]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/s390/kernel/ptrace.c
Merge git://git.infradead.org/users/eparis/audit
[people/arne_f/kernel.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46
47 #ifdef CONFIG_64BIT
48 /* Take care of the enable/disable of transactional execution. */
49 if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
50 unsigned long cr, cr_new;
51
52 __ctl_store(cr, 0, 0);
53 cr_new = cr;
54 if (MACHINE_HAS_TE) {
55 /* Set or clear transaction execution TXC bit 8. */
56 cr_new |= (1UL << 55);
57 if (task->thread.per_flags & PER_FLAG_NO_TE)
58 cr_new &= ~(1UL << 55);
59 }
60 if (MACHINE_HAS_VX) {
61 /* Enable/disable of vector extension */
62 cr_new &= ~(1UL << 17);
63 if (task->thread.vxrs)
64 cr_new |= (1UL << 17);
65 }
66 if (cr_new != cr)
67 __ctl_load(cr_new, 0, 0);
68 if (MACHINE_HAS_TE) {
69 /* Set/clear transaction execution TDC bits 62/63. */
70 __ctl_store(cr, 2, 2);
71 cr_new = cr & ~3UL;
72 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
73 if (task->thread.per_flags &
74 PER_FLAG_TE_ABORT_RAND_TEND)
75 cr_new |= 1UL;
76 else
77 cr_new |= 2UL;
78 }
79 if (cr_new != cr)
80 __ctl_load(cr_new, 2, 2);
81 }
82 }
83 #endif
84 /* Copy user specified PER registers */
85 new.control = thread->per_user.control;
86 new.start = thread->per_user.start;
87 new.end = thread->per_user.end;
88
89 /* merge TIF_SINGLE_STEP into user specified PER registers. */
90 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
91 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
92 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
93 new.control |= PER_EVENT_BRANCH;
94 else
95 new.control |= PER_EVENT_IFETCH;
96 #ifdef CONFIG_64BIT
97 new.control |= PER_CONTROL_SUSPENSION;
98 new.control |= PER_EVENT_TRANSACTION_END;
99 #endif
100 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
101 new.control |= PER_EVENT_IFETCH;
102 new.start = 0;
103 new.end = PSW_ADDR_INSN;
104 }
105
106 /* Take care of the PER enablement bit in the PSW. */
107 if (!(new.control & PER_EVENT_MASK)) {
108 regs->psw.mask &= ~PSW_MASK_PER;
109 return;
110 }
111 regs->psw.mask |= PSW_MASK_PER;
112 __ctl_store(old, 9, 11);
113 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
114 __ctl_load(new, 9, 11);
115 }
116
117 void user_enable_single_step(struct task_struct *task)
118 {
119 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
120 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
121 }
122
123 void user_disable_single_step(struct task_struct *task)
124 {
125 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
126 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
127 }
128
129 void user_enable_block_step(struct task_struct *task)
130 {
131 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
132 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
133 }
134
135 /*
136 * Called by kernel/ptrace.c when detaching..
137 *
138 * Clear all debugging related fields.
139 */
140 void ptrace_disable(struct task_struct *task)
141 {
142 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
143 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
144 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
145 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
146 task->thread.per_flags = 0;
147 }
148
149 #ifndef CONFIG_64BIT
150 # define __ADDR_MASK 3
151 #else
152 # define __ADDR_MASK 7
153 #endif
154
155 static inline unsigned long __peek_user_per(struct task_struct *child,
156 addr_t addr)
157 {
158 struct per_struct_kernel *dummy = NULL;
159
160 if (addr == (addr_t) &dummy->cr9)
161 /* Control bits of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 PER_EVENT_IFETCH : child->thread.per_user.control;
164 else if (addr == (addr_t) &dummy->cr10)
165 /* Start address of the active per set. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 0 : child->thread.per_user.start;
168 else if (addr == (addr_t) &dummy->cr11)
169 /* End address of the active per set. */
170 return test_thread_flag(TIF_SINGLE_STEP) ?
171 PSW_ADDR_INSN : child->thread.per_user.end;
172 else if (addr == (addr_t) &dummy->bits)
173 /* Single-step bit. */
174 return test_thread_flag(TIF_SINGLE_STEP) ?
175 (1UL << (BITS_PER_LONG - 1)) : 0;
176 else if (addr == (addr_t) &dummy->starting_addr)
177 /* Start address of the user specified per set. */
178 return child->thread.per_user.start;
179 else if (addr == (addr_t) &dummy->ending_addr)
180 /* End address of the user specified per set. */
181 return child->thread.per_user.end;
182 else if (addr == (addr_t) &dummy->perc_atmid)
183 /* PER code, ATMID and AI of the last PER trap */
184 return (unsigned long)
185 child->thread.per_event.cause << (BITS_PER_LONG - 16);
186 else if (addr == (addr_t) &dummy->address)
187 /* Address of the last PER trap */
188 return child->thread.per_event.address;
189 else if (addr == (addr_t) &dummy->access_id)
190 /* Access id of the last PER trap */
191 return (unsigned long)
192 child->thread.per_event.paid << (BITS_PER_LONG - 8);
193 return 0;
194 }
195
196 /*
197 * Read the word at offset addr from the user area of a process. The
198 * trouble here is that the information is littered over different
199 * locations. The process registers are found on the kernel stack,
200 * the floating point stuff and the trace settings are stored in
201 * the task structure. In addition the different structures in
202 * struct user contain pad bytes that should be read as zeroes.
203 * Lovely...
