]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/s390/kvm/kvm-s390.c
Merge tag 'kvm-s390-next-6.9-1' of https://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/kernel/stable.git] / arch / s390 / kvm / kvm-s390.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * hosting IBM Z kernel virtual machines (s390x)
4 *
5 * Copyright IBM Corp. 2008, 2020
6 *
7 * Author(s): Carsten Otte <cotte@de.ibm.com>
8 * Christian Borntraeger <borntraeger@de.ibm.com>
9 * Christian Ehrhardt <ehrhardt@de.ibm.com>
10 * Jason J. Herne <jjherne@us.ibm.com>
11 */
12
13 #define KMSG_COMPONENT "kvm-s390"
14 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16 #include <linux/compiler.h>
17 #include <linux/err.h>
18 #include <linux/fs.h>
19 #include <linux/hrtimer.h>
20 #include <linux/init.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/mman.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <linux/sched/signal.h>
32 #include <linux/string.h>
33 #include <linux/pgtable.h>
34 #include <linux/mmu_notifier.h>
35
36 #include <asm/asm-offsets.h>
37 #include <asm/lowcore.h>
38 #include <asm/stp.h>
39 #include <asm/gmap.h>
40 #include <asm/nmi.h>
41 #include <asm/switch_to.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include <asm/ap.h>
47 #include <asm/uv.h>
48 #include <asm/fpu/api.h>
49 #include "kvm-s390.h"
50 #include "gaccess.h"
51 #include "pci.h"
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 #include "trace-s390.h"
56
57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
58 #define LOCAL_IRQS 32
59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
60 (KVM_MAX_VCPUS + LOCAL_IRQS))
61
62 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
63 KVM_GENERIC_VM_STATS(),
64 STATS_DESC_COUNTER(VM, inject_io),
65 STATS_DESC_COUNTER(VM, inject_float_mchk),
66 STATS_DESC_COUNTER(VM, inject_pfault_done),
67 STATS_DESC_COUNTER(VM, inject_service_signal),
68 STATS_DESC_COUNTER(VM, inject_virtio),
69 STATS_DESC_COUNTER(VM, aen_forward),
70 STATS_DESC_COUNTER(VM, gmap_shadow_reuse),
71 STATS_DESC_COUNTER(VM, gmap_shadow_create),
72 STATS_DESC_COUNTER(VM, gmap_shadow_r1_entry),
73 STATS_DESC_COUNTER(VM, gmap_shadow_r2_entry),
74 STATS_DESC_COUNTER(VM, gmap_shadow_r3_entry),
75 STATS_DESC_COUNTER(VM, gmap_shadow_sg_entry),
76 STATS_DESC_COUNTER(VM, gmap_shadow_pg_entry),
77 };
78
79 const struct kvm_stats_header kvm_vm_stats_header = {
80 .name_size = KVM_STATS_NAME_SIZE,
81 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
82 .id_offset = sizeof(struct kvm_stats_header),
83 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
84 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
85 sizeof(kvm_vm_stats_desc),
86 };
87
88 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
89 KVM_GENERIC_VCPU_STATS(),
90 STATS_DESC_COUNTER(VCPU, exit_userspace),
91 STATS_DESC_COUNTER(VCPU, exit_null),
92 STATS_DESC_COUNTER(VCPU, exit_external_request),
93 STATS_DESC_COUNTER(VCPU, exit_io_request),
94 STATS_DESC_COUNTER(VCPU, exit_external_interrupt),
95 STATS_DESC_COUNTER(VCPU, exit_stop_request),
96 STATS_DESC_COUNTER(VCPU, exit_validity),
97 STATS_DESC_COUNTER(VCPU, exit_instruction),
98 STATS_DESC_COUNTER(VCPU, exit_pei),
99 STATS_DESC_COUNTER(VCPU, halt_no_poll_steal),
100 STATS_DESC_COUNTER(VCPU, instruction_lctl),
101 STATS_DESC_COUNTER(VCPU, instruction_lctlg),
102 STATS_DESC_COUNTER(VCPU, instruction_stctl),
103 STATS_DESC_COUNTER(VCPU, instruction_stctg),
104 STATS_DESC_COUNTER(VCPU, exit_program_interruption),
105 STATS_DESC_COUNTER(VCPU, exit_instr_and_program),
106 STATS_DESC_COUNTER(VCPU, exit_operation_exception),
107 STATS_DESC_COUNTER(VCPU, deliver_ckc),
108 STATS_DESC_COUNTER(VCPU, deliver_cputm),
109 STATS_DESC_COUNTER(VCPU, deliver_external_call),
110 STATS_DESC_COUNTER(VCPU, deliver_emergency_signal),
111 STATS_DESC_COUNTER(VCPU, deliver_service_signal),
112 STATS_DESC_COUNTER(VCPU, deliver_virtio),
113 STATS_DESC_COUNTER(VCPU, deliver_stop_signal),
114 STATS_DESC_COUNTER(VCPU, deliver_prefix_signal),
115 STATS_DESC_COUNTER(VCPU, deliver_restart_signal),
116 STATS_DESC_COUNTER(VCPU, deliver_program),
117 STATS_DESC_COUNTER(VCPU, deliver_io),
118 STATS_DESC_COUNTER(VCPU, deliver_machine_check),
119 STATS_DESC_COUNTER(VCPU, exit_wait_state),
120 STATS_DESC_COUNTER(VCPU, inject_ckc),
121 STATS_DESC_COUNTER(VCPU, inject_cputm),
122 STATS_DESC_COUNTER(VCPU, inject_external_call),
123 STATS_DESC_COUNTER(VCPU, inject_emergency_signal),
124 STATS_DESC_COUNTER(VCPU, inject_mchk),
125 STATS_DESC_COUNTER(VCPU, inject_pfault_init),
126 STATS_DESC_COUNTER(VCPU, inject_program),
127 STATS_DESC_COUNTER(VCPU, inject_restart),
128 STATS_DESC_COUNTER(VCPU, inject_set_prefix),
129 STATS_DESC_COUNTER(VCPU, inject_stop_signal),
130 STATS_DESC_COUNTER(VCPU, instruction_epsw),
131 STATS_DESC_COUNTER(VCPU, instruction_gs),
132 STATS_DESC_COUNTER(VCPU, instruction_io_other),
133 STATS_DESC_COUNTER(VCPU, instruction_lpsw),
134 STATS_DESC_COUNTER(VCPU, instruction_lpswe),
135 STATS_DESC_COUNTER(VCPU, instruction_pfmf),
136 STATS_DESC_COUNTER(VCPU, instruction_ptff),
137 STATS_DESC_COUNTER(VCPU, instruction_sck),
138 STATS_DESC_COUNTER(VCPU, instruction_sckpf),
139 STATS_DESC_COUNTER(VCPU, instruction_stidp),
140 STATS_DESC_COUNTER(VCPU, instruction_spx),
141 STATS_DESC_COUNTER(VCPU, instruction_stpx),
142 STATS_DESC_COUNTER(VCPU, instruction_stap),
143 STATS_DESC_COUNTER(VCPU, instruction_iske),
144 STATS_DESC_COUNTER(VCPU, instruction_ri),
145 STATS_DESC_COUNTER(VCPU, instruction_rrbe),
146 STATS_DESC_COUNTER(VCPU, instruction_sske),
147 STATS_DESC_COUNTER(VCPU, instruction_ipte_interlock),
148 STATS_DESC_COUNTER(VCPU, instruction_stsi),
149 STATS_DESC_COUNTER(VCPU, instruction_stfl),
150 STATS_DESC_COUNTER(VCPU, instruction_tb),
151 STATS_DESC_COUNTER(VCPU, instruction_tpi),
152 STATS_DESC_COUNTER(VCPU, instruction_tprot),
153 STATS_DESC_COUNTER(VCPU, instruction_tsch),
154 STATS_DESC_COUNTER(VCPU, instruction_sie),
155 STATS_DESC_COUNTER(VCPU, instruction_essa),
156 STATS_DESC_COUNTER(VCPU, instruction_sthyi),
157 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense),
158 STATS_DESC_COUNTER(VCPU, instruction_sigp_sense_running),
159 STATS_DESC_COUNTER(VCPU, instruction_sigp_external_call),
160 STATS_DESC_COUNTER(VCPU, instruction_sigp_emergency),
161 STATS_DESC_COUNTER(VCPU, instruction_sigp_cond_emergency),
162 STATS_DESC_COUNTER(VCPU, instruction_sigp_start),
163 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop),
164 STATS_DESC_COUNTER(VCPU, instruction_sigp_stop_store_status),
165 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_status),
166 STATS_DESC_COUNTER(VCPU, instruction_sigp_store_adtl_status),
167 STATS_DESC_COUNTER(VCPU, instruction_sigp_arch),
168 STATS_DESC_COUNTER(VCPU, instruction_sigp_prefix),
169 STATS_DESC_COUNTER(VCPU, instruction_sigp_restart),
170 STATS_DESC_COUNTER(VCPU, instruction_sigp_init_cpu_reset),
171 STATS_DESC_COUNTER(VCPU, instruction_sigp_cpu_reset),
172 STATS_DESC_COUNTER(VCPU, instruction_sigp_unknown),
173 STATS_DESC_COUNTER(VCPU, instruction_diagnose_10),
174 STATS_DESC_COUNTER(VCPU, instruction_diagnose_44),
175 STATS_DESC_COUNTER(VCPU, instruction_diagnose_9c),
176 STATS_DESC_COUNTER(VCPU, diag_9c_ignored),
177 STATS_DESC_COUNTER(VCPU, diag_9c_forward),
178 STATS_DESC_COUNTER(VCPU, instruction_diagnose_258),
179 STATS_DESC_COUNTER(VCPU, instruction_diagnose_308),
180 STATS_DESC_COUNTER(VCPU, instruction_diagnose_500),
181 STATS_DESC_COUNTER(VCPU, instruction_diagnose_other),
182 STATS_DESC_COUNTER(VCPU, pfault_sync)
183 };
184
185 const struct kvm_stats_header kvm_vcpu_stats_header = {
186 .name_size = KVM_STATS_NAME_SIZE,
187 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
188 .id_offset = sizeof(struct kvm_stats_header),
189 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
190 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
191 sizeof(kvm_vcpu_stats_desc),
192 };
193
194 /* allow nested virtualization in KVM (if enabled by user space) */
195 static int nested;
196 module_param(nested, int, S_IRUGO);
197 MODULE_PARM_DESC(nested, "Nested virtualization support");
198
199 /* allow 1m huge page guest backing, if !nested */
200 static int hpage;
201 module_param(hpage, int, 0444);
202 MODULE_PARM_DESC(hpage, "1m huge page backing support");
203
204 /* maximum percentage of steal time for polling. >100 is treated like 100 */
205 static u8 halt_poll_max_steal = 10;
206 module_param(halt_poll_max_steal, byte, 0644);
207 MODULE_PARM_DESC(halt_poll_max_steal, "Maximum percentage of steal time to allow polling");
208
209 /* if set to true, the GISA will be initialized and used if available */
210 static bool use_gisa = true;
211 module_param(use_gisa, bool, 0644);
212 MODULE_PARM_DESC(use_gisa, "Use the GISA if the host supports it.");
213
214 /* maximum diag9c forwarding per second */
215 unsigned int diag9c_forwarding_hz;
216 module_param(diag9c_forwarding_hz, uint, 0644);
217 MODULE_PARM_DESC(diag9c_forwarding_hz, "Maximum diag9c forwarding per second, 0 to turn off");
218
219 /*
220 * allow asynchronous deinit for protected guests; enable by default since
221 * the feature is opt-in anyway
222 */
223 static int async_destroy = 1;
224 module_param(async_destroy, int, 0444);
225 MODULE_PARM_DESC(async_destroy, "Asynchronous destroy for protected guests");
226
227 /*
228 * For now we handle at most 16 double words as this is what the s390 base
229 * kernel handles and stores in the prefix page. If we ever need to go beyond
230 * this, this requires changes to code, but the external uapi can stay.
231 */
232 #define SIZE_INTERNAL 16
233
234 /*
235 * Base feature mask that defines default mask for facilities. Consists of the
236 * defines in FACILITIES_KVM and the non-hypervisor managed bits.
237 */
238 static unsigned long kvm_s390_fac_base[SIZE_INTERNAL] = { FACILITIES_KVM };
239 /*
240 * Extended feature mask. Consists of the defines in FACILITIES_KVM_CPUMODEL
241 * and defines the facilities that can be enabled via a cpu model.
242 */
243 static unsigned long kvm_s390_fac_ext[SIZE_INTERNAL] = { FACILITIES_KVM_CPUMODEL };
244
245 static unsigned long kvm_s390_fac_size(void)
246 {
247 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_MASK_SIZE_U64);
248 BUILD_BUG_ON(SIZE_INTERNAL > S390_ARCH_FAC_LIST_SIZE_U64);
249 BUILD_BUG_ON(SIZE_INTERNAL * sizeof(unsigned long) >
250 sizeof(stfle_fac_list));
251
252 return SIZE_INTERNAL;
253 }
254
255 /* available cpu features supported by kvm */
256 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
257 /* available subfunctions indicated via query / "test bit" */
258 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
259
260 static struct gmap_notifier gmap_notifier;
261 static struct gmap_notifier vsie_gmap_notifier;
262 debug_info_t *kvm_s390_dbf;
263 debug_info_t *kvm_s390_dbf_uv;
264
265 /* Section: not file related */
266 /* forward declarations */
267 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
268 unsigned long end);
269 static int sca_switch_to_extended(struct kvm *kvm);
270
271 static void kvm_clock_sync_scb(struct kvm_s390_sie_block *scb, u64 delta)
272 {
273 u8 delta_idx = 0;
274
275 /*
276 * The TOD jumps by delta, we have to compensate this by adding
277 * -delta to the epoch.
278 */
279 delta = -delta;
280
281 /* sign-extension - we're adding to signed values below */
282 if ((s64)delta < 0)
283 delta_idx = -1;
284
285 scb->epoch += delta;
286 if (scb->ecd & ECD_MEF) {
287 scb->epdx += delta_idx;
288 if (scb->epoch < delta)
289 scb->epdx += 1;
290 }
291 }
292
293 /*
294 * This callback is executed during stop_machine(). All CPUs are therefore
295 * temporarily stopped. In order not to change guest behavior, we have to
296 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
297 * so a CPU won't be stopped while calculating with the epoch.
298 */
299 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
300 void *v)
301 {
302 struct kvm *kvm;
303 struct kvm_vcpu *vcpu;
304 unsigned long i;
305 unsigned long long *delta = v;
306
307 list_for_each_entry(kvm, &vm_list, vm_list) {
308 kvm_for_each_vcpu(i, vcpu, kvm) {
309 kvm_clock_sync_scb(vcpu->arch.sie_block, *delta);
310 if (i == 0) {
311 kvm->arch.epoch = vcpu->arch.sie_block->epoch;
312 kvm->arch.epdx = vcpu->arch.sie_block->epdx;
313 }
314 if (vcpu->arch.cputm_enabled)
315 vcpu->arch.cputm_start += *delta;
316 if (vcpu->arch.vsie_block)
317 kvm_clock_sync_scb(vcpu->arch.vsie_block,
318 *delta);
319 }
320 }
321 return NOTIFY_OK;
322 }
323
324 static struct notifier_block kvm_clock_notifier = {
325 .notifier_call = kvm_clock_sync,
326 };
327
328 static void allow_cpu_feat(unsigned long nr)
329 {
330 set_bit_inv(nr, kvm_s390_available_cpu_feat);
331 }
332
333 static inline int plo_test_bit(unsigned char nr)
334 {
335 unsigned long function = (unsigned long)nr | 0x100;
336 int cc;
337
338 asm volatile(
339 " lgr 0,%[function]\n"
340 /* Parameter registers are ignored for "test bit" */
341 " plo 0,0,0,0(0)\n"
342 " ipm %0\n"
343 " srl %0,28\n"
344 : "=d" (cc)
345 : [function] "d" (function)
346 : "cc", "0");
347 return cc == 0;
348 }
349
350 static __always_inline void __insn32_query(unsigned int opcode, u8 *query)
351 {
352 asm volatile(
353 " lghi 0,0\n"
354 " lgr 1,%[query]\n"
355 /* Parameter registers are ignored */
356 " .insn rrf,%[opc] << 16,2,4,6,0\n"
357 :
358 : [query] "d" ((unsigned long)query), [opc] "i" (opcode)
359 : "cc", "memory", "0", "1");
360 }
361
362 #define INSN_SORTL 0xb938
363 #define INSN_DFLTCC 0xb939
364
365 static void __init kvm_s390_cpu_feat_init(void)
366 {
367 int i;
368
369 for (i = 0; i < 256; ++i) {
370 if (plo_test_bit(i))
371 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
372 }
373
374 if (test_facility(28)) /* TOD-clock steering */
375 ptff(kvm_s390_available_subfunc.ptff,
376 sizeof(kvm_s390_available_subfunc.ptff),
377 PTFF_QAF);
378
379 if (test_facility(17)) { /* MSA */
380 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
381 kvm_s390_available_subfunc.kmac);
382 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
383 kvm_s390_available_subfunc.kmc);
384 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
385 kvm_s390_available_subfunc.km);
386 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
387 kvm_s390_available_subfunc.kimd);
388 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
389 kvm_s390_available_subfunc.klmd);
390 }
391 if (test_facility(76)) /* MSA3 */
392 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
393 kvm_s390_available_subfunc.pckmo);
394 if (test_facility(77)) { /* MSA4 */
395 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
396 kvm_s390_available_subfunc.kmctr);
397 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
398 kvm_s390_available_subfunc.kmf);
399 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
400 kvm_s390_available_subfunc.kmo);
401 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
402 kvm_s390_available_subfunc.pcc);
403 }
404 if (test_facility(57)) /* MSA5 */
405 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
406 kvm_s390_available_subfunc.ppno);
407
408 if (test_facility(146)) /* MSA8 */
409 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
410 kvm_s390_available_subfunc.kma);
411
412 if (test_facility(155)) /* MSA9 */
413 __cpacf_query(CPACF_KDSA, (cpacf_mask_t *)
414 kvm_s390_available_subfunc.kdsa);
415
416 if (test_facility(150)) /* SORTL */
417 __insn32_query(INSN_SORTL, kvm_s390_available_subfunc.sortl);
418
419 if (test_facility(151)) /* DFLTCC */
420 __insn32_query(INSN_DFLTCC, kvm_s390_available_subfunc.dfltcc);
421
422 if (MACHINE_HAS_ESOP)
423 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
424 /*
425 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
426 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
427 */
428 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
429 !test_facility(3) || !nested)
430 return;
431 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
432 if (sclp.has_64bscao)
433 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
434 if (sclp.has_siif)
435 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
436 if (sclp.has_gpere)
437 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
438 if (sclp.has_gsls)
439 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
440 if (sclp.has_ib)
441 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
442 if (sclp.has_cei)
443 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
444 if (sclp.has_ibs)
445 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
446 if (sclp.has_kss)
447 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
448 /*
449 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
450 * all skey handling functions read/set the skey from the PGSTE
451 * instead of the real storage key.
