct seq_file;
58 void arch_report_meminfo(struct seq_file *m);
59
60 /*
61 * The S390 doesn't have any external MMU info: the kernel page
62 * tables contain all the necessary information.
63 */
64 #define update_mmu_cache(vma, address, ptep) do { } while (0)
65 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
66
67 /*
68 * ZERO_PAGE is a global shared page that is always zero; used
69 * for zero-mapped memory areas etc..
70 */
71
72 extern unsigned long empty_zero_page;
73 extern unsigned long zero_page_mask;
74
75 #define ZERO_PAGE(vaddr) \
76 (virt_to_page((void *)(empty_zero_page + \
77 (((unsigned long)(vaddr)) &zero_page_mask))))
78 #define __HAVE_COLOR_ZERO_PAGE
79
80 /* TODO: s390 cannot support io_remap_pfn_range... */
81 #endif /* !__ASSEMBLY__ */
82
83 /*
84 * PMD_SHIFT determines the size of the area a second-level page
85 * table can map
86 * PGDIR_SHIFT determines what a third-level page table entry can map
87 */
88 #define PMD_SHIFT 20
89 #define PUD_SHIFT 31
90 #define PGDIR_SHIFT 42
91
92 #define PMD_SIZE (1UL << PMD_SHIFT)
93 #define PMD_MASK (~(PMD_SIZE-1))
94 #define PUD_SIZE (1UL << PUD_SHIFT)
95 #define PUD_MASK (~(PUD_SIZE-1))
96 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
97 #define PGDIR_MASK (~(PGDIR_SIZE-1))
98
99 /*
100 * entries per page directory level: the S390 is two-level, so
101 * we don't really have any PMD directory physically.
102 * for S390 segment-table entries are combined to one PGD
103 * that leads to 1024 pte per pgd
104 */
105 #define PTRS_PER_PTE 256
106 #define PTRS_PER_PMD 2048
107 #define PTRS_PER_PUD 2048
108 #define PTRS_PER_PGD 2048
109
110 #define FIRST_USER_ADDRESS 0UL
111
112 #define pte_ERROR(e) \
113 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
114 #define pmd_ERROR(e) \
115 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
116 #define pud_ERROR(e) \
117 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
118 #define pgd_ERROR(e) \
119 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
120
121 #ifndef __ASSEMBLY__
122 /*
123 * The vmalloc and module area will always be on the topmost area of the
124 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
125 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
126 * modules will reside. That makes sure that inter module branches always
127 * happen without trampolines and in addition the placement within a 2GB frame
128 * is branch prediction unit friendly.
129 */
130 extern unsigned long VMALLOC_START;
131 extern unsigned long VMALLOC_END;
132 extern struct page *vmemmap;
133
134 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
135
136 extern unsigned long MODULES_VADDR;
137 extern unsigned long MODULES_END;
138 #define MODULES_VADDR MODULES_VADDR
139 #define MODULES_END MODULES_END
140 #define MODULES_LEN (1UL << 31)
141
142 static inline int is_module_addr(void *addr)
143 {
144 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
145 if (addr < (void *)MODULES_VADDR)
146 return 0;
147 if (addr > (void *)MODULES_END)
148 return 0;
149 return 1;
150 }
151
152 /*
153 * A 64 bit pagetable entry of S390 has following format:
154 * | PFRA |0IPC| OS |
155 * 0000000000111111111122222222223333333333444444444455555555556666
156 * 0123456789012345678901234567890123456789012345678901234567890123
157 *
158 * I Page-Invalid Bit: Page is not available for address-translation
159 * P Page-Protection Bit: Store access not possible for page
160 * C Change-bit override: HW is not required to set change bit
161 *
162 * A 64 bit segmenttable entry of S390 has following format:
163 * | P-table origin | TT
164 * 0000000000111111111122222222223333333333444444444455555555556666
165 * 0123456789012345678901234567890123456789012345678901234567890123
166 *
167 * I Segment-Invalid Bit: Segment is not available for address-translation
168 * C Common-Segment Bit: Segment is not private (PoP 3-30)
169 * P Page-Protection Bit: Store access not possible for page
170 * TT Type 00
171 *
172 * A 64 bit region table entry of S390 has following format:
173 * | S-table origin | TF TTTL
174 * 0000000000111111111122222222223333333333444444444455555555556666
175 * 0123456789012345678901234567890123456789012345678901234567890123
176 *
177 * I Segment-Invalid Bit: Segment is not available for address-translation
178 * TT Type 01
179 * TF
180 * TL Table length
181 *
182 * The 64 bit regiontable origin of S390 has following format:
183 * | region table origon | DTTL
184 * 0000000000111111111122222222223333333333444444444455555555556666
185 * 0123456789012345678901234567890123456789012345678901234567890123
186 *
187 * X Space-Switch event:
188 * G Segment-Invalid Bit:
189 * P Private-Space Bit:
190 * S Storage-Alteration:
191 * R Real space
192 * TL Table-Length:
193 *
194 * A storage key has the following format:
195 * | ACC |F|R|C|0|
196 * 0 3 4 5 6 7
197 * ACC: access key
198 * F : fetch protection bit
199 * R : referenced bit
200 * C : changed bit
201 */
202
203 /* Hardware bits in the page table entry */
204 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
205 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
206 #define _PAGE_INVALID 0x400 /* HW invalid bit */
207 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
208
209 /* Software bits in the page table entry */
210 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
211 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
212 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
213 #define _PAGE_READ 0x010 /* SW pte read bit */
214 #define _PAGE_WRITE 0x020 /* SW pte write bit */
215 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
216 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
217 #define __HAVE_ARCH_PTE_SPECIAL
218
219 #ifdef CONFIG_MEM_SOFT_DIRTY
220 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
221 #else
222 #define _PAGE_SOFT_DIRTY 0x000
223 #endif
224
225 /* Set of bits not changed in pte_modify */
226 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
227 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
228
229 /*
230 * handle_pte_fault uses pte_present and pte_none to find out the pte type
231 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
232 * distinguish present from not-present ptes. It is changed only with the page
233 * table lock held.