204 */
205 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
206 {
207 struct user *dummy = NULL;
208 addr_t offset, tmp;
209
210 if (addr < (addr_t) &dummy->regs.acrs) {
211 /*
212 * psw and gprs are stored on the stack
213 */
214 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
215 if (addr == (addr_t) &dummy->regs.psw.mask) {
216 /* Return a clean psw mask. */
217 tmp &= PSW_MASK_USER | PSW_MASK_RI;
218 tmp |= PSW_USER_BITS;
219 }
220
221 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
222 /*
223 * access registers are stored in the thread structure
224 */
225 offset = addr - (addr_t) &dummy->regs.acrs;
226 #ifdef CONFIG_64BIT
227 /*
228 * Very special case: old & broken 64 bit gdb reading
229 * from acrs[15]. Result is a 64 bit value. Read the
230 * 32 bit acrs[15] value and shift it by 32. Sick...
231 */
232 if (addr == (addr_t) &dummy->regs.acrs[15])
233 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
234 else
235 #endif
236 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
237
238 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
239 /*
240 * orig_gpr2 is stored on the kernel stack
241 */
242 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
243
244 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
245 /*
246 * prevent reads of padding hole between
247 * orig_gpr2 and fp_regs on s390.
248 */
249 tmp = 0;
250
251 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
252 /*
253 * floating point regs. are stored in the thread structure
254 */
255 offset = addr - (addr_t) &dummy->regs.fp_regs;
256 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
257 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
258 tmp <<= BITS_PER_LONG - 32;
259
260 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
261 /*
262 * Handle access to the per_info structure.
263 */
264 addr -= (addr_t) &dummy->regs.per_info;
265 tmp = __peek_user_per(child, addr);
266
267 } else
268 tmp = 0;
269
270 return tmp;
271 }
272
273 static int
274 peek_user(struct task_struct *child, addr_t addr, addr_t data)
275 {
276 addr_t tmp, mask;
277
278 /*
279 * Stupid gdb peeks/pokes the access registers in 64 bit with
280 * an alignment of 4. Programmers from hell...
281 */
282 mask = __ADDR_MASK;
283 #ifdef CONFIG_64BIT
284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286 mask = 3;
287 #endif
288 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
289 return -EIO;
290
291 tmp = __peek_user(child, addr);
292 return put_user(tmp, (addr_t __user *) data);
293 }
294
295 static inline void __poke_user_per(struct task_struct *child,
296 addr_t addr, addr_t data)
297 {
298 struct per_struct_kernel *dummy = NULL;
299
300 /*
301 * There are only three fields in the per_info struct that the
302 * debugger user can write to.
303 * 1) cr9: the debugger wants to set a new PER event mask
304 * 2) starting_addr: the debugger wants to set a new starting
305 * address to use with the PER event mask.
306 * 3) ending_addr: the debugger wants to set a new ending
307 * address to use with the PER event mask.
308 * The user specified PER event mask and the start and end
309 * addresses are used only if single stepping is not in effect.
310 * Writes to any other field in per_info are ignored.
311 */
312 if (addr == (addr_t) &dummy->cr9)
313 /* PER event mask of the user specified per set. */
314 child->thread.per_user.control =
315 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
316 else if (addr == (addr_t) &dummy->starting_addr)
317 /* Starting address of the user specified per set. */
318 child->thread.per_user.start = data;
319 else if (addr == (addr_t) &dummy->ending_addr)
320 /* Ending address of the user specified per set. */
321 child->thread.per_user.end = data;
322 }
323
324 /*
325 * Write a word to the user area of a process at location addr. This
326 * operation does have an additional problem compared to peek_user.
327 * Stores to the program status word and on the floating point
328 * control register needs to get checked for validity.
329 */
330 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
331 {
332 struct user *dummy = NULL;
333 addr_t offset;
334
335 if (addr < (addr_t) &dummy->regs.acrs) {
336 /*
337 * psw and gprs are stored on the stack
338 */
339 if (addr == (addr_t) &dummy->regs.psw.mask) {
340 unsigned long mask = PSW_MASK_USER;
341
342 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
343 if ((data ^ PSW_USER_BITS) & ~mask)
344 /* Invalid psw mask. */
345 return -EINVAL;
346 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
347 /* Invalid address-space-control bits */
348 return -EINVAL;
349 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
350 /* Invalid addressing mode bits */
351 return -EINVAL;
352 }
353 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
354
355 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
356 /*
357 * access registers are stored in the thread structure
358 */
359 offset = addr - (addr_t) &dummy->regs.acrs;
360 #ifdef CONFIG_64BIT
361 /*
362 * Very special case: old & broken 64 bit gdb writing
363 * to acrs[15] with a 64 bit value. Ignore the lower
364 * half of the value and write the upper 32 bit to
365 * acrs[15]. Sick...
366 */
367 if (addr == (addr_t) &dummy->regs.acrs[15])
368 child->thread.acrs[15] = (unsigned int) (data >> 32);
369 else
370 #endif
371 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
372
373 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
374 /*
375 * orig_gpr2 is stored on the kernel stack
376 */
377 task_pt_regs(child)->orig_gpr2 = data;
378
379 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
380 /*
381 * prevent writes of padding hole between
382 * orig_gpr2 and fp_regs on s390.
383 */
384 return 0;
385
386 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
387 /*
388 * floating point regs. are stored in the thread structure
389 */
390 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
391 if ((unsigned int) data != 0 ||
392 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
393 return -EINVAL;
394 offset = addr - (addr_t) &dummy->regs.fp_regs;
395 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
396
397 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
398 /*
399 * Handle access to the per_info structure.
400 */
401 addr -= (addr_t) &dummy->regs.per_info;
402 __poke_user_per(child, addr, data);
403
404 }
405
406 return 0;
407 }
408
409 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
410 {
411 addr_t mask;
412
413 /*
414 * Stupid gdb peeks/pokes the access registers in 64 bit with
415 * an alignment of 4. Programmers from hell indeed...