452 *
453 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
454 * pages being detected as preserved although they are resident.
455 *
456 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
457 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
458 *
459 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
460 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
461 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
462 *
463 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
464 * cannot easily shadow the SCA because of the ipte lock.
465 */
466 }
467
468 static int __init __kvm_s390_init(void)
469 {
470 int rc = -ENOMEM;
471
472 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
473 if (!kvm_s390_dbf)
474 return -ENOMEM;
475
476 kvm_s390_dbf_uv = debug_register("kvm-uv", 32, 1, 7 * sizeof(long));
477 if (!kvm_s390_dbf_uv)
478 goto err_kvm_uv;
479
480 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view) ||
481 debug_register_view(kvm_s390_dbf_uv, &debug_sprintf_view))
482 goto err_debug_view;
483
484 kvm_s390_cpu_feat_init();
485
486 /* Register floating interrupt controller interface. */
487 rc = kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
488 if (rc) {
489 pr_err("A FLIC registration call failed with rc=%d\n", rc);
490 goto err_flic;
491 }
492
493 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
494 rc = kvm_s390_pci_init();
495 if (rc) {
496 pr_err("Unable to allocate AIFT for PCI\n");
497 goto err_pci;
498 }
499 }
500
501 rc = kvm_s390_gib_init(GAL_ISC);
502 if (rc)
503 goto err_gib;
504
505 gmap_notifier.notifier_call = kvm_gmap_notifier;
506 gmap_register_pte_notifier(&gmap_notifier);
507 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
508 gmap_register_pte_notifier(&vsie_gmap_notifier);
509 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
510 &kvm_clock_notifier);
511
512 return 0;
513
514 err_gib:
515 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
516 kvm_s390_pci_exit();
517 err_pci:
518 err_flic:
519 err_debug_view:
520 debug_unregister(kvm_s390_dbf_uv);
521 err_kvm_uv:
522 debug_unregister(kvm_s390_dbf);
523 return rc;
524 }
525
526 static void __kvm_s390_exit(void)
527 {
528 gmap_unregister_pte_notifier(&gmap_notifier);
529 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
530 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
531 &kvm_clock_notifier);
532
533 kvm_s390_gib_destroy();
534 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
535 kvm_s390_pci_exit();
536 debug_unregister(kvm_s390_dbf);
537 debug_unregister(kvm_s390_dbf_uv);
538 }
539
540 /* Section: device related */
541 long kvm_arch_dev_ioctl(struct file *filp,
542 unsigned int ioctl, unsigned long arg)
543 {
544 if (ioctl == KVM_S390_ENABLE_SIE)
545 return s390_enable_sie();
546 return -EINVAL;
547 }
548
549 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
550 {
551 int r;
552
553 switch (ext) {
554 case KVM_CAP_S390_PSW:
555 case KVM_CAP_S390_GMAP:
556 case KVM_CAP_SYNC_MMU:
557 #ifdef CONFIG_KVM_S390_UCONTROL
558 case KVM_CAP_S390_UCONTROL:
559 #endif
560 case KVM_CAP_ASYNC_PF:
561 case KVM_CAP_SYNC_REGS:
562 case KVM_CAP_ONE_REG:
563 case KVM_CAP_ENABLE_CAP:
564 case KVM_CAP_S390_CSS_SUPPORT:
565 case KVM_CAP_IOEVENTFD:
566 case KVM_CAP_S390_IRQCHIP:
567 case KVM_CAP_VM_ATTRIBUTES:
568 case KVM_CAP_MP_STATE:
569 case KVM_CAP_IMMEDIATE_EXIT:
570 case KVM_CAP_S390_INJECT_IRQ:
571 case KVM_CAP_S390_USER_SIGP:
572 case KVM_CAP_S390_USER_STSI:
573 case KVM_CAP_S390_SKEYS:
574 case KVM_CAP_S390_IRQ_STATE:
575 case KVM_CAP_S390_USER_INSTR0:
576 case KVM_CAP_S390_CMMA_MIGRATION:
577 case KVM_CAP_S390_AIS:
578 case KVM_CAP_S390_AIS_MIGRATION:
579 case KVM_CAP_S390_VCPU_RESETS:
580 case KVM_CAP_SET_GUEST_DEBUG:
581 case KVM_CAP_S390_DIAG318:
582 case KVM_CAP_IRQFD_RESAMPLE:
583 r = 1;
584 break;
585 case KVM_CAP_SET_GUEST_DEBUG2:
586 r = KVM_GUESTDBG_VALID_MASK;
587 break;
588 case KVM_CAP_S390_HPAGE_1M:
589 r = 0;
590 if (hpage && !kvm_is_ucontrol(kvm))
591 r = 1;
592 break;
593 case KVM_CAP_S390_MEM_OP:
594 r = MEM_OP_MAX_SIZE;
595 break;
596 case KVM_CAP_S390_MEM_OP_EXTENSION:
597 /*
598 * Flag bits indicating which extensions are supported.
599 * If r > 0, the base extension must also be supported/indicated,
600 * in order to maintain backwards compatibility.
601 */
602 r = KVM_S390_MEMOP_EXTENSION_CAP_BASE |
603 KVM_S390_MEMOP_EXTENSION_CAP_CMPXCHG;
604 break;
605 case KVM_CAP_NR_VCPUS:
606 case KVM_CAP_MAX_VCPUS:
607 case KVM_CAP_MAX_VCPU_ID:
608 r = KVM_S390_BSCA_CPU_SLOTS;
609 if (!kvm_s390_use_sca_entries())
610 r = KVM_MAX_VCPUS;
611 else if (sclp.has_esca && sclp.has_64bscao)
612 r = KVM_S390_ESCA_CPU_SLOTS;
613 if (ext == KVM_CAP_NR_VCPUS)
614 r = min_t(unsigned int, num_online_cpus(), r);
615 break;
616 case KVM_CAP_S390_COW:
617 r = MACHINE_HAS_ESOP;
618 break;
619 case KVM_CAP_S390_VECTOR_REGISTERS:
620 r = test_facility(129);
621 break;
622 case KVM_CAP_S390_RI:
623 r = test_facility(64);
624 break;
625 case KVM_CAP_S390_GS:
626 r = test_facility(133);
627 break;
628 case KVM_CAP_S390_BPB:
629 r = test_facility(82);
630 break;
631 case KVM_CAP_S390_PROTECTED_ASYNC_DISABLE:
632 r = async_destroy && is_prot_virt_host();
633 break;
634 case KVM_CAP_S390_PROTECTED:
635 r = is_prot_virt_host();
636 break;
637 case KVM_CAP_S390_PROTECTED_DUMP: {
638 u64 pv_cmds_dump[] = {
639 BIT_UVC_CMD_DUMP_INIT,
640 BIT_UVC_CMD_DUMP_CONFIG_STOR_STATE,
641 BIT_UVC_CMD_DUMP_CPU,
642 BIT_UVC_CMD_DUMP_COMPLETE,
643 };
644 int i;
645
646 r = is_prot_virt_host();
647
648 for (i = 0; i < ARRAY_SIZE(pv_cmds_dump); i++) {
649 if (!test_bit_inv(pv_cmds_dump[i],
650 (unsigned long *)&uv_info.inst_calls_list)) {
651 r = 0;
652 break;
653 }
654 }
655 break;
656 }
657 case KVM_CAP_S390_ZPCI_OP:
658 r = kvm_s390_pci_interp_allowed();
659 break;
660 case KVM_CAP_S390_CPU_TOPOLOGY:
661 r = test_facility(11);
662 break;
663 default:
664 r = 0;
665 }
666 return r;
667 }
668
669 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
670 {
671 int i;
672 gfn_t cur_gfn, last_gfn;
673 unsigned long gaddr, vmaddr;
674 struct gmap *gmap = kvm->arch.gmap;
675 DECLARE_BITMAP(bitmap, _PAGE_ENTRIES);
676
677 /* Loop over all guest segments */
678 cur_gfn = memslot->base_gfn;
679 last_gfn = memslot->base_gfn + memslot->npages;
680 for (; cur_gfn <= last_gfn; cur_gfn += _PAGE_ENTRIES) {
681 gaddr = gfn_to_gpa(cur_gfn);
682 vmaddr = gfn_to_hva_memslot(memslot, cur_gfn);
683 if (kvm_is_error_hva(vmaddr))
684 continue;
685
686 bitmap_zero(bitmap, _PAGE_ENTRIES);
687 gmap_sync_dirty_log_pmd(gmap, bitmap, gaddr, vmaddr);
688 for (i = 0; i < _PAGE_ENTRIES; i++) {
689 if (test_bit(i, bitmap))
690 mark_page_dirty(kvm, cur_gfn + i);
691 }
692
693 if (fatal_signal_pending(current))
694 return;
695 cond_resched();
696 }
697 }
698
699 /* Section: vm related */
700 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
701
702 /*
703 * Get (and clear) the dirty memory log for a memory slot.
704 */
705 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
706 struct kvm_dirty_log *log)
707 {
708 int r;
709 unsigned long n;
710 struct kvm_memory_slot *memslot;
711 int is_dirty;
712
713 if (kvm_is_ucontrol(kvm))
714 return -EINVAL;
715
716 mutex_lock(&kvm->slots_lock);
717
718 r = -EINVAL;
719 if (log->slot >= KVM_USER_MEM_SLOTS)
720 goto out;
721
722 r = kvm_get_dirty_log(kvm, log, &is_dirty, &memslot);
723 if (r)
724 goto out;
725
726 /* Clear the dirty log */
727 if (is_dirty) {
728 n = kvm_dirty_bitmap_bytes(memslot);
729 memset(memslot->dirty_bitmap, 0, n);
730 }
731 r = 0;
732 out:
733 mutex_unlock(&kvm->slots_lock);
734 return r;
735 }
736
737 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
738 {
739 unsigned long i;
740 struct kvm_vcpu *vcpu;
741
742 kvm_for_each_vcpu(i, vcpu, kvm) {
743 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
744 }
745 }
746
747 int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
748 {
749 int r;
750
751 if (cap->flags)
752 return -EINVAL;
753
754 switch (cap->cap) {
755 case KVM_CAP_S390_IRQCHIP:
756 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
757 kvm->arch.use_irqchip = 1;
758 r = 0;
759 break;
760 case KVM_CAP_S390_USER_SIGP:
761 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
762 kvm->arch.user_sigp = 1;
763 r = 0;
764 break;
765 case KVM_CAP_S390_VECTOR_REGISTERS:
766 mutex_lock(&kvm->lock);
767 if (kvm->created_vcpus) {
768 r = -EBUSY;
769 } else if (cpu_has_vx()) {
770 set_kvm_facility(kvm->arch.model.fac_mask, 129);
771 set_kvm_facility(kvm->arch.model.fac_list, 129);
772 if (test_facility(134)) {
773 set_kvm_facility(kvm->arch.model.fac_mask, 134);
774 set_kvm_facility(kvm->arch.model.fac_list, 134);
775 }
776 if (test_facility(135)) {
777 set_kvm_facility(kvm->arch.model.fac_mask, 135);
778 set_kvm_facility(kvm->arch.model.fac_list, 135);
779 }
780 if (test_facility(148)) {
781 set_kvm_facility(kvm->arch.model.fac_mask, 148);
782 set_kvm_facility(kvm->arch.model.fac_list, 148);
783 }
784 if (test_facility(152)) {
785 set_kvm_facility(kvm->arch.model.fac_mask, 152);
786 set_kvm_facility(kvm->arch.model.fac_list, 152);
787 }
788 if (test_facility(192)) {
789 set_kvm_facility(kvm->arch.model.fac_mask, 192);
790 set_kvm_facility(kvm->arch.model.fac_list, 192);
791 }
792 r = 0;
793 } else
794 r = -EINVAL;
795 mutex_unlock(&kvm->lock);
796 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
797 r ? "(not available)" : "(success)");
798 break;
799 case KVM_CAP_S390_RI:
800 r = -EINVAL;
801 mutex_lock(&kvm->lock);
802 if (kvm->created_vcpus) {
803 r = -EBUSY;
804 } else if (test_facility(64)) {
805 set_kvm_facility(kvm->arch.model.fac_mask, 64);
806 set_kvm_facility(kvm->arch.model.fac_list, 64);
807 r = 0;
808 }
809 mutex_unlock(&kvm->lock);
810 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
811 r ? "(not available)" : "(success)");
812 break;
813 case KVM_CAP_S390_AIS:
814 mutex_lock(&kvm->lock);
815 if (kvm->created_vcpus) {
816 r = -EBUSY;
817 } else {
818 set_kvm_facility(kvm->arch.model.fac_mask, 72);
819 set_kvm_facility(kvm->arch.model.fac_list, 72);
820 r = 0;
821 }
822 mutex_unlock(&kvm->lock);
823 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
824 r ? "(not available)" : "(success)");
825 break;
826 case KVM_CAP_S390_GS:
827 r = -EINVAL;
828 mutex_lock(&kvm->lock);
829 if (kvm->created_vcpus) {
830 r = -EBUSY;
831 } else if (test_facility(133)) {
832 set_kvm_facility(kvm->arch.model.fac_mask, 133);
833 set_kvm_facility(kvm->arch.model.fac_list, 133);
834 r = 0;
835 }
836 mutex_unlock(&kvm->lock);
837 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
838 r ? "(not available)" : "(success)");
839 break;
840 case KVM_CAP_S390_HPAGE_1M:
841 mutex_lock(&kvm->lock);
842 if (kvm->created_vcpus)
843 r = -EBUSY;
844 else if (!hpage || kvm->arch.use_cmma || kvm_is_ucontrol(kvm))
845 r = -EINVAL;
846 else {
847 r = 0;
848 mmap_write_lock(kvm->mm);
849 kvm->mm->context.allow_gmap_hpage_1m = 1;
850 mmap_write_unlock(kvm->mm);
851 /*
852 * We might have to create fake 4k page
853 * tables. To avoid that the hardware works on
854 * stale PGSTEs, we emulate these instructions.
