]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/s390/kvm/kvm-s390.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / arch / s390 / kvm / kvm-s390.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Heiko Carstens <heiko.carstens@de.ibm.com>
10 * Christian Ehrhardt <ehrhardt@de.ibm.com>
11 * Jason J. Herne <jjherne@us.ibm.com>
12 */
13
14 #define KMSG_COMPONENT "kvm-s390"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/vmalloc.h>
31 #include <linux/bitmap.h>
32 #include <linux/sched/signal.h>
33 #include <linux/string.h>
34
35 #include <asm/asm-offsets.h>
36 #include <asm/lowcore.h>
37 #include <asm/stp.h>
38 #include <asm/pgtable.h>
39 #include <asm/gmap.h>
40 #include <asm/nmi.h>
41 #include <asm/switch_to.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include <asm/ap.h>
47 #include <asm/uv.h>
48 #include "kvm-s390.h"
49 #include "gaccess.h"
50
51 #define CREATE_TRACE_POINTS
52 #include "trace.h"
53 #include "trace-s390.h"
54
55 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
56 #define LOCAL_IRQS 32
57 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
58 (KVM_MAX_VCPUS + LOCAL_IRQS))
59
60 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
61 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
62
63 struct kvm_stats_debugfs_item debugfs_entries[] = {
64 { "userspace_handled", VCPU_STAT(exit_userspace) },
65 { "exit_null", VCPU_STAT(exit_null) },
66 { "exit_validity", VCPU_STAT(exit_validity) },
67 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
68 { "exit_external_request", VCPU_STAT(exit_external_request) },
69 { "exit_io_request", VCPU_STAT(exit_io_request) },
70 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
71 { "exit_instruction", VCPU_STAT(exit_instruction) },
72 { "exit_pei", VCPU_STAT(exit_pei) },
73 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
74 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
75 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
76 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
77 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
78 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
79 { "halt_no_poll_steal", VCPU_STAT(halt_no_poll_steal) },
80 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
81 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
82 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
83 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
84 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
85 { "deliver_ckc", VCPU_STAT(deliver_ckc) },
86 { "deliver_cputm", VCPU_STAT(deliver_cputm) },
87 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
88 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
89 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
90 { "deliver_virtio", VCPU_STAT(deliver_virtio) },
91 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
92 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
93 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
94 { "deliver_program", VCPU_STAT(deliver_program) },
95 { "deliver_io", VCPU_STAT(deliver_io) },
96 { "deliver_machine_check", VCPU_STAT(deliver_machine_check) },
97 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
98 { "inject_ckc", VCPU_STAT(inject_ckc) },
99 { "inject_cputm", VCPU_STAT(inject_cputm) },
100 { "inject_external_call", VCPU_STAT(inject_external_call) },
101 { "inject_float_mchk", VM_STAT(inject_float_mchk) },
102 { "inject_emergency_signal", VCPU_STAT(inject_emergency_signal) },
103 { "inject_io", VM_STAT(inject_io) },
104 { "inject_mchk", VCPU_STAT(inject_mchk) },
105 { "inject_pfault_done", VM_STAT(inject_pfault_done) },
106 { "inject_program", VCPU_STAT(inject_program) },
107 { "inject_restart", VCPU_STAT(inject_restart) },
108 { "inject_service_signal", VM_STAT(inject_service_signal) },
109 { "inject_set_prefix", VCPU_STAT(inject_set_prefix) },
110 { "inject_stop_signal", VCPU_STAT(inject_stop_signal) },
111 { "inject_pfault_init", VCPU_STAT(inject_pfault_init) },
112 { "inject_virtio", VM_STAT(inject_virtio) },
113 { "instruction_epsw", VCPU_STAT(instruction_epsw) },
114 { "instruction_gs", VCPU_STAT(instruction_gs) },
115 { "instruction_io_other", VCPU_STAT(instruction_io_other) },
116 { "instruction_lpsw", VCPU_STAT(instruction_lpsw) },
117 { "instruction_lpswe", VCPU_STAT(instruction_lpswe) },
118 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
119 { "instruction_ptff", VCPU_STAT(instruction_ptff) },
120 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
121 { "instruction_sck", VCPU_STAT(instruction_sck) },
122 { "instruction_sckpf", VCPU_STAT(instruction_sckpf) },
123 { "instruction_spx", VCPU_STAT(instruction_spx) },
124 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
125 { "instruction_stap", VCPU_STAT(instruction_stap) },
126 { "instruction_iske", VCPU_STAT(instruction_iske) },
127 { "instruction_ri", VCPU_STAT(instruction_ri) },
128 { "instruction_rrbe", VCPU_STAT(instruction_rrbe) },
129 { "instruction_sske", VCPU_STAT(instruction_sske) },
130 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
131 { "instruction_essa", VCPU_STAT(instruction_essa) },
132 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
133 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
134 { "instruction_tb", VCPU_STAT(instruction_tb) },
135 { "instruction_tpi", VCPU_STAT(instruction_tpi) },
136 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
137 { "instruction_tsch", VCPU_STAT(instruction_tsch) },
138 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
139 { "instruction_sie", VCPU_STAT(instruction_sie) },
140 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
141 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
142 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
143 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
144 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
145 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
146 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
147 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
148 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
149 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
150 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
151 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
152 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
153 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
154 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
155 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
156 { "instruction_diag_10", VCPU_STAT(diagnose_10) },
157 { "instruction_diag_44", VCPU_STAT(diagnose_44) },
158 { "instruction_diag_9c", VCPU_STAT(diagnose_9c) },
159 { "diag_9c_ignored", VCPU_STAT(diagnose_9c_ignored) },
160 { "instruction_diag_258", VCPU_STAT(diagnose_258) },
161 { "instruction_diag_308", VCPU_STAT(diagnose_308) },
162 { "instruction_diag_500", VCPU_STAT(diagnose_500) },
163 { "instruction_diag_other", VCPU_STAT(diagnose_other) },
164 { NULL }
165 };
166
167 struct kvm_s390_tod_clock_ext {
168 __u8 epoch_idx;
169 __u64 tod;
170 __u8 reserved[7];
171 } __packed;
172
173 /* allow nested virtualization in KVM (if enabled by user space) */
174 static int nested;
175 module_param(nested, int, S_IRUGO);
176 MODULE_PARM_DESC(nested, "Nested virtualization support");
177
178 /* allow 1m huge page guest backing, if !nested */
179 static int hpage;
180 module_param(hpage, int, 0444);
181 MODULE_PARM_DESC(hpage, "1m huge page backing support");
182
183 /* maximum percentage of steal time for polling. >100 is treated like 100 */
184 static u8 halt_poll_max_steal = 10;
185 module_param(halt_poll_max_steal, byte, 0644);
186 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
187
188 /* if set to true, the GISA will be initialized and used if available */
189 static bool use_gisa = true;
190 module_param(use_gisa, bool, 0644);
191 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
192
193 /*
194 * For now we handle at most 16 double words as this is what the s390 base
195 * kernel handles and stores in the prefix page. If we ever need to go beyond
196 * this, this requires changes to code, but the external uapi can stay.
197 */
198 #define SIZE_INTERNAL 16
199
200 /*
201 * Base feature mask that defines default mask for facilities. Consists of the
202 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
203 */
204 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
205 /*
206 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
207 * and defines the facilities that can be enabled via a cpu model.
208 */
209 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
210
211 static unsigned long kvm_s390_fac_size(void)
212 {
213 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
214 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
215 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
216 sizeof(S390_lowcore.stfle_fac_list));
217
218 return SIZE_INTERNAL;
219 }
220
221 /* available cpu features supported by kvm */
222 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
223 /* available subfunctions indicated via query / "test bit" */
224 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
225
226 static struct gmap_notifier gmap_notifier;
227 static struct gmap_notifier vsie_gmap_notifier;
228 debug_info_t *kvm_s390_dbf;
229 debug_info_t *kvm_s390_dbf_uv;
230
231 /* Section: not file related */
232 int kvm_arch_hardware_enable(void)
233 {
234 /* every s390 is virtualization enabled ;-) */
235 return 0;
236 }
237
238 int kvm_arch_check_processor_compat(void *opaque)
239 {
240 return 0;
241 }
242
243 /* forward declarations */
244 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
245 unsigned long end);
246 static int sca_switch_to_extended(struct kvm *kvm);
247
248 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
249 {
250 u8 delta_idx = 0;
251
252 /*
253 * The TOD jumps by delta, we have to compensate this by adding
254 * -delta to the epoch.
255 */
256 delta = -delta;
257
258 /* sign-extension - we're adding to signed values below */
259 if ((s64)delta < 0)
260 delta_idx = -1;
261
262 scb->epoch += delta;
263 if (scb->ecd & ECD_MEF) {
264 scb->epdx += delta_idx;
265 if (scb->epoch < delta)
266 scb->epdx += 1;
267 }
268 }
269
270 /*
271 * This callback is executed during stop_machine(). All CPUs are therefore
272 * temporarily stopped. In order not to change guest behavior, we have to
273 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
274 * so a CPU won't be stopped while calculating with the epoch.
275 */
276 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
277 void *v)
278 {
279 struct kvm *kvm;
280 struct kvm_vcpu *vcpu;
281 int i;
282 unsigned long long *delta = v;
283
284 list_for_each_entry(kvm, &vm_list, vm_list) {
285 kvm_for_each_vcpu(i, vcpu, kvm) {
286 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
287 if (i == 0) {
288 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
289 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
290 }
291 if (vcpu->arch.cputm_enabled)
292 vcpu->arch.cputm_start += *delta;
293 if (vcpu->arch.vsie_block)
294 kvm_clock_sync_scb(vcpu->arch.vsie_block,
295 *delta);
296 }
297 }
298 return NOTIFY_OK;
299 }
300
301 static struct notifier_block kvm_clock_notifier = {
302 .notifier_call = kvm_clock_sync,
303 };
304
305 int kvm_arch_hardware_setup(void *opaque)
306 {
307 gmap_notifier.notifier_call = kvm_gmap_notifier;
308 gmap_register_pte_notifier(&gmap_notifier);
309 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
310 gmap_register_pte_notifier(&vsie_gmap_notifier);
311 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
312 &kvm_clock_notifier);
313 return 0;
314 }
315
316 void kvm_arch_hardware_unsetup(void)
317 {
318 gmap_unregister_pte_notifier(&gmap_notifier);
319 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
320 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
321 &kvm_clock_notifier);
322 }
323
324 static void allow_cpu_feat(unsigned long nr)
325 {
326 set_bit_inv(nr, kvm_s390_available_cpu_feat);
327 }
328
329 static inline int plo_test_bit(unsigned char nr)
330 {
331 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
332 int cc;
333
334 asm volatile(
335 /* Parameter registers are ignored for "test bit" */
336 " plo 0,0,0,0(0)\n"
337 " ipm %0\n"
338 " srl %0,28\n"
339 : "=d" (cc)
340 : "d" (r0)
341 : "cc");
342 return cc == 0;
343 }
344
345 static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
346 {
347 register unsigned long r0 asm("0") = 0; /* query function */
348 register unsigned long r1 asm("1") = (unsigned long) query;
349
350 asm volatile(
351 /* Parameter regs are ignored */
352 " .insn rrf,%[opc] << 16,2,4,6,0\n"
353 :
354 : "d" (r0), "a" (r1), [opc] "i" (opcode)
355 : "cc", "memory");
356 }
357
358 #define INSN_SORTL 0xb938
359 #define INSN_DFLTCC 0xb939
360
361 static void kvm_s390_cpu_feat_init(void)
362 {
363 int i;
364
365 for (i = 0; i < 256; ++i) {
366 if (plo_test_bit(i))
367 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
368 }
369
370 if (test_facility(28)) /* TOD-clock steering */
371 ptff(kvm_s390_available_subfunc.ptff,
372 sizeof(kvm_s390_available_subfunc.ptff),
373 PTFF_QAF);
374
375 if (test_facility(17)) { /* MSA */
376 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
377 kvm_s390_available_subfunc.kmac);
378 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
379 kvm_s390_available_subfunc.kmc);
380 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
381 kvm_s390_available_subfunc.km);
382 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
383 kvm_s390_available_subfunc.kimd);
384 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
385 kvm_s390_available_subfunc.klmd);
386 }
387 if (test_facility(76)) /* MSA3 */
388 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
389 kvm_s390_available_subfunc.pckmo);
390 if (test_facility(77)) { /* MSA4 */
391 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
392 kvm_s390_available_subfunc.kmctr);
393 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
394 kvm_s390_available_subfunc.kmf);
395 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
396 kvm_s390_available_subfunc.kmo);
397 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
398 kvm_s390_available_subfunc.pcc);
399 }
400 if (test_facility(57)) /* MSA5 */
401 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
402 kvm_s390_available_subfunc.ppno);
403
404 if (test_facility(146)) /* MSA8 */
405 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
406 kvm_s390_available_subfunc.kma);
407
408 if (test_facility(155)) /* MSA9 */
409 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
410 kvm_s390_available_subfunc.kdsa);
411
412 if (test_facility(150)) /* SORTL */
413 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
414
415 if (test_facility(151)) /* DFLTCC */
416 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
417
418 if (MACHINE_HAS_ESOP)
419 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
420 /*
421 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
422 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
423 */
424 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
425 !test_facility(3) || !nested)
426 return;
427 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
428 if (sclp.has_64bscao)
429 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
430 if (sclp.has_siif)
431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
432 if (sclp.has_gpere)
433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
434 if (sclp.has_gsls)
435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
436 if (sclp.has_ib)
437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
438 if (sclp.has_cei)
439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
440 if (sclp.has_ibs)
441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
442 if (sclp.has_kss)
443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
444 /*
445 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
446 * all skey handling functions read/set the skey from the PGSTE
447 * instead of the real storage key.
448 *
449 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
450 * pages being detected as preserved although they are resident.
451 *
452 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
453 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
454 *
455 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
456 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
457 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
458 *
459 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
460 * cannot easily shadow the SCA because of the ipte lock.
461 */
462 }
463
464 int kvm_arch_init(void *opaque)
465 {
466 int rc = -ENOMEM;
467
468 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
469 if (!kvm_s390_dbf)
470 return -ENOMEM;
471
472 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
473 if (!kvm_s390_dbf_uv)
474 goto out;
475
476 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
477 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
478 goto out;
479
480 kvm_s390_cpu_feat_init();
481
482 /* Register floating interrupt controller interface. */
483 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
484 if (rc) {
485 pr_err("A FLIC registration call failed with rc=%d\n", rc);
486 goto out;
487 }
488
489 rc = kvm_s390_gib_init(GAL_ISC);
490 if (rc)
491 goto out;
492
493 return 0;
494
495 out:
496 kvm_arch_exit();
497 return rc;
498 }
499
500 void kvm_arch_exit(void)
501 {
502 kvm_s390_gib_destroy();
503 debug_unregister(kvm_s390_dbf);
504 debug_unregister(kvm_s390_dbf_uv);
505 }
506
507 /* Section: device related */
508 long kvm_arch_dev_ioctl(struct file *filp,
509 unsigned int ioctl, unsigned long arg)
510 {
511 if (ioctl == KVM_S390_ENABLE_SIE)
512 return s390_enable_sie();
513 return -EINVAL;
514 }
515
516 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
517 {
518 int r;
519
520 switch (ext) {
521 case KVM_CAP_S390_PSW:
522 case KVM_CAP_S390_GMAP:
523 case KVM_CAP_SYNC_MMU:
524 #ifdef CONFIG_KVM_S390_UCONTROL
525 case KVM_CAP_S390_UCONTROL:
526 #endif
527 case KVM_CAP_ASYNC_PF:
528 case KVM_CAP_SYNC_REGS:
529 case KVM_CAP_ONE_REG:
530 case KVM_CAP_ENABLE_CAP:
531 case KVM_CAP_S390_CSS_SUPPORT:
532 case KVM_CAP_IOEVENTFD:
533 case KVM_CAP_DEVICE_CTRL:
534 case KVM_CAP_S390_IRQCHIP:
535 case KVM_CAP_VM_ATTRIBUTES:
536 case KVM_CAP_MP_STATE:
537 case KVM_CAP_IMMEDIATE_EXIT:
538 case KVM_CAP_S390_INJECT_IRQ:
539 case KVM_CAP_S390_USER_SIGP:
540 case KVM_CAP_S390_USER_STSI:
541 case KVM_CAP_S390_SKEYS:
542 case KVM_CAP_S390_IRQ_STATE:
543 case KVM_CAP_S390_USER_INSTR0:
544 case KVM_CAP_S390_CMMA_MIGRATION:
545 case KVM_CAP_S390_AIS:
546 case KVM_CAP_S390_AIS_MIGRATION:
547 case KVM_CAP_S390_VCPU_RESETS:
548 case KVM_CAP_SET_GUEST_DEBUG:
549 r = 1;
550 break;
551 case KVM_CAP_S390_HPAGE_1M:
552 r = 0;
553 if (hpage && !kvm_is_ucontrol(kvm))
554 r = 1;
555 break;
556 case KVM_CAP_S390_MEM_OP:
557 r = MEM_OP_MAX_SIZE;
558 break;
559 case KVM_CAP_NR_VCPUS:
560 case KVM_CAP_MAX_VCPUS:
561 case KVM_CAP_MAX_VCPU_ID:
562 r = KVM_S390_BSCA_CPU_SLOTS;
563 if (!kvm_s390_use_sca_entries())
564 r = KVM_MAX_VCPUS;
565 else if (sclp.has_esca && sclp.has_64bscao)
566 r = KVM_S390_ESCA_CPU_SLOTS;
567 break;
568 case KVM_CAP_S390_COW:
569 r = MACHINE_HAS_ESOP;
570 break;
571 case KVM_CAP_S390_VECTOR_REGISTERS:
572 r = MACHINE_HAS_VX;
573 break;
574 case KVM_CAP_S390_RI:
575 r = test_facility(64);
576 break;
577 case KVM_CAP_S390_GS:
578 r = test_facility(133);
579 break;
580 case KVM_CAP_S390_BPB:
581 r = test_facility(82);
582 break;
583 case KVM_CAP_S390_PROTECTED:
584 r = is_prot_virt_host();
585 break;
586 default:
587 r = 0;
588 }
589 return r;
590 }
591
592 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
593 {
594 int i;
595 gfn_t cur_gfn, last_gfn;
596 unsigned long gaddr, vmaddr;
597 struct gmap *gmap = kvm->arch.gmap;
598 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
599
600 /* Loop over all guest segments */
601 cur_gfn = memslot->base_gfn;
602 last_gfn = memslot->base_gfn + memslot->npages;
603 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
604 gaddr = gfn_to_gpa(cur_gfn);
605 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
606 if (kvm_is_error_hva(vmaddr))
607 continue;
608
609 bitmap_zero(bitmap, _PAGE_ENTRIES);
610 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
611 for (i = 0; i < _PAGE_ENTRIES; i++) {
612 if (test_bit(i, bitmap))
613 mark_page_dirty(kvm, cur_gfn + i);
614 }
615
616 if (fatal_signal_pending(current))
617 return;
618 cond_resched();
619 }
620 }
621
622 /* Section: vm related */
623 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
624
625 /*
626 * Get (and clear) the dirty memory log for a memory slot.