234 *
235 * The following table gives the different possible bit combinations for
236 * the pte hardware and software bits in the last 12 bits of a pte
237 * (. unassigned bit, x don't care, t swap type):
238 *
239 * 842100000000
240 * 000084210000
241 * 000000008421
242 * .IR.uswrdy.p
243 * empty .10.00000000
244 * swap .11..ttttt.0
245 * prot-none, clean, old .11.xx0000.1
246 * prot-none, clean, young .11.xx0001.1
247 * prot-none, dirty, old .11.xx0010.1
248 * prot-none, dirty, young .11.xx0011.1
249 * read-only, clean, old .11.xx0100.1
250 * read-only, clean, young .01.xx0101.1
251 * read-only, dirty, old .11.xx0110.1
252 * read-only, dirty, young .01.xx0111.1
253 * read-write, clean, old .11.xx1100.1
254 * read-write, clean, young .01.xx1101.1
255 * read-write, dirty, old .10.xx1110.1
256 * read-write, dirty, young .00.xx1111.1
257 * HW-bits: R read-only, I invalid
258 * SW-bits: p present, y young, d dirty, r read, w write, s special,
259 * u unused, l large
260 *
261 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
262 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
263 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
264 */
265
266 /* Bits in the segment/region table address-space-control-element */
267 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
268 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
269 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
270 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
271 #define _ASCE_REAL_SPACE 0x20 /* real space control */
272 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
273 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
274 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
275 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
276 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
277 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
278
279 /* Bits in the region table entry */
280 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
281 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
282 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
283 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
284 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
285 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
286 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
287 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
288 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
289 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
290
291 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
292 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
293 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
294 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
295 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
296 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
297
298 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
299 #define _REGION3_ENTRY_ORIGIN ~0x7ffUL/* region third table origin */
300
301 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
302 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
303 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
304 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
305 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
306
307 #ifdef CONFIG_MEM_SOFT_DIRTY
308 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
309 #else
310 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
311 #endif
312
313 #define _REGION_ENTRY_BITS 0xfffffffffffff227UL
314 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe27UL
315
316 /* Bits in the segment table entry */
317 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
318 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
319 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
320 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
321 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
322 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
323 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
324
325 #define _SEGMENT_ENTRY (0)
326 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
327
328 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
329 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
330 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
331 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
332 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
333
334 #ifdef CONFIG_MEM_SOFT_DIRTY
335 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
336 #else
337 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
338 #endif
339
340 /*
341 * Segment table and region3 table entry encoding
342 * (R = read-only, I = invalid, y = young bit):
343 * dy..R...I...wr
344 * prot-none, clean, old 00..1...1...00
345 * prot-none, clean, young 01..1...1...00
346 * prot-none, dirty, old 10..1...1...00
347 * prot-none, dirty, young 11..1...1...00
348 * read-only, clean, old 00..1...1...01
349 * read-only, clean, young 01..1...0...01
350 * read-only, dirty, old 10..1...1...01
351 * read-only, dirty, young 11..1...0...01
352 * read-write, clean, old 00..1...1...11
353 * read-write, clean, young 01..1...0...11
354 * read-write, dirty, old 10..0...1...11
355 * read-write, dirty, young 11..0...0...11
356 * The segment table origin is used to distinguish empty (origin==0) from
357 * read-write, old segment table entries (origin!=0)
358 * HW-bits: R read-only, I invalid
359 * SW-bits: y young, d dirty, r read, w write
360 */
361
362 /* Page status table bits for virtualization */
363 #define PGSTE_ACC_BITS 0xf000000000000000UL
364 #define PGSTE_FP_BIT 0x0800000000000000UL
365 #define PGSTE_PCL_BIT 0x0080000000000000UL
366 #define PGSTE_HR_BIT 0x0040000000000000UL
367 #define PGSTE_HC_BIT 0x0020000000000000UL
368 #define PGSTE_GR_BIT 0x0004000000000000UL
369 #define PGSTE_GC_BIT 0x0002000000000000UL
370 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
371 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
372 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
373
374 /* Guest Page State used for virtualization */
375 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
376 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
377 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
378 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
379
380 /*
381 * A user page table pointer has the space-switch-event bit, the
382 * private-space-control bit and the storage-alteration-event-control
383 * bit set. A kernel page table pointer doesn't need them.