855 */
856 kvm->arch.use_skf = 0;
857 kvm->arch.use_pfmfi = 0;
858 }
859 mutex_unlock(&kvm->lock);
860 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_HPAGE %s",
861 r ? "(not available)" : "(success)");
862 break;
863 case KVM_CAP_S390_USER_STSI:
864 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
865 kvm->arch.user_stsi = 1;
866 r = 0;
867 break;
868 case KVM_CAP_S390_USER_INSTR0:
869 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
870 kvm->arch.user_instr0 = 1;
871 icpt_operexc_on_all_vcpus(kvm);
872 r = 0;
873 break;
874 case KVM_CAP_S390_CPU_TOPOLOGY:
875 r = -EINVAL;
876 mutex_lock(&kvm->lock);
877 if (kvm->created_vcpus) {
878 r = -EBUSY;
879 } else if (test_facility(11)) {
880 set_kvm_facility(kvm->arch.model.fac_mask, 11);
881 set_kvm_facility(kvm->arch.model.fac_list, 11);
882 r = 0;
883 }
884 mutex_unlock(&kvm->lock);
885 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_CPU_TOPOLOGY %s",
886 r ? "(not available)" : "(success)");
887 break;
888 default:
889 r = -EINVAL;
890 break;
891 }
892 return r;
893 }
894
895 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
896 {
897 int ret;
898
899 switch (attr->attr) {
900 case KVM_S390_VM_MEM_LIMIT_SIZE:
901 ret = 0;
902 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
903 kvm->arch.mem_limit);
904 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
905 ret = -EFAULT;
906 break;
907 default:
908 ret = -ENXIO;
909 break;
910 }
911 return ret;
912 }
913
914 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
915 {
916 int ret;
917 unsigned int idx;
918 switch (attr->attr) {
919 case KVM_S390_VM_MEM_ENABLE_CMMA:
920 ret = -ENXIO;
921 if (!sclp.has_cmma)
922 break;
923
924 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
925 mutex_lock(&kvm->lock);
926 if (kvm->created_vcpus)
927 ret = -EBUSY;
928 else if (kvm->mm->context.allow_gmap_hpage_1m)
929 ret = -EINVAL;
930 else {
931 kvm->arch.use_cmma = 1;
932 /* Not compatible with cmma. */
933 kvm->arch.use_pfmfi = 0;
934 ret = 0;
935 }
936 mutex_unlock(&kvm->lock);
937 break;
938 case KVM_S390_VM_MEM_CLR_CMMA:
939 ret = -ENXIO;
940 if (!sclp.has_cmma)
941 break;
942 ret = -EINVAL;
943 if (!kvm->arch.use_cmma)
944 break;
945
946 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
947 mutex_lock(&kvm->lock);
948 idx = srcu_read_lock(&kvm->srcu);
949 s390_reset_cmma(kvm->arch.gmap->mm);
950 srcu_read_unlock(&kvm->srcu, idx);
951 mutex_unlock(&kvm->lock);
952 ret = 0;
953 break;
954 case KVM_S390_VM_MEM_LIMIT_SIZE: {
955 unsigned long new_limit;
956
957 if (kvm_is_ucontrol(kvm))
958 return -EINVAL;
959
960 if (get_user(new_limit, (u64 __user *)attr->addr))
961 return -EFAULT;
962
963 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
964 new_limit > kvm->arch.mem_limit)
965 return -E2BIG;
966
967 if (!new_limit)
968 return -EINVAL;
969
970 /* gmap_create takes last usable address */
971 if (new_limit != KVM_S390_NO_MEM_LIMIT)
972 new_limit -= 1;
973
974 ret = -EBUSY;
975 mutex_lock(&kvm->lock);
976 if (!kvm->created_vcpus) {
977 /* gmap_create will round the limit up */
978 struct gmap *new = gmap_create(current->mm, new_limit);
979
980 if (!new) {
981 ret = -ENOMEM;
982 } else {
983 gmap_remove(kvm->arch.gmap);
984 new->private = kvm;
985 kvm->arch.gmap = new;
986 ret = 0;
987 }
988 }
989 mutex_unlock(&kvm->lock);
990 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
991 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
992 (void *) kvm->arch.gmap->asce);
993 break;
994 }
995 default:
996 ret = -ENXIO;
997 break;
998 }
999 return ret;
1000 }
1001
1002 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
1003
1004 void kvm_s390_vcpu_crypto_reset_all(struct kvm *kvm)
1005 {
1006 struct kvm_vcpu *vcpu;
1007 unsigned long i;
1008
1009 kvm_s390_vcpu_block_all(kvm);
1010
1011 kvm_for_each_vcpu(i, vcpu, kvm) {
1012 kvm_s390_vcpu_crypto_setup(vcpu);
1013 /* recreate the shadow crycb by leaving the VSIE handler */
1014 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1015 }
1016
1017 kvm_s390_vcpu_unblock_all(kvm);
1018 }
1019
1020 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
1021 {
1022 mutex_lock(&kvm->lock);
1023 switch (attr->attr) {
1024 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1025 if (!test_kvm_facility(kvm, 76)) {
1026 mutex_unlock(&kvm->lock);
1027 return -EINVAL;
1028 }
1029 get_random_bytes(
1030 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1031 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1032 kvm->arch.crypto.aes_kw = 1;
1033 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
1034 break;
1035 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1036 if (!test_kvm_facility(kvm, 76)) {
1037 mutex_unlock(&kvm->lock);
1038 return -EINVAL;
1039 }
1040 get_random_bytes(
1041 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1042 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1043 kvm->arch.crypto.dea_kw = 1;
1044 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
1045 break;
1046 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1047 if (!test_kvm_facility(kvm, 76)) {
1048 mutex_unlock(&kvm->lock);
1049 return -EINVAL;
1050 }
1051 kvm->arch.crypto.aes_kw = 0;
1052 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
1053 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1054 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
1055 break;
1056 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1057 if (!test_kvm_facility(kvm, 76)) {
1058 mutex_unlock(&kvm->lock);
1059 return -EINVAL;
1060 }
1061 kvm->arch.crypto.dea_kw = 0;
1062 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
1063 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1064 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
1065 break;
1066 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
1067 if (!ap_instructions_available()) {
1068 mutex_unlock(&kvm->lock);
1069 return -EOPNOTSUPP;
1070 }
1071 kvm->arch.crypto.apie = 1;
1072 break;
1073 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
1074 if (!ap_instructions_available()) {
1075 mutex_unlock(&kvm->lock);
1076 return -EOPNOTSUPP;
1077 }
1078 kvm->arch.crypto.apie = 0;
1079 break;
1080 default:
1081 mutex_unlock(&kvm->lock);
1082 return -ENXIO;
1083 }
1084
1085 kvm_s390_vcpu_crypto_reset_all(kvm);
1086 mutex_unlock(&kvm->lock);
1087 return 0;
1088 }
1089
1090 static void kvm_s390_vcpu_pci_setup(struct kvm_vcpu *vcpu)
1091 {
1092 /* Only set the ECB bits after guest requests zPCI interpretation */
1093 if (!vcpu->kvm->arch.use_zpci_interp)
1094 return;
1095
1096 vcpu->arch.sie_block->ecb2 |= ECB2_ZPCI_LSI;
1097 vcpu->arch.sie_block->ecb3 |= ECB3_AISII + ECB3_AISI;
1098 }
1099
1100 void kvm_s390_vcpu_pci_enable_interp(struct kvm *kvm)
1101 {
1102 struct kvm_vcpu *vcpu;
1103 unsigned long i;
1104
1105 lockdep_assert_held(&kvm->lock);
1106
1107 if (!kvm_s390_pci_interp_allowed())
1108 return;
1109
1110 /*
1111 * If host is configured for PCI and the necessary facilities are
1112 * available, turn on interpretation for the life of this guest
1113 */
1114 kvm->arch.use_zpci_interp = 1;
1115
1116 kvm_s390_vcpu_block_all(kvm);
1117
1118 kvm_for_each_vcpu(i, vcpu, kvm) {
1119 kvm_s390_vcpu_pci_setup(vcpu);
1120 kvm_s390_sync_request(KVM_REQ_VSIE_RESTART, vcpu);
1121 }
1122
1123 kvm_s390_vcpu_unblock_all(kvm);
1124 }
1125
1126 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
1127 {
1128 unsigned long cx;
1129 struct kvm_vcpu *vcpu;
1130
1131 kvm_for_each_vcpu(cx, vcpu, kvm)
1132 kvm_s390_sync_request(req, vcpu);
1133 }
1134
1135 /*
1136 * Must be called with kvm->srcu held to avoid races on memslots, and with
1137 * kvm->slots_lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
1138 */
1139 static int kvm_s390_vm_start_migration(struct kvm *kvm)
1140 {
1141 struct kvm_memory_slot *ms;
1142 struct kvm_memslots *slots;
1143 unsigned long ram_pages = 0;
1144 int bkt;
1145
1146 /* migration mode already enabled */
1147 if (kvm->arch.migration_mode)
1148 return 0;
1149 slots = kvm_memslots(kvm);
1150 if (!slots || kvm_memslots_empty(slots))
1151 return -EINVAL;
1152
1153 if (!kvm->arch.use_cmma) {
1154 kvm->arch.migration_mode = 1;
1155 return 0;
1156 }
1157 /* mark all the pages in active slots as dirty */
1158 kvm_for_each_memslot(ms, bkt, slots) {
1159 if (!ms->dirty_bitmap)
1160 return -EINVAL;
1161 /*
1162 * The second half of the bitmap is only used on x86,
1163 * and would be wasted otherwise, so we put it to good
1164 * use here to keep track of the state of the storage
1165 * attributes.
1166 */
1167 memset(kvm_second_dirty_bitmap(ms), 0xff, kvm_dirty_bitmap_bytes(ms));
1168 ram_pages += ms->npages;
1169 }
1170 atomic64_set(&kvm->arch.cmma_dirty_pages, ram_pages);
1171 kvm->arch.migration_mode = 1;
1172 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
1173 return 0;
1174 }
1175
1176 /*
1177 * Must be called with kvm->slots_lock to avoid races with ourselves and
1178 * kvm_s390_vm_start_migration.
1179 */
1180 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
1181 {
1182 /* migration mode already disabled */
1183 if (!kvm->arch.migration_mode)
1184 return 0;
1185 kvm->arch.migration_mode = 0;
1186 if (kvm->arch.use_cmma)
1187 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
1188 return 0;
1189 }
1190
1191 static int kvm_s390_vm_set_migration(struct kvm *kvm,
1192 struct kvm_device_attr *attr)
1193 {
1194 int res = -ENXIO;
1195
1196 mutex_lock(&kvm->slots_lock);
1197 switch (attr->attr) {
1198 case KVM_S390_VM_MIGRATION_START:
1199 res = kvm_s390_vm_start_migration(kvm);
1200 break;
1201 case KVM_S390_VM_MIGRATION_STOP:
1202 res = kvm_s390_vm_stop_migration(kvm);
1203 break;
1204 default:
1205 break;
1206 }
1207 mutex_unlock(&kvm->slots_lock);
1208
1209 return res;
1210 }
1211
1212 static int kvm_s390_vm_get_migration(struct kvm *kvm,
1213 struct kvm_device_attr *attr)
1214 {
1215 u64 mig = kvm->arch.migration_mode;
1216
1217 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
1218 return -ENXIO;
1219
1220 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
1221 return -EFAULT;
1222 return 0;
1223 }
1224
1225 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod);
1226
1227 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1228 {
1229 struct kvm_s390_vm_tod_clock gtod;
1230
1231 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
1232 return -EFAULT;
1233
1234 if (!test_kvm_facility(kvm, 139) && gtod.epoch_idx)
1235 return -EINVAL;
1236 __kvm_s390_set_tod_clock(kvm, &gtod);
1237
1238 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
1239 gtod.epoch_idx, gtod.tod);
1240
1241 return 0;
1242 }
1243
1244 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1245 {
1246 u8 gtod_high;
1247
1248 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
1249 sizeof(gtod_high)))
1250 return -EFAULT;
1251
1252 if (gtod_high != 0)
1253 return -EINVAL;
1254 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
1255
1256 return 0;
1257 }
1258
1259 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1260 {
1261 struct kvm_s390_vm_tod_clock gtod = { 0 };
1262
1263 if (copy_from_user(&gtod.tod, (void __user *)attr->addr,
1264 sizeof(gtod.tod)))
1265 return -EFAULT;
1266
1267 __kvm_s390_set_tod_clock(kvm, &gtod);
1268 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod.tod);
1269 return 0;
1270 }
1271
1272 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1273 {
1274 int ret;
1275
1276 if (attr->flags)
1277 return -EINVAL;
1278
1279 mutex_lock(&kvm->lock);
1280 /*
1281 * For protected guests, the TOD is managed by the ultravisor, so trying
1282 * to change it will never bring the expected results.
1283 */
1284 if (kvm_s390_pv_is_protected(kvm)) {
1285 ret = -EOPNOTSUPP;
1286 goto out_unlock;
1287 }
1288
1289 switch (attr->attr) {
1290 case KVM_S390_VM_TOD_EXT:
1291 ret = kvm_s390_set_tod_ext(kvm, attr);
1292 break;
1293 case KVM_S390_VM_TOD_HIGH:
1294 ret = kvm_s390_set_tod_high(kvm, attr);
1295 break;
1296 case KVM_S390_VM_TOD_LOW:
1297 ret = kvm_s390_set_tod_low(kvm, attr);
1298 break;
1299 default:
1300 ret = -ENXIO;
1301 break;
1302 }
1303
1304 out_unlock:
1305 mutex_unlock(&kvm->lock);
1306 return ret;
1307 }
1308
1309 static void kvm_s390_get_tod_clock(struct kvm *kvm,
1310 struct kvm_s390_vm_tod_clock *gtod)
1311 {
1312 union tod_clock clk;
1313
1314 preempt_disable();
1315
1316 store_tod_clock_ext(&clk);
1317
1318 gtod->tod = clk.tod + kvm->arch.epoch;
1319 gtod->epoch_idx = 0;
1320 if (test_kvm_facility(kvm, 139)) {
1321 gtod->epoch_idx = clk.ei + kvm->arch.epdx;
1322 if (gtod->tod < clk.tod)
1323 gtod->epoch_idx += 1;
1324 }
1325
1326 preempt_enable();
1327 }
1328
1329 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
1330 {
1331 struct kvm_s390_vm_tod_clock gtod;
1332
1333 memset(&gtod, 0, sizeof(gtod));
1334 kvm_s390_get_tod_clock(kvm, &gtod);
1335 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1336 return -EFAULT;
1337
1338 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
1339 gtod.epoch_idx, gtod.tod);
1340 return 0;
1341 }
1342
1343 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
1344 {
1345 u8 gtod_high = 0;
1346
1347 if (copy_to_user((void __user *)attr->addr, &gtod_high,
1348 sizeof(gtod_high)))
1349 return -EFAULT;
1350 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
1351
1352 return 0;
1353 }
1354
1355 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1356 {
1357 u64 gtod;
1358
1359 gtod = kvm_s390_get_tod_clock_fast(kvm);
1360 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1361 return -EFAULT;
1362 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1363
1364 return 0;
1365 }
1366
1367 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1368 {
1369 int ret;
1370
1371 if (attr->flags)
1372 return -EINVAL;
1373
1374 switch (attr->attr) {
1375 case KVM_S390_VM_TOD_EXT:
1376 ret = kvm_s390_get_tod_ext(kvm, attr);
1377 break;
1378 case KVM_S390_VM_TOD_HIGH:
1379 ret = kvm_s390_get_tod_high(kvm, attr);
1380 break;
1381 case KVM_S390_VM_TOD_LOW:
1382 ret = kvm_s390_get_tod_low(kvm, attr);
1383 break;
1384 default:
1385 ret = -ENXIO;
1386 break;
1387 }
1388 return ret;
1389 }
1390
1391 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1392 {
1393 struct kvm_s390_vm_cpu_processor *proc;
1394 u16 lowest_ibc, unblocked_ibc;
1395 int ret = 0;
1396
1397 mutex_lock(&kvm->lock);
1398 if (kvm->created_vcpus) {
1399 ret = -EBUSY;
1400 goto out;
1401 }
1402 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1403 if (!proc) {
1404 ret = -ENOMEM;
1405 goto out;
1406 }
1407 if (!copy_from_user(proc, (void __user *)attr->addr,
1408 sizeof(*proc))) {
1409 kvm->arch.model.cpuid = proc->cpuid;
1410 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1411 unblocked_ibc = sclp.ibc & 0xfff;
1412 if (lowest_ibc && proc->ibc) {
1413 if (proc->ibc > unblocked_ibc)
1414 kvm->arch.model.ibc = unblocked_ibc;
1415 else if (proc->ibc < lowest_ibc)
1416 kvm->arch.model.ibc = lowest_ibc;
1417 else
1418 kvm->arch.model.ibc = proc->ibc;
1419 }
1420 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1421 S390_ARCH_FAC_LIST_SIZE_BYTE);
1422 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1423 kvm->arch.model.ibc,
1424 kvm->arch.model.cpuid);
1425 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1426 kvm->arch.model.fac_list[0],
1427 kvm->arch.model.fac_list[1],
1428 kvm->arch.model.fac_list[2]);
1429 } else
1430 ret = -EFAULT;
1431 kfree(proc);
1432 out:
1433 mutex_unlock(&kvm->lock);
1434 return ret;
1435 }
1436
1437 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1438 struct kvm_device_attr *attr)
1439 {
1440 struct kvm_s390_vm_cpu_feat data;
1441
1442 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1443 return -EFAULT;
1444 if (!bitmap_subset((unsigned long *) data.feat,
1445 kvm_s390_available_cpu_feat,
1446 KVM_S390_VM_CPU_FEAT_NR_BITS))
1447 return -EINVAL;
1448
1449 mutex_lock(&kvm->lock);
1450 if (kvm->created_vcpus) {
1451 mutex_unlock(&kvm->lock);
1452 return -EBUSY;
1453 }
1454 bitmap_from_arr64(kvm->arch.cpu_feat, data.feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1455 mutex_unlock(&kvm->lock);
1456 VM_EVENT(kvm, 3, "SET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1457 data.feat[0],
1458 data.feat[1],
1459 data.feat[2]);
1460 return 0;
1461 }
1462
1463 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1464 struct kvm_device_attr *attr)
1465 {
1466 mutex_lock(&kvm->lock);
1467 if (kvm->created_vcpus) {
1468 mutex_unlock(&kvm->lock);
1469 return -EBUSY;
1470 }
1471
1472 if (copy_from_user(&kvm->arch.model.subfuncs, (void __user *)attr->addr,
1473 sizeof(struct kvm_s390_vm_cpu_subfunc))) {
1474 mutex_unlock(&kvm->lock);
1475 return -EFAULT;
1476 }
1477 mutex_unlock(&kvm->lock);
1478
1479 VM_EVENT(kvm, 3, "SET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1480 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1481 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1482 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1483 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1484 VM_EVENT(kvm, 3, "SET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1485 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1486 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1487 VM_EVENT(kvm, 3, "SET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1488 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1489 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1490 VM_EVENT(kvm, 3, "SET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1491 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1492 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1493 VM_EVENT(kvm, 3, "SET: guest KM subfunc 0x%16.16lx.%16.16lx",