416 */
417 mask = __ADDR_MASK;
418 #ifdef CONFIG_64BIT
419 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
420 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
421 mask = 3;
422 #endif
423 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
424 return -EIO;
425
426 return __poke_user(child, addr, data);
427 }
428
429 long arch_ptrace(struct task_struct *child, long request,
430 unsigned long addr, unsigned long data)
431 {
432 ptrace_area parea;
433 int copied, ret;
434
435 switch (request) {
436 case PTRACE_PEEKUSR:
437 /* read the word at location addr in the USER area. */
438 return peek_user(child, addr, data);
439
440 case PTRACE_POKEUSR:
441 /* write the word at location addr in the USER area */
442 return poke_user(child, addr, data);
443
444 case PTRACE_PEEKUSR_AREA:
445 case PTRACE_POKEUSR_AREA:
446 if (copy_from_user(&parea, (void __force __user *) addr,
447 sizeof(parea)))
448 return -EFAULT;
449 addr = parea.kernel_addr;
450 data = parea.process_addr;
451 copied = 0;
452 while (copied < parea.len) {
453 if (request == PTRACE_PEEKUSR_AREA)
454 ret = peek_user(child, addr, data);
455 else {
456 addr_t utmp;
457 if (get_user(utmp,
458 (addr_t __force __user *) data))
459 return -EFAULT;
460 ret = poke_user(child, addr, utmp);
461 }
462 if (ret)
463 return ret;
464 addr += sizeof(unsigned long);
465 data += sizeof(unsigned long);
466 copied += sizeof(unsigned long);
467 }
468 return 0;
469 case PTRACE_GET_LAST_BREAK:
470 put_user(task_thread_info(child)->last_break,
471 (unsigned long __user *) data);
472 return 0;
473 case PTRACE_ENABLE_TE:
474 if (!MACHINE_HAS_TE)
475 return -EIO;
476 child->thread.per_flags &= ~PER_FLAG_NO_TE;
477 return 0;
478 case PTRACE_DISABLE_TE:
479 if (!MACHINE_HAS_TE)
480 return -EIO;
481 child->thread.per_flags |= PER_FLAG_NO_TE;
482 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
483 return 0;
484 case PTRACE_TE_ABORT_RAND:
485 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
486 return -EIO;
487 switch (data) {
488 case 0UL:
489 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
490 break;
491 case 1UL:
492 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
493 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
494 break;
495 case 2UL:
496 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
497 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
498 break;
499 default:
500 return -EINVAL;
501 }
502 return 0;
503 default:
504 /* Removing high order bit from addr (only for 31 bit). */
505 addr &= PSW_ADDR_INSN;
506 return ptrace_request(child, request, addr, data);
507 }
508 }
509
510 #ifdef CONFIG_COMPAT
511 /*
512 * Now the fun part starts... a 31 bit program running in the
513 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
514 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
515 * to handle, the difference to the 64 bit versions of the requests
516 * is that the access is done in multiples of 4 byte instead of
517 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
518 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
519 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
520 * is a 31 bit program too, the content of struct user can be
521 * emulated. A 31 bit program peeking into the struct user of
522 * a 64 bit program is a no-no.
523 */
524
525 /*
526 * Same as peek_user_per but for a 31 bit program.
527 */
528 static inline __u32 __peek_user_per_compat(struct task_struct *child,
529 addr_t addr)
530 {
531 struct compat_per_struct_kernel *dummy32 = NULL;
532
533 if (addr == (addr_t) &dummy32->cr9)
534 /* Control bits of the active per set. */
535 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
536 PER_EVENT_IFETCH : child->thread.per_user.control;
537 else if (addr == (addr_t) &dummy32->cr10)
538 /* Start address of the active per set. */
539 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540 0 : child->thread.per_user.start;
541 else if (addr == (addr_t) &dummy32->cr11)
542 /* End address of the active per set. */
543 return test_thread_flag(TIF_SINGLE_STEP) ?
544 PSW32_ADDR_INSN : child->thread.per_user.end;
545 else if (addr == (addr_t) &dummy32->bits)
546 /* Single-step bit. */
547 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
548 0x80000000 : 0;
549 else if (addr == (addr_t) &dummy32->starting_addr)
550 /* Start address of the user specified per set. */
551 return (__u32) child->thread.per_user.start;
552 else if (addr == (addr_t) &dummy32->ending_addr)
553 /* End address of the user specified per set. */
554 return (__u32) child->thread.per_user.end;
555 else if (addr == (addr_t) &dummy32->perc_atmid)
556 /* PER code, ATMID and AI of the last PER trap */
557 return (__u32) child->thread.per_event.cause << 16;
558 else if (addr == (addr_t) &dummy32->address)
559 /* Address of the last PER trap */
560 return (__u32) child->thread.per_event.address;
561 else if (addr == (addr_t) &dummy32->access_id)
562 /* Access id of the last PER trap */
563 return (__u32) child->thread.per_event.paid << 24;
564 return 0;
565 }
566
567 /*
568 * Same as peek_user but for a 31 bit program.
569 */
570 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
571 {
572 struct compat_user *dummy32 = NULL;
573 addr_t offset;
574 __u32 tmp;
575
576 if (addr < (addr_t) &dummy32->regs.acrs) {
577 struct pt_regs *regs = task_pt_regs(child);
578 /*
579 * psw and gprs are stored on the stack
580 */
581 if (addr == (addr_t) &dummy32->regs.psw.mask) {
582 /* Fake a 31 bit psw mask. */
583 tmp = (__u32)(regs->psw.mask >> 32);
584 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
585 tmp |= PSW32_USER_BITS;
586 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
587 /* Fake a 31 bit psw address. */
588 tmp = (__u32) regs->psw.addr |
589 (__u32)(regs->psw.mask & PSW_MASK_BA);
590 } else {
591 /* gpr 0-15 */
592 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
593 }
594 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
595 /*
596 * access registers are stored in the thread structure
597 */
598 offset = addr - (addr_t) &dummy32->regs.acrs;
599 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
600
601 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
602 /*
603 * orig_gpr2 is stored on the kernel stack
604 */
605 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
606
607 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
608 /*
609 * prevent reads of padding hole between
610 * orig_gpr2 and fp_regs on s390.