627 */
628 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
629 struct kvm_dirty_log *log)
630 {
631 int r;
632 unsigned long n;
633 struct kvm_memory_slot *memslot;
634 int is_dirty;
635
636 if (kvm_is_ucontrol(kvm))
637 return -EINVAL;
638
639 mutex_lock(&kvm->slots_lock);
640
641 r = -EINVAL;
642 if (log->slot >= KVM_USER_MEM_SLOTS)
643 goto out;
644
645 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
646 if (r)
647 goto out;
648
649 /* Clear the dirty log */
650 if (is_dirty) {
651 n = kvm_dirty_bitmap_bytes(memslot);
652 memset(memslot->dirty_bitmap, 0, n);
653 }
654 r = 0;
655 out:
656 mutex_unlock(&kvm->slots_lock);
657 return r;
658 }
659
660 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
661 {
662 unsigned int i;
663 struct kvm_vcpu *vcpu;
664
665 kvm_for_each_vcpu(i, vcpu, kvm) {
666 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
667 }
668 }
669
670 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
671 {
672 int r;
673
674 if (cap->flags)
675 return -EINVAL;
676
677 switch (cap->cap) {
678 case KVM_CAP_S390_IRQCHIP:
679 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
680 kvm->arch.use_irqchip = 1;
681 r = 0;
682 break;
683 case KVM_CAP_S390_USER_SIGP:
684 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
685 kvm->arch.user_sigp = 1;
686 r = 0;
687 break;
688 case KVM_CAP_S390_VECTOR_REGISTERS:
689 mutex_lock(&kvm->lock);
690 if (kvm->created_vcpus) {
691 r = -EBUSY;
692 } else if (MACHINE_HAS_VX) {
693 set_kvm_facility(kvm->arch.model.fac_mask, 129);
694 set_kvm_facility(kvm->arch.model.fac_list, 129);
695 if (test_facility(134)) {
696 set_kvm_facility(kvm->arch.model.fac_mask, 134);
697 set_kvm_facility(kvm->arch.model.fac_list, 134);
698 }
699 if (test_facility(135)) {
700 set_kvm_facility(kvm->arch.model.fac_mask, 135);
701 set_kvm_facility(kvm->arch.model.fac_list, 135);
702 }
703 if (test_facility(148)) {
704 set_kvm_facility(kvm->arch.model.fac_mask, 148);
705 set_kvm_facility(kvm->arch.model.fac_list, 148);
706 }
707 if (test_facility(152)) {
708 set_kvm_facility(kvm->arch.model.fac_mask, 152);
709 set_kvm_facility(kvm->arch.model.fac_list, 152);
710 }
711 r = 0;
712 } else
713 r = -EINVAL;
714 mutex_unlock(&kvm->lock);
715 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
716 r ? "(not available)" : "(success)");
717 break;
718 case KVM_CAP_S390_RI:
719 r = -EINVAL;
720 mutex_lock(&kvm->lock);
721 if (kvm->created_vcpus) {
722 r = -EBUSY;
723 } else if (test_facility(64)) {
724 set_kvm_facility(kvm->arch.model.fac_mask, 64);
725 set_kvm_facility(kvm->arch.model.fac_list, 64);
726 r = 0;
727 }
728 mutex_unlock(&kvm->lock);
729 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
730 r ? "(not available)" : "(success)");
731 break;
732 case KVM_CAP_S390_AIS:
733 mutex_lock(&kvm->lock);
734 if (kvm->created_vcpus) {
735 r = -EBUSY;
736 } else {
737 set_kvm_facility(kvm->arch.model.fac_mask, 72);
738 set_kvm_facility(kvm->arch.model.fac_list, 72);
739 r = 0;
740 }
741 mutex_unlock(&kvm->lock);
742 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
743 r ? "(not available)" : "(success)");
744 break;
745 case KVM_CAP_S390_GS:
746 r = -EINVAL;
747 mutex_lock(&kvm->lock);
748 if (kvm->created_vcpus) {
749 r = -EBUSY;
750 } else if (test_facility(133)) {
751 set_kvm_facility(kvm->arch.model.fac_mask, 133);
752 set_kvm_facility(kvm->arch.model.fac_list, 133);
753 r = 0;
754 }
755 mutex_unlock(&kvm->lock);
756 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
757 r ? "(not available)" : "(success)");
758 break;
759 case KVM_CAP_S390_HPAGE_1M:
760 mutex_lock(&kvm->lock);
761 if (kvm->created_vcpus)
762 r = -EBUSY;
763 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
764 r = -EINVAL;
765 else {
766 r = 0;
767 down_write(&kvm->mm->mmap_sem);
768 kvm->mm->context.allow_gmap_hpage_1m = 1;
769 up_write(&kvm->mm->mmap_sem);
770 /*
771 * We might have to create fake 4k page
772 * tables. To avoid that the hardware works on
773 * stale PGSTEs, we emulate these instructions.
774 */
775 kvm->arch.use_skf = 0;
776 kvm->arch.use_pfmfi = 0;
777 }
778 mutex_unlock(&kvm->lock);
779 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
780 r ? "(not available)" : "(success)");
781 break;
782 case KVM_CAP_S390_USER_STSI:
783 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
784 kvm->arch.user_stsi = 1;
785 r = 0;
786 break;
787 case KVM_CAP_S390_USER_INSTR0:
788 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
789 kvm->arch.user_instr0 = 1;
790 icpt_operexc_on_all_vcpus(kvm);
791 r = 0;
792 break;
793 default:
794 r = -EINVAL;
795 break;
796 }
797 return r;
798 }
799
800 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
801 {
802 int ret;
803
804 switch (attr->attr) {
805 case KVM_S390_VM_MEM_LIMIT_SIZE:
806 ret = 0;
807 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
808 kvm->arch.mem_limit);
809 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
810 ret = -EFAULT;
811 break;
812 default:
813 ret = -ENXIO;
814 break;
815 }
816 return ret;
817 }
818
819 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
820 {
821 int ret;
822 unsigned int idx;
823 switch (attr->attr) {
824 case KVM_S390_VM_MEM_ENABLE_CMMA:
825 ret = -ENXIO;
826 if (!sclp.has_cmma)
827 break;
828
829 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
830 mutex_lock(&kvm->lock);
831 if (kvm->created_vcpus)
832 ret = -EBUSY;
833 else if (kvm->mm->context.allow_gmap_hpage_1m)
834 ret = -EINVAL;
835 else {
836 kvm->arch.use_cmma = 1;
837 /* Not compatible with cmma. */
838 kvm->arch.use_pfmfi = 0;
839 ret = 0;
840 }
841 mutex_unlock(&kvm->lock);
842 break;
843 case KVM_S390_VM_MEM_CLR_CMMA:
844 ret = -ENXIO;
845 if (!sclp.has_cmma)
846 break;
847 ret = -EINVAL;
848 if (!kvm->arch.use_cmma)
849 break;
850
851 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
852 mutex_lock(&kvm->lock);
853 idx = srcu_read_lock(&kvm->srcu);
854 s390_reset_cmma(kvm->arch.gmap->mm);
855 srcu_read_unlock(&kvm->srcu, idx);
856 mutex_unlock(&kvm->lock);
857 ret = 0;
858 break;
859 case KVM_S390_VM_MEM_LIMIT_SIZE: {
860 unsigned long new_limit;
861
862 if (kvm_is_ucontrol(kvm))
863 return -EINVAL;
864
865 if (get_user(new_limit, (u64 __user *)attr->addr))
866 return -EFAULT;
867
868 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
869 new_limit > kvm->arch.mem_limit)
870 return -E2BIG;
871
872 if (!new_limit)
873 return -EINVAL;
874
875 /* gmap_create takes last usable address */
876 if (new_limit != KVM_S390_NO_MEM_LIMIT)
877 new_limit -= 1;
878
879 ret = -EBUSY;
880 mutex_lock(&kvm->lock);
881 if (!kvm->created_vcpus) {
882 /* gmap_create will round the limit up */
883 struct gmap *new = gmap_create(current->mm, new_limit);
884
885 if (!new) {
886 ret = -ENOMEM;
887 } else {
888 gmap_remove(kvm->arch.gmap);
889 new->private = kvm;
890 kvm->arch.gmap = new;
891 ret = 0;
892 }
893 }
894 mutex_unlock(&kvm->lock);
895 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
896 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
897 (void *) kvm->arch.gmap->asce);
898 break;
899 }
900 default:
901 ret = -ENXIO;
902 break;
903 }
904 return ret;
905 }
906
907 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
908
909 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
910 {
911 struct kvm_vcpu *vcpu;
912 int i;
913
914 kvm_s390_vcpu_block_all(kvm);
915
916 kvm_for_each_vcpu(i, vcpu, kvm) {
917 kvm_s390_vcpu_crypto_setup(vcpu);
918 /* recreate the shadow crycb by leaving the VSIE handler */
919 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
920 }
921
922 kvm_s390_vcpu_unblock_all(kvm);
923 }
924
925 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
926 {
927 mutex_lock(&kvm->lock);
928 switch (attr->attr) {
929 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
930 if (!test_kvm_facility(kvm, 76)) {
931 mutex_unlock(&kvm->lock);
932 return -EINVAL;
933 }
934 get_random_bytes(
935 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
936 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
937 kvm->arch.crypto.aes_kw = 1;
938 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
939 break;
940 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
941 if (!test_kvm_facility(kvm, 76)) {
942 mutex_unlock(&kvm->lock);
943 return -EINVAL;
944 }
945 get_random_bytes(
946 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
947 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
948 kvm->arch.crypto.dea_kw = 1;
949 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
950 break;
951 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
952 if (!test_kvm_facility(kvm, 76)) {
953 mutex_unlock(&kvm->lock);
954 return -EINVAL;
955 }
956 kvm->arch.crypto.aes_kw = 0;
957 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
958 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
959 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
960 break;
961 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
962 if (!test_kvm_facility(kvm, 76)) {
963 mutex_unlock(&kvm->lock);
964 return -EINVAL;
965 }
966 kvm->arch.crypto.dea_kw = 0;
967 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
968 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
969 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
970 break;
971 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
972 if (!ap_instructions_available()) {
973 mutex_unlock(&kvm->lock);
974 return -EOPNOTSUPP;
975 }
976 kvm->arch.crypto.apie = 1;
977 break;
978 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
979 if (!ap_instructions_available()) {
980 mutex_unlock(&kvm->lock);
981 return -EOPNOTSUPP;
982 }
983 kvm->arch.crypto.apie = 0;
984 break;
985 default:
986 mutex_unlock(&kvm->lock);
987 return -ENXIO;
988 }
989
990 kvm_s390_vcpu_crypto_reset_all(kvm);
991 mutex_unlock(&kvm->lock);
992 return 0;
993 }
994
995 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
996 {
997 int cx;
998 struct kvm_vcpu *vcpu;
999
1000 kvm_for_each_vcpu(cx, vcpu, kvm)
1001 kvm_s390_sync_request(req, vcpu);
1002 }
1003
1004 /*
1005 * Must be called with kvm->srcu held to avoid races on memslots, and with
1006 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1007 */
1008 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1009 {
1010 struct kvm_memory_slot *ms;
1011 struct kvm_memslots *slots;
1012 unsigned long ram_pages = 0;
1013 int slotnr;
1014
1015 /* migration mode already enabled */
1016 if (kvm->arch.migration_mode)
1017 return 0;
1018 slots = kvm_memslots(kvm);
1019 if (!slots || !slots->used_slots)
1020 return -EINVAL;
1021
1022 if (!kvm->arch.use_cmma) {
1023 kvm->arch.migration_mode = 1;
1024 return 0;
1025 }
1026 /* mark all the pages in active slots as dirty */
1027 for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
1028 ms = slots->memslots + slotnr;
1029 if (!ms->dirty_bitmap)
1030 return -EINVAL;
1031 /*
1032 * The second half of the bitmap is only used on x86,
1033 * and would be wasted otherwise, so we put it to good
1034 * use here to keep track of the state of the storage
1035 * attributes.
1036 */
1037 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1038 ram_pages += ms->npages;
1039 }
1040 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1041 kvm->arch.migration_mode = 1;
1042 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1043 return 0;
1044 }
1045
1046 /*
1047 * Must be called with kvm->slots_lock to avoid races with ourselves and
1048 * kvm_s390_vm_start_migration.