1494 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1495 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1496 VM_EVENT(kvm, 3, "SET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1497 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1498 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1499 VM_EVENT(kvm, 3, "SET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1500 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1501 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1502 VM_EVENT(kvm, 3, "SET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1503 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1504 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1505 VM_EVENT(kvm, 3, "SET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1506 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1507 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1508 VM_EVENT(kvm, 3, "SET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1509 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1510 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1511 VM_EVENT(kvm, 3, "SET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1512 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1513 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1514 VM_EVENT(kvm, 3, "SET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1515 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1516 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1517 VM_EVENT(kvm, 3, "SET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1518 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1519 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1520 VM_EVENT(kvm, 3, "SET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1521 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1522 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1523 VM_EVENT(kvm, 3, "SET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1524 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1525 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1526 VM_EVENT(kvm, 3, "SET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1527 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1528 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1529 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1530 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1531 VM_EVENT(kvm, 3, "SET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1532 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1533 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1534 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1535 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1536
1537 return 0;
1538 }
1539
1540 #define KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK \
1541 ( \
1542 ((struct kvm_s390_vm_cpu_uv_feat){ \
1543 .ap = 1, \
1544 .ap_intr = 1, \
1545 }) \
1546 .feat \
1547 )
1548
1549 static int kvm_s390_set_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1550 {
1551 struct kvm_s390_vm_cpu_uv_feat __user *ptr = (void __user *)attr->addr;
1552 unsigned long data, filter;
1553
1554 filter = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1555 if (get_user(data, &ptr->feat))
1556 return -EFAULT;
1557 if (!bitmap_subset(&data, &filter, KVM_S390_VM_CPU_UV_FEAT_NR_BITS))
1558 return -EINVAL;
1559
1560 mutex_lock(&kvm->lock);
1561 if (kvm->created_vcpus) {
1562 mutex_unlock(&kvm->lock);
1563 return -EBUSY;
1564 }
1565 kvm->arch.model.uv_feat_guest.feat = data;
1566 mutex_unlock(&kvm->lock);
1567
1568 VM_EVENT(kvm, 3, "SET: guest UV-feat: 0x%16.16lx", data);
1569
1570 return 0;
1571 }
1572
1573 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1574 {
1575 int ret = -ENXIO;
1576
1577 switch (attr->attr) {
1578 case KVM_S390_VM_CPU_PROCESSOR:
1579 ret = kvm_s390_set_processor(kvm, attr);
1580 break;
1581 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1582 ret = kvm_s390_set_processor_feat(kvm, attr);
1583 break;
1584 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1585 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1586 break;
1587 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1588 ret = kvm_s390_set_uv_feat(kvm, attr);
1589 break;
1590 }
1591 return ret;
1592 }
1593
1594 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1595 {
1596 struct kvm_s390_vm_cpu_processor *proc;
1597 int ret = 0;
1598
1599 proc = kzalloc(sizeof(*proc), GFP_KERNEL_ACCOUNT);
1600 if (!proc) {
1601 ret = -ENOMEM;
1602 goto out;
1603 }
1604 proc->cpuid = kvm->arch.model.cpuid;
1605 proc->ibc = kvm->arch.model.ibc;
1606 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1607 S390_ARCH_FAC_LIST_SIZE_BYTE);
1608 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1609 kvm->arch.model.ibc,
1610 kvm->arch.model.cpuid);
1611 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1612 kvm->arch.model.fac_list[0],
1613 kvm->arch.model.fac_list[1],
1614 kvm->arch.model.fac_list[2]);
1615 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1616 ret = -EFAULT;
1617 kfree(proc);
1618 out:
1619 return ret;
1620 }
1621
1622 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1623 {
1624 struct kvm_s390_vm_cpu_machine *mach;
1625 int ret = 0;
1626
1627 mach = kzalloc(sizeof(*mach), GFP_KERNEL_ACCOUNT);
1628 if (!mach) {
1629 ret = -ENOMEM;
1630 goto out;
1631 }
1632 get_cpu_id((struct cpuid *) &mach->cpuid);
1633 mach->ibc = sclp.ibc;
1634 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1635 S390_ARCH_FAC_LIST_SIZE_BYTE);
1636 memcpy((unsigned long *)&mach->fac_list, stfle_fac_list,
1637 sizeof(stfle_fac_list));
1638 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1639 kvm->arch.model.ibc,
1640 kvm->arch.model.cpuid);
1641 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1642 mach->fac_mask[0],
1643 mach->fac_mask[1],
1644 mach->fac_mask[2]);
1645 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1646 mach->fac_list[0],
1647 mach->fac_list[1],
1648 mach->fac_list[2]);
1649 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1650 ret = -EFAULT;
1651 kfree(mach);
1652 out:
1653 return ret;
1654 }
1655
1656 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1657 struct kvm_device_attr *attr)
1658 {
1659 struct kvm_s390_vm_cpu_feat data;
1660
1661 bitmap_to_arr64(data.feat, kvm->arch.cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1662 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1663 return -EFAULT;
1664 VM_EVENT(kvm, 3, "GET: guest feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1665 data.feat[0],
1666 data.feat[1],
1667 data.feat[2]);
1668 return 0;
1669 }
1670
1671 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1672 struct kvm_device_attr *attr)
1673 {
1674 struct kvm_s390_vm_cpu_feat data;
1675
1676 bitmap_to_arr64(data.feat, kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
1677 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1678 return -EFAULT;
1679 VM_EVENT(kvm, 3, "GET: host feat: 0x%16.16llx.0x%16.16llx.0x%16.16llx",
1680 data.feat[0],
1681 data.feat[1],
1682 data.feat[2]);
1683 return 0;
1684 }
1685
1686 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1687 struct kvm_device_attr *attr)
1688 {
1689 if (copy_to_user((void __user *)attr->addr, &kvm->arch.model.subfuncs,
1690 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1691 return -EFAULT;
1692
1693 VM_EVENT(kvm, 3, "GET: guest PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1694 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[0],
1695 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[1],
1696 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[2],
1697 ((unsigned long *) &kvm->arch.model.subfuncs.plo)[3]);
1698 VM_EVENT(kvm, 3, "GET: guest PTFF subfunc 0x%16.16lx.%16.16lx",
1699 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[0],
1700 ((unsigned long *) &kvm->arch.model.subfuncs.ptff)[1]);
1701 VM_EVENT(kvm, 3, "GET: guest KMAC subfunc 0x%16.16lx.%16.16lx",
1702 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[0],
1703 ((unsigned long *) &kvm->arch.model.subfuncs.kmac)[1]);
1704 VM_EVENT(kvm, 3, "GET: guest KMC subfunc 0x%16.16lx.%16.16lx",
1705 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[0],
1706 ((unsigned long *) &kvm->arch.model.subfuncs.kmc)[1]);
1707 VM_EVENT(kvm, 3, "GET: guest KM subfunc 0x%16.16lx.%16.16lx",
1708 ((unsigned long *) &kvm->arch.model.subfuncs.km)[0],
1709 ((unsigned long *) &kvm->arch.model.subfuncs.km)[1]);
1710 VM_EVENT(kvm, 3, "GET: guest KIMD subfunc 0x%16.16lx.%16.16lx",
1711 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[0],
1712 ((unsigned long *) &kvm->arch.model.subfuncs.kimd)[1]);
1713 VM_EVENT(kvm, 3, "GET: guest KLMD subfunc 0x%16.16lx.%16.16lx",
1714 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[0],
1715 ((unsigned long *) &kvm->arch.model.subfuncs.klmd)[1]);
1716 VM_EVENT(kvm, 3, "GET: guest PCKMO subfunc 0x%16.16lx.%16.16lx",
1717 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[0],
1718 ((unsigned long *) &kvm->arch.model.subfuncs.pckmo)[1]);
1719 VM_EVENT(kvm, 3, "GET: guest KMCTR subfunc 0x%16.16lx.%16.16lx",
1720 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[0],
1721 ((unsigned long *) &kvm->arch.model.subfuncs.kmctr)[1]);
1722 VM_EVENT(kvm, 3, "GET: guest KMF subfunc 0x%16.16lx.%16.16lx",
1723 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[0],
1724 ((unsigned long *) &kvm->arch.model.subfuncs.kmf)[1]);
1725 VM_EVENT(kvm, 3, "GET: guest KMO subfunc 0x%16.16lx.%16.16lx",
1726 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[0],
1727 ((unsigned long *) &kvm->arch.model.subfuncs.kmo)[1]);
1728 VM_EVENT(kvm, 3, "GET: guest PCC subfunc 0x%16.16lx.%16.16lx",
1729 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[0],
1730 ((unsigned long *) &kvm->arch.model.subfuncs.pcc)[1]);
1731 VM_EVENT(kvm, 3, "GET: guest PPNO subfunc 0x%16.16lx.%16.16lx",
1732 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[0],
1733 ((unsigned long *) &kvm->arch.model.subfuncs.ppno)[1]);
1734 VM_EVENT(kvm, 3, "GET: guest KMA subfunc 0x%16.16lx.%16.16lx",
1735 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[0],
1736 ((unsigned long *) &kvm->arch.model.subfuncs.kma)[1]);
1737 VM_EVENT(kvm, 3, "GET: guest KDSA subfunc 0x%16.16lx.%16.16lx",
1738 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[0],
1739 ((unsigned long *) &kvm->arch.model.subfuncs.kdsa)[1]);
1740 VM_EVENT(kvm, 3, "GET: guest SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1741 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[0],
1742 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[1],
1743 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[2],
1744 ((unsigned long *) &kvm->arch.model.subfuncs.sortl)[3]);
1745 VM_EVENT(kvm, 3, "GET: guest DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1746 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[0],
1747 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[1],
1748 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[2],
1749 ((unsigned long *) &kvm->arch.model.subfuncs.dfltcc)[3]);
1750
1751 return 0;
1752 }
1753
1754 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1755 struct kvm_device_attr *attr)
1756 {
1757 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1758 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1759 return -EFAULT;
1760
1761 VM_EVENT(kvm, 3, "GET: host PLO subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1762 ((unsigned long *) &kvm_s390_available_subfunc.plo)[0],
1763 ((unsigned long *) &kvm_s390_available_subfunc.plo)[1],
1764 ((unsigned long *) &kvm_s390_available_subfunc.plo)[2],
1765 ((unsigned long *) &kvm_s390_available_subfunc.plo)[3]);
1766 VM_EVENT(kvm, 3, "GET: host PTFF subfunc 0x%16.16lx.%16.16lx",
1767 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[0],
1768 ((unsigned long *) &kvm_s390_available_subfunc.ptff)[1]);
1769 VM_EVENT(kvm, 3, "GET: host KMAC subfunc 0x%16.16lx.%16.16lx",
1770 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[0],
1771 ((unsigned long *) &kvm_s390_available_subfunc.kmac)[1]);
1772 VM_EVENT(kvm, 3, "GET: host KMC subfunc 0x%16.16lx.%16.16lx",
1773 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[0],
1774 ((unsigned long *) &kvm_s390_available_subfunc.kmc)[1]);
1775 VM_EVENT(kvm, 3, "GET: host KM subfunc 0x%16.16lx.%16.16lx",
1776 ((unsigned long *) &kvm_s390_available_subfunc.km)[0],
1777 ((unsigned long *) &kvm_s390_available_subfunc.km)[1]);
1778 VM_EVENT(kvm, 3, "GET: host KIMD subfunc 0x%16.16lx.%16.16lx",
1779 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[0],
1780 ((unsigned long *) &kvm_s390_available_subfunc.kimd)[1]);
1781 VM_EVENT(kvm, 3, "GET: host KLMD subfunc 0x%16.16lx.%16.16lx",
1782 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[0],
1783 ((unsigned long *) &kvm_s390_available_subfunc.klmd)[1]);
1784 VM_EVENT(kvm, 3, "GET: host PCKMO subfunc 0x%16.16lx.%16.16lx",
1785 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[0],
1786 ((unsigned long *) &kvm_s390_available_subfunc.pckmo)[1]);
1787 VM_EVENT(kvm, 3, "GET: host KMCTR subfunc 0x%16.16lx.%16.16lx",
1788 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[0],
1789 ((unsigned long *) &kvm_s390_available_subfunc.kmctr)[1]);
1790 VM_EVENT(kvm, 3, "GET: host KMF subfunc 0x%16.16lx.%16.16lx",
1791 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[0],
1792 ((unsigned long *) &kvm_s390_available_subfunc.kmf)[1]);
1793 VM_EVENT(kvm, 3, "GET: host KMO subfunc 0x%16.16lx.%16.16lx",
1794 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[0],
1795 ((unsigned long *) &kvm_s390_available_subfunc.kmo)[1]);
1796 VM_EVENT(kvm, 3, "GET: host PCC subfunc 0x%16.16lx.%16.16lx",
1797 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[0],
1798 ((unsigned long *) &kvm_s390_available_subfunc.pcc)[1]);
1799 VM_EVENT(kvm, 3, "GET: host PPNO subfunc 0x%16.16lx.%16.16lx",
1800 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[0],
1801 ((unsigned long *) &kvm_s390_available_subfunc.ppno)[1]);
1802 VM_EVENT(kvm, 3, "GET: host KMA subfunc 0x%16.16lx.%16.16lx",
1803 ((unsigned long *) &kvm_s390_available_subfunc.kma)[0],
1804 ((unsigned long *) &kvm_s390_available_subfunc.kma)[1]);
1805 VM_EVENT(kvm, 3, "GET: host KDSA subfunc 0x%16.16lx.%16.16lx",
1806 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[0],
1807 ((unsigned long *) &kvm_s390_available_subfunc.kdsa)[1]);
1808 VM_EVENT(kvm, 3, "GET: host SORTL subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1809 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[0],
1810 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[1],
1811 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[2],
1812 ((unsigned long *) &kvm_s390_available_subfunc.sortl)[3]);
1813 VM_EVENT(kvm, 3, "GET: host DFLTCC subfunc 0x%16.16lx.%16.16lx.%16.16lx.%16.16lx",
1814 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[0],
1815 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[1],
1816 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[2],
1817 ((unsigned long *) &kvm_s390_available_subfunc.dfltcc)[3]);
1818
1819 return 0;
1820 }
1821
1822 static int kvm_s390_get_processor_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1823 {
1824 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1825 unsigned long feat = kvm->arch.model.uv_feat_guest.feat;
1826
1827 if (put_user(feat, &dst->feat))
1828 return -EFAULT;
1829 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1830
1831 return 0;
1832 }
1833
1834 static int kvm_s390_get_machine_uv_feat(struct kvm *kvm, struct kvm_device_attr *attr)
1835 {
1836 struct kvm_s390_vm_cpu_uv_feat __user *dst = (void __user *)attr->addr;
1837 unsigned long feat;
1838
1839 BUILD_BUG_ON(sizeof(*dst) != sizeof(uv_info.uv_feature_indications));
1840
1841 feat = uv_info.uv_feature_indications & KVM_S390_VM_CPU_UV_FEAT_GUEST_MASK;
1842 if (put_user(feat, &dst->feat))
1843 return -EFAULT;
1844 VM_EVENT(kvm, 3, "GET: guest UV-feat: 0x%16.16lx", feat);
1845
1846 return 0;
1847 }
1848
1849 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1850 {
1851 int ret = -ENXIO;
1852
1853 switch (attr->attr) {
1854 case KVM_S390_VM_CPU_PROCESSOR:
1855 ret = kvm_s390_get_processor(kvm, attr);
1856 break;
1857 case KVM_S390_VM_CPU_MACHINE:
1858 ret = kvm_s390_get_machine(kvm, attr);
1859 break;
1860 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1861 ret = kvm_s390_get_processor_feat(kvm, attr);
1862 break;
1863 case KVM_S390_VM_CPU_MACHINE_FEAT:
1864 ret = kvm_s390_get_machine_feat(kvm, attr);
1865 break;
1866 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1867 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1868 break;
1869 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1870 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1871 break;
1872 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
1873 ret = kvm_s390_get_processor_uv_feat(kvm, attr);
1874 break;
1875 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
1876 ret = kvm_s390_get_machine_uv_feat(kvm, attr);
1877 break;
1878 }
1879 return ret;
1880 }
1881
1882 /**
1883 * kvm_s390_update_topology_change_report - update CPU topology change report
1884 * @kvm: guest KVM description
1885 * @val: set or clear the MTCR bit
1886 *
1887 * Updates the Multiprocessor Topology-Change-Report bit to signal
1888 * the guest with a topology change.