611 */
612 tmp = 0;
613
614 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
615 /*
616 * floating point regs. are stored in the thread structure
617 */
618 offset = addr - (addr_t) &dummy32->regs.fp_regs;
619 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
620
621 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
622 /*
623 * Handle access to the per_info structure.
624 */
625 addr -= (addr_t) &dummy32->regs.per_info;
626 tmp = __peek_user_per_compat(child, addr);
627
628 } else
629 tmp = 0;
630
631 return tmp;
632 }
633
634 static int peek_user_compat(struct task_struct *child,
635 addr_t addr, addr_t data)
636 {
637 __u32 tmp;
638
639 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
640 return -EIO;
641
642 tmp = __peek_user_compat(child, addr);
643 return put_user(tmp, (__u32 __user *) data);
644 }
645
646 /*
647 * Same as poke_user_per but for a 31 bit program.
648 */
649 static inline void __poke_user_per_compat(struct task_struct *child,
650 addr_t addr, __u32 data)
651 {
652 struct compat_per_struct_kernel *dummy32 = NULL;
653
654 if (addr == (addr_t) &dummy32->cr9)
655 /* PER event mask of the user specified per set. */
656 child->thread.per_user.control =
657 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
658 else if (addr == (addr_t) &dummy32->starting_addr)
659 /* Starting address of the user specified per set. */
660 child->thread.per_user.start = data;
661 else if (addr == (addr_t) &dummy32->ending_addr)
662 /* Ending address of the user specified per set. */
663 child->thread.per_user.end = data;
664 }
665
666 /*
667 * Same as poke_user but for a 31 bit program.
668 */
669 static int __poke_user_compat(struct task_struct *child,
670 addr_t addr, addr_t data)
671 {
672 struct compat_user *dummy32 = NULL;
673 __u32 tmp = (__u32) data;
674 addr_t offset;
675
676 if (addr < (addr_t) &dummy32->regs.acrs) {
677 struct pt_regs *regs = task_pt_regs(child);
678 /*
679 * psw, gprs, acrs and orig_gpr2 are stored on the stack
680 */
681 if (addr == (addr_t) &dummy32->regs.psw.mask) {
682 __u32 mask = PSW32_MASK_USER;
683
684 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
685 /* Build a 64 bit psw mask from 31 bit mask. */
686 if ((tmp ^ PSW32_USER_BITS) & ~mask)
687 /* Invalid psw mask. */
688 return -EINVAL;
689 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
690 /* Invalid address-space-control bits */
691 return -EINVAL;
692 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
693 (regs->psw.mask & PSW_MASK_BA) |
694 (__u64)(tmp & mask) << 32;
695 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
696 /* Build a 64 bit psw address from 31 bit address. */
697 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
698 /* Transfer 31 bit amode bit to psw mask. */
699 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
700 (__u64)(tmp & PSW32_ADDR_AMODE);
701 } else {
702 /* gpr 0-15 */
703 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
704 }
705 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
706 /*
707 * access registers are stored in the thread structure
708 */
709 offset = addr - (addr_t) &dummy32->regs.acrs;
710 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
711
712 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
713 /*
714 * orig_gpr2 is stored on the kernel stack
715 */
716 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
717
718 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
719 /*
720 * prevent writess of padding hole between
721 * orig_gpr2 and fp_regs on s390.
722 */
723 return 0;
724
725 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
726 /*
727 * floating point regs. are stored in the thread structure
728 */
729 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
730 test_fp_ctl(tmp))
731 return -EINVAL;
732 offset = addr - (addr_t) &dummy32->regs.fp_regs;
733 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
734
735 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
736 /*
737 * Handle access to the per_info structure.
738 */
739 addr -= (addr_t) &dummy32->regs.per_info;
740 __poke_user_per_compat(child, addr, data);
741 }
742
743 return 0;
744 }
745
746 static int poke_user_compat(struct task_struct *child,
747 addr_t addr, addr_t data)
748 {
749 if (!is_compat_task() || (addr & 3) ||
750 addr > sizeof(struct compat_user) - 3)
751 return -EIO;
752
753 return __poke_user_compat(child, addr, data);
754 }
755
756 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
757 compat_ulong_t caddr, compat_ulong_t cdata)
758 {
759 unsigned long addr = caddr;
760 unsigned long data = cdata;
761 compat_ptrace_area parea;
762 int copied, ret;
763
764 switch (request) {
765 case PTRACE_PEEKUSR:
766 /* read the word at location addr in the USER area. */
767 return peek_user_compat(child, addr, data);
768
769 case PTRACE_POKEUSR:
770 /* write the word at location addr in the USER area */
771 return poke_user_compat(child, addr, data);
772
773 case PTRACE_PEEKUSR_AREA:
774 case PTRACE_POKEUSR_AREA:
775 if (copy_from_user(&parea, (void __force __user *) addr,
776 sizeof(parea)))
777 return -EFAULT;
778 addr = parea.kernel_addr;
779 data = parea.process_addr;
780 copied = 0;
781 while (copied < parea.len) {
782 if (request == PTRACE_PEEKUSR_AREA)
783 ret = peek_user_compat(child, addr, data);
784 else {
785 __u32 utmp;
786 if (get_user(utmp,
787 (__u32 __force __user *) data))
788 return -EFAULT;
789 ret = poke_user_compat(child, addr, utmp);
790 }
791 if (ret)
792 return ret;
793 addr += sizeof(unsigned int);
794 data += sizeof(unsigned int);
795 copied += sizeof(unsigned int);
796 }
797 return 0;
798 case PTRACE_GET_LAST_BREAK:
799 put_user(task_thread_info(child)->last_break,
800 (unsigned int __user *) data);
801 return 0;
802 }
803 return compat_ptrace_request(child, request, addr, data);
804 }
805 #endif
806
807 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
808 {
809 long ret = 0;
810
811 /* Do the secure computing check first. */
812 if (secure_computing()) {
813 /* seccomp failures shouldn't expose any additional code. */
814 ret = -1;
815 goto out;
816 }
817
818 /*
819 * The sysc_tracesys code in entry.S stored the system
820 * call number to gprs[2].