384 */
385 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
386 _ASCE_ALT_EVENT)
387
388 /*
389 * Page protection definitions.
390 */
391 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
392 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
393 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
394 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
395 _PAGE_INVALID | _PAGE_PROTECT)
396 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
397 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
398 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
399 _PAGE_INVALID | _PAGE_PROTECT)
400
401 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
402 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
403 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
405 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
406 _PAGE_PROTECT | _PAGE_NOEXEC)
407 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_YOUNG | _PAGE_DIRTY)
409
410 /*
411 * On s390 the page table entry has an invalid bit and a read-only bit.
412 * Read permission implies execute permission and write permission
413 * implies read permission.
414 */
415 /*xwr*/
416 #define __P000 PAGE_NONE
417 #define __P001 PAGE_RO
418 #define __P010 PAGE_RO
419 #define __P011 PAGE_RO
420 #define __P100 PAGE_RX
421 #define __P101 PAGE_RX
422 #define __P110 PAGE_RX
423 #define __P111 PAGE_RX
424
425 #define __S000 PAGE_NONE
426 #define __S001 PAGE_RO
427 #define __S010 PAGE_RW
428 #define __S011 PAGE_RW
429 #define __S100 PAGE_RX
430 #define __S101 PAGE_RX
431 #define __S110 PAGE_RWX
432 #define __S111 PAGE_RWX
433
434 /*
435 * Segment entry (large page) protection definitions.
436 */
437 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
438 _SEGMENT_ENTRY_PROTECT)
439 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
440 _SEGMENT_ENTRY_READ | \
441 _SEGMENT_ENTRY_NOEXEC)
442 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
443 _SEGMENT_ENTRY_READ)
444 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
445 _SEGMENT_ENTRY_WRITE | \
446 _SEGMENT_ENTRY_NOEXEC)
447 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_WRITE)
449 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
450 _SEGMENT_ENTRY_LARGE | \
451 _SEGMENT_ENTRY_READ | \
452 _SEGMENT_ENTRY_WRITE | \
453 _SEGMENT_ENTRY_YOUNG | \
454 _SEGMENT_ENTRY_DIRTY | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
457 _SEGMENT_ENTRY_LARGE | \
458 _SEGMENT_ENTRY_READ | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_PROTECT | \
461 _SEGMENT_ENTRY_NOEXEC)
462
463 /*
464 * Region3 entry (large page) protection definitions.
465 */
466
467 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
468 _REGION3_ENTRY_LARGE | \
469 _REGION3_ENTRY_READ | \
470 _REGION3_ENTRY_WRITE | \
471 _REGION3_ENTRY_YOUNG | \
472 _REGION3_ENTRY_DIRTY | \
473 _REGION_ENTRY_NOEXEC)
474 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
475 _REGION3_ENTRY_LARGE | \
476 _REGION3_ENTRY_READ | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION_ENTRY_PROTECT | \
479 _REGION_ENTRY_NOEXEC)
480
481 static inline int mm_has_pgste(struct mm_struct *mm)
482 {
483 #ifdef CONFIG_PGSTE
484 if (unlikely(mm->context.has_pgste))
485 return 1;
486 #endif
487 return 0;
488 }
489
490 static inline int mm_alloc_pgste(struct mm_struct *mm)
491 {
492 #ifdef CONFIG_PGSTE
493 if (unlikely(mm->context.alloc_pgste))
494 return 1;
495 #endif
496 return 0;
497 }
498
499 /*
500 * In the case that a guest uses storage keys
501 * faults should no longer be backed by zero pages
502 */
503 #define mm_forbids_zeropage mm_use_skey
504 static inline int mm_use_skey(struct mm_struct *mm)
505 {
506 #ifdef CONFIG_PGSTE
507 if (mm->context.use_skey)
508 return 1;
509 #endif
510 return 0;
511 }
512
513 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
514 {
515 register unsigned long reg2 asm("2") = old;
516 register unsigned long reg3 asm("3") = new;
517 unsigned long address = (unsigned long)ptr | 1;
518
519 asm volatile(
520 " csp %0,%3"
521 : "+d" (reg2), "+m" (*ptr)
522 : "d" (reg3), "d" (address)
523 : "cc");
524 }
525
526 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
527 {
528 register unsigned long reg2 asm("2") = old;
529 register unsigned long reg3 asm("3") = new;
530 unsigned long address = (unsigned long)ptr | 1;
531
532 asm volatile(
533 " .insn rre,0xb98a0000,%0,%3"
534 : "+d" (reg2), "+m" (*ptr)
535 : "d" (reg3), "d" (address)
536 : "cc");
537 }
538
539 #define CRDTE_DTT_PAGE 0x00UL
540 #define CRDTE_DTT_SEGMENT 0x10UL
541 #define CRDTE_DTT_REGION3 0x14UL
542 #define CRDTE_DTT_REGION2 0x18UL
543 #define CRDTE_DTT_REGION1 0x1cUL
544
545 static inline void crdte(unsigned long old, unsigned long new,
546 unsigned long table, unsigned long dtt,
547 unsigned long address, unsigned long asce)
548 {
549 register unsigned long reg2 asm("2") = old;
550 register unsigned long reg3 asm("3") = new;