1889 * This is only relevant if the topology facility is present.
1890 *
1891 * The SCA version, bsca or esca, doesn't matter as offset is the same.
1892 */
1893 static void kvm_s390_update_topology_change_report(struct kvm *kvm, bool val)
1894 {
1895 union sca_utility new, old;
1896 struct bsca_block *sca;
1897
1898 read_lock(&kvm->arch.sca_lock);
1899 sca = kvm->arch.sca;
1900 do {
1901 old = READ_ONCE(sca->utility);
1902 new = old;
1903 new.mtcr = val;
1904 } while (cmpxchg(&sca->utility.val, old.val, new.val) != old.val);
1905 read_unlock(&kvm->arch.sca_lock);
1906 }
1907
1908 static int kvm_s390_set_topo_change_indication(struct kvm *kvm,
1909 struct kvm_device_attr *attr)
1910 {
1911 if (!test_kvm_facility(kvm, 11))
1912 return -ENXIO;
1913
1914 kvm_s390_update_topology_change_report(kvm, !!attr->attr);
1915 return 0;
1916 }
1917
1918 static int kvm_s390_get_topo_change_indication(struct kvm *kvm,
1919 struct kvm_device_attr *attr)
1920 {
1921 u8 topo;
1922
1923 if (!test_kvm_facility(kvm, 11))
1924 return -ENXIO;
1925
1926 read_lock(&kvm->arch.sca_lock);
1927 topo = ((struct bsca_block *)kvm->arch.sca)->utility.mtcr;
1928 read_unlock(&kvm->arch.sca_lock);
1929
1930 return put_user(topo, (u8 __user *)attr->addr);
1931 }
1932
1933 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1934 {
1935 int ret;
1936
1937 switch (attr->group) {
1938 case KVM_S390_VM_MEM_CTRL:
1939 ret = kvm_s390_set_mem_control(kvm, attr);
1940 break;
1941 case KVM_S390_VM_TOD:
1942 ret = kvm_s390_set_tod(kvm, attr);
1943 break;
1944 case KVM_S390_VM_CPU_MODEL:
1945 ret = kvm_s390_set_cpu_model(kvm, attr);
1946 break;
1947 case KVM_S390_VM_CRYPTO:
1948 ret = kvm_s390_vm_set_crypto(kvm, attr);
1949 break;
1950 case KVM_S390_VM_MIGRATION:
1951 ret = kvm_s390_vm_set_migration(kvm, attr);
1952 break;
1953 case KVM_S390_VM_CPU_TOPOLOGY:
1954 ret = kvm_s390_set_topo_change_indication(kvm, attr);
1955 break;
1956 default:
1957 ret = -ENXIO;
1958 break;
1959 }
1960
1961 return ret;
1962 }
1963
1964 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1965 {
1966 int ret;
1967
1968 switch (attr->group) {
1969 case KVM_S390_VM_MEM_CTRL:
1970 ret = kvm_s390_get_mem_control(kvm, attr);
1971 break;
1972 case KVM_S390_VM_TOD:
1973 ret = kvm_s390_get_tod(kvm, attr);
1974 break;
1975 case KVM_S390_VM_CPU_MODEL:
1976 ret = kvm_s390_get_cpu_model(kvm, attr);
1977 break;
1978 case KVM_S390_VM_MIGRATION:
1979 ret = kvm_s390_vm_get_migration(kvm, attr);
1980 break;
1981 case KVM_S390_VM_CPU_TOPOLOGY:
1982 ret = kvm_s390_get_topo_change_indication(kvm, attr);
1983 break;
1984 default:
1985 ret = -ENXIO;
1986 break;
1987 }
1988
1989 return ret;
1990 }
1991
1992 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1993 {
1994 int ret;
1995
1996 switch (attr->group) {
1997 case KVM_S390_VM_MEM_CTRL:
1998 switch (attr->attr) {
1999 case KVM_S390_VM_MEM_ENABLE_CMMA:
2000 case KVM_S390_VM_MEM_CLR_CMMA:
2001 ret = sclp.has_cmma ? 0 : -ENXIO;
2002 break;
2003 case KVM_S390_VM_MEM_LIMIT_SIZE:
2004 ret = 0;
2005 break;
2006 default:
2007 ret = -ENXIO;
2008 break;
2009 }
2010 break;
2011 case KVM_S390_VM_TOD:
2012 switch (attr->attr) {
2013 case KVM_S390_VM_TOD_LOW:
2014 case KVM_S390_VM_TOD_HIGH:
2015 ret = 0;
2016 break;
2017 default:
2018 ret = -ENXIO;
2019 break;
2020 }
2021 break;
2022 case KVM_S390_VM_CPU_MODEL:
2023 switch (attr->attr) {
2024 case KVM_S390_VM_CPU_PROCESSOR:
2025 case KVM_S390_VM_CPU_MACHINE:
2026 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
2027 case KVM_S390_VM_CPU_MACHINE_FEAT:
2028 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
2029 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
2030 case KVM_S390_VM_CPU_MACHINE_UV_FEAT_GUEST:
2031 case KVM_S390_VM_CPU_PROCESSOR_UV_FEAT_GUEST:
2032 ret = 0;
2033 break;
2034 default:
2035 ret = -ENXIO;
2036 break;
2037 }
2038 break;
2039 case KVM_S390_VM_CRYPTO:
2040 switch (attr->attr) {
2041 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
2042 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
2043 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
2044 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
2045 ret = 0;
2046 break;
2047 case KVM_S390_VM_CRYPTO_ENABLE_APIE:
2048 case KVM_S390_VM_CRYPTO_DISABLE_APIE:
2049 ret = ap_instructions_available() ? 0 : -ENXIO;
2050 break;
2051 default:
2052 ret = -ENXIO;
2053 break;
2054 }
2055 break;
2056 case KVM_S390_VM_MIGRATION:
2057 ret = 0;
2058 break;
2059 case KVM_S390_VM_CPU_TOPOLOGY:
2060 ret = test_kvm_facility(kvm, 11) ? 0 : -ENXIO;
2061 break;
2062 default:
2063 ret = -ENXIO;
2064 break;
2065 }
2066
2067 return ret;
2068 }
2069
2070 static int kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2071 {
2072 uint8_t *keys;
2073 uint64_t hva;
2074 int srcu_idx, i, r = 0;
2075
2076 if (args->flags != 0)
2077 return -EINVAL;
2078
2079 /* Is this guest using storage keys? */
2080 if (!mm_uses_skeys(current->mm))
2081 return KVM_S390_GET_SKEYS_NONE;
2082
2083 /* Enforce sane limit on memory allocation */
2084 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2085 return -EINVAL;
2086
2087 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2088 if (!keys)
2089 return -ENOMEM;
2090
2091 mmap_read_lock(current->mm);
2092 srcu_idx = srcu_read_lock(&kvm->srcu);
2093 for (i = 0; i < args->count; i++) {
2094 hva = gfn_to_hva(kvm, args->start_gfn + i);
2095 if (kvm_is_error_hva(hva)) {
2096 r = -EFAULT;
2097 break;
2098 }
2099
2100 r = get_guest_storage_key(current->mm, hva, &keys[i]);
2101 if (r)
2102 break;
2103 }
2104 srcu_read_unlock(&kvm->srcu, srcu_idx);
2105 mmap_read_unlock(current->mm);
2106
2107 if (!r) {
2108 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
2109 sizeof(uint8_t) * args->count);
2110 if (r)
2111 r = -EFAULT;
2112 }
2113
2114 kvfree(keys);
2115 return r;
2116 }
2117
2118 static int kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
2119 {
2120 uint8_t *keys;
2121 uint64_t hva;
2122 int srcu_idx, i, r = 0;
2123 bool unlocked;
2124
2125 if (args->flags != 0)
2126 return -EINVAL;
2127
2128 /* Enforce sane limit on memory allocation */
2129 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
2130 return -EINVAL;
2131
2132 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL_ACCOUNT);
2133 if (!keys)
2134 return -ENOMEM;
2135
2136 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
2137 sizeof(uint8_t) * args->count);
2138 if (r) {
2139 r = -EFAULT;
2140 goto out;
2141 }
2142
2143 /* Enable storage key handling for the guest */
2144 r = s390_enable_skey();
2145 if (r)
2146 goto out;
2147
2148 i = 0;
2149 mmap_read_lock(current->mm);
2150 srcu_idx = srcu_read_lock(&kvm->srcu);
2151 while (i < args->count) {
2152 unlocked = false;
2153 hva = gfn_to_hva(kvm, args->start_gfn + i);
2154 if (kvm_is_error_hva(hva)) {
2155 r = -EFAULT;
2156 break;
2157 }
2158
2159 /* Lowest order bit is reserved */
2160 if (keys[i] & 0x01) {
2161 r = -EINVAL;
2162 break;
2163 }
2164
2165 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
2166 if (r) {
2167 r = fixup_user_fault(current->mm, hva,
2168 FAULT_FLAG_WRITE, &unlocked);
2169 if (r)
2170 break;
2171 }
2172 if (!r)
2173 i++;
2174 }
2175 srcu_read_unlock(&kvm->srcu, srcu_idx);
2176 mmap_read_unlock(current->mm);
2177 out:
2178 kvfree(keys);
2179 return r;
2180 }
2181
2182 /*
2183 * Base address and length must be sent at the start of each block, therefore
2184 * it's cheaper to send some clean data, as long as it's less than the size of
2185 * two longs.
2186 */
2187 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
2188 /* for consistency */
2189 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
2190
2191 static int kvm_s390_peek_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2192 u8 *res, unsigned long bufsize)
2193 {
2194 unsigned long pgstev, hva, cur_gfn = args->start_gfn;
2195
2196 args->count = 0;
2197 while (args->count < bufsize) {
2198 hva = gfn_to_hva(kvm, cur_gfn);
2199 /*
2200 * We return an error if the first value was invalid, but we
2201 * return successfully if at least one value was copied.
2202 */
2203 if (kvm_is_error_hva(hva))
2204 return args->count ? 0 : -EFAULT;
2205 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2206 pgstev = 0;
2207 res[args->count++] = (pgstev >> 24) & 0x43;
2208 cur_gfn++;
2209 }
2210
2211 return 0;
2212 }
2213
2214 static struct kvm_memory_slot *gfn_to_memslot_approx(struct kvm_memslots *slots,
2215 gfn_t gfn)
2216 {
2217 return ____gfn_to_memslot(slots, gfn, true);
2218 }
2219
2220 static unsigned long kvm_s390_next_dirty_cmma(struct kvm_memslots *slots,
2221 unsigned long cur_gfn)
2222 {
2223 struct kvm_memory_slot *ms = gfn_to_memslot_approx(slots, cur_gfn);
2224 unsigned long ofs = cur_gfn - ms->base_gfn;
2225 struct rb_node *mnode = &ms->gfn_node[slots->node_idx];
2226
2227 if (ms->base_gfn + ms->npages <= cur_gfn) {
2228 mnode = rb_next(mnode);
2229 /* If we are above the highest slot, wrap around */
2230 if (!mnode)
2231 mnode = rb_first(&slots->gfn_tree);
2232
2233 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2234 ofs = 0;
2235 }
2236
2237 if (cur_gfn < ms->base_gfn)
2238 ofs = 0;
2239
2240 ofs = find_next_bit(kvm_second_dirty_bitmap(ms), ms->npages, ofs);
2241 while (ofs >= ms->npages && (mnode = rb_next(mnode))) {
2242 ms = container_of(mnode, struct kvm_memory_slot, gfn_node[slots->node_idx]);
2243 ofs = find_first_bit(kvm_second_dirty_bitmap(ms), ms->npages);
2244 }
2245 return ms->base_gfn + ofs;
2246 }
2247
2248 static int kvm_s390_get_cmma(struct kvm *kvm, struct kvm_s390_cmma_log *args,
2249 u8 *res, unsigned long bufsize)
2250 {
2251 unsigned long mem_end, cur_gfn, next_gfn, hva, pgstev;
2252 struct kvm_memslots *slots = kvm_memslots(kvm);
2253 struct kvm_memory_slot *ms;
2254
2255 if (unlikely(kvm_memslots_empty(slots)))
2256 return 0;
2257
2258 cur_gfn = kvm_s390_next_dirty_cmma(slots, args->start_gfn);
2259 ms = gfn_to_memslot(kvm, cur_gfn);
2260 args->count = 0;
2261 args->start_gfn = cur_gfn;
2262 if (!ms)
2263 return 0;
2264 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2265 mem_end = kvm_s390_get_gfn_end(slots);
2266
2267 while (args->count < bufsize) {
2268 hva = gfn_to_hva(kvm, cur_gfn);
2269 if (kvm_is_error_hva(hva))
2270 return 0;
2271 /* Decrement only if we actually flipped the bit to 0 */
2272 if (test_and_clear_bit(cur_gfn - ms->base_gfn, kvm_second_dirty_bitmap(ms)))
2273 atomic64_dec(&kvm->arch.cmma_dirty_pages);
2274 if (get_pgste(kvm->mm, hva, &pgstev) < 0)
2275 pgstev = 0;
2276 /* Save the value */
2277 res[args->count++] = (pgstev >> 24) & 0x43;
2278 /* If the next bit is too far away, stop. */
2279 if (next_gfn > cur_gfn + KVM_S390_MAX_BIT_DISTANCE)
2280 return 0;
2281 /* If we reached the previous "next", find the next one */
2282 if (cur_gfn == next_gfn)
2283 next_gfn = kvm_s390_next_dirty_cmma(slots, cur_gfn + 1);
2284 /* Reached the end of memory or of the buffer, stop */
2285 if ((next_gfn >= mem_end) ||
2286 (next_gfn - args->start_gfn >= bufsize))
2287 return 0;
2288 cur_gfn++;
2289 /* Reached the end of the current memslot, take the next one. */
2290 if (cur_gfn - ms->base_gfn >= ms->npages) {
2291 ms = gfn_to_memslot(kvm, cur_gfn);
2292 if (!ms)
2293 return 0;
2294 }
2295 }
2296 return 0;
2297 }
2298
2299 /*
2300 * This function searches for the next page with dirty CMMA attributes, and
2301 * saves the attributes in the buffer up to either the end of the buffer or
2302 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
2303 * no trailing clean bytes are saved.
2304 * In case no dirty bits were found, or if CMMA was not enabled or used, the
2305 * output buffer will indicate 0 as length.
2306 */
2307 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
2308 struct kvm_s390_cmma_log *args)
2309 {
2310 unsigned long bufsize;
2311 int srcu_idx, peek, ret;
2312 u8 *values;
2313
2314 if (!kvm->arch.use_cmma)
2315 return -ENXIO;
2316 /* Invalid/unsupported flags were specified */
2317 if (args->flags & ~KVM_S390_CMMA_PEEK)
2318 return -EINVAL;
2319 /* Migration mode query, and we are not doing a migration */
2320 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
2321 if (!peek && !kvm->arch.migration_mode)
2322 return -EINVAL;
2323 /* CMMA is disabled or was not used, or the buffer has length zero */
2324 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
2325 if (!bufsize || !kvm->mm->context.uses_cmm) {
2326 memset(args, 0, sizeof(*args));
2327 return 0;
2328 }
2329 /* We are not peeking, and there are no dirty pages */
2330 if (!peek && !atomic64_read(&kvm->arch.cmma_dirty_pages)) {
2331 memset(args, 0, sizeof(*args));
2332 return 0;
2333 }
2334
2335 values = vmalloc(bufsize);
2336 if (!values)
2337 return -ENOMEM;
2338
2339 mmap_read_lock(kvm->mm);
2340 srcu_idx = srcu_read_lock(&kvm->srcu);
2341 if (peek)
2342 ret = kvm_s390_peek_cmma(kvm, args, values, bufsize);
2343 else
2344 ret = kvm_s390_get_cmma(kvm, args, values, bufsize);
2345 srcu_read_unlock(&kvm->srcu, srcu_idx);
2346 mmap_read_unlock(kvm->mm);
2347
2348 if (kvm->arch.migration_mode)
2349 args->remaining = atomic64_read(&kvm->arch.cmma_dirty_pages);
2350 else
2351 args->remaining = 0;
2352
2353 if (copy_to_user((void __user *)args->values, values, args->count))
2354 ret = -EFAULT;
2355
2356 vfree(values);
2357 return ret;
2358 }
2359
2360 /*
2361 * This function sets the CMMA attributes for the given pages. If the input
2362 * buffer has zero length, no action is taken, otherwise the attributes are
2363 * set and the mm->context.uses_cmm flag is set.