821 */
822 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
823 (tracehook_report_syscall_entry(regs) ||
824 regs->gprs[2] >= NR_syscalls)) {
825 /*
826 * Tracing decided this syscall should not happen or the
827 * debugger stored an invalid system call number. Skip
828 * the system call and the system call restart handling.
829 */
830 clear_pt_regs_flag(regs, PIF_SYSCALL);
831 ret = -1;
832 }
833
834 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
835 trace_sys_enter(regs, regs->gprs[2]);
836
837 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
838 regs->gprs[3], regs->gprs[4],
839 regs->gprs[5]);
840 out:
841 return ret ?: regs->gprs[2];
842 }
843
844 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
845 {
846 audit_syscall_exit(regs);
847
848 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
849 trace_sys_exit(regs, regs->gprs[2]);
850
851 if (test_thread_flag(TIF_SYSCALL_TRACE))
852 tracehook_report_syscall_exit(regs, 0);
853 }
854
855 /*
856 * user_regset definitions.
857 */
858
859 static int s390_regs_get(struct task_struct *target,
860 const struct user_regset *regset,
861 unsigned int pos, unsigned int count,
862 void *kbuf, void __user *ubuf)
863 {
864 if (target == current)
865 save_access_regs(target->thread.acrs);
866
867 if (kbuf) {
868 unsigned long *k = kbuf;
869 while (count > 0) {
870 *k++ = __peek_user(target, pos);
871 count -= sizeof(*k);
872 pos += sizeof(*k);
873 }
874 } else {
875 unsigned long __user *u = ubuf;
876 while (count > 0) {
877 if (__put_user(__peek_user(target, pos), u++))
878 return -EFAULT;
879 count -= sizeof(*u);
880 pos += sizeof(*u);
881 }
882 }
883 return 0;
884 }
885
886 static int s390_regs_set(struct task_struct *target,
887 const struct user_regset *regset,
888 unsigned int pos, unsigned int count,
889 const void *kbuf, const void __user *ubuf)
890 {
891 int rc = 0;
892
893 if (target == current)
894 save_access_regs(target->thread.acrs);
895
896 if (kbuf) {
897 const unsigned long *k = kbuf;
898 while (count > 0 && !rc) {
899 rc = __poke_user(target, pos, *k++);
900 count -= sizeof(*k);
901 pos += sizeof(*k);
902 }
903 } else {
904 const unsigned long __user *u = ubuf;
905 while (count > 0 && !rc) {
906 unsigned long word;
907 rc = __get_user(word, u++);
908 if (rc)
909 break;
910 rc = __poke_user(target, pos, word);
911 count -= sizeof(*u);
912 pos += sizeof(*u);
913 }
914 }
915
916 if (rc == 0 && target == current)
917 restore_access_regs(target->thread.acrs);
918
919 return rc;
920 }
921
922 static int s390_fpregs_get(struct task_struct *target,
923 const struct user_regset *regset, unsigned int pos,
924 unsigned int count, void *kbuf, void __user *ubuf)
925 {
926 if (target == current) {
927 save_fp_ctl(&target->thread.fp_regs.fpc);
928 save_fp_regs(target->thread.fp_regs.fprs);
929 }
930 #ifdef CONFIG_64BIT
931 else if (target->thread.vxrs) {
932 int i;
933
934 for (i = 0; i < __NUM_VXRS_LOW; i++)
935 target->thread.fp_regs.fprs[i] =
936 *(freg_t *)(target->thread.vxrs + i);
937 }
938 #endif
939 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
940 &target->thread.fp_regs, 0, -1);
941 }
942
943 static int s390_fpregs_set(struct task_struct *target,
944 const struct user_regset *regset, unsigned int pos,
945 unsigned int count, const void *kbuf,
946 const void __user *ubuf)
947 {
948 int rc = 0;
949
950 if (target == current) {
951 save_fp_ctl(&target->thread.fp_regs.fpc);
952 save_fp_regs(target->thread.fp_regs.fprs);
953 }
954
955 /* If setting FPC, must validate it first. */
956 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
957 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
958 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
959 0, offsetof(s390_fp_regs, fprs));
960 if (rc)
961 return rc;
962 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
963 return -EINVAL;
964 target->thread.fp_regs.fpc = ufpc[0];
965 }
966
967 if (rc == 0 && count > 0)
968 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
969 target->thread.fp_regs.fprs,
970 offsetof(s390_fp_regs, fprs), -1);
971
972 if (rc == 0) {
973 if (target == current) {
974 restore_fp_ctl(&target->thread.fp_regs.fpc);
975 restore_fp_regs(target->thread.fp_regs.fprs);
976 }
977 #ifdef CONFIG_64BIT
978 else if (target->thread.vxrs) {
979 int i;
980
981 for (i = 0; i < __NUM_VXRS_LOW; i++)
982 *(freg_t *)(target->thread.vxrs + i) =
983 target->thread.fp_regs.fprs[i];
984 }
985 #endif
986 }
987
988 return rc;
989 }
990
991 #ifdef CONFIG_64BIT
992
993 static int s390_last_break_get(struct task_struct *target,
994 const struct user_regset *regset,
995 unsigned int pos, unsigned int count,
996 void *kbuf, void __user *ubuf)
997 {