551 register unsigned long reg4 asm("4") = table | dtt;
552 register unsigned long reg5 asm("5") = address;
553
554 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
555 : "+d" (reg2)
556 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
557 : "memory", "cc");
558 }
559
560 /*
561 * pgd/pmd/pte query functions
562 */
563 static inline int pgd_present(pgd_t pgd)
564 {
565 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
566 return 1;
567 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
568 }
569
570 static inline int pgd_none(pgd_t pgd)
571 {
572 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
573 return 0;
574 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
575 }
576
577 static inline int pgd_bad(pgd_t pgd)
578 {
579 /*
580 * With dynamic page table levels the pgd can be a region table
581 * entry or a segment table entry. Check for the bit that are
582 * invalid for either table entry.
583 */
584 unsigned long mask =
585 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
586 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
587 return (pgd_val(pgd) & mask) != 0;
588 }
589
590 static inline int pud_present(pud_t pud)
591 {
592 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
593 return 1;
594 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
595 }
596
597 static inline int pud_none(pud_t pud)
598 {
599 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
600 return 0;
601 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
602 }
603
604 static inline int pud_large(pud_t pud)
605 {
606 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
607 return 0;
608 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
609 }
610
611 static inline unsigned long pud_pfn(pud_t pud)
612 {
613 unsigned long origin_mask;
614
615 origin_mask = _REGION3_ENTRY_ORIGIN;
616 if (pud_large(pud))
617 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
618 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
619 }
620
621 static inline int pmd_large(pmd_t pmd)
622 {
623 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
624 }
625
626 static inline int pmd_bad(pmd_t pmd)
627 {
628 if (pmd_large(pmd))
629 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
630 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
631 }
632
633 static inline int pud_bad(pud_t pud)
634 {
635 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
636 return pmd_bad(__pmd(pud_val(pud)));
637 if (pud_large(pud))
638 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
639 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
640 }
641
642 static inline int pmd_present(pmd_t pmd)
643 {
644 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
645 }
646
647 static inline int pmd_none(pmd_t pmd)
648 {
649 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
650 }
651
652 static inline unsigned long pmd_pfn(pmd_t pmd)
653 {
654 unsigned long origin_mask;
655
656 origin_mask = _SEGMENT_ENTRY_ORIGIN;
657 if (pmd_large(pmd))
658 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
659 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
660 }
661
662 #define __HAVE_ARCH_PMD_WRITE
663 static inline int pmd_write(pmd_t pmd)
664 {
665 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
666 }
667
668 static inline int pmd_dirty(pmd_t pmd)
669 {
670 int dirty = 1;
671 if (pmd_large(pmd))
672 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
673 return dirty;
674 }
675
676 static inline int pmd_young(pmd_t pmd)
677 {
678 int young = 1;
679 if (pmd_large(pmd))
680 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
681 return young;
682 }
683
684 static inline int pte_present(pte_t pte)
685 {
686 /* Bit pattern: (pte & 0x001) == 0x001 */
687 return (pte_val(pte) & _PAGE_PRESENT) != 0;
688 }
689
690 static inline int pte_none(pte_t pte)
691 {
692 /* Bit pattern: pte == 0x400 */
693 return pte_val(pte) == _PAGE_INVALID;
694 }
695
696 static inline int pte_swap(pte_t pte)
697 {
698 /* Bit pattern: (pte & 0x201) == 0x200 */
699 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
700 == _PAGE_PROTECT;
701 }
702
703 static inline int pte_special(pte_t pte)
704 {
705 return (pte_val(pte) & _PAGE_SPECIAL);
706 }
707
708 #define __HAVE_ARCH_PTE_SAME
709 static inline int pte_same(pte_t a, pte_t b)
710 {
711 return pte_val(a) == pte_val(b);
712 }
713
714 #ifdef CONFIG_NUMA_BALANCING
715 static inline int pte_protnone(pte_t pte)
716 {
717 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
718 }
719
720 static inline int pmd_protnone(pmd_t pmd)
721 {
722 /* pmd_large(pmd) implies pmd_present(pmd) */
723 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
724 }
725 #endif
726
727 static inline int pte_soft_dirty(pte_t pte)
728 {
729 return pte_val(pte) & _PAGE_SOFT_DIRTY;
730 }
731 #define pte_swp_soft_dirty pte_soft_dirty
732
733 static inline pte_t pte_mksoft_dirty(pte_t pte)
734 {