1049 */
1050 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1051 {
1052 /* migration mode already disabled */
1053 if (!kvm->arch.migration_mode)
1054 return 0;
1055 kvm->arch.migration_mode = 0;
1056 if (kvm->arch.use_cmma)
1057 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1058 return 0;
1059 }
1060
1061 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1062 struct kvm_device_attr *attr)
1063 {
1064 int res = -ENXIO;
1065
1066 mutex_lock(&kvm->slots_lock);
1067 switch (attr->attr) {
1068 case KVM_S390_VM_MIGRATION_START:
1069 res = kvm_s390_vm_start_migration(kvm);
1070 break;
1071 case KVM_S390_VM_MIGRATION_STOP:
1072 res = kvm_s390_vm_stop_migration(kvm);
1073 break;
1074 default:
1075 break;
1076 }
1077 mutex_unlock(&kvm->slots_lock);
1078
1079 return res;
1080 }
1081
1082 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1083 struct kvm_device_attr *attr)
1084 {
1085 u64 mig = kvm->arch.migration_mode;
1086
1087 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1088 return -ENXIO;
1089
1090 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1091 return -EFAULT;
1092 return 0;
1093 }
1094
1095 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1096 {
1097 struct kvm_s390_vm_tod_clock gtod;
1098
1099 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
1100 return -EFAULT;
1101
1102 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1103 return -EINVAL;
1104 kvm_s390_set_tod_clock(kvm, &gtod);
1105
1106 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1107 gtod.epoch_idx, gtod.tod);
1108
1109 return 0;
1110 }
1111
1112 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1113 {
1114 u8 gtod_high;
1115
1116 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
1117 sizeof(gtod_high)))
1118 return -EFAULT;
1119
1120 if (gtod_high != 0)
1121 return -EINVAL;
1122 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1123
1124 return 0;
1125 }
1126
1127 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1128 {
1129 struct kvm_s390_vm_tod_clock gtod = { 0 };
1130
1131 if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
1132 sizeof(gtod.tod)))
1133 return -EFAULT;
1134
1135 kvm_s390_set_tod_clock(kvm, &gtod);
1136 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1137 return 0;
1138 }
1139
1140 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1141 {
1142 int ret;
1143
1144 if (attr->flags)
1145 return -EINVAL;
1146
1147 switch (attr->attr) {
1148 case KVM_S390_VM_TOD_EXT:
1149 ret = kvm_s390_set_tod_ext(kvm, attr);
1150 break;
1151 case KVM_S390_VM_TOD_HIGH:
1152 ret = kvm_s390_set_tod_high(kvm, attr);
1153 break;
1154 case KVM_S390_VM_TOD_LOW:
1155 ret = kvm_s390_set_tod_low(kvm, attr);
1156 break;
1157 default:
1158 ret = -ENXIO;
1159 break;
1160 }
1161 return ret;
1162 }
1163
1164 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1165 struct kvm_s390_vm_tod_clock *gtod)
1166 {
1167 struct kvm_s390_tod_clock_ext htod;
1168
1169 preempt_disable();
1170
1171 get_tod_clock_ext((char *)&htod);
1172
1173 gtod->tod = htod.tod + kvm->arch.epoch;
1174 gtod->epoch_idx = 0;
1175 if (test_kvm_facility(kvm, 139)) {
1176 gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;
1177 if (gtod->tod < htod.tod)
1178 gtod->epoch_idx += 1;
1179 }
1180
1181 preempt_enable();
1182 }
1183
1184 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1185 {
1186 struct kvm_s390_vm_tod_clock gtod;
1187
1188 memset(&gtod, 0, sizeof(gtod));
1189 kvm_s390_get_tod_clock(kvm, &gtod);
1190 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1191 return -EFAULT;
1192
1193 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1194 gtod.epoch_idx, gtod.tod);
1195 return 0;
1196 }
1197
1198 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1199 {
1200 u8 gtod_high = 0;
1201
1202 if (copy_to_user((void __user *)attr->addr, &gtod_high,
1203 sizeof(gtod_high)))
1204 return -EFAULT;
1205 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1206
1207 return 0;
1208 }
1209
1210 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1211 {
1212 u64 gtod;
1213
1214 gtod = kvm_s390_get_tod_clock_fast(kvm);
1215 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1216 return -EFAULT;
1217 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1218
1219 return 0;
1220 }
1221
1222 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1223 {
1224 int ret;
1225
1226 if (attr->flags)
1227 return -EINVAL;
1228
1229 switch (attr->attr) {
1230 case KVM_S390_VM_TOD_EXT:
1231 ret = kvm_s390_get_tod_ext(kvm, attr);
1232 break;
1233 case KVM_S390_VM_TOD_HIGH:
1234 ret = kvm_s390_get_tod_high(kvm, attr);
1235 break;
1236 case KVM_S390_VM_TOD_LOW:
1237 ret = kvm_s390_get_tod_low(kvm, attr);
1238 break;
1239 default:
1240 ret = -ENXIO;
1241 break;
1242 }
1243 return ret;
1244 }
1245
1246 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1247 {
1248 struct kvm_s390_vm_cpu_processor *proc;
1249 u16 lowest_ibc, unblocked_ibc;
1250 int ret = 0;
1251
1252 mutex_lock(&kvm->lock);
1253 if (kvm->created_vcpus) {
1254 ret = -EBUSY;
1255 goto out;
1256 }
1257 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
1258 if (!proc) {
1259 ret = -ENOMEM;
1260 goto out;
1261 }
1262 if (!copy_from_user(proc, (void __user *)attr->addr,
1263 sizeof(*proc))) {
1264 kvm->arch.model.cpuid = proc->cpuid;
1265 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1266 unblocked_ibc = sclp.ibc & 0xfff;
1267 if (lowest_ibc && proc->ibc) {
1268 if (proc->ibc > unblocked_ibc)
1269 kvm->arch.model.ibc = unblocked_ibc;
1270 else if (proc->ibc < lowest_ibc)
1271 kvm->arch.model.ibc = lowest_ibc;
1272 else
1273 kvm->arch.model.ibc = proc->ibc;
1274 }
1275 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1276 S390_ARCH_FAC_LIST_SIZE_BYTE);
1277 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1278 kvm->arch.model.ibc,
1279 kvm->arch.model.cpuid);
1280 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1281 kvm->arch.model.fac_list[0],
1282 kvm->arch.model.fac_list[1],
1283 kvm->arch.model.fac_list[2]);
1284 } else
1285 ret = -EFAULT;
1286 kfree(proc);
1287 out:
1288 mutex_unlock(&kvm->lock);
1289 return ret;
1290 }
1291
1292 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1293 struct kvm_device_attr *attr)
1294 {
1295 struct kvm_s390_vm_cpu_feat data;
1296
1297 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1298 return -EFAULT;
1299 if (!bitmap_subset((unsigned long *) data.feat,
1300 kvm_s390_available_cpu_feat,
1301 KVM_S390_VM_CPU_FEAT_NR_BITS))
1302 return -EINVAL;
1303
1304 mutex_lock(&kvm->lock);
1305 if (kvm->created_vcpus) {
1306 mutex_unlock(&kvm->lock);
1307 return -EBUSY;
1308 }
1309 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
1310 KVM_S390_VM_CPU_FEAT_NR_BITS);
1311 mutex_unlock(&kvm->lock);
1312 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1313 data.feat[0],
1314 data.feat[1],
1315 data.feat[2]);
1316 return 0;
1317 }
1318
1319 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1320 struct kvm_device_attr *attr)
1321 {
1322 mutex_lock(&kvm->lock);
1323 if (kvm->created_vcpus) {
1324 mutex_unlock(&kvm->lock);
1325 return -EBUSY;
1326 }
1327
1328 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1329 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1330 mutex_unlock(&kvm->lock);
1331 return -EFAULT;
1332 }
1333 mutex_unlock(&kvm->lock);
1334
1335 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1336 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1337 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1338 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1339 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1340 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1341 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1342 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1343 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1344 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1345 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1346 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1347 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1348 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1349 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1350 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1351 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1352 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1353 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1354 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1355 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1356 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1357 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1358 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1359 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1360 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1361 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1362 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1363 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1364 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1365 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1366 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1367 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1368 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1369 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1370 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1371 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1372 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1373 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1374 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1375 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1376 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1377 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1378 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1379 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1380 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1381 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1382 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1383 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1384 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1385 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1386 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1387 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1388 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1389 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1390 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1391 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1392
1393 return 0;
1394 }
1395
1396 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1397 {
1398 int ret = -ENXIO;
1399
1400 switch (attr->attr) {
1401 case KVM_S390_VM_CPU_PROCESSOR:
1402 ret = kvm_s390_set_processor(kvm, attr);
1403 break;
1404 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1405 ret = kvm_s390_set_processor_feat(kvm, attr);
1406 break;
1407 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1408 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1409 break;
1410 }
1411 return ret;
1412 }
1413
1414 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1415 {
1416 struct kvm_s390_vm_cpu_processor *proc;
1417 int ret = 0;
1418
1419 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
1420 if (!proc) {
1421 ret = -ENOMEM;
1422 goto out;
1423 }
1424 proc->cpuid = kvm->arch.model.cpuid;
1425 proc->ibc = kvm->arch.model.ibc;
1426 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1427 S390_ARCH_FAC_LIST_SIZE_BYTE);
1428 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1429 kvm->arch.model.ibc,
1430 kvm->arch.model.cpuid);
1431 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1432 kvm->arch.model.fac_list[0],
1433 kvm->arch.model.fac_list[1],
1434 kvm->arch.model.fac_list[2]);
1435 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1436 ret = -EFAULT;
1437 kfree(proc);
1438 out:
1439 return ret;
1440 }
1441
1442 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1443 {
1444 struct kvm_s390_vm_cpu_machine *mach;
1445 int ret = 0;
1446
1447 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
1448 if (!mach) {
1449 ret = -ENOMEM;
1450 goto out;
1451 }
1452 get_cpu_id((struct cpuid *) &mach->cpuid);
1453 mach->ibc = sclp.ibc;
1454 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1455 S390_ARCH_FAC_LIST_SIZE_BYTE);
1456 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1457 sizeof(S390_lowcore.stfle_fac_list));
1458 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1459 kvm->arch.model.ibc,
1460 kvm->arch.model.cpuid);
1461 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1462 mach->fac_mask[0],
1463 mach->fac_mask[1],
1464 mach->fac_mask[2]);
1465 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1466 mach->fac_list[0],
1467 mach->fac_list[1],
1468 mach->fac_list[2]);
1469 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1470 ret = -EFAULT;
1471 kfree(mach);
1472 out:
1473 return ret;
1474 }
1475
1476 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1477 struct kvm_device_attr *attr)
1478 {
1479 struct kvm_s390_vm_cpu_feat data;
1480
1481 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
1482 KVM_S390_VM_CPU_FEAT_NR_BITS);
1483 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1484 return -EFAULT;
1485 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1486 data.feat[0],
1487 data.feat[1],
1488 data.feat[2]);
1489 return 0;
1490 }
1491
1492 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1493 struct kvm_device_attr *attr)
1494 {
1495 struct kvm_s390_vm_cpu_feat data;
1496
1497 bitmap_copy((unsigned long *) data.feat,
1498 kvm_s390_available_cpu_feat,
1499 KVM_S390_VM_CPU_FEAT_NR_BITS);
1500 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1501 return -EFAULT;
1502 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1503 data.feat[0],
1504 data.feat[1],
1505 data.feat[2]);
1506 return 0;
1507 }
1508
1509 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1510 struct kvm_device_attr *attr)
1511 {
1512 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1513 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1514 return -EFAULT;
1515
1516 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1517 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1518 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1519 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1520 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1521 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1522 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1523 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1524 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1525 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1526 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1527 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1528 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1529 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1530 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1531 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1532 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1533 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1534 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1535 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1536 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1537 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1538 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1539 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1540 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1541 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1542 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1543 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1544 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1545 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1546 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1547 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1548 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1549 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1550 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1551 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1552 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1553 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1554 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1555 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1556 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1557 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1558 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1559 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1560 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1561 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1562 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1563 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1564 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1565 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1566 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1567 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1568 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1569 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1570 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1571 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1572 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1573
1574 return 0;
1575 }
1576
1577 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1578 struct kvm_device_attr *attr)
1579 {
1580 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1581 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1582 return -EFAULT;
1583
1584 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1585 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1586 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1587 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1588 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1589 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1590 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1591 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1592 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1593 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1594 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1595 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1596 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1597 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1598 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1599 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1600 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1601 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1602 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1603 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1604 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1605 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1606 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1607 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1608 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1609 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1610 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1611 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1612 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1613 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1614 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1615 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1616 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1617 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1618 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1619 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1620 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1621 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1622 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1623 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1624 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1625 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1626 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1627 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1628 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1629 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1630 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1631 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1632 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1633 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1634 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1635 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1636 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1637 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1638 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1639 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1640 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1641
1642 return 0;
1643 }
1644
1645 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1646 {
1647 int ret = -ENXIO;
1648
1649 switch (attr->attr) {
1650 case KVM_S390_VM_CPU_PROCESSOR:
1651 ret = kvm_s390_get_processor(kvm, attr);
1652 break;
1653 case KVM_S390_VM_CPU_MACHINE:
1654 ret = kvm_s390_get_machine(kvm, attr);
1655 break;
1656 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1657 ret = kvm_s390_get_processor_feat(kvm, attr);
1658 break;
1659 case KVM_S390_VM_CPU_MACHINE_FEAT:
1660 ret = kvm_s390_get_machine_feat(kvm, attr);
1661 break;
1662 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1663 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1664 break;
1665 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1666 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1667 break;
1668 }
1669 return ret;
1670 }
1671
1672 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1673 {
1674 int ret;
1675
1676 switch (attr->group) {
1677 case KVM_S390_VM_MEM_CTRL:
1678 ret = kvm_s390_set_mem_control(kvm, attr);
1679 break;
1680 case KVM_S390_VM_TOD:
1681 ret = kvm_s390_set_tod(kvm, attr);
1682 break;
1683 case KVM_S390_VM_CPU_MODEL:
1684 ret = kvm_s390_set_cpu_model(kvm, attr);
1685 break;
1686 case KVM_S390_VM_CRYPTO:
1687 ret = kvm_s390_vm_set_crypto(kvm, attr);
1688 break;
1689 case KVM_S390_VM_MIGRATION:
1690 ret = kvm_s390_vm_set_migration(kvm, attr);
1691 break;
1692 default:
1693 ret = -ENXIO;
1694 break;
1695 }
1696
1697 return ret;
1698 }
1699
1700 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1701 {
1702 int ret;
1703
1704 switch (attr->group) {
1705 case KVM_S390_VM_MEM_CTRL:
1706 ret = kvm_s390_get_mem_control(kvm, attr);
1707 break;
1708 case KVM_S390_VM_TOD:
1709 ret = kvm_s390_get_tod(kvm, attr);
1710 break;
1711 case KVM_S390_VM_CPU_MODEL:
1712 ret = kvm_s390_get_cpu_model(kvm, attr);
1713 break;
1714 case KVM_S390_VM_MIGRATION:
1715 ret = kvm_s390_vm_get_migration(kvm, attr);
1716 break;
1717 default:
1718 ret = -ENXIO;
1719 break;
1720 }
1721
1722 return ret;
1723 }
1724
1725 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1726 {
1727 int ret;
1728
1729 switch (attr->group) {
1730 case KVM_S390_VM_MEM_CTRL:
1731 switch (attr->attr) {
1732 case KVM_S390_VM_MEM_ENABLE_CMMA:
1733 case KVM_S390_VM_MEM_CLR_CMMA:
1734 ret = sclp.has_cmma ? 0 : -ENXIO;
1735 break;
1736 case KVM_S390_VM_MEM_LIMIT_SIZE:
1737 ret = 0;
1738 break;
1739 default:
1740 ret = -ENXIO;
1741 break;
1742 }
1743 break;
1744 case KVM_S390_VM_TOD:
1745 switch (attr->attr) {
1746 case KVM_S390_VM_TOD_LOW:
1747 case KVM_S390_VM_TOD_HIGH:
1748 ret = 0;
1749 break;
1750 default:
1751 ret = -ENXIO;
1752 break;
1753 }
1754 break;
1755 case KVM_S390_VM_CPU_MODEL:
1756 switch (attr->attr) {
1757 case KVM_S390_VM_CPU_PROCESSOR:
1758 case KVM_S390_VM_CPU_MACHINE:
1759 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1760 case KVM_S390_VM_CPU_MACHINE_FEAT:
1761 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1762 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1763 ret = 0;
1764 break;
1765 default:
1766 ret = -ENXIO;
1767 break;
1768 }
1769 break;
1770 case KVM_S390_VM_CRYPTO:
1771 switch (attr->attr) {
1772 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1773 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1774 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1775 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1776 ret = 0;
1777 break;
1778 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1779 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1780 ret = ap_instructions_available() ? 0 : -ENXIO;
1781 break;
1782 default:
1783 ret = -ENXIO;
1784 break;
1785 }
1786 break;
1787 case KVM_S390_VM_MIGRATION:
1788 ret = 0;
1789 break;
1790 default:
1791 ret = -ENXIO;
1792 break;
1793 }
1794
1795 return ret;
1796 }
1797
1798 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1799 {
1800 uint8_t *keys;
1801 uint64_t hva;
1802 int srcu_idx, i, r = 0;
1803
1804 if (args->flags != 0)
1805 return -EINVAL;
1806
1807 /* Is this guest using storage keys? */
1808 if (!mm_uses_skeys(current->mm))
1809 return KVM_S390_GET_SKEYS_NONE;
1810
1811 /* Enforce sane limit on memory allocation */
1812 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1813 return -EINVAL;
1814
1815 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1816 if (!keys)
1817 return -ENOMEM;
1818
1819 down_read(&current->mm->mmap_sem);
1820 srcu_idx = srcu_read_lock(&kvm->srcu);
1821 for (i = 0; i < args->count; i++) {
1822 hva = gfn_to_hva(kvm, args->start_gfn + i);
1823 if (kvm_is_error_hva(hva)) {
1824 r = -EFAULT;
1825 break;
1826 }
1827
1828 r = get_guest_storage_key(current->mm, hva, &keys[i]);
1829 if (r)
1830 break;
1831 }
1832 srcu_read_unlock(&kvm->srcu, srcu_idx);
1833 up_read(&current->mm->mmap_sem);
1834
1835 if (!r) {
1836 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1837 sizeof(uint8_t) * args->count);
1838 if (r)
1839 r = -EFAULT;
1840 }
1841
1842 kvfree(keys);
1843 return r;
1844 }
1845
1846 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1847 {
1848 uint8_t *keys;
1849 uint64_t hva;
1850 int srcu_idx, i, r = 0;
1851 bool unlocked;
1852
1853 if (args->flags != 0)
1854 return -EINVAL;
1855
1856 /* Enforce sane limit on memory allocation */
1857 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1858 return -EINVAL;
1859
1860 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1861 if (!keys)
1862 return -ENOMEM;
1863
1864 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1865 sizeof(uint8_t) * args->count);
1866 if (r) {
1867 r = -EFAULT;
1868 goto out;
1869 }
1870
1871 /* Enable storage key handling for the guest */
1872 r = s390_enable_skey();
1873 if (r)
1874 goto out;
1875
1876 i = 0;
1877 down_read(&current->mm->mmap_sem);
1878 srcu_idx = srcu_read_lock(&kvm->srcu);
1879 while (i < args->count) {
1880 unlocked = false;
1881 hva = gfn_to_hva(kvm, args->start_gfn + i);
1882 if (kvm_is_error_hva(hva)) {
1883 r = -EFAULT;
1884 break;
1885 }
1886
1887 /* Lowest order bit is reserved */
1888 if (keys[i] & 0x01) {
1889 r = -EINVAL;
1890 break;
1891 }
1892
1893 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1894 if (r) {
1895 r = fixup_user_fault(current, current->mm, hva,
1896 FAULT_FLAG_WRITE, &unlocked);
1897 if (r)
1898 break;
1899 }
1900 if (!r)
1901 i++;
1902 }
1903 srcu_read_unlock(&kvm->srcu, srcu_idx);
1904 up_read(&current->mm->mmap_sem);
1905 out:
1906 kvfree(keys);
1907 return r;
1908 }
1909
1910 /*
1911 * Base address and length must be sent at the start of each block, therefore
1912 * it's cheaper to send some clean data, as long as it's less than the size of
1913 * two longs.
1914 */
1915 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
1916 /* for consistency */
1917 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
1918
1919 /*
1920 * Similar to gfn_to_memslot, but returns the index of a memslot also when the
1921 * address falls in a hole. In that case the index of one of the memslots
1922 * bordering the hole is returned.
1923 */
1924 static int gfn_to_memslot_approx(struct kvm_memslots *slots, gfn_t gfn)
1925 {
1926 int start = 0, end = slots->used_slots;
1927 int slot = atomic_read(&slots->lru_slot);
1928 struct kvm_memory_slot *memslots = slots->memslots;
1929
1930 if (gfn >= memslots[slot].base_gfn &&
1931 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1932 return slot;
1933
1934 while (start < end) {
1935 slot = start + (end - start) / 2;
1936
1937 if (gfn >= memslots[slot].base_gfn)
1938 end = slot;
1939 else
1940 start = slot + 1;
1941 }
1942
1943 if (start >= slots->used_slots)
1944 return slots->used_slots - 1;
1945
1946 if (gfn >= memslots[start].base_gfn &&
1947 gfn < memslots[start].base_gfn + memslots[start].npages) {
1948 atomic_set(&slots->lru_slot, start);
1949 }
1950
1951 return start;
1952 }
1953
1954 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
1955 u8 *res, unsigned long bufsize)
1956 {
1957 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
1958
1959 args->count = 0;
1960 while (args->count < bufsize) {
1961 hva = gfn_to_hva(kvm, cur_gfn);
1962 /*
1963 * We return an error if the first value was invalid, but we
1964 * return successfully if at least one value was copied.