998 if (count > 0) {
999 if (kbuf) {
1000 unsigned long *k = kbuf;
1001 *k = task_thread_info(target)->last_break;
1002 } else {
1003 unsigned long __user *u = ubuf;
1004 if (__put_user(task_thread_info(target)->last_break, u))
1005 return -EFAULT;
1006 }
1007 }
1008 return 0;
1009 }
1010
1011 static int s390_last_break_set(struct task_struct *target,
1012 const struct user_regset *regset,
1013 unsigned int pos, unsigned int count,
1014 const void *kbuf, const void __user *ubuf)
1015 {
1016 return 0;
1017 }
1018
1019 static int s390_tdb_get(struct task_struct *target,
1020 const struct user_regset *regset,
1021 unsigned int pos, unsigned int count,
1022 void *kbuf, void __user *ubuf)
1023 {
1024 struct pt_regs *regs = task_pt_regs(target);
1025 unsigned char *data;
1026
1027 if (!(regs->int_code & 0x200))
1028 return -ENODATA;
1029 data = target->thread.trap_tdb;
1030 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1031 }
1032
1033 static int s390_tdb_set(struct task_struct *target,
1034 const struct user_regset *regset,
1035 unsigned int pos, unsigned int count,
1036 const void *kbuf, const void __user *ubuf)
1037 {
1038 return 0;
1039 }
1040
1041 static int s390_vxrs_active(struct task_struct *target,
1042 const struct user_regset *regset)
1043 {
1044 return !!target->thread.vxrs;
1045 }
1046
1047 static int s390_vxrs_low_get(struct task_struct *target,
1048 const struct user_regset *regset,
1049 unsigned int pos, unsigned int count,
1050 void *kbuf, void __user *ubuf)
1051 {
1052 __u64 vxrs[__NUM_VXRS_LOW];
1053 int i;
1054
1055 if (target->thread.vxrs) {
1056 if (target == current)
1057 save_vx_regs(target->thread.vxrs);
1058 for (i = 0; i < __NUM_VXRS_LOW; i++)
1059 vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1060 } else
1061 memset(vxrs, 0, sizeof(vxrs));
1062 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1063 }
1064
1065 static int s390_vxrs_low_set(struct task_struct *target,
1066 const struct user_regset *regset,
1067 unsigned int pos, unsigned int count,
1068 const void *kbuf, const void __user *ubuf)
1069 {
1070 __u64 vxrs[__NUM_VXRS_LOW];
1071 int i, rc;
1072
1073 if (!target->thread.vxrs) {
1074 rc = alloc_vector_registers(target);
1075 if (rc)
1076 return rc;
1077 } else if (target == current)
1078 save_vx_regs(target->thread.vxrs);
1079
1080 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1081 if (rc == 0) {
1082 for (i = 0; i < __NUM_VXRS_LOW; i++)
1083 *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1084 if (target == current)
1085 restore_vx_regs(target->thread.vxrs);
1086 }
1087
1088 return rc;
1089 }
1090
1091 static int s390_vxrs_high_get(struct task_struct *target,
1092 const struct user_regset *regset,
1093 unsigned int pos, unsigned int count,
1094 void *kbuf, void __user *ubuf)
1095 {
1096 __vector128 vxrs[__NUM_VXRS_HIGH];
1097
1098 if (target->thread.vxrs) {
1099 if (target == current)
1100 save_vx_regs(target->thread.vxrs);
1101 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1102 sizeof(vxrs));
1103 } else
1104 memset(vxrs, 0, sizeof(vxrs));
1105 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1106 }
1107
1108 static int s390_vxrs_high_set(struct task_struct *target,
1109 const struct user_regset *regset,
1110 unsigned int pos, unsigned int count,
1111 const void *kbuf, const void __user *ubuf)
1112 {
1113 int rc;
1114
1115 if (!target->thread.vxrs) {
1116 rc = alloc_vector_registers(target);
1117 if (rc)
1118 return rc;
1119 } else if (target == current)
1120 save_vx_regs(target->thread.vxrs);
1121
1122 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1123 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1124 if (rc == 0 && target == current)
1125 restore_vx_regs(target->thread.vxrs);
1126
1127 return rc;
1128 }
1129
1130 #endif
1131
1132 static int s390_system_call_get(struct task_struct *target,
1133 const struct user_regset *regset,
1134 unsigned int pos, unsigned int count,
1135 void *kbuf, void __user *ubuf)
1136 {
1137 unsigned int *data = &task_thread_info(target)->system_call;
1138 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1139 data, 0, sizeof(unsigned int));
1140 }
1141
1142 static int s390_system_call_set(struct task_struct *target,
1143 const struct user_regset *regset,
1144 unsigned int pos, unsigned int count,
1145 const void *kbuf, const void __user *ubuf)
1146 {
1147 unsigned int *data = &task_thread_info(target)->system_call;
1148 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1149 data, 0, sizeof(unsigned int));
1150 }
1151
1152 static const struct user_regset s390_regsets[] = {
1153 {
1154 .core_note_type = NT_PRSTATUS,
1155 .n = sizeof(s390_regs) / sizeof(long),
1156 .size = sizeof(long),