735 pte_val(pte) |= _PAGE_SOFT_DIRTY;
736 return pte;
737 }
738 #define pte_swp_mksoft_dirty pte_mksoft_dirty
739
740 static inline pte_t pte_clear_soft_dirty(pte_t pte)
741 {
742 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
743 return pte;
744 }
745 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
746
747 static inline int pmd_soft_dirty(pmd_t pmd)
748 {
749 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
750 }
751
752 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
753 {
754 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
755 return pmd;
756 }
757
758 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
759 {
760 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
761 return pmd;
762 }
763
764 /*
765 * query functions pte_write/pte_dirty/pte_young only work if
766 * pte_present() is true. Undefined behaviour if not..
767 */
768 static inline int pte_write(pte_t pte)
769 {
770 return (pte_val(pte) & _PAGE_WRITE) != 0;
771 }
772
773 static inline int pte_dirty(pte_t pte)
774 {
775 return (pte_val(pte) & _PAGE_DIRTY) != 0;
776 }
777
778 static inline int pte_young(pte_t pte)
779 {
780 return (pte_val(pte) & _PAGE_YOUNG) != 0;
781 }
782
783 #define __HAVE_ARCH_PTE_UNUSED
784 static inline int pte_unused(pte_t pte)
785 {
786 return pte_val(pte) & _PAGE_UNUSED;
787 }
788
789 /*
790 * pgd/pmd/pte modification functions
791 */
792
793 static inline void pgd_clear(pgd_t *pgd)
794 {
795 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
796 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
797 }
798
799 static inline void pud_clear(pud_t *pud)
800 {
801 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
802 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
803 }
804
805 static inline void pmd_clear(pmd_t *pmdp)
806 {
807 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
808 }
809
810 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
811 {
812 pte_val(*ptep) = _PAGE_INVALID;
813 }
814
815 /*
816 * The following pte modification functions only work if
817 * pte_present() is true. Undefined behaviour if not..
818 */
819 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
820 {
821 pte_val(pte) &= _PAGE_CHG_MASK;
822 pte_val(pte) |= pgprot_val(newprot);
823 /*
824 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
825 * has the invalid bit set, clear it again for readable, young pages
826 */
827 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
828 pte_val(pte) &= ~_PAGE_INVALID;
829 /*
830 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
831 * protection bit set, clear it again for writable, dirty pages
832 */
833 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
834 pte_val(pte) &= ~_PAGE_PROTECT;
835 return pte;
836 }
837
838 static inline pte_t pte_wrprotect(pte_t pte)
839 {
840 pte_val(pte) &= ~_PAGE_WRITE;
841 pte_val(pte) |= _PAGE_PROTECT;
842 return pte;
843 }
844
845 static inline pte_t pte_mkwrite(pte_t pte)
846 {
847 pte_val(pte) |= _PAGE_WRITE;
848 if (pte_val(pte) & _PAGE_DIRTY)
849 pte_val(pte) &= ~_PAGE_PROTECT;
850 return pte;
851 }
852
853 static inline pte_t pte_mkclean(pte_t pte)
854 {
855 pte_val(pte) &= ~_PAGE_DIRTY;
856 pte_val(pte) |= _PAGE_PROTECT;
857 return pte;
858 }
859
860 static inline pte_t pte_mkdirty(pte_t pte)
861 {
862 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
863 if (pte_val(pte) & _PAGE_WRITE)
864 pte_val(pte) &= ~_PAGE_PROTECT;
865 return pte;
866 }
867
868 static inline pte_t pte_mkold(pte_t pte)
869 {
870 pte_val(pte) &= ~_PAGE_YOUNG;
871 pte_val(pte) |= _PAGE_INVALID;
872 return pte;
873 }
874
875 static inline pte_t pte_mkyoung(pte_t pte)
876 {
877 pte_val(pte) |= _PAGE_YOUNG;
878 if (pte_val(pte) & _PAGE_READ)
879 pte_val(pte) &= ~_PAGE_INVALID;
880 return pte;
881 }
882
883 static inline pte_t pte_mkspecial(pte_t pte)
884 {
885 pte_val(pte) |= _PAGE_SPECIAL;
886 return pte;
887 }
888
889 #ifdef CONFIG_HUGETLB_PAGE
890 static inline pte_t pte_mkhuge(pte_t pte)
891 {
892 pte_val(pte) |= _PAGE_LARGE;
893 return pte;
894 }
895 #endif
896
897 #define IPTE_GLOBAL 0
898 #define IPTE_LOCAL 1
899
900 static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
901 {
902 unsigned long pto = (unsigned long) ptep;
903
904 /* Invalidation + TLB flush for the pte */
905 asm volatile(
906 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
907 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
908 [m4] "i" (local));
909 }
910
911 static inline void __ptep_ipte_range(unsigned long address, int nr,
912 pte_t *ptep, int local)
913 {
914 unsigned long pto = (unsigned long) ptep;
915
916 /* Invalidate a range of ptes + TLB flush of the ptes */
917 do {
918 asm volatile(
919 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
920 : [r2] "+a" (address), [r3] "+a" (nr)
921 : [r1] "a" (pto), [m4] "i" (local) : "memory");
922 } while (nr != 255);
923 }
924
925 /*
926 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