1965 */
1966 if (kvm_is_error_hva(hva))
1967 return args->count ? 0 : -EFAULT;
1968 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
1969 pgstev = 0;
1970 res[args->count++] = (pgstev >> 24) & 0x43;
1971 cur_gfn++;
1972 }
1973
1974 return 0;
1975 }
1976
1977 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
1978 unsigned long cur_gfn)
1979 {
1980 int slotidx = gfn_to_memslot_approx(slots, cur_gfn);
1981 struct kvm_memory_slot *ms = slots->memslots + slotidx;
1982 unsigned long ofs = cur_gfn - ms->base_gfn;
1983
1984 if (ms->base_gfn + ms->npages <= cur_gfn) {
1985 slotidx--;
1986 /* If we are above the highest slot, wrap around */
1987 if (slotidx < 0)
1988 slotidx = slots->used_slots - 1;
1989
1990 ms = slots->memslots + slotidx;
1991 ofs = 0;
1992 }
1993 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
1994 while ((slotidx > 0) && (ofs >= ms->npages)) {
1995 slotidx--;
1996 ms = slots->memslots + slotidx;
1997 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, 0);
1998 }
1999 return ms->base_gfn + ofs;
2000 }
2001
2002 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2003 u8 *res, unsigned long bufsize)
2004 {
2005 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2006 struct kvm_memslots *slots = kvm_memslots(kvm);
2007 struct kvm_memory_slot *ms;
2008
2009 if (unlikely(!slots->used_slots))
2010 return 0;
2011
2012 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2013 ms = gfn_to_memslot(kvm, cur_gfn);
2014 args->count = 0;
2015 args->start_gfn = cur_gfn;
2016 if (!ms)
2017 return 0;
2018 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2019 mem_end = slots->memslots[0].base_gfn + slots->memslots[0].npages;
2020
2021 while (args->count < bufsize) {
2022 hva = gfn_to_hva(kvm, cur_gfn);
2023 if (kvm_is_error_hva(hva))
2024 return 0;
2025 /* Decrement only if we actually flipped the bit to 0 */
2026 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2027 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2028 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2029 pgstev = 0;
2030 /* Save the value */
2031 res[args->count++] = (pgstev >> 24) & 0x43;
2032 /* If the next bit is too far away, stop. */
2033 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2034 return 0;
2035 /* If we reached the previous "next", find the next one */
2036 if (cur_gfn == next_gfn)
2037 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2038 /* Reached the end of memory or of the buffer, stop */
2039 if ((next_gfn >= mem_end) ||
2040 (next_gfn - args->start_gfn >= bufsize))
2041 return 0;
2042 cur_gfn++;
2043 /* Reached the end of the current memslot, take the next one. */
2044 if (cur_gfn - ms->base_gfn >= ms->npages) {
2045 ms = gfn_to_memslot(kvm, cur_gfn);
2046 if (!ms)
2047 return 0;
2048 }
2049 }
2050 return 0;
2051 }
2052
2053 /*
2054 * This function searches for the next page with dirty CMMA attributes, and
2055 * saves the attributes in the buffer up to either the end of the buffer or
2056 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2057 * no trailing clean bytes are saved.
2058 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2059 * output buffer will indicate 0 as length.
2060 */
2061 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2062 struct kvm_s390_cmma_log *args)
2063 {
2064 unsigned long bufsize;
2065 int srcu_idx, peek, ret;
2066 u8 *values;
2067
2068 if (!kvm->arch.use_cmma)
2069 return -ENXIO;
2070 /* Invalid/unsupported flags were specified */
2071 if (args->flags & ~KVM_S390_CMMA_PEEK)
2072 return -EINVAL;
2073 /* Migration mode query, and we are not doing a migration */
2074 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2075 if (!peek && !kvm->arch.migration_mode)
2076 return -EINVAL;
2077 /* CMMA is disabled or was not used, or the buffer has length zero */
2078 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2079 if (!bufsize || !kvm->mm->context.uses_cmm) {
2080 memset(args, 0, sizeof(*args));
2081 return 0;
2082 }
2083 /* We are not peeking, and there are no dirty pages */
2084 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2085 memset(args, 0, sizeof(*args));
2086 return 0;
2087 }
2088
2089 values = vmalloc(bufsize);
2090 if (!values)
2091 return -ENOMEM;
2092
2093 down_read(&kvm->mm->mmap_sem);
2094 srcu_idx = srcu_read_lock(&kvm->srcu);
2095 if (peek)
2096 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2097 else
2098 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2099 srcu_read_unlock(&kvm->srcu, srcu_idx);
2100 up_read(&kvm->mm->mmap_sem);
2101
2102 if (kvm->arch.migration_mode)
2103 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2104 else
2105 args->remaining = 0;
2106
2107 if (copy_to_user((void __user *)args->values, values, args->count))
2108 ret = -EFAULT;
2109
2110 vfree(values);
2111 return ret;
2112 }
2113
2114 /*
2115 * This function sets the CMMA attributes for the given pages. If the input
2116 * buffer has zero length, no action is taken, otherwise the attributes are
2117 * set and the mm->context.uses_cmm flag is set.
2118 */
2119 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2120 const struct kvm_s390_cmma_log *args)
2121 {
2122 unsigned long hva, mask, pgstev, i;
2123 uint8_t *bits;
2124 int srcu_idx, r = 0;
2125
2126 mask = args->mask;
2127
2128 if (!kvm->arch.use_cmma)
2129 return -ENXIO;
2130 /* invalid/unsupported flags */
2131 if (args->flags != 0)
2132 return -EINVAL;
2133 /* Enforce sane limit on memory allocation */
2134 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2135 return -EINVAL;
2136 /* Nothing to do */
2137 if (args->count == 0)
2138 return 0;
2139
2140 bits = vmalloc(array_size(sizeof(*bits), args->count));
2141 if (!bits)
2142 return -ENOMEM;
2143
2144 r = copy_from_user(bits, (void __user *)args->values, args->count);
2145 if (r) {
2146 r = -EFAULT;
2147 goto out;
2148 }
2149
2150 down_read(&kvm->mm->mmap_sem);
2151 srcu_idx = srcu_read_lock(&kvm->srcu);
2152 for (i = 0; i < args->count; i++) {
2153 hva = gfn_to_hva(kvm, args->start_gfn + i);
2154 if (kvm_is_error_hva(hva)) {
2155 r = -EFAULT;
2156 break;
2157 }
2158
2159 pgstev = bits[i];
2160 pgstev = pgstev << 24;
2161 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2162 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2163 }
2164 srcu_read_unlock(&kvm->srcu, srcu_idx);
2165 up_read(&kvm->mm->mmap_sem);
2166
2167 if (!kvm->mm->context.uses_cmm) {
2168 down_write(&kvm->mm->mmap_sem);
2169 kvm->mm->context.uses_cmm = 1;
2170 up_write(&kvm->mm->mmap_sem);
2171 }
2172 out:
2173 vfree(bits);
2174 return r;
2175 }
2176
2177 static int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rcp, u16 *rrcp)
2178 {
2179 struct kvm_vcpu *vcpu;
2180 u16 rc, rrc;
2181 int ret = 0;
2182 int i;
2183
2184 /*
2185 * We ignore failures and try to destroy as many CPUs as possible.
2186 * At the same time we must not free the assigned resources when
2187 * this fails, as the ultravisor has still access to that memory.
2188 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2189 * behind.
2190 * We want to return the first failure rc and rrc, though.
2191 */
2192 kvm_for_each_vcpu(i, vcpu, kvm) {
2193 mutex_lock(&vcpu->mutex);
2194 if (kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc) && !ret) {
2195 *rcp = rc;
2196 *rrcp = rrc;
2197 ret = -EIO;
2198 }
2199 mutex_unlock(&vcpu->mutex);
2200 }
2201 return ret;
2202 }
2203
2204 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2205 {
2206 int i, r = 0;
2207 u16 dummy;
2208
2209 struct kvm_vcpu *vcpu;
2210
2211 kvm_for_each_vcpu(i, vcpu, kvm) {
2212 mutex_lock(&vcpu->mutex);
2213 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2214 mutex_unlock(&vcpu->mutex);
2215 if (r)
2216 break;
2217 }
2218 if (r)
2219 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2220 return r;
2221 }
2222
2223 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2224 {
2225 int r = 0;
2226 u16 dummy;
2227 void __user *argp = (void __user *)cmd->data;
2228
2229 switch (cmd->cmd) {
2230 case KVM_PV_ENABLE: {
2231 r = -EINVAL;
2232 if (kvm_s390_pv_is_protected(kvm))
2233 break;
2234
2235 /*
2236 * FMT 4 SIE needs esca. As we never switch back to bsca from
2237 * esca, we need no cleanup in the error cases below
2238 */
2239 r = sca_switch_to_extended(kvm);
2240 if (r)
2241 break;
2242
2243 down_write(&current->mm->mmap_sem);
2244 r = gmap_mark_unmergeable();
2245 up_write(&current->mm->mmap_sem);
2246 if (r)
2247 break;
2248
2249 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2250 if (r)
2251 break;
2252
2253 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2254 if (r)
2255 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2256
2257 /* we need to block service interrupts from now on */
2258 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2259 break;
2260 }
2261 case KVM_PV_DISABLE: {
2262 r = -EINVAL;
2263 if (!kvm_s390_pv_is_protected(kvm))
2264 break;
2265
2266 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2267 /*
2268 * If a CPU could not be destroyed, destroy VM will also fail.
2269 * There is no point in trying to destroy it. Instead return
2270 * the rc and rrc from the first CPU that failed destroying.
2271 */
2272 if (r)
2273 break;
2274 r = kvm_s390_pv_deinit_vm(kvm, &cmd->rc, &cmd->rrc);
2275
2276 /* no need to block service interrupts any more */
2277 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2278 break;
2279 }
2280 case KVM_PV_SET_SEC_PARMS: {
2281 struct kvm_s390_pv_sec_parm parms = {};
2282 void *hdr;
2283
2284 r = -EINVAL;
2285 if (!kvm_s390_pv_is_protected(kvm))
2286 break;
2287
2288 r = -EFAULT;
2289 if (copy_from_user(&parms, argp, sizeof(parms)))
2290 break;
2291
2292 /* Currently restricted to 8KB */
2293 r = -EINVAL;
2294 if (parms.length > PAGE_SIZE * 2)
2295 break;
2296
2297 r = -ENOMEM;
2298 hdr = vmalloc(parms.length);
2299 if (!hdr)
2300 break;
2301
2302 r = -EFAULT;
2303 if (!copy_from_user(hdr, (void __user *)parms.origin,
2304 parms.length))
2305 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2306 &cmd->rc, &cmd->rrc);
2307
2308 vfree(hdr);
2309 break;
2310 }
2311 case KVM_PV_UNPACK: {
2312 struct kvm_s390_pv_unp unp = {};
2313
2314 r = -EINVAL;
2315 if (!kvm_s390_pv_is_protected(kvm))
2316 break;
2317
2318 r = -EFAULT;
2319 if (copy_from_user(&unp, argp, sizeof(unp)))
2320 break;
2321
2322 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2323 &cmd->rc, &cmd->rrc);
2324 break;
2325 }
2326 case KVM_PV_VERIFY: {
2327 r = -EINVAL;
2328 if (!kvm_s390_pv_is_protected(kvm))
2329 break;
2330
2331 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2332 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2333 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2334 cmd->rrc);
2335 break;
2336 }
2337 case KVM_PV_PREP_RESET: {
2338 r = -EINVAL;
2339 if (!kvm_s390_pv_is_protected(kvm))
2340 break;
2341
2342 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2343 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2344 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2345 cmd->rc, cmd->rrc);
2346 break;
2347 }
2348 case KVM_PV_UNSHARE_ALL: {
2349 r = -EINVAL;
2350 if (!kvm_s390_pv_is_protected(kvm))
2351 break;
2352
2353 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2354 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2355 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2356 cmd->rc, cmd->rrc);
2357 break;
2358 }
2359 default:
2360 r = -ENOTTY;
2361 }
2362 return r;
2363 }
2364
2365 long kvm_arch_vm_ioctl(struct file *filp,
2366 unsigned int ioctl, unsigned long arg)
2367 {
2368 struct kvm *kvm = filp->private_data;
2369 void __user *argp = (void __user *)arg;
2370 struct kvm_device_attr attr;
2371 int r;
2372
2373 switch (ioctl) {
2374 case KVM_S390_INTERRUPT: {
2375 struct kvm_s390_interrupt s390int;
2376
2377 r = -EFAULT;
2378 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2379 break;
2380 r = kvm_s390_inject_vm(kvm, &s390int);
2381 break;
2382 }
2383 case KVM_CREATE_IRQCHIP: {
2384 struct kvm_irq_routing_entry routing;
2385
2386 r = -EINVAL;
2387 if (kvm->arch.use_irqchip) {
2388 /* Set up dummy routing. */
2389 memset(&routing, 0, sizeof(routing));
2390 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
2391 }
2392 break;
2393 }
2394 case KVM_SET_DEVICE_ATTR: {
2395 r = -EFAULT;
2396 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2397 break;
2398 r = kvm_s390_vm_set_attr(kvm, &attr);
2399 break;
2400 }
2401 case KVM_GET_DEVICE_ATTR: {
2402 r = -EFAULT;
2403 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2404 break;
2405 r = kvm_s390_vm_get_attr(kvm, &attr);
2406 break;
2407 }
2408 case KVM_HAS_DEVICE_ATTR: {
2409 r = -EFAULT;
2410 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2411 break;
2412 r = kvm_s390_vm_has_attr(kvm, &attr);
2413 break;
2414 }
2415 case KVM_S390_GET_SKEYS: {
2416 struct kvm_s390_skeys args;
2417
2418 r = -EFAULT;
2419 if (copy_from_user(&args, argp,
2420 sizeof(struct kvm_s390_skeys)))
2421 break;
2422 r = kvm_s390_get_skeys(kvm, &args);
2423 break;
2424 }
2425 case KVM_S390_SET_SKEYS: {
2426 struct kvm_s390_skeys args;
2427
2428 r = -EFAULT;
2429 if (copy_from_user(&args, argp,
2430 sizeof(struct kvm_s390_skeys)))
2431 break;
2432 r = kvm_s390_set_skeys(kvm, &args);
2433 break;
2434 }
2435 case KVM_S390_GET_CMMA_BITS: {
2436 struct kvm_s390_cmma_log args;
2437
2438 r = -EFAULT;
2439 if (copy_from_user(&args, argp, sizeof(args)))
2440 break;
2441 mutex_lock(&kvm->slots_lock);
2442 r = kvm_s390_get_cmma_bits(kvm, &args);
2443 mutex_unlock(&kvm->slots_lock);
2444 if (!r) {
2445 r = copy_to_user(argp, &args, sizeof(args));
2446 if (r)
2447 r = -EFAULT;
2448 }
2449 break;
2450 }
2451 case KVM_S390_SET_CMMA_BITS: {
2452 struct kvm_s390_cmma_log args;
2453
2454 r = -EFAULT;
2455 if (copy_from_user(&args, argp, sizeof(args)))
2456 break;
2457 mutex_lock(&kvm->slots_lock);
2458 r = kvm_s390_set_cmma_bits(kvm, &args);
2459 mutex_unlock(&kvm->slots_lock);
2460 break;
2461 }
2462 case KVM_S390_PV_COMMAND: {
2463 struct kvm_pv_cmd args;
2464
2465 /* protvirt means user sigp */
2466 kvm->arch.user_cpu_state_ctrl = 1;
2467 r = 0;
2468 if (!is_prot_virt_host()) {
2469 r = -EINVAL;
2470 break;
2471 }
2472 if (copy_from_user(&args, argp, sizeof(args))) {
2473 r = -EFAULT;
2474 break;
2475 }
2476 if (args.flags) {
2477 r = -EINVAL;
2478 break;
2479 }
2480 mutex_lock(&kvm->lock);
2481 r = kvm_s390_handle_pv(kvm, &args);
2482 mutex_unlock(&kvm->lock);
2483 if (copy_to_user(argp, &args, sizeof(args))) {
2484 r = -EFAULT;
2485 break;
2486 }
2487 break;
2488 }
2489 default:
2490 r = -ENOTTY;
2491 }
2492
2493 return r;
2494 }
2495
2496 static int kvm_s390_apxa_installed(void)
2497 {
2498 struct ap_config_info info;
2499
2500 if (ap_instructions_available()) {
2501 if (ap_qci(&info) == 0)
2502 return info.apxa;
2503 }
2504
2505 return 0;
2506 }
2507
2508 /*
2509 * The format of the crypto control block (CRYCB) is specified in the 3 low
2510 * order bits of the CRYCB designation (CRYCBD) field as follows:
2511 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
2512 * AP extended addressing (APXA) facility are installed.