2364 */
2365 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
2366 const struct kvm_s390_cmma_log *args)
2367 {
2368 unsigned long hva, mask, pgstev, i;
2369 uint8_t *bits;
2370 int srcu_idx, r = 0;
2371
2372 mask = args->mask;
2373
2374 if (!kvm->arch.use_cmma)
2375 return -ENXIO;
2376 /* invalid/unsupported flags */
2377 if (args->flags != 0)
2378 return -EINVAL;
2379 /* Enforce sane limit on memory allocation */
2380 if (args->count > KVM_S390_CMMA_SIZE_MAX)
2381 return -EINVAL;
2382 /* Nothing to do */
2383 if (args->count == 0)
2384 return 0;
2385
2386 bits = vmalloc(array_size(sizeof(*bits), args->count));
2387 if (!bits)
2388 return -ENOMEM;
2389
2390 r = copy_from_user(bits, (void __user *)args->values, args->count);
2391 if (r) {
2392 r = -EFAULT;
2393 goto out;
2394 }
2395
2396 mmap_read_lock(kvm->mm);
2397 srcu_idx = srcu_read_lock(&kvm->srcu);
2398 for (i = 0; i < args->count; i++) {
2399 hva = gfn_to_hva(kvm, args->start_gfn + i);
2400 if (kvm_is_error_hva(hva)) {
2401 r = -EFAULT;
2402 break;
2403 }
2404
2405 pgstev = bits[i];
2406 pgstev = pgstev << 24;
2407 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
2408 set_pgste_bits(kvm->mm, hva, mask, pgstev);
2409 }
2410 srcu_read_unlock(&kvm->srcu, srcu_idx);
2411 mmap_read_unlock(kvm->mm);
2412
2413 if (!kvm->mm->context.uses_cmm) {
2414 mmap_write_lock(kvm->mm);
2415 kvm->mm->context.uses_cmm = 1;
2416 mmap_write_unlock(kvm->mm);
2417 }
2418 out:
2419 vfree(bits);
2420 return r;
2421 }
2422
2423 /**
2424 * kvm_s390_cpus_from_pv - Convert all protected vCPUs in a protected VM to
2425 * non protected.
2426 * @kvm: the VM whose protected vCPUs are to be converted
2427 * @rc: return value for the RC field of the UVC (in case of error)
2428 * @rrc: return value for the RRC field of the UVC (in case of error)
2429 *
2430 * Does not stop in case of error, tries to convert as many
2431 * CPUs as possible. In case of error, the RC and RRC of the last error are
2432 * returned.
2433 *
2434 * Return: 0 in case of success, otherwise -EIO
2435 */
2436 int kvm_s390_cpus_from_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2437 {
2438 struct kvm_vcpu *vcpu;
2439 unsigned long i;
2440 u16 _rc, _rrc;
2441 int ret = 0;
2442
2443 /*
2444 * We ignore failures and try to destroy as many CPUs as possible.
2445 * At the same time we must not free the assigned resources when
2446 * this fails, as the ultravisor has still access to that memory.
2447 * So kvm_s390_pv_destroy_cpu can leave a "wanted" memory leak
2448 * behind.
2449 * We want to return the first failure rc and rrc, though.
2450 */
2451 kvm_for_each_vcpu(i, vcpu, kvm) {
2452 mutex_lock(&vcpu->mutex);
2453 if (kvm_s390_pv_destroy_cpu(vcpu, &_rc, &_rrc) && !ret) {
2454 *rc = _rc;
2455 *rrc = _rrc;
2456 ret = -EIO;
2457 }
2458 mutex_unlock(&vcpu->mutex);
2459 }
2460 /* Ensure that we re-enable gisa if the non-PV guest used it but the PV guest did not. */
2461 if (use_gisa)
2462 kvm_s390_gisa_enable(kvm);
2463 return ret;
2464 }
2465
2466 /**
2467 * kvm_s390_cpus_to_pv - Convert all non-protected vCPUs in a protected VM
2468 * to protected.
2469 * @kvm: the VM whose protected vCPUs are to be converted
2470 * @rc: return value for the RC field of the UVC (in case of error)
2471 * @rrc: return value for the RRC field of the UVC (in case of error)
2472 *
2473 * Tries to undo the conversion in case of error.
2474 *
2475 * Return: 0 in case of success, otherwise -EIO
2476 */
2477 static int kvm_s390_cpus_to_pv(struct kvm *kvm, u16 *rc, u16 *rrc)
2478 {
2479 unsigned long i;
2480 int r = 0;
2481 u16 dummy;
2482
2483 struct kvm_vcpu *vcpu;
2484
2485 /* Disable the GISA if the ultravisor does not support AIV. */
2486 if (!uv_has_feature(BIT_UV_FEAT_AIV))
2487 kvm_s390_gisa_disable(kvm);
2488
2489 kvm_for_each_vcpu(i, vcpu, kvm) {
2490 mutex_lock(&vcpu->mutex);
2491 r = kvm_s390_pv_create_cpu(vcpu, rc, rrc);
2492 mutex_unlock(&vcpu->mutex);
2493 if (r)
2494 break;
2495 }
2496 if (r)
2497 kvm_s390_cpus_from_pv(kvm, &dummy, &dummy);
2498 return r;
2499 }
2500
2501 /*
2502 * Here we provide user space with a direct interface to query UV
2503 * related data like UV maxima and available features as well as
2504 * feature specific data.
2505 *
2506 * To facilitate future extension of the data structures we'll try to
2507 * write data up to the maximum requested length.
2508 */
2509 static ssize_t kvm_s390_handle_pv_info(struct kvm_s390_pv_info *info)
2510 {
2511 ssize_t len_min;
2512
2513 switch (info->header.id) {
2514 case KVM_PV_INFO_VM: {
2515 len_min = sizeof(info->header) + sizeof(info->vm);
2516
2517 if (info->header.len_max < len_min)
2518 return -EINVAL;
2519
2520 memcpy(info->vm.inst_calls_list,
2521 uv_info.inst_calls_list,
2522 sizeof(uv_info.inst_calls_list));
2523
2524 /* It's max cpuid not max cpus, so it's off by one */
2525 info->vm.max_cpus = uv_info.max_guest_cpu_id + 1;
2526 info->vm.max_guests = uv_info.max_num_sec_conf;
2527 info->vm.max_guest_addr = uv_info.max_sec_stor_addr;
2528 info->vm.feature_indication = uv_info.uv_feature_indications;
2529
2530 return len_min;
2531 }
2532 case KVM_PV_INFO_DUMP: {
2533 len_min = sizeof(info->header) + sizeof(info->dump);
2534
2535 if (info->header.len_max < len_min)
2536 return -EINVAL;
2537
2538 info->dump.dump_cpu_buffer_len = uv_info.guest_cpu_stor_len;
2539 info->dump.dump_config_mem_buffer_per_1m = uv_info.conf_dump_storage_state_len;
2540 info->dump.dump_config_finalize_len = uv_info.conf_dump_finalize_len;
2541 return len_min;
2542 }
2543 default:
2544 return -EINVAL;
2545 }
2546 }
2547
2548 static int kvm_s390_pv_dmp(struct kvm *kvm, struct kvm_pv_cmd *cmd,
2549 struct kvm_s390_pv_dmp dmp)
2550 {
2551 int r = -EINVAL;
2552 void __user *result_buff = (void __user *)dmp.buff_addr;
2553
2554 switch (dmp.subcmd) {
2555 case KVM_PV_DUMP_INIT: {
2556 if (kvm->arch.pv.dumping)
2557 break;
2558
2559 /*
2560 * Block SIE entry as concurrent dump UVCs could lead
2561 * to validities.
2562 */
2563 kvm_s390_vcpu_block_all(kvm);
2564
2565 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2566 UVC_CMD_DUMP_INIT, &cmd->rc, &cmd->rrc);
2567 KVM_UV_EVENT(kvm, 3, "PROTVIRT DUMP INIT: rc %x rrc %x",
2568 cmd->rc, cmd->rrc);
2569 if (!r) {
2570 kvm->arch.pv.dumping = true;
2571 } else {
2572 kvm_s390_vcpu_unblock_all(kvm);
2573 r = -EINVAL;
2574 }
2575 break;
2576 }
2577 case KVM_PV_DUMP_CONFIG_STOR_STATE: {
2578 if (!kvm->arch.pv.dumping)
2579 break;
2580
2581 /*
2582 * gaddr is an output parameter since we might stop
2583 * early. As dmp will be copied back in our caller, we
2584 * don't need to do it ourselves.
2585 */
2586 r = kvm_s390_pv_dump_stor_state(kvm, result_buff, &dmp.gaddr, dmp.buff_len,
2587 &cmd->rc, &cmd->rrc);
2588 break;
2589 }
2590 case KVM_PV_DUMP_COMPLETE: {
2591 if (!kvm->arch.pv.dumping)
2592 break;
2593
2594 r = -EINVAL;
2595 if (dmp.buff_len < uv_info.conf_dump_finalize_len)
2596 break;
2597
2598 r = kvm_s390_pv_dump_complete(kvm, result_buff,
2599 &cmd->rc, &cmd->rrc);
2600 break;
2601 }
2602 default:
2603 r = -ENOTTY;
2604 break;
2605 }
2606
2607 return r;
2608 }
2609
2610 static int kvm_s390_handle_pv(struct kvm *kvm, struct kvm_pv_cmd *cmd)
2611 {
2612 const bool need_lock = (cmd->cmd != KVM_PV_ASYNC_CLEANUP_PERFORM);
2613 void __user *argp = (void __user *)cmd->data;
2614 int r = 0;
2615 u16 dummy;
2616
2617 if (need_lock)
2618 mutex_lock(&kvm->lock);
2619
2620 switch (cmd->cmd) {
2621 case KVM_PV_ENABLE: {
2622 r = -EINVAL;
2623 if (kvm_s390_pv_is_protected(kvm))
2624 break;
2625
2626 /*
2627 * FMT 4 SIE needs esca. As we never switch back to bsca from
2628 * esca, we need no cleanup in the error cases below
2629 */
2630 r = sca_switch_to_extended(kvm);
2631 if (r)
2632 break;
2633
2634 mmap_write_lock(current->mm);
2635 r = gmap_mark_unmergeable();
2636 mmap_write_unlock(current->mm);
2637 if (r)
2638 break;
2639
2640 r = kvm_s390_pv_init_vm(kvm, &cmd->rc, &cmd->rrc);
2641 if (r)
2642 break;
2643
2644 r = kvm_s390_cpus_to_pv(kvm, &cmd->rc, &cmd->rrc);
2645 if (r)
2646 kvm_s390_pv_deinit_vm(kvm, &dummy, &dummy);
2647
2648 /* we need to block service interrupts from now on */
2649 set_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2650 break;
2651 }
2652 case KVM_PV_ASYNC_CLEANUP_PREPARE:
2653 r = -EINVAL;
2654 if (!kvm_s390_pv_is_protected(kvm) || !async_destroy)
2655 break;
2656
2657 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2658 /*
2659 * If a CPU could not be destroyed, destroy VM will also fail.
2660 * There is no point in trying to destroy it. Instead return
2661 * the rc and rrc from the first CPU that failed destroying.
2662 */
2663 if (r)
2664 break;
2665 r = kvm_s390_pv_set_aside(kvm, &cmd->rc, &cmd->rrc);
2666
2667 /* no need to block service interrupts any more */
2668 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2669 break;
2670 case KVM_PV_ASYNC_CLEANUP_PERFORM:
2671 r = -EINVAL;
2672 if (!async_destroy)
2673 break;
2674 /* kvm->lock must not be held; this is asserted inside the function. */
2675 r = kvm_s390_pv_deinit_aside_vm(kvm, &cmd->rc, &cmd->rrc);
2676 break;
2677 case KVM_PV_DISABLE: {
2678 r = -EINVAL;
2679 if (!kvm_s390_pv_is_protected(kvm))
2680 break;
2681
2682 r = kvm_s390_cpus_from_pv(kvm, &cmd->rc, &cmd->rrc);
2683 /*
2684 * If a CPU could not be destroyed, destroy VM will also fail.
2685 * There is no point in trying to destroy it. Instead return
2686 * the rc and rrc from the first CPU that failed destroying.
2687 */
2688 if (r)
2689 break;
2690 r = kvm_s390_pv_deinit_cleanup_all(kvm, &cmd->rc, &cmd->rrc);
2691
2692 /* no need to block service interrupts any more */
2693 clear_bit(IRQ_PEND_EXT_SERVICE, &kvm->arch.float_int.masked_irqs);
2694 break;
2695 }
2696 case KVM_PV_SET_SEC_PARMS: {
2697 struct kvm_s390_pv_sec_parm parms = {};
2698 void *hdr;
2699
2700 r = -EINVAL;
2701 if (!kvm_s390_pv_is_protected(kvm))
2702 break;
2703
2704 r = -EFAULT;
2705 if (copy_from_user(&parms, argp, sizeof(parms)))
2706 break;
2707
2708 /* Currently restricted to 8KB */
2709 r = -EINVAL;
2710 if (parms.length > PAGE_SIZE * 2)
2711 break;
2712
2713 r = -ENOMEM;
2714 hdr = vmalloc(parms.length);
2715 if (!hdr)
2716 break;
2717
2718 r = -EFAULT;
2719 if (!copy_from_user(hdr, (void __user *)parms.origin,
2720 parms.length))
2721 r = kvm_s390_pv_set_sec_parms(kvm, hdr, parms.length,
2722 &cmd->rc, &cmd->rrc);
2723
2724 vfree(hdr);
2725 break;
2726 }
2727 case KVM_PV_UNPACK: {
2728 struct kvm_s390_pv_unp unp = {};
2729
2730 r = -EINVAL;
2731 if (!kvm_s390_pv_is_protected(kvm) || !mm_is_protected(kvm->mm))
2732 break;
2733
2734 r = -EFAULT;
2735 if (copy_from_user(&unp, argp, sizeof(unp)))
2736 break;
2737
2738 r = kvm_s390_pv_unpack(kvm, unp.addr, unp.size, unp.tweak,
2739 &cmd->rc, &cmd->rrc);
2740 break;
2741 }
2742 case KVM_PV_VERIFY: {
2743 r = -EINVAL;
2744 if (!kvm_s390_pv_is_protected(kvm))
2745 break;
2746
2747 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2748 UVC_CMD_VERIFY_IMG, &cmd->rc, &cmd->rrc);
2749 KVM_UV_EVENT(kvm, 3, "PROTVIRT VERIFY: rc %x rrc %x", cmd->rc,
2750 cmd->rrc);
2751 break;
2752 }
2753 case KVM_PV_PREP_RESET: {
2754 r = -EINVAL;
2755 if (!kvm_s390_pv_is_protected(kvm))
2756 break;
2757
2758 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2759 UVC_CMD_PREPARE_RESET, &cmd->rc, &cmd->rrc);
2760 KVM_UV_EVENT(kvm, 3, "PROTVIRT PREP RESET: rc %x rrc %x",
2761 cmd->rc, cmd->rrc);
2762 break;
2763 }
2764 case KVM_PV_UNSHARE_ALL: {
2765 r = -EINVAL;
2766 if (!kvm_s390_pv_is_protected(kvm))
2767 break;
2768
2769 r = uv_cmd_nodata(kvm_s390_pv_get_handle(kvm),
2770 UVC_CMD_SET_UNSHARE_ALL, &cmd->rc, &cmd->rrc);
2771 KVM_UV_EVENT(kvm, 3, "PROTVIRT UNSHARE: rc %x rrc %x",
2772 cmd->rc, cmd->rrc);
2773 break;
2774 }
2775 case KVM_PV_INFO: {
2776 struct kvm_s390_pv_info info = {};
2777 ssize_t data_len;
2778
2779 /*
2780 * No need to check the VM protection here.
2781 *
2782 * Maybe user space wants to query some of the data
2783 * when the VM is still unprotected. If we see the
2784 * need to fence a new data command we can still
2785 * return an error in the info handler.
2786 */
2787
2788 r = -EFAULT;
2789 if (copy_from_user(&info, argp, sizeof(info.header)))
2790 break;
2791
2792 r = -EINVAL;
2793 if (info.header.len_max < sizeof(info.header))
2794 break;
2795
2796 data_len = kvm_s390_handle_pv_info(&info);
2797 if (data_len < 0) {
2798 r = data_len;
2799 break;
2800 }
2801 /*
2802 * If a data command struct is extended (multiple
2803 * times) this can be used to determine how much of it
2804 * is valid.