927 * both clear the TLB for the unmapped pte. The reason is that
928 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
929 * to modify an active pte. The sequence is
930 * 1) ptep_get_and_clear
931 * 2) set_pte_at
932 * 3) flush_tlb_range
933 * On s390 the tlb needs to get flushed with the modification of the pte
934 * if the pte is active. The only way how this can be implemented is to
935 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
936 * is a nop.
937 */
938 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
939 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
940
941 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
942 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
943 unsigned long addr, pte_t *ptep)
944 {
945 pte_t pte = *ptep;
946
947 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
948 return pte_young(pte);
949 }
950
951 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
952 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
953 unsigned long address, pte_t *ptep)
954 {
955 return ptep_test_and_clear_young(vma, address, ptep);
956 }
957
958 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
959 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
960 unsigned long addr, pte_t *ptep)
961 {
962 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
963 }
964
965 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
966 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
967 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
968
969 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
970 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
971 unsigned long addr, pte_t *ptep)
972 {
973 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
974 }
975
976 /*
977 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
978 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
979 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
980 * cannot be accessed while the batched unmap is running. In this case
981 * full==1 and a simple pte_clear is enough. See tlb.h.
982 */
983 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
984 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
985 unsigned long addr,
986 pte_t *ptep, int full)
987 {
988 if (full) {
989 pte_t pte = *ptep;
990 *ptep = __pte(_PAGE_INVALID);
991 return pte;
992 }
993 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
994 }
995
996 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
997 static inline void ptep_set_wrprotect(struct mm_struct *mm,
998 unsigned long addr, pte_t *ptep)
999 {
1000 pte_t pte = *ptep;
1001
1002 if (pte_write(pte))
1003 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1004 }
1005
1006 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1007 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1008 unsigned long addr, pte_t *ptep,
1009 pte_t entry, int dirty)
1010 {
1011 if (pte_same(*ptep, entry))
1012 return 0;
1013 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1014 return 1;
1015 }
1016
1017 /*
1018 * Additional functions to handle KVM guest page tables
1019 */
1020 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1021 pte_t *ptep, pte_t entry);
1022 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1023 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1024 pte_t *ptep, unsigned long bits);
1025 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1026 pte_t *ptep, int prot, unsigned long bit);
1027 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1028 pte_t *ptep , int reset);
1029 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1030 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1031 pte_t *sptep, pte_t *tptep, pte_t pte);
1032 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1033
1034 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1035 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1036 unsigned char key, bool nq);
1037 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1038 unsigned char key, unsigned char *oldkey,
1039 bool nq, bool mr, bool mc);
1040 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1041 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1042 unsigned char *key);
1043
1044 /*
1045 * Certain architectures need to do special things when PTEs
1046 * within a page table are directly modified. Thus, the following
1047 * hook is made available.
1048 */
1049 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1050 pte_t *ptep, pte_t entry)
1051 {
1052 if (!MACHINE_HAS_NX)
1053 pte_val(entry) &= ~_PAGE_NOEXEC;
1054 if (pte_present(entry))
1055 pte_val(entry) &= ~_PAGE_UNUSED;
1056 if (mm_has_pgste(mm))
1057 ptep_set_pte_at(mm, addr, ptep, entry);
1058 else
1059 *ptep = entry;
1060 }
1061
1062 /*
1063 * Conversion functions: convert a page and protection to a page entry,
1064 * and a page entry and page directory to the page they refer to.