2513 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
2514 * Format 2: Both the APXA and MSAX3 facilities are installed
2515 */
2516 static void kvm_s390_set_crycb_format(struct kvm *kvm)
2517 {
2518 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
2519
2520 /* Clear the CRYCB format bits - i.e., set format 0 by default */
2521 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
2522
2523 /* Check whether MSAX3 is installed */
2524 if (!test_kvm_facility(kvm, 76))
2525 return;
2526
2527 if (kvm_s390_apxa_installed())
2528 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
2529 else
2530 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
2531 }
2532
2533 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
2534 unsigned long *aqm, unsigned long *adm)
2535 {
2536 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
2537
2538 mutex_lock(&kvm->lock);
2539 kvm_s390_vcpu_block_all(kvm);
2540
2541 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
2542 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
2543 memcpy(crycb->apcb1.apm, apm, 32);
2544 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
2545 apm[0], apm[1], apm[2], apm[3]);
2546 memcpy(crycb->apcb1.aqm, aqm, 32);
2547 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
2548 aqm[0], aqm[1], aqm[2], aqm[3]);
2549 memcpy(crycb->apcb1.adm, adm, 32);
2550 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
2551 adm[0], adm[1], adm[2], adm[3]);
2552 break;
2553 case CRYCB_FORMAT1:
2554 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
2555 memcpy(crycb->apcb0.apm, apm, 8);
2556 memcpy(crycb->apcb0.aqm, aqm, 2);
2557 memcpy(crycb->apcb0.adm, adm, 2);
2558 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
2559 apm[0], *((unsigned short *)aqm),
2560 *((unsigned short *)adm));
2561 break;
2562 default: /* Can not happen */
2563 break;
2564 }
2565
2566 /* recreate the shadow crycb for each vcpu */
2567 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
2568 kvm_s390_vcpu_unblock_all(kvm);
2569 mutex_unlock(&kvm->lock);
2570 }
2571 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
2572
2573 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
2574 {
2575 mutex_lock(&kvm->lock);
2576 kvm_s390_vcpu_block_all(kvm);
2577
2578 memset(&kvm->arch.crypto.crycb->apcb0, 0,
2579 sizeof(kvm->arch.crypto.crycb->apcb0));
2580 memset(&kvm->arch.crypto.crycb->apcb1, 0,
2581 sizeof(kvm->arch.crypto.crycb->apcb1));
2582
2583 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
2584 /* recreate the shadow crycb for each vcpu */
2585 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
2586 kvm_s390_vcpu_unblock_all(kvm);
2587 mutex_unlock(&kvm->lock);
2588 }
2589 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
2590
2591 static u64 kvm_s390_get_initial_cpuid(void)
2592 {
2593 struct cpuid cpuid;
2594
2595 get_cpu_id(&cpuid);
2596 cpuid.version = 0xff;
2597 return *((u64 *) &cpuid);
2598 }
2599
2600 static void kvm_s390_crypto_init(struct kvm *kvm)
2601 {
2602 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
2603 kvm_s390_set_crycb_format(kvm);
2604
2605 if (!test_kvm_facility(kvm, 76))
2606 return;
2607
2608 /* Enable AES/DEA protected key functions by default */
2609 kvm->arch.crypto.aes_kw = 1;
2610 kvm->arch.crypto.dea_kw = 1;
2611 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
2612 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
2613 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
2614 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
2615 }
2616
2617 static void sca_dispose(struct kvm *kvm)
2618 {
2619 if (kvm->arch.use_esca)
2620 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
2621 else
2622 free_page((unsigned long)(kvm->arch.sca));
2623 kvm->arch.sca = NULL;
2624 }
2625
2626 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
2627 {
2628 gfp_t alloc_flags = GFP_KERNEL;
2629 int i, rc;
2630 char debug_name[16];
2631 static unsigned long sca_offset;
2632
2633 rc = -EINVAL;
2634 #ifdef CONFIG_KVM_S390_UCONTROL
2635 if (type & ~KVM_VM_S390_UCONTROL)
2636 goto out_err;
2637 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
2638 goto out_err;
2639 #else
2640 if (type)
2641 goto out_err;
2642 #endif
2643
2644 rc = s390_enable_sie();
2645 if (rc)
2646 goto out_err;
2647
2648 rc = -ENOMEM;
2649
2650 if (!sclp.has_64bscao)
2651 alloc_flags |= GFP_DMA;
2652 rwlock_init(&kvm->arch.sca_lock);
2653 /* start with basic SCA */
2654 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
2655 if (!kvm->arch.sca)
2656 goto out_err;
2657 mutex_lock(&kvm_lock);
2658 sca_offset += 16;
2659 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
2660 sca_offset = 0;
2661 kvm->arch.sca = (struct bsca_block *)
2662 ((char *) kvm->arch.sca + sca_offset);
2663 mutex_unlock(&kvm_lock);
2664
2665 sprintf(debug_name, "kvm-%u", current->pid);
2666
2667 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
2668 if (!kvm->arch.dbf)
2669 goto out_err;
2670
2671 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
2672 kvm->arch.sie_page2 =
2673 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
2674 if (!kvm->arch.sie_page2)
2675 goto out_err;
2676
2677 kvm->arch.sie_page2->kvm = kvm;
2678 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
2679
2680 for (i = 0; i < kvm_s390_fac_size(); i++) {
2681 kvm->arch.model.fac_mask[i] = S390_lowcore.stfle_fac_list[i] &
2682 (kvm_s390_fac_base[i] |
2683 kvm_s390_fac_ext[i]);
2684 kvm->arch.model.fac_list[i] = S390_lowcore.stfle_fac_list[i] &
2685 kvm_s390_fac_base[i];
2686 }
2687 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
2688
2689 /* we are always in czam mode - even on pre z14 machines */
2690 set_kvm_facility(kvm->arch.model.fac_mask, 138);
2691 set_kvm_facility(kvm->arch.model.fac_list, 138);
2692 /* we emulate STHYI in kvm */
2693 set_kvm_facility(kvm->arch.model.fac_mask, 74);
2694 set_kvm_facility(kvm->arch.model.fac_list, 74);
2695 if (MACHINE_HAS_TLB_GUEST) {
2696 set_kvm_facility(kvm->arch.model.fac_mask, 147);
2697 set_kvm_facility(kvm->arch.model.fac_list, 147);
2698 }
2699
2700 if (css_general_characteristics.aiv && test_facility(65))
2701 set_kvm_facility(kvm->arch.model.fac_mask, 65);
2702
2703 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
2704 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
2705
2706 kvm_s390_crypto_init(kvm);
2707
2708 mutex_init(&kvm->arch.float_int.ais_lock);
2709 spin_lock_init(&kvm->arch.float_int.lock);
2710 for (i = 0; i < FIRQ_LIST_COUNT; i++)
2711 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
2712 init_waitqueue_head(&kvm->arch.ipte_wq);
2713 mutex_init(&kvm->arch.ipte_mutex);
2714
2715 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
2716 VM_EVENT(kvm, 3, "vm created with type %lu", type);
2717
2718 if (type & KVM_VM_S390_UCONTROL) {
2719 kvm->arch.gmap = NULL;
2720 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
2721 } else {
2722 if (sclp.hamax == U64_MAX)
2723 kvm->arch.mem_limit = TASK_SIZE_MAX;
2724 else
2725 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
2726 sclp.hamax + 1);
2727 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
2728 if (!kvm->arch.gmap)
2729 goto out_err;
2730 kvm->arch.gmap->private = kvm;
2731 kvm->arch.gmap->pfault_enabled = 0;
2732 }
2733
2734 kvm->arch.use_pfmfi = sclp.has_pfmfi;
2735 kvm->arch.use_skf = sclp.has_skey;
2736 spin_lock_init(&kvm->arch.start_stop_lock);
2737 kvm_s390_vsie_init(kvm);
2738 if (use_gisa)
2739 kvm_s390_gisa_init(kvm);
2740 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
2741
2742 return 0;
2743 out_err:
2744 free_page((unsigned long)kvm->arch.sie_page2);
2745 debug_unregister(kvm->arch.dbf);
2746 sca_dispose(kvm);
2747 KVM_EVENT(3, "creation of vm failed: %d", rc);
2748 return rc;
2749 }
2750
2751 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
2752 {
2753 u16 rc, rrc;
2754
2755 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
2756 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
2757 kvm_s390_clear_local_irqs(vcpu);
2758 kvm_clear_async_pf_completion_queue(vcpu);
2759 if (!kvm_is_ucontrol(vcpu->kvm))
2760 sca_del_vcpu(vcpu);
2761
2762 if (kvm_is_ucontrol(vcpu->kvm))
2763 gmap_remove(vcpu->arch.gmap);
2764
2765 if (vcpu->kvm->arch.use_cmma)
2766 kvm_s390_vcpu_unsetup_cmma(vcpu);
2767 /* We can not hold the vcpu mutex here, we are already dying */
2768 if (kvm_s390_pv_cpu_get_handle(vcpu))
2769 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
2770 free_page((unsigned long)(vcpu->arch.sie_block));
2771 }
2772
2773 static void kvm_free_vcpus(struct kvm *kvm)
2774 {
2775 unsigned int i;
2776 struct kvm_vcpu *vcpu;
2777
2778 kvm_for_each_vcpu(i, vcpu, kvm)
2779 kvm_vcpu_destroy(vcpu);
2780
2781 mutex_lock(&kvm->lock);
2782 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
2783 kvm->vcpus[i] = NULL;
2784
2785 atomic_set(&kvm->online_vcpus, 0);
2786 mutex_unlock(&kvm->lock);
2787 }
2788
2789 void kvm_arch_destroy_vm(struct kvm *kvm)
2790 {
2791 u16 rc, rrc;
2792
2793 kvm_free_vcpus(kvm);
2794 sca_dispose(kvm);
2795 kvm_s390_gisa_destroy(kvm);
2796 /*
2797 * We are already at the end of life and kvm->lock is not taken.
2798 * This is ok as the file descriptor is closed by now and nobody
2799 * can mess with the pv state. To avoid lockdep_assert_held from
2800 * complaining we do not use kvm_s390_pv_is_protected.
2801 */
2802 if (kvm_s390_pv_get_handle(kvm))
2803 kvm_s390_pv_deinit_vm(kvm, &rc, &rrc);
2804 debug_unregister(kvm->arch.dbf);
2805 free_page((unsigned long)kvm->arch.sie_page2);
2806 if (!kvm_is_ucontrol(kvm))
2807 gmap_remove(kvm->arch.gmap);
2808 kvm_s390_destroy_adapters(kvm);
2809 kvm_s390_clear_float_irqs(kvm);
2810 kvm_s390_vsie_destroy(kvm);
2811 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2812 }
2813
2814 /* Section: vcpu related */
2815 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
2816 {
2817 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2818 if (!vcpu->arch.gmap)
2819 return -ENOMEM;
2820 vcpu->arch.gmap->private = vcpu->kvm;
2821
2822 return 0;
2823 }
2824
2825 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
2826 {
2827 if (!kvm_s390_use_sca_entries())
2828 return;
2829 read_lock(&vcpu->kvm->arch.sca_lock);
2830 if (vcpu->kvm->arch.use_esca) {
2831 struct esca_block *sca = vcpu->kvm->arch.sca;
2832
2833 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2834 sca->cpu[vcpu->vcpu_id].sda = 0;
2835 } else {
2836 struct bsca_block *sca = vcpu->kvm->arch.sca;
2837
2838 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2839 sca->cpu[vcpu->vcpu_id].sda = 0;
2840 }
2841 read_unlock(&vcpu->kvm->arch.sca_lock);
2842 }
2843
2844 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2845 {
2846 if (!kvm_s390_use_sca_entries()) {
2847 struct bsca_block *sca = vcpu->kvm->arch.sca;
2848
2849 /* we still need the basic sca for the ipte control */
2850 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2851 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2852 return;
2853 }
2854 read_lock(&vcpu->kvm->arch.sca_lock);
2855 if (vcpu->kvm->arch.use_esca) {
2856 struct esca_block *sca = vcpu->kvm->arch.sca;
2857
2858 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2859 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2860 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2861 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2862 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2863 } else {
2864 struct bsca_block *sca = vcpu->kvm->arch.sca;
2865
2866 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2867 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2868 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2869 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2870 }
2871 read_unlock(&vcpu->kvm->arch.sca_lock);
2872 }
2873
2874 /* Basic SCA to Extended SCA data copy routines */
2875 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
2876 {
2877 d->sda = s->sda;
2878 d->sigp_ctrl.c = s->sigp_ctrl.c;
2879 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
2880 }
2881
2882 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
2883 {
2884 int i;
2885
2886 d->ipte_control = s->ipte_control;
2887 d->mcn[0] = s->mcn;
2888 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
2889 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
2890 }
2891
2892 static int sca_switch_to_extended(struct kvm *kvm)
2893 {
2894 struct bsca_block *old_sca = kvm->arch.sca;
2895 struct esca_block *new_sca;
2896 struct kvm_vcpu *vcpu;
2897 unsigned int vcpu_idx;
2898 u32 scaol, scaoh;
2899
2900 if (kvm->arch.use_esca)
2901 return 0;
2902
2903 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
2904 if (!new_sca)
2905 return -ENOMEM;
2906
2907 scaoh = (u32)((u64)(new_sca) >> 32);
2908 scaol = (u32)(u64)(new_sca) & ~0x3fU;
2909
2910 kvm_s390_vcpu_block_all(kvm);
2911 write_lock(&kvm->arch.sca_lock);
2912
2913 sca_copy_b_to_e(new_sca, old_sca);
2914
2915 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
2916 vcpu->arch.sie_block->scaoh = scaoh;
2917 vcpu->arch.sie_block->scaol = scaol;
2918 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2919 }
2920 kvm->arch.sca = new_sca;
2921 kvm->arch.use_esca = 1;
2922
2923 write_unlock(&kvm->arch.sca_lock);
2924 kvm_s390_vcpu_unblock_all(kvm);
2925
2926 free_page((unsigned long)old_sca);
2927
2928 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
2929 old_sca, kvm->arch.sca);
2930 return 0;
2931 }
2932
2933 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
2934 {
2935 int rc;
2936
2937 if (!kvm_s390_use_sca_entries()) {
2938 if (id < KVM_MAX_VCPUS)
2939 return true;
2940 return false;
2941 }
2942 if (id < KVM_S390_BSCA_CPU_SLOTS)
2943 return true;
2944 if (!sclp.has_esca || !sclp.has_64bscao)
2945 return false;
2946
2947 mutex_lock(&kvm->lock);
2948 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
2949 mutex_unlock(&kvm->lock);
2950
2951 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2952 }
2953
2954 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2955 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2956 {
2957 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2958 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2959 vcpu->arch.cputm_start = get_tod_clock_fast();
2960 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2961 }
2962
2963 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2964 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2965 {
2966 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2967 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2968 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
2969 vcpu->arch.cputm_start = 0;
2970 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2971 }
2972
2973 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2974 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2975 {
2976 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
2977 vcpu->arch.cputm_enabled = true;
2978 __start_cpu_timer_accounting(vcpu);
2979 }
2980
2981 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2982 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2983 {
2984 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
2985 __stop_cpu_timer_accounting(vcpu);
2986 vcpu->arch.cputm_enabled = false;
2987 }
2988
2989 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2990 {
2991 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2992 __enable_cpu_timer_accounting(vcpu);
2993 preempt_enable();
2994 }
2995
2996 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2997 {
2998 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2999 __disable_cpu_timer_accounting(vcpu);
3000 preempt_enable();
3001 }
3002
3003 /* set the cpu timer - may only be called from the VCPU thread itself */
3004 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3005 {
3006 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3007 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3008 if (vcpu->arch.cputm_enabled)
3009 vcpu->arch.cputm_start = get_tod_clock_fast();
3010 vcpu->arch.sie_block->cputm = cputm;
3011 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3012 preempt_enable();
3013 }
3014
3015 /* update and get the cpu timer - can also be called from other VCPU threads */
3016 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3017 {
3018 unsigned int seq;
3019 __u64 value;
3020
3021 if (unlikely(!vcpu->arch.cputm_enabled))
3022 return vcpu->arch.sie_block->cputm;
3023
3024 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3025 do {
3026 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3027 /*
3028 * If the writer would ever execute a read in the critical
3029 * section, e.g. in irq context, we have a deadlock.
3030 */
3031 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3032 value = vcpu->arch.sie_block->cputm;
3033 /* if cputm_start is 0, accounting is being started/stopped */
3034 if (likely(vcpu->arch.cputm_start))
3035 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3036 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3037 preempt_enable();
3038 return value;
3039 }
3040
3041 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3042 {
3043
3044 gmap_enable(vcpu->arch.enabled_gmap);
3045 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3046 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3047 __start_cpu_timer_accounting(vcpu);
3048 vcpu->cpu = cpu;
3049 }
3050
3051 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3052 {
3053 vcpu->cpu = -1;
3054 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3055 __stop_cpu_timer_accounting(vcpu);
3056 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3057 vcpu->arch.enabled_gmap = gmap_get_enabled();
3058 gmap_disable(vcpu->arch.enabled_gmap);
3059
3060 }
3061
3062 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3063 {
3064 mutex_lock(&vcpu->kvm->lock);
3065 preempt_disable();
3066 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3067 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3068 preempt_enable();
3069 mutex_unlock(&vcpu->kvm->lock);
3070 if (!kvm_is_ucontrol(vcpu->kvm)) {
3071 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3072 sca_add_vcpu(vcpu);
3073 }
3074 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3075 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3076 /* make vcpu_load load the right gmap on the first trigger */
3077 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
3078 }
3079
3080 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3081 {
3082 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3083 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3084 return true;
3085 return false;
3086 }
3087
3088 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3089 {
3090 /* At least one ECC subfunction must be present */
3091 return kvm_has_pckmo_subfunc(kvm, 32) ||
3092 kvm_has_pckmo_subfunc(kvm, 33) ||
3093 kvm_has_pckmo_subfunc(kvm, 34) ||
3094 kvm_has_pckmo_subfunc(kvm, 40) ||
3095 kvm_has_pckmo_subfunc(kvm, 41);
3096
3097 }
3098
3099 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3100 {
3101 /*
3102 * If the AP instructions are not being interpreted and the MSAX3
3103 * facility is not configured for the guest, there is nothing to set up.