2805 */
2806 info.header.len_written = data_len;
2807
2808 r = -EFAULT;
2809 if (copy_to_user(argp, &info, data_len))
2810 break;
2811
2812 r = 0;
2813 break;
2814 }
2815 case KVM_PV_DUMP: {
2816 struct kvm_s390_pv_dmp dmp;
2817
2818 r = -EINVAL;
2819 if (!kvm_s390_pv_is_protected(kvm))
2820 break;
2821
2822 r = -EFAULT;
2823 if (copy_from_user(&dmp, argp, sizeof(dmp)))
2824 break;
2825
2826 r = kvm_s390_pv_dmp(kvm, cmd, dmp);
2827 if (r)
2828 break;
2829
2830 if (copy_to_user(argp, &dmp, sizeof(dmp))) {
2831 r = -EFAULT;
2832 break;
2833 }
2834
2835 break;
2836 }
2837 default:
2838 r = -ENOTTY;
2839 }
2840 if (need_lock)
2841 mutex_unlock(&kvm->lock);
2842
2843 return r;
2844 }
2845
2846 static int mem_op_validate_common(struct kvm_s390_mem_op *mop, u64 supported_flags)
2847 {
2848 if (mop->flags & ~supported_flags || !mop->size)
2849 return -EINVAL;
2850 if (mop->size > MEM_OP_MAX_SIZE)
2851 return -E2BIG;
2852 if (mop->flags & KVM_S390_MEMOP_F_SKEY_PROTECTION) {
2853 if (mop->key > 0xf)
2854 return -EINVAL;
2855 } else {
2856 mop->key = 0;
2857 }
2858 return 0;
2859 }
2860
2861 static int kvm_s390_vm_mem_op_abs(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2862 {
2863 void __user *uaddr = (void __user *)mop->buf;
2864 enum gacc_mode acc_mode;
2865 void *tmpbuf = NULL;
2866 int r, srcu_idx;
2867
2868 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION |
2869 KVM_S390_MEMOP_F_CHECK_ONLY);
2870 if (r)
2871 return r;
2872
2873 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2874 tmpbuf = vmalloc(mop->size);
2875 if (!tmpbuf)
2876 return -ENOMEM;
2877 }
2878
2879 srcu_idx = srcu_read_lock(&kvm->srcu);
2880
2881 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2882 r = PGM_ADDRESSING;
2883 goto out_unlock;
2884 }
2885
2886 acc_mode = mop->op == KVM_S390_MEMOP_ABSOLUTE_READ ? GACC_FETCH : GACC_STORE;
2887 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2888 r = check_gpa_range(kvm, mop->gaddr, mop->size, acc_mode, mop->key);
2889 goto out_unlock;
2890 }
2891 if (acc_mode == GACC_FETCH) {
2892 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2893 mop->size, GACC_FETCH, mop->key);
2894 if (r)
2895 goto out_unlock;
2896 if (copy_to_user(uaddr, tmpbuf, mop->size))
2897 r = -EFAULT;
2898 } else {
2899 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2900 r = -EFAULT;
2901 goto out_unlock;
2902 }
2903 r = access_guest_abs_with_key(kvm, mop->gaddr, tmpbuf,
2904 mop->size, GACC_STORE, mop->key);
2905 }
2906
2907 out_unlock:
2908 srcu_read_unlock(&kvm->srcu, srcu_idx);
2909
2910 vfree(tmpbuf);
2911 return r;
2912 }
2913
2914 static int kvm_s390_vm_mem_op_cmpxchg(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2915 {
2916 void __user *uaddr = (void __user *)mop->buf;
2917 void __user *old_addr = (void __user *)mop->old_addr;
2918 union {
2919 __uint128_t quad;
2920 char raw[sizeof(__uint128_t)];
2921 } old = { .quad = 0}, new = { .quad = 0 };
2922 unsigned int off_in_quad = sizeof(new) - mop->size;
2923 int r, srcu_idx;
2924 bool success;
2925
2926 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_SKEY_PROTECTION);
2927 if (r)
2928 return r;
2929 /*
2930 * This validates off_in_quad. Checking that size is a power
2931 * of two is not necessary, as cmpxchg_guest_abs_with_key
2932 * takes care of that
2933 */
2934 if (mop->size > sizeof(new))
2935 return -EINVAL;
2936 if (copy_from_user(&new.raw[off_in_quad], uaddr, mop->size))
2937 return -EFAULT;
2938 if (copy_from_user(&old.raw[off_in_quad], old_addr, mop->size))
2939 return -EFAULT;
2940
2941 srcu_idx = srcu_read_lock(&kvm->srcu);
2942
2943 if (!kvm_is_gpa_in_memslot(kvm, mop->gaddr)) {
2944 r = PGM_ADDRESSING;
2945 goto out_unlock;
2946 }
2947
2948 r = cmpxchg_guest_abs_with_key(kvm, mop->gaddr, mop->size, &old.quad,
2949 new.quad, mop->key, &success);
2950 if (!success && copy_to_user(old_addr, &old.raw[off_in_quad], mop->size))
2951 r = -EFAULT;
2952
2953 out_unlock:
2954 srcu_read_unlock(&kvm->srcu, srcu_idx);
2955 return r;
2956 }
2957
2958 static int kvm_s390_vm_mem_op(struct kvm *kvm, struct kvm_s390_mem_op *mop)
2959 {
2960 /*
2961 * This is technically a heuristic only, if the kvm->lock is not
2962 * taken, it is not guaranteed that the vm is/remains non-protected.
2963 * This is ok from a kernel perspective, wrongdoing is detected
2964 * on the access, -EFAULT is returned and the vm may crash the
2965 * next time it accesses the memory in question.
2966 * There is no sane usecase to do switching and a memop on two
2967 * different CPUs at the same time.
2968 */
2969 if (kvm_s390_pv_get_handle(kvm))
2970 return -EINVAL;
2971
2972 switch (mop->op) {
2973 case KVM_S390_MEMOP_ABSOLUTE_READ:
2974 case KVM_S390_MEMOP_ABSOLUTE_WRITE:
2975 return kvm_s390_vm_mem_op_abs(kvm, mop);
2976 case KVM_S390_MEMOP_ABSOLUTE_CMPXCHG:
2977 return kvm_s390_vm_mem_op_cmpxchg(kvm, mop);
2978 default:
2979 return -EINVAL;
2980 }
2981 }
2982
2983 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
2984 {
2985 struct kvm *kvm = filp->private_data;
2986 void __user *argp = (void __user *)arg;
2987 struct kvm_device_attr attr;
2988 int r;
2989
2990 switch (ioctl) {
2991 case KVM_S390_INTERRUPT: {
2992 struct kvm_s390_interrupt s390int;
2993
2994 r = -EFAULT;
2995 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2996 break;
2997 r = kvm_s390_inject_vm(kvm, &s390int);
2998 break;
2999 }
3000 case KVM_CREATE_IRQCHIP: {
3001 struct kvm_irq_routing_entry routing;
3002
3003 r = -EINVAL;
3004 if (kvm->arch.use_irqchip) {
3005 /* Set up dummy routing. */
3006 memset(&routing, 0, sizeof(routing));
3007 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
3008 }
3009 break;
3010 }
3011 case KVM_SET_DEVICE_ATTR: {
3012 r = -EFAULT;
3013 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3014 break;
3015 r = kvm_s390_vm_set_attr(kvm, &attr);
3016 break;
3017 }
3018 case KVM_GET_DEVICE_ATTR: {
3019 r = -EFAULT;
3020 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3021 break;
3022 r = kvm_s390_vm_get_attr(kvm, &attr);
3023 break;
3024 }
3025 case KVM_HAS_DEVICE_ATTR: {
3026 r = -EFAULT;
3027 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3028 break;
3029 r = kvm_s390_vm_has_attr(kvm, &attr);
3030 break;
3031 }
3032 case KVM_S390_GET_SKEYS: {
3033 struct kvm_s390_skeys args;
3034
3035 r = -EFAULT;
3036 if (copy_from_user(&args, argp,
3037 sizeof(struct kvm_s390_skeys)))
3038 break;
3039 r = kvm_s390_get_skeys(kvm, &args);
3040 break;
3041 }
3042 case KVM_S390_SET_SKEYS: {
3043 struct kvm_s390_skeys args;
3044
3045 r = -EFAULT;
3046 if (copy_from_user(&args, argp,
3047 sizeof(struct kvm_s390_skeys)))
3048 break;
3049 r = kvm_s390_set_skeys(kvm, &args);
3050 break;
3051 }
3052 case KVM_S390_GET_CMMA_BITS: {
3053 struct kvm_s390_cmma_log args;
3054
3055 r = -EFAULT;
3056 if (copy_from_user(&args, argp, sizeof(args)))
3057 break;
3058 mutex_lock(&kvm->slots_lock);
3059 r = kvm_s390_get_cmma_bits(kvm, &args);
3060 mutex_unlock(&kvm->slots_lock);
3061 if (!r) {
3062 r = copy_to_user(argp, &args, sizeof(args));
3063 if (r)
3064 r = -EFAULT;
3065 }
3066 break;
3067 }
3068 case KVM_S390_SET_CMMA_BITS: {
3069 struct kvm_s390_cmma_log args;
3070
3071 r = -EFAULT;
3072 if (copy_from_user(&args, argp, sizeof(args)))
3073 break;
3074 mutex_lock(&kvm->slots_lock);
3075 r = kvm_s390_set_cmma_bits(kvm, &args);
3076 mutex_unlock(&kvm->slots_lock);
3077 break;
3078 }
3079 case KVM_S390_PV_COMMAND: {
3080 struct kvm_pv_cmd args;
3081
3082 /* protvirt means user cpu state */
3083 kvm_s390_set_user_cpu_state_ctrl(kvm);
3084 r = 0;
3085 if (!is_prot_virt_host()) {
3086 r = -EINVAL;
3087 break;
3088 }
3089 if (copy_from_user(&args, argp, sizeof(args))) {
3090 r = -EFAULT;
3091 break;
3092 }
3093 if (args.flags) {
3094 r = -EINVAL;
3095 break;
3096 }
3097 /* must be called without kvm->lock */
3098 r = kvm_s390_handle_pv(kvm, &args);
3099 if (copy_to_user(argp, &args, sizeof(args))) {
3100 r = -EFAULT;
3101 break;
3102 }
3103 break;
3104 }
3105 case KVM_S390_MEM_OP: {
3106 struct kvm_s390_mem_op mem_op;
3107
3108 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3109 r = kvm_s390_vm_mem_op(kvm, &mem_op);
3110 else
3111 r = -EFAULT;
3112 break;
3113 }
3114 case KVM_S390_ZPCI_OP: {
3115 struct kvm_s390_zpci_op args;
3116
3117 r = -EINVAL;
3118 if (!IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3119 break;
3120 if (copy_from_user(&args, argp, sizeof(args))) {
3121 r = -EFAULT;
3122 break;
3123 }
3124 r = kvm_s390_pci_zpci_op(kvm, &args);
3125 break;
3126 }
3127 default:
3128 r = -ENOTTY;
3129 }
3130
3131 return r;
3132 }
3133
3134 static int kvm_s390_apxa_installed(void)
3135 {
3136 struct ap_config_info info;
3137
3138 if (ap_instructions_available()) {
3139 if (ap_qci(&info) == 0)
3140 return info.apxa;
3141 }
3142
3143 return 0;
3144 }
3145
3146 /*
3147 * The format of the crypto control block (CRYCB) is specified in the 3 low
3148 * order bits of the CRYCB designation (CRYCBD) field as follows:
3149 * Format 0: Neither the message security assist extension 3 (MSAX3) nor the
3150 * AP extended addressing (APXA) facility are installed.
3151 * Format 1: The APXA facility is not installed but the MSAX3 facility is.
3152 * Format 2: Both the APXA and MSAX3 facilities are installed
3153 */
3154 static void kvm_s390_set_crycb_format(struct kvm *kvm)
3155 {
3156 kvm->arch.crypto.crycbd = virt_to_phys(kvm->arch.crypto.crycb);
3157
3158 /* Clear the CRYCB format bits - i.e., set format 0 by default */
3159 kvm->arch.crypto.crycbd &= ~(CRYCB_FORMAT_MASK);
3160
3161 /* Check whether MSAX3 is installed */
3162 if (!test_kvm_facility(kvm, 76))
3163 return;
3164
3165 if (kvm_s390_apxa_installed())
3166 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
3167 else
3168 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
3169 }
3170
3171 /*
3172 * kvm_arch_crypto_set_masks
3173 *
3174 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3175 * to be set.
3176 * @apm: the mask identifying the accessible AP adapters
3177 * @aqm: the mask identifying the accessible AP domains
3178 * @adm: the mask identifying the accessible AP control domains
3179 *
3180 * Set the masks that identify the adapters, domains and control domains to
3181 * which the KVM guest is granted access.
3182 *
3183 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3184 * function.
3185 */
3186 void kvm_arch_crypto_set_masks(struct kvm *kvm, unsigned long *apm,
3187 unsigned long *aqm, unsigned long *adm)
3188 {
3189 struct kvm_s390_crypto_cb *crycb = kvm->arch.crypto.crycb;
3190
3191 kvm_s390_vcpu_block_all(kvm);
3192
3193 switch (kvm->arch.crypto.crycbd & CRYCB_FORMAT_MASK) {
3194 case CRYCB_FORMAT2: /* APCB1 use 256 bits */
3195 memcpy(crycb->apcb1.apm, apm, 32);
3196 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx %016lx %016lx %016lx",
3197 apm[0], apm[1], apm[2], apm[3]);
3198 memcpy(crycb->apcb1.aqm, aqm, 32);
3199 VM_EVENT(kvm, 3, "SET CRYCB: aqm %016lx %016lx %016lx %016lx",
3200 aqm[0], aqm[1], aqm[2], aqm[3]);
3201 memcpy(crycb->apcb1.adm, adm, 32);
3202 VM_EVENT(kvm, 3, "SET CRYCB: adm %016lx %016lx %016lx %016lx",
3203 adm[0], adm[1], adm[2], adm[3]);
3204 break;
3205 case CRYCB_FORMAT1:
3206 case CRYCB_FORMAT0: /* Fall through both use APCB0 */
3207 memcpy(crycb->apcb0.apm, apm, 8);
3208 memcpy(crycb->apcb0.aqm, aqm, 2);
3209 memcpy(crycb->apcb0.adm, adm, 2);
3210 VM_EVENT(kvm, 3, "SET CRYCB: apm %016lx aqm %04x adm %04x",
3211 apm[0], *((unsigned short *)aqm),
3212 *((unsigned short *)adm));
3213 break;
3214 default: /* Can not happen */
3215 break;
3216 }
3217
3218 /* recreate the shadow crycb for each vcpu */
3219 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3220 kvm_s390_vcpu_unblock_all(kvm);
3221 }
3222 EXPORT_SYMBOL_GPL(kvm_arch_crypto_set_masks);
3223
3224 /*
3225 * kvm_arch_crypto_clear_masks
3226 *
3227 * @kvm: pointer to the target guest's KVM struct containing the crypto masks
3228 * to be cleared.
3229 *
3230 * Clear the masks that identify the adapters, domains and control domains to
3231 * which the KVM guest is granted access.
3232 *
3233 * Note: The kvm->lock mutex must be locked by the caller before invoking this
3234 * function.