1065 */
1066 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1067 {
1068 pte_t __pte;
1069 pte_val(__pte) = physpage + pgprot_val(pgprot);
1070 return pte_mkyoung(__pte);
1071 }
1072
1073 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1074 {
1075 unsigned long physpage = page_to_phys(page);
1076 pte_t __pte = mk_pte_phys(physpage, pgprot);
1077
1078 if (pte_write(__pte) && PageDirty(page))
1079 __pte = pte_mkdirty(__pte);
1080 return __pte;
1081 }
1082
1083 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1084 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1085 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1086 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1087
1088 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1089 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1090
1091 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1092 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1093 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1094
1095 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1096 {
1097 pud_t *pud = (pud_t *) pgd;
1098 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1099 pud = (pud_t *) pgd_deref(*pgd);
1100 return pud + pud_index(address);
1101 }
1102
1103 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1104 {
1105 pmd_t *pmd = (pmd_t *) pud;
1106 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1107 pmd = (pmd_t *) pud_deref(*pud);
1108 return pmd + pmd_index(address);
1109 }
1110
1111 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1112 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1113 #define pte_page(x) pfn_to_page(pte_pfn(x))
1114
1115 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1116 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1117
1118 /* Find an entry in the lowest level page table.. */
1119 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1120 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1121 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1122 #define pte_unmap(pte) do { } while (0)
1123
1124 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1125 {
1126 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1127 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1128 return pmd;
1129 }
1130
1131 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1132 {
1133 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1134 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1135 return pmd;
1136 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1137 return pmd;
1138 }
1139
1140 static inline pmd_t pmd_mkclean(pmd_t pmd)
1141 {
1142 if (pmd_large(pmd)) {
1143 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1144 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1145 }
1146 return pmd;
1147 }
1148
1149 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1150 {
1151 if (pmd_large(pmd)) {
1152 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1153 _SEGMENT_ENTRY_SOFT_DIRTY;
1154 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1155 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1156 }
1157 return pmd;
1158 }
1159
1160 static inline pud_t pud_wrprotect(pud_t pud)
1161 {
1162 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1163 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1164 return pud;
1165 }
1166
1167 static inline pud_t pud_mkwrite(pud_t pud)
1168 {
1169 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1170 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1171 return pud;
1172 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1173 return pud;
1174 }
1175
1176 static inline pud_t pud_mkclean(pud_t pud)
1177 {
1178 if (pud_large(pud)) {
1179 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1180 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1181 }
1182 return pud;
1183 }
1184
1185 static inline pud_t pud_mkdirty(pud_t pud)
1186 {
1187 if (pud_large(pud)) {
1188 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1189 _REGION3_ENTRY_SOFT_DIRTY;
1190 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1191 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1192 }
1193 return pud;
1194 }
1195
1196 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1197 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1198 {
1199 /*
1200 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1201 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1202 */
1203 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1204 return pgprot_val(SEGMENT_NONE);
1205 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1206 return pgprot_val(SEGMENT_RO);
1207 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1208 return pgprot_val(SEGMENT_RX);
1209 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1210 return pgprot_val(SEGMENT_RW);
1211 return pgprot_val(SEGMENT_RWX);
1212 }
1213
1214 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1215 {
1216 if (pmd_large(pmd)) {
1217 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1218 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1219 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1220 }
1221 return pmd;
1222 }
1223
1224 static inline pmd_t pmd_mkold(pmd_t pmd)
1225 {
1226 if (pmd_large(pmd)) {
1227 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1228 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1229 }
1230 return pmd;
1231 }
1232
1233 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1234 {
1235 if (pmd_large(pmd)) {
1236 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1237 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1238 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1239 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1240 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1241 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1242 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1243 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1244 return pmd;
1245 }
1246 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1247 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1248 return pmd;
1249 }
1250
1251 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1252 {
1253 pmd_t __pmd;
1254 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1255 return __pmd;
1256 }
1257
1258 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1259
1260 static inline void __pmdp_csp(pmd_t *pmdp)
1261 {
1262 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1263 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1264 }
1265
1266 #define IDTE_GLOBAL 0
1267 #define IDTE_LOCAL 1
1268
1269 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1270 {
1271 unsigned long sto;
1272
1273 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1274 asm volatile(
1275 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1276 : "+m" (*pmdp)
1277 : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1278 [m4] "i" (local)
1279 : "cc" );
1280 }
1281