3104 */
3105 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3106 return;
3107
3108 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3109 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3110 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3111 vcpu->arch.sie_block->ecd &= ~ECD_ECC;
3112
3113 if (vcpu->kvm->arch.crypto.apie)
3114 vcpu->arch.sie_block->eca |= ECA_APIE;
3115
3116 /* Set up protected key support */
3117 if (vcpu->kvm->arch.crypto.aes_kw) {
3118 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3119 /* ecc is also wrapped with AES key */
3120 if (kvm_has_pckmo_ecc(vcpu->kvm))
3121 vcpu->arch.sie_block->ecd |= ECD_ECC;
3122 }
3123
3124 if (vcpu->kvm->arch.crypto.dea_kw)
3125 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3126 }
3127
3128 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3129 {
3130 free_page(vcpu->arch.sie_block->cbrlo);
3131 vcpu->arch.sie_block->cbrlo = 0;
3132 }
3133
3134 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3135 {
3136 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
3137 if (!vcpu->arch.sie_block->cbrlo)
3138 return -ENOMEM;
3139 return 0;
3140 }
3141
3142 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3143 {
3144 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3145
3146 vcpu->arch.sie_block->ibc = model->ibc;
3147 if (test_kvm_facility(vcpu->kvm, 7))
3148 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
3149 }
3150
3151 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3152 {
3153 int rc = 0;
3154 u16 uvrc, uvrrc;
3155
3156 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3157 CPUSTAT_SM |
3158 CPUSTAT_STOPPED);
3159
3160 if (test_kvm_facility(vcpu->kvm, 78))
3161 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3162 else if (test_kvm_facility(vcpu->kvm, 8))
3163 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3164
3165 kvm_s390_vcpu_setup_model(vcpu);
3166
3167 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
3168 if (MACHINE_HAS_ESOP)
3169 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3170 if (test_kvm_facility(vcpu->kvm, 9))
3171 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3172 if (test_kvm_facility(vcpu->kvm, 73))
3173 vcpu->arch.sie_block->ecb |= ECB_TE;
3174
3175 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3176 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3177 if (test_kvm_facility(vcpu->kvm, 130))
3178 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3179 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3180 if (sclp.has_cei)
3181 vcpu->arch.sie_block->eca |= ECA_CEI;
3182 if (sclp.has_ib)
3183 vcpu->arch.sie_block->eca |= ECA_IB;
3184 if (sclp.has_siif)
3185 vcpu->arch.sie_block->eca |= ECA_SII;
3186 if (sclp.has_sigpif)
3187 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3188 if (test_kvm_facility(vcpu->kvm, 129)) {
3189 vcpu->arch.sie_block->eca |= ECA_VX;
3190 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3191 }
3192 if (test_kvm_facility(vcpu->kvm, 139))
3193 vcpu->arch.sie_block->ecd |= ECD_MEF;
3194 if (test_kvm_facility(vcpu->kvm, 156))
3195 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3196 if (vcpu->arch.sie_block->gd) {
3197 vcpu->arch.sie_block->eca |= ECA_AIV;
3198 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3199 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3200 }
3201 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
3202 | SDNXC;
3203 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
3204
3205 if (sclp.has_kss)
3206 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3207 else
3208 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3209
3210 if (vcpu->kvm->arch.use_cmma) {
3211 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3212 if (rc)
3213 return rc;
3214 }
3215 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3216 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
3217
3218 vcpu->arch.sie_block->hpid = HPID_KVM;
3219
3220 kvm_s390_vcpu_crypto_setup(vcpu);
3221
3222 mutex_lock(&vcpu->kvm->lock);
3223 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3224 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3225 if (rc)
3226 kvm_s390_vcpu_unsetup_cmma(vcpu);
3227 }
3228 mutex_unlock(&vcpu->kvm->lock);
3229
3230 return rc;
3231 }
3232
3233 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3234 {
3235 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3236 return -EINVAL;
3237 return 0;
3238 }
3239
3240 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3241 {
3242 struct sie_page *sie_page;
3243 int rc;
3244
3245 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3246 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
3247 if (!sie_page)
3248 return -ENOMEM;
3249
3250 vcpu->arch.sie_block = &sie_page->sie_block;
3251 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
3252
3253 /* the real guest size will always be smaller than msl */
3254 vcpu->arch.sie_block->mso = 0;
3255 vcpu->arch.sie_block->msl = sclp.hamax;
3256
3257 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3258 spin_lock_init(&vcpu->arch.local_int.lock);
3259 vcpu->arch.sie_block->gd = (u32)(u64)vcpu->kvm->arch.gisa_int.origin;
3260 if (vcpu->arch.sie_block->gd && sclp.has_gisaf)
3261 vcpu->arch.sie_block->gd |= GISA_FORMAT1;
3262 seqcount_init(&vcpu->arch.cputm_seqcount);
3263
3264 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3265 kvm_clear_async_pf_completion_queue(vcpu);
3266 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3267 KVM_SYNC_GPRS |
3268 KVM_SYNC_ACRS |
3269 KVM_SYNC_CRS |
3270 KVM_SYNC_ARCH0 |
3271 KVM_SYNC_PFAULT;
3272 kvm_s390_set_prefix(vcpu, 0);
3273 if (test_kvm_facility(vcpu->kvm, 64))
3274 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3275 if (test_kvm_facility(vcpu->kvm, 82))
3276 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3277 if (test_kvm_facility(vcpu->kvm, 133))
3278 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3279 if (test_kvm_facility(vcpu->kvm, 156))
3280 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3281 /* fprs can be synchronized via vrs, even if the guest has no vx. With
3282 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
3283 */
3284 if (MACHINE_HAS_VX)
3285 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3286 else
3287 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3288
3289 if (kvm_is_ucontrol(vcpu->kvm)) {
3290 rc = __kvm_ucontrol_vcpu_init(vcpu);
3291 if (rc)
3292 goto out_free_sie_block;
3293 }
3294
3295 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
3296 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3297 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3298
3299 rc = kvm_s390_vcpu_setup(vcpu);
3300 if (rc)
3301 goto out_ucontrol_uninit;
3302 return 0;
3303
3304 out_ucontrol_uninit:
3305 if (kvm_is_ucontrol(vcpu->kvm))
3306 gmap_remove(vcpu->arch.gmap);
3307 out_free_sie_block:
3308 free_page((unsigned long)(vcpu->arch.sie_block));
3309 return rc;
3310 }
3311
3312 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3313 {
3314 return kvm_s390_vcpu_has_irq(vcpu, 0);
3315 }
3316
3317 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
3318 {
3319 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
3320 }
3321
3322 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
3323 {
3324 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3325 exit_sie(vcpu);
3326 }
3327
3328 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
3329 {
3330 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
3331 }
3332
3333 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
3334 {
3335 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3336 exit_sie(vcpu);
3337 }
3338
3339 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
3340 {
3341 return atomic_read(&vcpu->arch.sie_block->prog20) &
3342 (PROG_BLOCK_SIE | PROG_REQUEST);
3343 }
3344
3345 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
3346 {
3347 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
3348 }
3349
3350 /*
3351 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
3352 * If the CPU is not running (e.g. waiting as idle) the function will
3353 * return immediately. */
3354 void exit_sie(struct kvm_vcpu *vcpu)
3355 {
3356 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
3357 kvm_s390_vsie_kick(vcpu);
3358 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
3359 cpu_relax();
3360 }
3361
3362 /* Kick a guest cpu out of SIE to process a request synchronously */
3363 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
3364 {
3365 kvm_make_request(req, vcpu);
3366 kvm_s390_vcpu_request(vcpu);
3367 }
3368
3369 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
3370 unsigned long end)
3371 {
3372 struct kvm *kvm = gmap->private;
3373 struct kvm_vcpu *vcpu;
3374 unsigned long prefix;
3375 int i;
3376
3377 if (gmap_is_shadow(gmap))
3378 return;
3379 if (start >= 1UL << 31)
3380 /* We are only interested in prefix pages */
3381 return;
3382 kvm_for_each_vcpu(i, vcpu, kvm) {
3383 /* match against both prefix pages */
3384 prefix = kvm_s390_get_prefix(vcpu);
3385 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
3386 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
3387 start, end);
3388 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
3389 }
3390 }
3391 }
3392
3393 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
3394 {
3395 /* do not poll with more than halt_poll_max_steal percent of steal time */
3396 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
3397 halt_poll_max_steal) {
3398 vcpu->stat.halt_no_poll_steal++;
3399 return true;
3400 }
3401 return false;
3402 }
3403
3404 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
3405 {
3406 /* kvm common code refers to this, but never calls it */
3407 BUG();
3408 return 0;
3409 }
3410
3411 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
3412 struct kvm_one_reg *reg)
3413 {
3414 int r = -EINVAL;
3415
3416 switch (reg->id) {
3417 case KVM_REG_S390_TODPR:
3418 r = put_user(vcpu->arch.sie_block->todpr,
3419 (u32 __user *)reg->addr);
3420 break;
3421 case KVM_REG_S390_EPOCHDIFF:
3422 r = put_user(vcpu->arch.sie_block->epoch,
3423 (u64 __user *)reg->addr);
3424 break;
3425 case KVM_REG_S390_CPU_TIMER:
3426 r = put_user(kvm_s390_get_cpu_timer(vcpu),
3427 (u64 __user *)reg->addr);
3428 break;
3429 case KVM_REG_S390_CLOCK_COMP:
3430 r = put_user(vcpu->arch.sie_block->ckc,
3431 (u64 __user *)reg->addr);
3432 break;
3433 case KVM_REG_S390_PFTOKEN:
3434 r = put_user(vcpu->arch.pfault_token,
3435 (u64 __user *)reg->addr);
3436 break;
3437 case KVM_REG_S390_PFCOMPARE:
3438 r = put_user(vcpu->arch.pfault_compare,
3439 (u64 __user *)reg->addr);
3440 break;
3441 case KVM_REG_S390_PFSELECT:
3442 r = put_user(vcpu->arch.pfault_select,
3443 (u64 __user *)reg->addr);
3444 break;
3445 case KVM_REG_S390_PP:
3446 r = put_user(vcpu->arch.sie_block->pp,
3447 (u64 __user *)reg->addr);
3448 break;
3449 case KVM_REG_S390_GBEA:
3450 r = put_user(vcpu->arch.sie_block->gbea,
3451 (u64 __user *)reg->addr);
3452 break;
3453 default:
3454 break;
3455 }
3456
3457 return r;
3458 }
3459
3460 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
3461 struct kvm_one_reg *reg)
3462 {
3463 int r = -EINVAL;
3464 __u64 val;
3465
3466 switch (reg->id) {
3467 case KVM_REG_S390_TODPR:
3468 r = get_user(vcpu->arch.sie_block->todpr,
3469 (u32 __user *)reg->addr);
3470 break;
3471 case KVM_REG_S390_EPOCHDIFF:
3472 r = get_user(vcpu->arch.sie_block->epoch,
3473 (u64 __user *)reg->addr);
3474 break;
3475 case KVM_REG_S390_CPU_TIMER:
3476 r = get_user(val, (u64 __user *)reg->addr);
3477 if (!r)
3478 kvm_s390_set_cpu_timer(vcpu, val);
3479 break;
3480 case KVM_REG_S390_CLOCK_COMP:
3481 r = get_user(vcpu->arch.sie_block->ckc,
3482 (u64 __user *)reg->addr);
3483 break;
3484 case KVM_REG_S390_PFTOKEN:
3485 r = get_user(vcpu->arch.pfault_token,
3486 (u64 __user *)reg->addr);
3487 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
3488 kvm_clear_async_pf_completion_queue(vcpu);
3489 break;
3490 case KVM_REG_S390_PFCOMPARE:
3491 r = get_user(vcpu->arch.pfault_compare,
3492 (u64 __user *)reg->addr);
3493 break;
3494 case KVM_REG_S390_PFSELECT:
3495 r = get_user(vcpu->arch.pfault_select,
3496 (u64 __user *)reg->addr);
3497 break;
3498 case KVM_REG_S390_PP:
3499 r = get_user(vcpu->arch.sie_block->pp,
3500 (u64 __user *)reg->addr);
3501 break;
3502 case KVM_REG_S390_GBEA:
3503 r = get_user(vcpu->arch.sie_block->gbea,
3504 (u64 __user *)reg->addr);
3505 break;
3506 default:
3507 break;
3508 }
3509
3510 return r;
3511 }
3512
3513 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
3514 {
3515 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
3516 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3517 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
3518
3519 kvm_clear_async_pf_completion_queue(vcpu);
3520 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
3521 kvm_s390_vcpu_stop(vcpu);
3522 kvm_s390_clear_local_irqs(vcpu);
3523 }
3524
3525 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
3526 {
3527 /* Initial reset is a superset of the normal reset */
3528 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
3529
3530 /*
3531 * This equals initial cpu reset in pop, but we don't switch to ESA.
3532 * We do not only reset the internal data, but also ...
3533 */
3534 vcpu->arch.sie_block->gpsw.mask = 0;
3535 vcpu->arch.sie_block->gpsw.addr = 0;
3536 kvm_s390_set_prefix(vcpu, 0);
3537 kvm_s390_set_cpu_timer(vcpu, 0);
3538 vcpu->arch.sie_block->ckc = 0;
3539 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
3540 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
3541 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
3542
3543 /* ... the data in sync regs */
3544 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
3545 vcpu->run->s.regs.ckc = 0;
3546 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
3547 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
3548 vcpu->run->psw_addr = 0;
3549 vcpu->run->psw_mask = 0;
3550 vcpu->run->s.regs.todpr = 0;
3551 vcpu->run->s.regs.cputm = 0;
3552 vcpu->run->s.regs.ckc = 0;
3553 vcpu->run->s.regs.pp = 0;
3554 vcpu->run->s.regs.gbea = 1;
3555 vcpu->run->s.regs.fpc = 0;
3556 /*
3557 * Do not reset these registers in the protected case, as some of
3558 * them are overlayed and they are not accessible in this case
3559 * anyway.
3560 */
3561 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
3562 vcpu->arch.sie_block->gbea = 1;
3563 vcpu->arch.sie_block->pp = 0;
3564 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
3565 vcpu->arch.sie_block->todpr = 0;
3566 }
3567 }
3568
3569 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
3570 {
3571 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
3572
3573 /* Clear reset is a superset of the initial reset */
3574 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3575
3576 memset(&regs->gprs, 0, sizeof(regs->gprs));
3577 memset(&regs->vrs, 0, sizeof(regs->vrs));
3578 memset(&regs->acrs, 0, sizeof(regs->acrs));
3579 memset(&regs->gscb, 0, sizeof(regs->gscb));
3580
3581 regs->etoken = 0;
3582 regs->etoken_extension = 0;
3583 }
3584
3585 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3586 {
3587 vcpu_load(vcpu);
3588 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
3589 vcpu_put(vcpu);
3590 return 0;
3591 }
3592
3593 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3594 {
3595 vcpu_load(vcpu);
3596 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
3597 vcpu_put(vcpu);
3598 return 0;
3599 }
3600
3601 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3602 struct kvm_sregs *sregs)
3603 {
3604 vcpu_load(vcpu);
3605
3606 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
3607 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
3608
3609 vcpu_put(vcpu);
3610 return 0;
3611 }
3612
3613 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3614 struct kvm_sregs *sregs)
3615 {
3616 vcpu_load(vcpu);
3617
3618 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
3619 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
3620
3621 vcpu_put(vcpu);
3622 return 0;
3623 }
3624
3625 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3626 {
3627 int ret = 0;
3628
3629 vcpu_load(vcpu);
3630
3631 if (test_fp_ctl(fpu->fpc)) {
3632 ret = -EINVAL;
3633 goto out;
3634 }
3635 vcpu->run->s.regs.fpc = fpu->fpc;
3636 if (MACHINE_HAS_VX)
3637 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
3638 (freg_t *) fpu->fprs);
3639 else
3640 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
3641
3642 out:
3643 vcpu_put(vcpu);
3644 return ret;
3645 }
3646
3647 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3648 {
3649 vcpu_load(vcpu);
3650
3651 /* make sure we have the latest values */
3652 save_fpu_regs();
3653 if (MACHINE_HAS_VX)
3654 convert_vx_to_fp((freg_t *) fpu->fprs,
3655 (__vector128 *) vcpu->run->s.regs.vrs);
3656 else
3657 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
3658 fpu->fpc = vcpu->run->s.regs.fpc;
3659
3660 vcpu_put(vcpu);
3661 return 0;
3662 }
3663
3664 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
3665 {
3666 int rc = 0;
3667
3668 if (!is_vcpu_stopped(vcpu))
3669 rc = -EBUSY;
3670 else {
3671 vcpu->run->psw_mask = psw.mask;
3672 vcpu->run->psw_addr = psw.addr;
3673 }
3674 return rc;
3675 }
3676
3677 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3678 struct kvm_translation *tr)
3679 {
3680 return -EINVAL; /* not implemented yet */
3681 }
3682
3683 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
3684 KVM_GUESTDBG_USE_HW_BP | \
3685 KVM_GUESTDBG_ENABLE)
3686
3687 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
3688 struct kvm_guest_debug *dbg)
3689 {
3690 int rc = 0;
3691
3692 vcpu_load(vcpu);
3693
3694 vcpu->guest_debug = 0;
3695 kvm_s390_clear_bp_data(vcpu);
3696
3697 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
3698 rc = -EINVAL;
3699 goto out;
3700 }
3701 if (!sclp.has_gpere) {
3702 rc = -EINVAL;
3703 goto out;
3704 }
3705
3706 if (dbg->control & KVM_GUESTDBG_ENABLE) {
3707 vcpu->guest_debug = dbg->control;
3708 /* enforce guest PER */
3709 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
3710
3711 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
3712 rc = kvm_s390_import_bp_data(vcpu, dbg);
3713 } else {
3714 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
3715 vcpu->arch.guestdbg.last_bp = 0;
3716 }
3717
3718 if (rc) {
3719 vcpu->guest_debug = 0;
3720 kvm_s390_clear_bp_data(vcpu);
3721 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
3722 }
3723
3724 out:
3725 vcpu_put(vcpu);
3726 return rc;
3727 }
3728
3729 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3730 struct kvm_mp_state *mp_state)
3731 {
3732 int ret;
3733
3734 vcpu_load(vcpu);
3735
3736 /* CHECK_STOP and LOAD are not supported yet */
3737 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
3738 KVM_MP_STATE_OPERATING;
3739
3740 vcpu_put(vcpu);
3741 return ret;
3742 }
3743
3744 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3745 struct kvm_mp_state *mp_state)
3746 {
3747 int rc = 0;
3748
3749 vcpu_load(vcpu);
3750
3751 /* user space knows about this interface - let it control the state */
3752 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
3753
3754 switch (mp_state->mp_state) {
3755 case KVM_MP_STATE_STOPPED:
3756 rc = kvm_s390_vcpu_stop(vcpu);
3757 break;
3758 case KVM_MP_STATE_OPERATING:
3759 rc = kvm_s390_vcpu_start(vcpu);
3760 break;
3761 case KVM_MP_STATE_LOAD:
3762 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
3763 rc = -ENXIO;
3764 break;
3765 }
3766 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
3767 break;
3768 case KVM_MP_STATE_CHECK_STOP:
3769 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
3770 default:
3771 rc = -ENXIO;
3772 }
3773
3774 vcpu_put(vcpu);
3775 return rc;
3776 }
3777
3778 static bool ibs_enabled(struct kvm_vcpu *vcpu)
3779 {
3780 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
3781 }
3782
3783 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
3784 {
3785 retry:
3786 kvm_s390_vcpu_request_handled(vcpu);
3787 if (!kvm_request_pending(vcpu))
3788 return 0;
3789 /*
3790 * We use MMU_RELOAD just to re-arm the ipte notifier for the
3791 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
3792 * This ensures that the ipte instruction for this request has
3793 * already finished. We might race against a second unmapper that
3794 * wants to set the blocking bit. Lets just retry the request loop.