1157 .align = sizeof(long),
1158 .get = s390_regs_get,
1159 .set = s390_regs_set,
1160 },
1161 {
1162 .core_note_type = NT_PRFPREG,
1163 .n = sizeof(s390_fp_regs) / sizeof(long),
1164 .size = sizeof(long),
1165 .align = sizeof(long),
1166 .get = s390_fpregs_get,
1167 .set = s390_fpregs_set,
1168 },
1169 {
1170 .core_note_type = NT_S390_SYSTEM_CALL,
1171 .n = 1,
1172 .size = sizeof(unsigned int),
1173 .align = sizeof(unsigned int),
1174 .get = s390_system_call_get,
1175 .set = s390_system_call_set,
1176 },
1177 #ifdef CONFIG_64BIT
1178 {
1179 .core_note_type = NT_S390_LAST_BREAK,
1180 .n = 1,
1181 .size = sizeof(long),
1182 .align = sizeof(long),
1183 .get = s390_last_break_get,
1184 .set = s390_last_break_set,
1185 },
1186 {
1187 .core_note_type = NT_S390_TDB,
1188 .n = 1,
1189 .size = 256,
1190 .align = 1,
1191 .get = s390_tdb_get,
1192 .set = s390_tdb_set,
1193 },
1194 {
1195 .core_note_type = NT_S390_VXRS_LOW,
1196 .n = __NUM_VXRS_LOW,
1197 .size = sizeof(__u64),
1198 .align = sizeof(__u64),
1199 .active = s390_vxrs_active,
1200 .get = s390_vxrs_low_get,
1201 .set = s390_vxrs_low_set,
1202 },
1203 {
1204 .core_note_type = NT_S390_VXRS_HIGH,
1205 .n = __NUM_VXRS_HIGH,
1206 .size = sizeof(__vector128),
1207 .align = sizeof(__vector128),
1208 .active = s390_vxrs_active,
1209 .get = s390_vxrs_high_get,
1210 .set = s390_vxrs_high_set,
1211 },
1212 #endif
1213 };
1214
1215 static const struct user_regset_view user_s390_view = {
1216 .name = UTS_MACHINE,
1217 .e_machine = EM_S390,
1218 .regsets = s390_regsets,
1219 .n = ARRAY_SIZE(s390_regsets)
1220 };
1221
1222 #ifdef CONFIG_COMPAT
1223 static int s390_compat_regs_get(struct task_struct *target,
1224 const struct user_regset *regset,
1225 unsigned int pos, unsigned int count,
1226 void *kbuf, void __user *ubuf)
1227 {
1228 if (target == current)
1229 save_access_regs(target->thread.acrs);
1230
1231 if (kbuf) {
1232 compat_ulong_t *k = kbuf;
1233 while (count > 0) {
1234 *k++ = __peek_user_compat(target, pos);
1235 count -= sizeof(*k);
1236 pos += sizeof(*k);
1237 }
1238 } else {
1239 compat_ulong_t __user *u = ubuf;
1240 while (count > 0) {
1241 if (__put_user(__peek_user_compat(target, pos), u++))
1242 return -EFAULT;
1243 count -= sizeof(*u);
1244 pos += sizeof(*u);
1245 }
1246 }
1247 return 0;
1248 }
1249
1250 static int s390_compat_regs_set(struct task_struct *target,
1251 const struct user_regset *regset,
1252 unsigned int pos, unsigned int count,
1253 const void *kbuf, const void __user *ubuf)
1254 {
1255 int rc = 0;
1256
1257 if (target == current)
1258 save_access_regs(target->thread.acrs);
1259
1260 if (kbuf) {
1261 const compat_ulong_t *k = kbuf;
1262 while (count > 0 && !rc) {
1263 rc = __poke_user_compat(target, pos, *k++);
1264 count -= sizeof(*k);
1265 pos += sizeof(*k);
1266 }
1267 } else {
1268 const compat_ulong_t __user *u = ubuf;
1269 while (count > 0 && !rc) {
1270 compat_ulong_t word;
1271 rc = __get_user(word, u++);
1272 if (rc)
1273 break;
1274 rc = __poke_user_compat(target, pos, word);
1275 count -= sizeof(*u);
1276 pos += sizeof(*u);
1277 }
1278 }
1279
1280 if (rc == 0 && target == current)
1281 restore_access_regs(target->thread.acrs);
1282
1283 return rc;
1284 }
1285
1286 static int s390_compat_regs_high_get(struct task_struct *target,
1287 const struct user_regset *regset,
1288 unsigned int pos, unsigned int count,
1289 void *kbuf, void __user *ubuf)
1290 {
1291 compat_ulong_t *gprs_high;
1292
1293 gprs_high = (compat_ulong_t *)
1294 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1295 if (kbuf) {
1296 compat_ulong_t *k = kbuf;
1297 while (count > 0) {
1298 *k++ = *gprs_high;
1299 gprs_high += 2;
1300 count -= sizeof(*k);
1301 }
1302 } else {
1303 compat_ulong_t __user *u = ubuf;
1304 while (count > 0) {
1305 if (__put_user(*gprs_high, u++))
1306 return -EFAULT;
1307 gprs_high += 2;
1308 count -= sizeof(*u);
1309 }
1310 }
1311 return 0;
1312 }
1313
1314 static int s390_compat_regs_high_set(struct task_struct *target,
1315 const struct user_regset *regset,
1316 unsigned int pos, unsigned int count,
1317 const void *kbuf, const void __user *ubuf)
1318 {
1319 compat_ulong_t *gprs_high;
1320 int rc = 0;
1321
1322 gprs_high = (compat_ulong_t *)
1323 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1324 if (kbuf) {
1325 const compat_ulong_t *k = kbuf;
1326 while (count > 0) {
1327 *gprs_high = *k++;
1328 *gprs_high += 2;
1329 count -= sizeof(*k);
1330 }
1331 } else {
1332 const compat_ulong_t __user *u = ubuf;
1333 while (count > 0 && !rc) {
1334 unsigned long word;
1335 rc = __get_user(word, u++);
1336 if (rc)
1337 break;
1338 *gprs_high = word;
1339 *gprs_high += 2;
1340 count -= sizeof(*u);
1341 }