1282 static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
1283 {
1284 unsigned long r3o;
1285
1286 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1287 r3o |= _ASCE_TYPE_REGION3;
1288 asm volatile(
1289 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1290 : "+m" (*pudp)
1291 : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1292 [m4] "i" (local)
1293 : "cc");
1294 }
1295
1296 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1297 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1298 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1299
1300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1301
1302 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1303 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1304 pgtable_t pgtable);
1305
1306 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1307 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1308
1309 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1310 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1311 unsigned long addr, pmd_t *pmdp,
1312 pmd_t entry, int dirty)
1313 {
1314 VM_BUG_ON(addr & ~HPAGE_MASK);
1315
1316 entry = pmd_mkyoung(entry);
1317 if (dirty)
1318 entry = pmd_mkdirty(entry);
1319 if (pmd_val(*pmdp) == pmd_val(entry))
1320 return 0;
1321 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1322 return 1;
1323 }
1324
1325 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1326 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1327 unsigned long addr, pmd_t *pmdp)
1328 {
1329 pmd_t pmd = *pmdp;
1330
1331 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1332 return pmd_young(pmd);
1333 }
1334
1335 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1336 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1337 unsigned long addr, pmd_t *pmdp)
1338 {
1339 VM_BUG_ON(addr & ~HPAGE_MASK);
1340 return pmdp_test_and_clear_young(vma, addr, pmdp);
1341 }
1342
1343 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1344 pmd_t *pmdp, pmd_t entry)
1345 {
1346 if (!MACHINE_HAS_NX)
1347 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1348 *pmdp = entry;
1349 }
1350
1351 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1352 {
1353 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1354 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1355 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1356 return pmd;
1357 }
1358
1359 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1360 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1361 unsigned long addr, pmd_t *pmdp)
1362 {
1363 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1364 }
1365
1366 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1367 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1368 unsigned long addr,
1369 pmd_t *pmdp, int full)
1370 {
1371 if (full) {
1372 pmd_t pmd = *pmdp;
1373 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1374 return pmd;
1375 }
1376 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1377 }
1378
1379 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1380 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1381 unsigned long addr, pmd_t *pmdp)
1382 {
1383 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1384 }
1385
1386 #define __HAVE_ARCH_PMDP_INVALIDATE
1387 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1388 unsigned long addr, pmd_t *pmdp)
1389 {
1390 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1391 }
1392
1393 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1394 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1395 unsigned long addr, pmd_t *pmdp)
1396 {
1397 pmd_t pmd = *pmdp;
1398
1399 if (pmd_write(pmd))
1400 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1401 }
1402
1403 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1404 unsigned long address,
1405 pmd_t *pmdp)
1406 {
1407 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1408 }
1409 #define pmdp_collapse_flush pmdp_collapse_flush
1410
1411 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1412 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1413
1414 static inline int pmd_trans_huge(pmd_t pmd)
1415 {
1416 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1417 }
1418
1419 #define has_transparent_hugepage has_transparent_hugepage
1420 static inline int has_transparent_hugepage(void)
1421 {
1422 return MACHINE_HAS_EDAT1 ? 1 : 0;
1423 }
1424 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1425
1426 /*
1427 * 64 bit swap entry format:
1428 * A page-table entry has some bits we have to treat in a special way.
1429 * Bits 52 and bit 55 have to be zero, otherwise a specification
1430 * exception will occur instead of a page translation exception. The
1431 * specification exception has the bad habit not to store necessary
1432 * information in the lowcore.
1433 * Bits 54 and 63 are used to indicate the page type.
1434 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1435 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1436 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1437 * for the offset.
1438 * | offset |01100|type |00|
1439 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1440 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1441 */
1442
1443 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1444 #define __SWP_OFFSET_SHIFT 12
1445 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1446 #define __SWP_TYPE_SHIFT 2
1447
1448 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1449 {
1450 pte_t pte;
1451
1452 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1453 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1454 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1455 return pte;
1456 }
1457
1458 static inline unsigned long __swp_type(swp_entry_t entry)
1459 {
1460 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1461 }
1462
1463 static inline unsigned long __swp_offset(swp_entry_t entry)
1464 {
1465 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1466 }
1467
1468 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1469 {
1470 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1471 }
1472
1473 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1474 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1475
1476 #endif /* !__ASSEMBLY__ */
1477
1478 #define kern_addr_valid(addr) (1)
1479
1480 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1481 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1482 extern int s390_enable_sie(void);
1483 extern int s390_enable_skey(void);
1484 extern void s390_reset_cmma(struct mm_struct *mm);
1485
1486 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1487 #define HAVE_ARCH_UNMAPPED_AREA
1488 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1489
1490 /*
1491 * No page table caches to initialise
1492 */
1493 static inline void pgtable_cache_init(void) { }
1494 static inline void check_pgt_cache(void) { }
1495
1496 #include <asm-generic/pgtable.h>
1497
1498 #endif /* _S390_PAGE_H */