3795 */
3796 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
3797 int rc;
3798 rc = gmap_mprotect_notify(vcpu->arch.gmap,
3799 kvm_s390_get_prefix(vcpu),
3800 PAGE_SIZE * 2, PROT_WRITE);
3801 if (rc) {
3802 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
3803 return rc;
3804 }
3805 goto retry;
3806 }
3807
3808 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
3809 vcpu->arch.sie_block->ihcpu = 0xffff;
3810 goto retry;
3811 }
3812
3813 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
3814 if (!ibs_enabled(vcpu)) {
3815 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
3816 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
3817 }
3818 goto retry;
3819 }
3820
3821 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
3822 if (ibs_enabled(vcpu)) {
3823 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
3824 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
3825 }
3826 goto retry;
3827 }
3828
3829 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
3830 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3831 goto retry;
3832 }
3833
3834 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
3835 /*
3836 * Disable CMM virtualization; we will emulate the ESSA
3837 * instruction manually, in order to provide additional
3838 * functionalities needed for live migration.
3839 */
3840 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
3841 goto retry;
3842 }
3843
3844 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
3845 /*
3846 * Re-enable CMM virtualization if CMMA is available and
3847 * CMM has been used.
3848 */
3849 if ((vcpu->kvm->arch.use_cmma) &&
3850 (vcpu->kvm->mm->context.uses_cmm))
3851 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
3852 goto retry;
3853 }
3854
3855 /* nothing to do, just clear the request */
3856 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
3857 /* we left the vsie handler, nothing to do, just clear the request */
3858 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
3859
3860 return 0;
3861 }
3862
3863 void kvm_s390_set_tod_clock(struct kvm *kvm,
3864 const struct kvm_s390_vm_tod_clock *gtod)
3865 {
3866 struct kvm_vcpu *vcpu;
3867 struct kvm_s390_tod_clock_ext htod;
3868 int i;
3869
3870 mutex_lock(&kvm->lock);
3871 preempt_disable();
3872
3873 get_tod_clock_ext((char *)&htod);
3874
3875 kvm->arch.epoch = gtod->tod - htod.tod;
3876 kvm->arch.epdx = 0;
3877 if (test_kvm_facility(kvm, 139)) {
3878 kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;
3879 if (kvm->arch.epoch > gtod->tod)
3880 kvm->arch.epdx -= 1;
3881 }
3882
3883 kvm_s390_vcpu_block_all(kvm);
3884 kvm_for_each_vcpu(i, vcpu, kvm) {
3885 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
3886 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
3887 }
3888
3889 kvm_s390_vcpu_unblock_all(kvm);
3890 preempt_enable();
3891 mutex_unlock(&kvm->lock);
3892 }
3893
3894 /**
3895 * kvm_arch_fault_in_page - fault-in guest page if necessary
3896 * @vcpu: The corresponding virtual cpu
3897 * @gpa: Guest physical address
3898 * @writable: Whether the page should be writable or not
3899 *
3900 * Make sure that a guest page has been faulted-in on the host.
3901 *
3902 * Return: Zero on success, negative error code otherwise.
3903 */
3904 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
3905 {
3906 return gmap_fault(vcpu->arch.gmap, gpa,
3907 writable ? FAULT_FLAG_WRITE : 0);
3908 }
3909
3910 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
3911 unsigned long token)
3912 {
3913 struct kvm_s390_interrupt inti;
3914 struct kvm_s390_irq irq;
3915
3916 if (start_token) {
3917 irq.u.ext.ext_params2 = token;
3918 irq.type = KVM_S390_INT_PFAULT_INIT;
3919 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3920 } else {
3921 inti.type = KVM_S390_INT_PFAULT_DONE;
3922 inti.parm64 = token;
3923 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
3924 }
3925 }
3926
3927 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
3928 struct kvm_async_pf *work)
3929 {
3930 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
3931 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
3932 }
3933
3934 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
3935 struct kvm_async_pf *work)
3936 {
3937 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
3938 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
3939 }
3940
3941 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
3942 struct kvm_async_pf *work)
3943 {
3944 /* s390 will always inject the page directly */
3945 }
3946
3947 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
3948 {
3949 /*
3950 * s390 will always inject the page directly,
3951 * but we still want check_async_completion to cleanup
3952 */
3953 return true;
3954 }
3955
3956 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
3957 {
3958 hva_t hva;
3959 struct kvm_arch_async_pf arch;
3960 int rc;
3961
3962 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
3963 return 0;
3964 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
3965 vcpu->arch.pfault_compare)
3966 return 0;
3967 if (psw_extint_disabled(vcpu))
3968 return 0;
3969 if (kvm_s390_vcpu_has_irq(vcpu, 0))
3970 return 0;
3971 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
3972 return 0;
3973 if (!vcpu->arch.gmap->pfault_enabled)
3974 return 0;
3975
3976 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
3977 hva += current->thread.gmap_addr & ~PAGE_MASK;
3978 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3979 return 0;
3980
3981 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
3982 return rc;
3983 }
3984
3985 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3986 {
3987 int rc, cpuflags;
3988
3989 /*
3990 * On s390 notifications for arriving pages will be delivered directly
3991 * to the guest but the house keeping for completed pfaults is
3992 * handled outside the worker.
3993 */
3994 kvm_check_async_pf_completion(vcpu);
3995
3996 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
3997 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3998
3999 if (need_resched())
4000 schedule();
4001
4002 if (test_cpu_flag(CIF_MCCK_PENDING))
4003 s390_handle_mcck();
4004
4005 if (!kvm_is_ucontrol(vcpu->kvm)) {
4006 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4007 if (rc)
4008 return rc;
4009 }
4010
4011 rc = kvm_s390_handle_requests(vcpu);
4012 if (rc)
4013 return rc;
4014
4015 if (guestdbg_enabled(vcpu)) {
4016 kvm_s390_backup_guest_per_regs(vcpu);
4017 kvm_s390_patch_guest_per_regs(vcpu);
4018 }
4019
4020 clear_bit(vcpu->vcpu_id, vcpu->kvm->arch.gisa_int.kicked_mask);
4021
4022 vcpu->arch.sie_block->icptcode = 0;
4023 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4024 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4025 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4026
4027 return 0;
4028 }
4029
4030 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
4031 {
4032 struct kvm_s390_pgm_info pgm_info = {
4033 .code = PGM_ADDRESSING,
4034 };
4035 u8 opcode, ilen;
4036 int rc;
4037
4038 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4039 trace_kvm_s390_sie_fault(vcpu);
4040
4041 /*
4042 * We want to inject an addressing exception, which is defined as a
4043 * suppressing or terminating exception. However, since we came here
4044 * by a DAT access exception, the PSW still points to the faulting
4045 * instruction since DAT exceptions are nullifying. So we've got
4046 * to look up the current opcode to get the length of the instruction
4047 * to be able to forward the PSW.
4048 */
4049 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4050 ilen = insn_length(opcode);
4051 if (rc < 0) {
4052 return rc;
4053 } else if (rc) {
4054 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4055 * Forward by arbitrary ilc, injection will take care of
4056 * nullification if necessary.
4057 */
4058 pgm_info = vcpu->arch.pgm;
4059 ilen = 4;
4060 }
4061 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4062 kvm_s390_forward_psw(vcpu, ilen);
4063 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4064 }
4065
4066 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4067 {
4068 struct mcck_volatile_info *mcck_info;
4069 struct sie_page *sie_page;
4070
4071 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4072 vcpu->arch.sie_block->icptcode);
4073 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4074
4075 if (guestdbg_enabled(vcpu))
4076 kvm_s390_restore_guest_per_regs(vcpu);
4077
4078 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4079 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4080
4081 if (exit_reason == -EINTR) {
4082 VCPU_EVENT(vcpu, 3, "%s", "machine check");
4083 sie_page = container_of(vcpu->arch.sie_block,
4084 struct sie_page, sie_block);
4085 mcck_info = &sie_page->mcck_info;
4086 kvm_s390_reinject_machine_check(vcpu, mcck_info);
4087 return 0;
4088 }
4089
4090 if (vcpu->arch.sie_block->icptcode > 0) {
4091 int rc = kvm_handle_sie_intercept(vcpu);
4092
4093 if (rc != -EOPNOTSUPP)
4094 return rc;
4095 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4096 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4097 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4098 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4099 return -EREMOTE;
4100 } else if (exit_reason != -EFAULT) {
4101 vcpu->stat.exit_null++;
4102 return 0;
4103 } else if (kvm_is_ucontrol(vcpu->kvm)) {
4104 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4105 vcpu->run->s390_ucontrol.trans_exc_code =
4106 current->thread.gmap_addr;
4107 vcpu->run->s390_ucontrol.pgm_code = 0x10;
4108 return -EREMOTE;
4109 } else if (current->thread.gmap_pfault) {
4110 trace_kvm_s390_major_guest_pfault(vcpu);
4111 current->thread.gmap_pfault = 0;
4112 if (kvm_arch_setup_async_pf(vcpu))
4113 return 0;
4114 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
4115 }
4116 return vcpu_post_run_fault_in_sie(vcpu);
4117 }
4118
4119 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
4120 static int __vcpu_run(struct kvm_vcpu *vcpu)
4121 {
4122 int rc, exit_reason;
4123 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4124
4125 /*
4126 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4127 * ning the guest), so that memslots (and other stuff) are protected
4128 */
4129 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4130
4131 do {
4132 rc = vcpu_pre_run(vcpu);
4133 if (rc)
4134 break;
4135
4136 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4137 /*
4138 * As PF_VCPU will be used in fault handler, between
4139 * guest_enter and guest_exit should be no uaccess.
4140 */
4141 local_irq_disable();
4142 guest_enter_irqoff();
4143 __disable_cpu_timer_accounting(vcpu);
4144 local_irq_enable();
4145 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4146 memcpy(sie_page->pv_grregs,
4147 vcpu->run->s.regs.gprs,
4148 sizeof(sie_page->pv_grregs));
4149 }
4150 exit_reason = sie64a(vcpu->arch.sie_block,
4151 vcpu->run->s.regs.gprs);
4152 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4153 memcpy(vcpu->run->s.regs.gprs,
4154 sie_page->pv_grregs,
4155 sizeof(sie_page->pv_grregs));
4156 /*
4157 * We're not allowed to inject interrupts on intercepts
4158 * that leave the guest state in an "in-between" state
4159 * where the next SIE entry will do a continuation.
4160 * Fence interrupts in our "internal" PSW.
4161 */
4162 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4163 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4164 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4165 }
4166 }
4167 local_irq_disable();
4168 __enable_cpu_timer_accounting(vcpu);
4169 guest_exit_irqoff();
4170 local_irq_enable();
4171 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4172
4173 rc = vcpu_post_run(vcpu, exit_reason);
4174 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
4175
4176 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4177 return rc;
4178 }
4179
4180 static void sync_regs_fmt2(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4181 {
4182 struct runtime_instr_cb *riccb;
4183 struct gs_cb *gscb;
4184
4185 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4186 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4187 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4188 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4189 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4190 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4191 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4192 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4193 }
4194 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4195 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4196 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4197 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4198 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4199 kvm_clear_async_pf_completion_queue(vcpu);
4200 }
4201 /*
4202 * If userspace sets the riccb (e.g. after migration) to a valid state,
4203 * we should enable RI here instead of doing the lazy enablement.
4204 */
4205 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4206 test_kvm_facility(vcpu->kvm, 64) &&
4207 riccb->v &&
4208 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4209 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4210 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4211 }
4212 /*
4213 * If userspace sets the gscb (e.g. after migration) to non-zero,
4214 * we should enable GS here instead of doing the lazy enablement.
4215 */
4216 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4217 test_kvm_facility(vcpu->kvm, 133) &&
4218 gscb->gssm &&
4219 !vcpu->arch.gs_enabled) {
4220 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4221 vcpu->arch.sie_block->ecb |= ECB_GS;
4222 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4223 vcpu->arch.gs_enabled = 1;
4224 }
4225 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4226 test_kvm_facility(vcpu->kvm, 82)) {
4227 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4228 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4229 }
4230 if (MACHINE_HAS_GS) {
4231 preempt_disable();
4232 __ctl_set_bit(2, 4);
4233 if (current->thread.gs_cb) {
4234 vcpu->arch.host_gscb = current->thread.gs_cb;
4235 save_gs_cb(vcpu->arch.host_gscb);
4236 }
4237 if (vcpu->arch.gs_enabled) {
4238 current->thread.gs_cb = (struct gs_cb *)
4239 &vcpu->run->s.regs.gscb;
4240 restore_gs_cb(current->thread.gs_cb);
4241 }
4242 preempt_enable();
4243 }
4244 /* SIE will load etoken directly from SDNX and therefore kvm_run */
4245 }
4246
4247 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4248 {
4249 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4250 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4251 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4252 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4253 /* some control register changes require a tlb flush */
4254 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4255 }
4256 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4257 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4258 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4259 }
4260 save_access_regs(vcpu->arch.host_acrs);
4261 restore_access_regs(vcpu->run->s.regs.acrs);
4262 /* save host (userspace) fprs/vrs */
4263 save_fpu_regs();
4264 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
4265 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
4266 if (MACHINE_HAS_VX)
4267 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
4268 else
4269 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
4270 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
4271 if (test_fp_ctl(current->thread.fpu.fpc))
4272 /* User space provided an invalid FPC, let's clear it */
4273 current->thread.fpu.fpc = 0;
4274
4275 /* Sync fmt2 only data */
4276 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4277 sync_regs_fmt2(vcpu, kvm_run);
4278 } else {
4279 /*
4280 * In several places we have to modify our internal view to
4281 * not do things that are disallowed by the ultravisor. For
4282 * example we must not inject interrupts after specific exits
4283 * (e.g. 112 prefix page not secure). We do this by turning
4284 * off the machine check, external and I/O interrupt bits
4285 * of our PSW copy. To avoid getting validity intercepts, we
4286 * do only accept the condition code from userspace.
4287 */
4288 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4289 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4290 PSW_MASK_CC;
4291 }
4292
4293 kvm_run->kvm_dirty_regs = 0;
4294 }
4295
4296 static void store_regs_fmt2(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4297 {
4298 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4299 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4300 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4301 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4302 if (MACHINE_HAS_GS) {
4303 __ctl_set_bit(2, 4);
4304 if (vcpu->arch.gs_enabled)
4305 save_gs_cb(current->thread.gs_cb);
4306 preempt_disable();
4307 current->thread.gs_cb = vcpu->arch.host_gscb;
4308 restore_gs_cb(vcpu->arch.host_gscb);
4309 preempt_enable();
4310 if (!vcpu->arch.host_gscb)
4311 __ctl_clear_bit(2, 4);
4312 vcpu->arch.host_gscb = NULL;
4313 }
4314 /* SIE will save etoken directly into SDNX and therefore kvm_run */
4315 }
4316
4317 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4318 {
4319 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
4320 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
4321 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
4322 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
4323 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
4324 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
4325 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
4326 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
4327 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
4328 save_access_regs(vcpu->run->s.regs.acrs);
4329 restore_access_regs(vcpu->arch.host_acrs);
4330 /* Save guest register state */
4331 save_fpu_regs();
4332 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
4333 /* Restore will be done lazily at return */
4334 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
4335 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
4336 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
4337 store_regs_fmt2(vcpu, kvm_run);
4338 }
4339
4340 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
4341 {
4342 int rc;
4343
4344 if (kvm_run->immediate_exit)
4345 return -EINTR;
4346
4347 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
4348 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
4349 return -EINVAL;
4350
4351 vcpu_load(vcpu);
4352
4353 if (guestdbg_exit_pending(vcpu)) {
4354 kvm_s390_prepare_debug_exit(vcpu);
4355 rc = 0;
4356 goto out;
4357 }
4358
4359 kvm_sigset_activate(vcpu);
4360
4361 /*
4362 * no need to check the return value of vcpu_start as it can only have
4363 * an error for protvirt, but protvirt means user cpu state
4364 */
4365 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
4366 kvm_s390_vcpu_start(vcpu);
4367 } else if (is_vcpu_stopped(vcpu)) {
4368 pr_err_ratelimited("can't run stopped vcpu %d\n",
4369 vcpu->vcpu_id);
4370 rc = -EINVAL;
4371 goto out;
4372 }
4373
4374 sync_regs(vcpu, kvm_run);
4375 enable_cpu_timer_accounting(vcpu);
4376
4377 might_fault();
4378 rc = __vcpu_run(vcpu);
4379
4380 if (signal_pending(current) && !rc) {
4381 kvm_run->exit_reason = KVM_EXIT_INTR;
4382 rc = -EINTR;
4383 }
4384
4385 if (guestdbg_exit_pending(vcpu) && !rc) {
4386 kvm_s390_prepare_debug_exit(vcpu);
4387 rc = 0;
4388 }
4389
4390 if (rc == -EREMOTE) {
4391 /* userspace support is needed, kvm_run has been prepared */
4392 rc = 0;
4393 }
4394
4395 disable_cpu_timer_accounting(vcpu);
4396 store_regs(vcpu, kvm_run);
4397
4398 kvm_sigset_deactivate(vcpu);
4399
4400 vcpu->stat.exit_userspace++;
4401 out:
4402 vcpu_put(vcpu);
4403 return rc;
4404 }
4405
4406 /*
4407 * store status at address
4408 * we use have two special cases:
4409 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
4410 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
4411 */
4412 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
4413 {
4414 unsigned char archmode = 1;
4415 freg_t fprs[NUM_FPRS];
4416 unsigned int px;
4417 u64 clkcomp, cputm;
4418 int rc;
4419
4420 px = kvm_s390_get_prefix(vcpu);
4421 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
4422 if (write_guest_abs(vcpu, 163, &archmode, 1))
4423 return -EFAULT;
4424 gpa = 0;
4425 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
4426 if (write_guest_real(vcpu, 163, &archmode, 1))
4427 return -EFAULT;
4428 gpa = px;
4429 } else
4430 gpa -= __LC_FPREGS_SAVE_AREA;
4431
4432 /* manually convert vector registers if necessary */
4433 if (MACHINE_HAS_VX) {
4434 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
4435 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
4436 fprs, 128);
4437 } else {
4438 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
4439 vcpu->run->s.regs.fprs, 128);
4440 }
4441 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
4442 vcpu->run->s.regs.gprs, 128);
4443 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
4444 &vcpu->arch.sie_block->gpsw, 16);
4445 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
4446 &px, 4);
4447 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
4448 &vcpu->run->s.regs.fpc, 4);
4449 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
4450 &vcpu->arch.sie_block->todpr, 4);
4451 cputm = kvm_s390_get_cpu_timer(vcpu);
4452 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
4453 &cputm, 8);
4454 clkcomp = vcpu->arch.sie_block->ckc >> 8;
4455 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
4456 &clkcomp, 8);
4457 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
4458 &vcpu->run->s.regs.acrs, 64);
4459 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
4460 &vcpu->arch.sie_block->gcr, 128);
4461 return rc ? -EFAULT : 0;
4462 }
4463
4464 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
4465 {
4466 /*
4467 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
4468 * switch in the run ioctl. Let's update our copies before we save
4469 * it into the save area
4470 */
4471 save_fpu_regs();
4472 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
4473 save_access_regs(vcpu->run->s.regs.acrs);
4474
4475 return kvm_s390_store_status_unloaded(vcpu, addr);
4476 }
4477
4478 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
4479 {
4480 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
4481 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
4482 }
4483
4484 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
4485 {
4486 unsigned int i;
4487 struct kvm_vcpu *vcpu;
4488
4489 kvm_for_each_vcpu(i, vcpu, kvm) {
4490 __disable_ibs_on_vcpu(vcpu);
4491 }
4492 }
4493
4494 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
4495 {
4496 if (!sclp.has_ibs)
4497 return;
4498 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
4499 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
4500 }
4501
4502 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
4503 {
4504 int i, online_vcpus, r = 0, started_vcpus = 0;
4505
4506 if (!is_vcpu_stopped(vcpu))
4507 return 0;
4508
4509 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
4510 /* Only one cpu at a time may enter/leave the STOPPED state. */
4511 spin_lock(&vcpu->kvm->arch.start_stop_lock);
4512 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
4513
4514 /* Let's tell the UV that we want to change into the operating state */
4515 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4516 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
4517 if (r) {
4518 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
4519 return r;
4520 }
4521 }
4522
4523 for (i = 0; i < online_vcpus; i++) {
4524 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
4525 started_vcpus++;
4526 }
4527
4528 if (started_vcpus == 0) {
4529 /* we're the only active VCPU -> speed it up */
4530 __enable_ibs_on_vcpu(vcpu);
4531 } else if (started_vcpus == 1) {
4532 /*
4533 * As we are starting a second VCPU, we have to disable
4534 * the IBS facility on all VCPUs to remove potentially
4535 * oustanding ENABLE requests.