1342 }
1343
1344 return rc;
1345 }
1346
1347 static int s390_compat_last_break_get(struct task_struct *target,
1348 const struct user_regset *regset,
1349 unsigned int pos, unsigned int count,
1350 void *kbuf, void __user *ubuf)
1351 {
1352 compat_ulong_t last_break;
1353
1354 if (count > 0) {
1355 last_break = task_thread_info(target)->last_break;
1356 if (kbuf) {
1357 unsigned long *k = kbuf;
1358 *k = last_break;
1359 } else {
1360 unsigned long __user *u = ubuf;
1361 if (__put_user(last_break, u))
1362 return -EFAULT;
1363 }
1364 }
1365 return 0;
1366 }
1367
1368 static int s390_compat_last_break_set(struct task_struct *target,
1369 const struct user_regset *regset,
1370 unsigned int pos, unsigned int count,
1371 const void *kbuf, const void __user *ubuf)
1372 {
1373 return 0;
1374 }
1375
1376 static const struct user_regset s390_compat_regsets[] = {
1377 {
1378 .core_note_type = NT_PRSTATUS,
1379 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1380 .size = sizeof(compat_long_t),
1381 .align = sizeof(compat_long_t),
1382 .get = s390_compat_regs_get,
1383 .set = s390_compat_regs_set,
1384 },
1385 {
1386 .core_note_type = NT_PRFPREG,
1387 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1388 .size = sizeof(compat_long_t),
1389 .align = sizeof(compat_long_t),
1390 .get = s390_fpregs_get,
1391 .set = s390_fpregs_set,
1392 },
1393 {
1394 .core_note_type = NT_S390_SYSTEM_CALL,
1395 .n = 1,
1396 .size = sizeof(compat_uint_t),
1397 .align = sizeof(compat_uint_t),
1398 .get = s390_system_call_get,
1399 .set = s390_system_call_set,
1400 },
1401 {
1402 .core_note_type = NT_S390_LAST_BREAK,
1403 .n = 1,
1404 .size = sizeof(long),
1405 .align = sizeof(long),
1406 .get = s390_compat_last_break_get,
1407 .set = s390_compat_last_break_set,
1408 },
1409 {
1410 .core_note_type = NT_S390_TDB,
1411 .n = 1,
1412 .size = 256,
1413 .align = 1,
1414 .get = s390_tdb_get,
1415 .set = s390_tdb_set,
1416 },
1417 {
1418 .core_note_type = NT_S390_VXRS_LOW,
1419 .n = __NUM_VXRS_LOW,
1420 .size = sizeof(__u64),
1421 .align = sizeof(__u64),
1422 .active = s390_vxrs_active,
1423 .get = s390_vxrs_low_get,
1424 .set = s390_vxrs_low_set,
1425 },
1426 {
1427 .core_note_type = NT_S390_VXRS_HIGH,
1428 .n = __NUM_VXRS_HIGH,
1429 .size = sizeof(__vector128),
1430 .align = sizeof(__vector128),
1431 .active = s390_vxrs_active,
1432 .get = s390_vxrs_high_get,
1433 .set = s390_vxrs_high_set,
1434 },
1435 {
1436 .core_note_type = NT_S390_HIGH_GPRS,
1437 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1438 .size = sizeof(compat_long_t),
1439 .align = sizeof(compat_long_t),
1440 .get = s390_compat_regs_high_get,
1441 .set = s390_compat_regs_high_set,
1442 },
1443 };
1444
1445 static const struct user_regset_view user_s390_compat_view = {
1446 .name = "s390",
1447 .e_machine = EM_S390,
1448 .regsets = s390_compat_regsets,
1449 .n = ARRAY_SIZE(s390_compat_regsets)
1450 };
1451 #endif
1452
1453 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1454 {
1455 #ifdef CONFIG_COMPAT
1456 if (test_tsk_thread_flag(task, TIF_31BIT))
1457 return &user_s390_compat_view;
1458 #endif
1459 return &user_s390_view;
1460 }
1461
1462 static const char *gpr_names[NUM_GPRS] = {
1463 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1464 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1465 };
1466
1467 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1468 {
1469 if (offset >= NUM_GPRS)
1470 return 0;
1471 return regs->gprs[offset];
1472 }
1473
1474 int regs_query_register_offset(const char *name)
1475 {
1476 unsigned long offset;
1477
1478 if (!name || *name != 'r')
1479 return -EINVAL;
1480 if (kstrtoul(name + 1, 10, &offset))
1481 return -EINVAL;
1482 if (offset >= NUM_GPRS)
1483 return -EINVAL;
1484 return offset;
1485 }
1486
1487 const char *regs_query_register_name(unsigned int offset)
1488 {
1489 if (offset >= NUM_GPRS)
1490 return NULL;
1491 return gpr_names[offset];
1492 }
1493
1494 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1495 {
1496 unsigned long ksp = kernel_stack_pointer(regs);
1497
1498 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1499 }
1500
1501 /**
1502 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1503 * @regs:pt_regs which contains kernel stack pointer.
1504 * @n:stack entry number.
1505 *
1506 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1507 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1508 * this returns 0.
1509 */
1510 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1511 {
1512 unsigned long addr;
1513
1514 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1515 if (!regs_within_kernel_stack(regs, addr))
1516 return 0;
1517 return *(unsigned long *)addr;
1518 }