4536 */
4537 __disable_ibs_on_all_vcpus(vcpu->kvm);
4538 }
4539
4540 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
4541 /*
4542 * The real PSW might have changed due to a RESTART interpreted by the
4543 * ultravisor. We block all interrupts and let the next sie exit
4544 * refresh our view.
4545 */
4546 if (kvm_s390_pv_cpu_is_protected(vcpu))
4547 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4548 /*
4549 * Another VCPU might have used IBS while we were offline.
4550 * Let's play safe and flush the VCPU at startup.
4551 */
4552 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4553 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
4554 return 0;
4555 }
4556
4557 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
4558 {
4559 int i, online_vcpus, r = 0, started_vcpus = 0;
4560 struct kvm_vcpu *started_vcpu = NULL;
4561
4562 if (is_vcpu_stopped(vcpu))
4563 return 0;
4564
4565 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
4566 /* Only one cpu at a time may enter/leave the STOPPED state. */
4567 spin_lock(&vcpu->kvm->arch.start_stop_lock);
4568 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
4569
4570 /* Let's tell the UV that we want to change into the stopped state */
4571 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4572 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
4573 if (r) {
4574 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
4575 return r;
4576 }
4577 }
4578
4579 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
4580 kvm_s390_clear_stop_irq(vcpu);
4581
4582 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
4583 __disable_ibs_on_vcpu(vcpu);
4584
4585 for (i = 0; i < online_vcpus; i++) {
4586 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
4587 started_vcpus++;
4588 started_vcpu = vcpu->kvm->vcpus[i];
4589 }
4590 }
4591
4592 if (started_vcpus == 1) {
4593 /*
4594 * As we only have one VCPU left, we want to enable the
4595 * IBS facility for that VCPU to speed it up.
4596 */
4597 __enable_ibs_on_vcpu(started_vcpu);
4598 }
4599
4600 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
4601 return 0;
4602 }
4603
4604 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4605 struct kvm_enable_cap *cap)
4606 {
4607 int r;
4608
4609 if (cap->flags)
4610 return -EINVAL;
4611
4612 switch (cap->cap) {
4613 case KVM_CAP_S390_CSS_SUPPORT:
4614 if (!vcpu->kvm->arch.css_support) {
4615 vcpu->kvm->arch.css_support = 1;
4616 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
4617 trace_kvm_s390_enable_css(vcpu->kvm);
4618 }
4619 r = 0;
4620 break;
4621 default:
4622 r = -EINVAL;
4623 break;
4624 }
4625 return r;
4626 }
4627
4628 static long kvm_s390_guest_sida_op(struct kvm_vcpu *vcpu,
4629 struct kvm_s390_mem_op *mop)
4630 {
4631 void __user *uaddr = (void __user *)mop->buf;
4632 int r = 0;
4633
4634 if (mop->flags || !mop->size)
4635 return -EINVAL;
4636 if (mop->size + mop->sida_offset < mop->size)
4637 return -EINVAL;
4638 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
4639 return -E2BIG;
4640
4641 switch (mop->op) {
4642 case KVM_S390_MEMOP_SIDA_READ:
4643 if (copy_to_user(uaddr, (void *)(sida_origin(vcpu->arch.sie_block) +
4644 mop->sida_offset), mop->size))
4645 r = -EFAULT;
4646
4647 break;
4648 case KVM_S390_MEMOP_SIDA_WRITE:
4649 if (copy_from_user((void *)(sida_origin(vcpu->arch.sie_block) +
4650 mop->sida_offset), uaddr, mop->size))
4651 r = -EFAULT;
4652 break;
4653 }
4654 return r;
4655 }
4656 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
4657 struct kvm_s390_mem_op *mop)
4658 {
4659 void __user *uaddr = (void __user *)mop->buf;
4660 void *tmpbuf = NULL;
4661 int r = 0;
4662 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
4663 | KVM_S390_MEMOP_F_CHECK_ONLY;
4664
4665 if (mop->flags & ~supported_flags || mop->ar >= NUM_ACRS || !mop->size)
4666 return -EINVAL;
4667
4668 if (mop->size > MEM_OP_MAX_SIZE)
4669 return -E2BIG;
4670
4671 if (kvm_s390_pv_cpu_is_protected(vcpu))
4672 return -EINVAL;
4673
4674 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
4675 tmpbuf = vmalloc(mop->size);
4676 if (!tmpbuf)
4677 return -ENOMEM;
4678 }
4679
4680 switch (mop->op) {
4681 case KVM_S390_MEMOP_LOGICAL_READ:
4682 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
4683 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
4684 mop->size, GACC_FETCH);
4685 break;
4686 }
4687 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
4688 if (r == 0) {
4689 if (copy_to_user(uaddr, tmpbuf, mop->size))
4690 r = -EFAULT;
4691 }
4692 break;
4693 case KVM_S390_MEMOP_LOGICAL_WRITE:
4694 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
4695 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
4696 mop->size, GACC_STORE);
4697 break;
4698 }
4699 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
4700 r = -EFAULT;
4701 break;
4702 }
4703 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
4704 break;
4705 }
4706
4707 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
4708 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
4709
4710 vfree(tmpbuf);
4711 return r;
4712 }
4713
4714 static long kvm_s390_guest_memsida_op(struct kvm_vcpu *vcpu,
4715 struct kvm_s390_mem_op *mop)
4716 {
4717 int r, srcu_idx;
4718
4719 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4720
4721 switch (mop->op) {
4722 case KVM_S390_MEMOP_LOGICAL_READ:
4723 case KVM_S390_MEMOP_LOGICAL_WRITE:
4724 r = kvm_s390_guest_mem_op(vcpu, mop);
4725 break;
4726 case KVM_S390_MEMOP_SIDA_READ:
4727 case KVM_S390_MEMOP_SIDA_WRITE:
4728 /* we are locked against sida going away by the vcpu->mutex */
4729 r = kvm_s390_guest_sida_op(vcpu, mop);
4730 break;
4731 default:
4732 r = -EINVAL;
4733 }
4734
4735 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
4736 return r;
4737 }
4738
4739 long kvm_arch_vcpu_async_ioctl(struct file *filp,
4740 unsigned int ioctl, unsigned long arg)
4741 {
4742 struct kvm_vcpu *vcpu = filp->private_data;
4743 void __user *argp = (void __user *)arg;
4744
4745 switch (ioctl) {
4746 case KVM_S390_IRQ: {
4747 struct kvm_s390_irq s390irq;
4748
4749 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
4750 return -EFAULT;
4751 return kvm_s390_inject_vcpu(vcpu, &s390irq);
4752 }
4753 case KVM_S390_INTERRUPT: {
4754 struct kvm_s390_interrupt s390int;
4755 struct kvm_s390_irq s390irq = {};
4756
4757 if (copy_from_user(&s390int, argp, sizeof(s390int)))
4758 return -EFAULT;
4759 if (s390int_to_s390irq(&s390int, &s390irq))
4760 return -EINVAL;
4761 return kvm_s390_inject_vcpu(vcpu, &s390irq);
4762 }
4763 }
4764 return -ENOIOCTLCMD;
4765 }
4766
4767 long kvm_arch_vcpu_ioctl(struct file *filp,
4768 unsigned int ioctl, unsigned long arg)
4769 {
4770 struct kvm_vcpu *vcpu = filp->private_data;
4771 void __user *argp = (void __user *)arg;
4772 int idx;
4773 long r;
4774 u16 rc, rrc;
4775
4776 vcpu_load(vcpu);
4777
4778 switch (ioctl) {
4779 case KVM_S390_STORE_STATUS:
4780 idx = srcu_read_lock(&vcpu->kvm->srcu);
4781 r = kvm_s390_store_status_unloaded(vcpu, arg);
4782 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4783 break;
4784 case KVM_S390_SET_INITIAL_PSW: {
4785 psw_t psw;
4786
4787 r = -EFAULT;
4788 if (copy_from_user(&psw, argp, sizeof(psw)))
4789 break;
4790 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
4791 break;
4792 }
4793 case KVM_S390_CLEAR_RESET:
4794 r = 0;
4795 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
4796 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4797 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
4798 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
4799 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
4800 rc, rrc);
4801 }
4802 break;
4803 case KVM_S390_INITIAL_RESET:
4804 r = 0;
4805 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4806 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4807 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
4808 UVC_CMD_CPU_RESET_INITIAL,
4809 &rc, &rrc);
4810 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
4811 rc, rrc);
4812 }
4813 break;
4814 case KVM_S390_NORMAL_RESET:
4815 r = 0;
4816 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4817 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4818 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
4819 UVC_CMD_CPU_RESET, &rc, &rrc);
4820 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
4821 rc, rrc);
4822 }
4823 break;
4824 case KVM_SET_ONE_REG:
4825 case KVM_GET_ONE_REG: {
4826 struct kvm_one_reg reg;
4827 r = -EINVAL;
4828 if (kvm_s390_pv_cpu_is_protected(vcpu))
4829 break;
4830 r = -EFAULT;
4831 if (copy_from_user(&reg, argp, sizeof(reg)))
4832 break;
4833 if (ioctl == KVM_SET_ONE_REG)
4834 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
4835 else
4836 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
4837 break;
4838 }
4839 #ifdef CONFIG_KVM_S390_UCONTROL
4840 case KVM_S390_UCAS_MAP: {
4841 struct kvm_s390_ucas_mapping ucasmap;
4842
4843 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
4844 r = -EFAULT;
4845 break;
4846 }
4847
4848 if (!kvm_is_ucontrol(vcpu->kvm)) {
4849 r = -EINVAL;
4850 break;
4851 }
4852
4853 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
4854 ucasmap.vcpu_addr, ucasmap.length);
4855 break;
4856 }
4857 case KVM_S390_UCAS_UNMAP: {
4858 struct kvm_s390_ucas_mapping ucasmap;
4859
4860 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
4861 r = -EFAULT;
4862 break;
4863 }
4864
4865 if (!kvm_is_ucontrol(vcpu->kvm)) {
4866 r = -EINVAL;
4867 break;
4868 }
4869
4870 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
4871 ucasmap.length);
4872 break;
4873 }
4874 #endif
4875 case KVM_S390_VCPU_FAULT: {
4876 r = gmap_fault(vcpu->arch.gmap, arg, 0);
4877 break;
4878 }
4879 case KVM_ENABLE_CAP:
4880 {
4881 struct kvm_enable_cap cap;
4882 r = -EFAULT;
4883 if (copy_from_user(&cap, argp, sizeof(cap)))
4884 break;
4885 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4886 break;
4887 }
4888 case KVM_S390_MEM_OP: {
4889 struct kvm_s390_mem_op mem_op;
4890
4891 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
4892 r = kvm_s390_guest_memsida_op(vcpu, &mem_op);
4893 else
4894 r = -EFAULT;
4895 break;
4896 }
4897 case KVM_S390_SET_IRQ_STATE: {
4898 struct kvm_s390_irq_state irq_state;
4899
4900 r = -EFAULT;
4901 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
4902 break;
4903 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
4904 irq_state.len == 0 ||
4905 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
4906 r = -EINVAL;
4907 break;
4908 }
4909 /* do not use irq_state.flags, it will break old QEMUs */
4910 r = kvm_s390_set_irq_state(vcpu,
4911 (void __user *) irq_state.buf,
4912 irq_state.len);
4913 break;
4914 }
4915 case KVM_S390_GET_IRQ_STATE: {
4916 struct kvm_s390_irq_state irq_state;
4917
4918 r = -EFAULT;
4919 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
4920 break;
4921 if (irq_state.len == 0) {
4922 r = -EINVAL;
4923 break;
4924 }
4925 /* do not use irq_state.flags, it will break old QEMUs */
4926 r = kvm_s390_get_irq_state(vcpu,
4927 (__u8 __user *) irq_state.buf,
4928 irq_state.len);
4929 break;
4930 }
4931 default:
4932 r = -ENOTTY;
4933 }
4934
4935 vcpu_put(vcpu);
4936 return r;
4937 }
4938
4939 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4940 {
4941 #ifdef CONFIG_KVM_S390_UCONTROL
4942 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
4943 && (kvm_is_ucontrol(vcpu->kvm))) {
4944 vmf->page = virt_to_page(vcpu->arch.sie_block);
4945 get_page(vmf->page);
4946 return 0;
4947 }
4948 #endif
4949 return VM_FAULT_SIGBUS;
4950 }
4951
4952 /* Section: memory related */
4953 int kvm_arch_prepare_memory_region(struct kvm *kvm,
4954 struct kvm_memory_slot *memslot,
4955 const struct kvm_userspace_memory_region *mem,
4956 enum kvm_mr_change change)
4957 {
4958 /* A few sanity checks. We can have memory slots which have to be
4959 located/ended at a segment boundary (1MB). The memory in userland is
4960 ok to be fragmented into various different vmas. It is okay to mmap()
4961 and munmap() stuff in this slot after doing this call at any time */
4962
4963 if (mem->userspace_addr & 0xffffful)
4964 return -EINVAL;
4965
4966 if (mem->memory_size & 0xffffful)
4967 return -EINVAL;
4968
4969 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
4970 return -EINVAL;
4971
4972 /* When we are protected, we should not change the memory slots */
4973 if (kvm_s390_pv_get_handle(kvm))
4974 return -EINVAL;
4975 return 0;
4976 }
4977
4978 void kvm_arch_commit_memory_region(struct kvm *kvm,
4979 const struct kvm_userspace_memory_region *mem,
4980 struct kvm_memory_slot *old,
4981 const struct kvm_memory_slot *new,
4982 enum kvm_mr_change change)
4983 {
4984 int rc = 0;
4985
4986 switch (change) {
4987 case KVM_MR_DELETE:
4988 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
4989 old->npages * PAGE_SIZE);
4990 break;
4991 case KVM_MR_MOVE:
4992 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
4993 old->npages * PAGE_SIZE);
4994 if (rc)
4995 break;
4996 fallthrough;
4997 case KVM_MR_CREATE:
4998 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
4999 mem->guest_phys_addr, mem->memory_size);
5000 break;
5001 case KVM_MR_FLAGS_ONLY:
5002 break;
5003 default:
5004 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5005 }
5006 if (rc)
5007 pr_warn("failed to commit memory region\n");
5008 return;
5009 }
5010
5011 static inline unsigned long nonhyp_mask(int i)
5012 {
5013 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5014
5015 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5016 }
5017
5018 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
5019 {
5020 vcpu->valid_wakeup = false;
5021 }
5022
5023 static int __init kvm_s390_init(void)
5024 {
5025 int i;
5026
5027 if (!sclp.has_sief2) {
5028 pr_info("SIE is not available\n");
5029 return -ENODEV;
5030 }
5031
5032 if (nested && hpage) {
5033 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
5034 return -EINVAL;
5035 }
5036
5037 for (i = 0; i < 16; i++)
5038 kvm_s390_fac_base[i] |=
5039 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
5040
5041 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5042 }
5043
5044 static void __exit kvm_s390_exit(void)
5045 {
5046 kvm_exit();
5047 }
5048
5049 module_init(kvm_s390_init);
5050 module_exit(kvm_s390_exit);
5051
5052 /*
5053 * Enable autoloading of the kvm module.
5054 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
5055 * since x86 takes a different approach.
5056 */
5057 #include <linux/miscdevice.h>
5058 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5059 MODULE_ALIAS("devname:kvm");