3235 */
3236 void kvm_arch_crypto_clear_masks(struct kvm *kvm)
3237 {
3238 kvm_s390_vcpu_block_all(kvm);
3239
3240 memset(&kvm->arch.crypto.crycb->apcb0, 0,
3241 sizeof(kvm->arch.crypto.crycb->apcb0));
3242 memset(&kvm->arch.crypto.crycb->apcb1, 0,
3243 sizeof(kvm->arch.crypto.crycb->apcb1));
3244
3245 VM_EVENT(kvm, 3, "%s", "CLR CRYCB:");
3246 /* recreate the shadow crycb for each vcpu */
3247 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_VSIE_RESTART);
3248 kvm_s390_vcpu_unblock_all(kvm);
3249 }
3250 EXPORT_SYMBOL_GPL(kvm_arch_crypto_clear_masks);
3251
3252 static u64 kvm_s390_get_initial_cpuid(void)
3253 {
3254 struct cpuid cpuid;
3255
3256 get_cpu_id(&cpuid);
3257 cpuid.version = 0xff;
3258 return *((u64 *) &cpuid);
3259 }
3260
3261 static void kvm_s390_crypto_init(struct kvm *kvm)
3262 {
3263 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
3264 kvm_s390_set_crycb_format(kvm);
3265 init_rwsem(&kvm->arch.crypto.pqap_hook_rwsem);
3266
3267 if (!test_kvm_facility(kvm, 76))
3268 return;
3269
3270 /* Enable AES/DEA protected key functions by default */
3271 kvm->arch.crypto.aes_kw = 1;
3272 kvm->arch.crypto.dea_kw = 1;
3273 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
3274 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
3275 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
3276 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
3277 }
3278
3279 static void sca_dispose(struct kvm *kvm)
3280 {
3281 if (kvm->arch.use_esca)
3282 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
3283 else
3284 free_page((unsigned long)(kvm->arch.sca));
3285 kvm->arch.sca = NULL;
3286 }
3287
3288 void kvm_arch_free_vm(struct kvm *kvm)
3289 {
3290 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM))
3291 kvm_s390_pci_clear_list(kvm);
3292
3293 __kvm_arch_free_vm(kvm);
3294 }
3295
3296 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
3297 {
3298 gfp_t alloc_flags = GFP_KERNEL_ACCOUNT;
3299 int i, rc;
3300 char debug_name[16];
3301 static unsigned long sca_offset;
3302
3303 rc = -EINVAL;
3304 #ifdef CONFIG_KVM_S390_UCONTROL
3305 if (type & ~KVM_VM_S390_UCONTROL)
3306 goto out_err;
3307 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
3308 goto out_err;
3309 #else
3310 if (type)
3311 goto out_err;
3312 #endif
3313
3314 rc = s390_enable_sie();
3315 if (rc)
3316 goto out_err;
3317
3318 rc = -ENOMEM;
3319
3320 if (!sclp.has_64bscao)
3321 alloc_flags |= GFP_DMA;
3322 rwlock_init(&kvm->arch.sca_lock);
3323 /* start with basic SCA */
3324 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
3325 if (!kvm->arch.sca)
3326 goto out_err;
3327 mutex_lock(&kvm_lock);
3328 sca_offset += 16;
3329 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
3330 sca_offset = 0;
3331 kvm->arch.sca = (struct bsca_block *)
3332 ((char *) kvm->arch.sca + sca_offset);
3333 mutex_unlock(&kvm_lock);
3334
3335 sprintf(debug_name, "kvm-%u", current->pid);
3336
3337 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
3338 if (!kvm->arch.dbf)
3339 goto out_err;
3340
3341 BUILD_BUG_ON(sizeof(struct sie_page2) != 4096);
3342 kvm->arch.sie_page2 =
3343 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL_ACCOUNT | GFP_DMA);
3344 if (!kvm->arch.sie_page2)
3345 goto out_err;
3346
3347 kvm->arch.sie_page2->kvm = kvm;
3348 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
3349
3350 for (i = 0; i < kvm_s390_fac_size(); i++) {
3351 kvm->arch.model.fac_mask[i] = stfle_fac_list[i] &
3352 (kvm_s390_fac_base[i] |
3353 kvm_s390_fac_ext[i]);
3354 kvm->arch.model.fac_list[i] = stfle_fac_list[i] &
3355 kvm_s390_fac_base[i];
3356 }
3357 kvm->arch.model.subfuncs = kvm_s390_available_subfunc;
3358
3359 /* we are always in czam mode - even on pre z14 machines */
3360 set_kvm_facility(kvm->arch.model.fac_mask, 138);
3361 set_kvm_facility(kvm->arch.model.fac_list, 138);
3362 /* we emulate STHYI in kvm */
3363 set_kvm_facility(kvm->arch.model.fac_mask, 74);
3364 set_kvm_facility(kvm->arch.model.fac_list, 74);
3365 if (MACHINE_HAS_TLB_GUEST) {
3366 set_kvm_facility(kvm->arch.model.fac_mask, 147);
3367 set_kvm_facility(kvm->arch.model.fac_list, 147);
3368 }
3369
3370 if (css_general_characteristics.aiv && test_facility(65))
3371 set_kvm_facility(kvm->arch.model.fac_mask, 65);
3372
3373 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
3374 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
3375
3376 kvm->arch.model.uv_feat_guest.feat = 0;
3377
3378 kvm_s390_crypto_init(kvm);
3379
3380 if (IS_ENABLED(CONFIG_VFIO_PCI_ZDEV_KVM)) {
3381 mutex_lock(&kvm->lock);
3382 kvm_s390_pci_init_list(kvm);
3383 kvm_s390_vcpu_pci_enable_interp(kvm);
3384 mutex_unlock(&kvm->lock);
3385 }
3386
3387 mutex_init(&kvm->arch.float_int.ais_lock);
3388 spin_lock_init(&kvm->arch.float_int.lock);
3389 for (i = 0; i < FIRQ_LIST_COUNT; i++)
3390 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
3391 init_waitqueue_head(&kvm->arch.ipte_wq);
3392 mutex_init(&kvm->arch.ipte_mutex);
3393
3394 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
3395 VM_EVENT(kvm, 3, "vm created with type %lu", type);
3396
3397 if (type & KVM_VM_S390_UCONTROL) {
3398 kvm->arch.gmap = NULL;
3399 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
3400 } else {
3401 if (sclp.hamax == U64_MAX)
3402 kvm->arch.mem_limit = TASK_SIZE_MAX;
3403 else
3404 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
3405 sclp.hamax + 1);
3406 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
3407 if (!kvm->arch.gmap)
3408 goto out_err;
3409 kvm->arch.gmap->private = kvm;
3410 kvm->arch.gmap->pfault_enabled = 0;
3411 }
3412
3413 kvm->arch.use_pfmfi = sclp.has_pfmfi;
3414 kvm->arch.use_skf = sclp.has_skey;
3415 spin_lock_init(&kvm->arch.start_stop_lock);
3416 kvm_s390_vsie_init(kvm);
3417 if (use_gisa)
3418 kvm_s390_gisa_init(kvm);
3419 INIT_LIST_HEAD(&kvm->arch.pv.need_cleanup);
3420 kvm->arch.pv.set_aside = NULL;
3421 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
3422
3423 return 0;
3424 out_err:
3425 free_page((unsigned long)kvm->arch.sie_page2);
3426 debug_unregister(kvm->arch.dbf);
3427 sca_dispose(kvm);
3428 KVM_EVENT(3, "creation of vm failed: %d", rc);
3429 return rc;
3430 }
3431
3432 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
3433 {
3434 u16 rc, rrc;
3435
3436 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
3437 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
3438 kvm_s390_clear_local_irqs(vcpu);
3439 kvm_clear_async_pf_completion_queue(vcpu);
3440 if (!kvm_is_ucontrol(vcpu->kvm))
3441 sca_del_vcpu(vcpu);
3442 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3443
3444 if (kvm_is_ucontrol(vcpu->kvm))
3445 gmap_remove(vcpu->arch.gmap);
3446
3447 if (vcpu->kvm->arch.use_cmma)
3448 kvm_s390_vcpu_unsetup_cmma(vcpu);
3449 /* We can not hold the vcpu mutex here, we are already dying */
3450 if (kvm_s390_pv_cpu_get_handle(vcpu))
3451 kvm_s390_pv_destroy_cpu(vcpu, &rc, &rrc);
3452 free_page((unsigned long)(vcpu->arch.sie_block));
3453 }
3454
3455 void kvm_arch_destroy_vm(struct kvm *kvm)
3456 {
3457 u16 rc, rrc;
3458
3459 kvm_destroy_vcpus(kvm);
3460 sca_dispose(kvm);
3461 kvm_s390_gisa_destroy(kvm);
3462 /*
3463 * We are already at the end of life and kvm->lock is not taken.
3464 * This is ok as the file descriptor is closed by now and nobody
3465 * can mess with the pv state.
3466 */
3467 kvm_s390_pv_deinit_cleanup_all(kvm, &rc, &rrc);
3468 /*
3469 * Remove the mmu notifier only when the whole KVM VM is torn down,
3470 * and only if one was registered to begin with. If the VM is
3471 * currently not protected, but has been previously been protected,
3472 * then it's possible that the notifier is still registered.
3473 */
3474 if (kvm->arch.pv.mmu_notifier.ops)
3475 mmu_notifier_unregister(&kvm->arch.pv.mmu_notifier, kvm->mm);
3476
3477 debug_unregister(kvm->arch.dbf);
3478 free_page((unsigned long)kvm->arch.sie_page2);
3479 if (!kvm_is_ucontrol(kvm))
3480 gmap_remove(kvm->arch.gmap);
3481 kvm_s390_destroy_adapters(kvm);
3482 kvm_s390_clear_float_irqs(kvm);
3483 kvm_s390_vsie_destroy(kvm);
3484 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
3485 }
3486
3487 /* Section: vcpu related */
3488 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
3489 {
3490 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
3491 if (!vcpu->arch.gmap)
3492 return -ENOMEM;
3493 vcpu->arch.gmap->private = vcpu->kvm;
3494
3495 return 0;
3496 }
3497
3498 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
3499 {
3500 if (!kvm_s390_use_sca_entries())
3501 return;
3502 read_lock(&vcpu->kvm->arch.sca_lock);
3503 if (vcpu->kvm->arch.use_esca) {
3504 struct esca_block *sca = vcpu->kvm->arch.sca;
3505
3506 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3507 sca->cpu[vcpu->vcpu_id].sda = 0;
3508 } else {
3509 struct bsca_block *sca = vcpu->kvm->arch.sca;
3510
3511 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3512 sca->cpu[vcpu->vcpu_id].sda = 0;
3513 }
3514 read_unlock(&vcpu->kvm->arch.sca_lock);
3515 }
3516
3517 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
3518 {
3519 if (!kvm_s390_use_sca_entries()) {
3520 phys_addr_t sca_phys = virt_to_phys(vcpu->kvm->arch.sca);
3521
3522 /* we still need the basic sca for the ipte control */
3523 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3524 vcpu->arch.sie_block->scaol = sca_phys;
3525 return;
3526 }
3527 read_lock(&vcpu->kvm->arch.sca_lock);
3528 if (vcpu->kvm->arch.use_esca) {
3529 struct esca_block *sca = vcpu->kvm->arch.sca;
3530 phys_addr_t sca_phys = virt_to_phys(sca);
3531
3532 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3533 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3534 vcpu->arch.sie_block->scaol = sca_phys & ESCA_SCAOL_MASK;
3535 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3536 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
3537 } else {
3538 struct bsca_block *sca = vcpu->kvm->arch.sca;
3539 phys_addr_t sca_phys = virt_to_phys(sca);
3540
3541 sca->cpu[vcpu->vcpu_id].sda = virt_to_phys(vcpu->arch.sie_block);
3542 vcpu->arch.sie_block->scaoh = sca_phys >> 32;
3543 vcpu->arch.sie_block->scaol = sca_phys;
3544 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
3545 }
3546 read_unlock(&vcpu->kvm->arch.sca_lock);
3547 }
3548
3549 /* Basic SCA to Extended SCA data copy routines */
3550 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
3551 {
3552 d->sda = s->sda;
3553 d->sigp_ctrl.c = s->sigp_ctrl.c;
3554 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
3555 }
3556
3557 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
3558 {
3559 int i;
3560
3561 d->ipte_control = s->ipte_control;
3562 d->mcn[0] = s->mcn;
3563 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
3564 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
3565 }
3566
3567 static int sca_switch_to_extended(struct kvm *kvm)
3568 {
3569 struct bsca_block *old_sca = kvm->arch.sca;
3570 struct esca_block *new_sca;
3571 struct kvm_vcpu *vcpu;
3572 unsigned long vcpu_idx;
3573 u32 scaol, scaoh;
3574 phys_addr_t new_sca_phys;
3575
3576 if (kvm->arch.use_esca)
3577 return 0;
3578
3579 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3580 if (!new_sca)
3581 return -ENOMEM;
3582
3583 new_sca_phys = virt_to_phys(new_sca);
3584 scaoh = new_sca_phys >> 32;
3585 scaol = new_sca_phys & ESCA_SCAOL_MASK;
3586
3587 kvm_s390_vcpu_block_all(kvm);
3588 write_lock(&kvm->arch.sca_lock);
3589
3590 sca_copy_b_to_e(new_sca, old_sca);
3591
3592 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
3593 vcpu->arch.sie_block->scaoh = scaoh;
3594 vcpu->arch.sie_block->scaol = scaol;
3595 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
3596 }
3597 kvm->arch.sca = new_sca;
3598 kvm->arch.use_esca = 1;
3599
3600 write_unlock(&kvm->arch.sca_lock);
3601 kvm_s390_vcpu_unblock_all(kvm);
3602
3603 free_page((unsigned long)old_sca);
3604
3605 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
3606 old_sca, kvm->arch.sca);
3607 return 0;
3608 }
3609
3610 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
3611 {
3612 int rc;
3613
3614 if (!kvm_s390_use_sca_entries()) {
3615 if (id < KVM_MAX_VCPUS)
3616 return true;
3617 return false;
3618 }
3619 if (id < KVM_S390_BSCA_CPU_SLOTS)
3620 return true;
3621 if (!sclp.has_esca || !sclp.has_64bscao)
3622 return false;
3623
3624 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
3625
3626 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
3627 }
3628
3629 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3630 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3631 {
3632 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
3633 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3634 vcpu->arch.cputm_start = get_tod_clock_fast();
3635 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3636 }
3637
3638 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3639 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3640 {
3641 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
3642 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3643 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3644 vcpu->arch.cputm_start = 0;
3645 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3646 }
3647
3648 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3649 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3650 {
3651 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
3652 vcpu->arch.cputm_enabled = true;
3653 __start_cpu_timer_accounting(vcpu);
3654 }
3655
3656 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
3657 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3658 {
3659 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
3660 __stop_cpu_timer_accounting(vcpu);
3661 vcpu->arch.cputm_enabled = false;
3662 }
3663
3664 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3665 {
3666 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3667 __enable_cpu_timer_accounting(vcpu);
3668 preempt_enable();
3669 }
3670
3671 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
3672 {
3673 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3674 __disable_cpu_timer_accounting(vcpu);
3675 preempt_enable();
3676 }
3677
3678 /* set the cpu timer - may only be called from the VCPU thread itself */
3679 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
3680 {
3681 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3682 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
3683 if (vcpu->arch.cputm_enabled)
3684 vcpu->arch.cputm_start = get_tod_clock_fast();
3685 vcpu->arch.sie_block->cputm = cputm;
3686 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
3687 preempt_enable();
3688 }
3689
3690 /* update and get the cpu timer - can also be called from other VCPU threads */
3691 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
3692 {
3693 unsigned int seq;
3694 __u64 value;
3695
3696 if (unlikely(!vcpu->arch.cputm_enabled))
3697 return vcpu->arch.sie_block->cputm;
3698
3699 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
3700 do {
3701 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
3702 /*
3703 * If the writer would ever execute a read in the critical
3704 * section, e.g. in irq context, we have a deadlock.
3705 */
3706 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
3707 value = vcpu->arch.sie_block->cputm;
3708 /* if cputm_start is 0, accounting is being started/stopped */
3709 if (likely(vcpu->arch.cputm_start))
3710 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
3711 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
3712 preempt_enable();
3713 return value;
3714 }
3715
3716 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3717 {
3718
3719 gmap_enable(vcpu->arch.enabled_gmap);
3720 kvm_s390_set_cpuflags(vcpu, CPUSTAT_RUNNING);
3721 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3722 __start_cpu_timer_accounting(vcpu);
3723 vcpu->cpu = cpu;
3724 }
3725
3726 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3727 {
3728 vcpu->cpu = -1;
3729 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
3730 __stop_cpu_timer_accounting(vcpu);
3731 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_RUNNING);
3732 vcpu->arch.enabled_gmap = gmap_get_enabled();
3733 gmap_disable(vcpu->arch.enabled_gmap);
3734
3735 }
3736
3737 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
3738 {
3739 mutex_lock(&vcpu->kvm->lock);
3740 preempt_disable();
3741 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
3742 vcpu->arch.sie_block->epdx = vcpu->kvm->arch.epdx;
3743 preempt_enable();
3744 mutex_unlock(&vcpu->kvm->lock);
3745 if (!kvm_is_ucontrol(vcpu->kvm)) {
3746 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
3747 sca_add_vcpu(vcpu);
3748 }
3749 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
3750 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
3751 /* make vcpu_load load the right gmap on the first trigger */
3752 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
3753 }
3754
3755 static bool kvm_has_pckmo_subfunc(struct kvm *kvm, unsigned long nr)
3756 {
3757 if (test_bit_inv(nr, (unsigned long *)&kvm->arch.model.subfuncs.pckmo) &&
3758 test_bit_inv(nr, (unsigned long *)&kvm_s390_available_subfunc.pckmo))
3759 return true;
3760 return false;
3761 }
3762
3763 static bool kvm_has_pckmo_ecc(struct kvm *kvm)
3764 {
3765 /* At least one ECC subfunction must be present */
3766 return kvm_has_pckmo_subfunc(kvm, 32) ||
3767 kvm_has_pckmo_subfunc(kvm, 33) ||
3768 kvm_has_pckmo_subfunc(kvm, 34) ||
3769 kvm_has_pckmo_subfunc(kvm, 40) ||
3770 kvm_has_pckmo_subfunc(kvm, 41);
3771
3772 }
3773
3774 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
3775 {
3776 /*
3777 * If the AP instructions are not being interpreted and the MSAX3
3778 * facility is not configured for the guest, there is nothing to set up.
3779 */
3780 if (!vcpu->kvm->arch.crypto.apie && !test_kvm_facility(vcpu->kvm, 76))
3781 return;
3782
3783 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
3784 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
3785 vcpu->arch.sie_block->eca &= ~ECA_APIE;
3786 vcpu->arch.sie_block->ecd &= ~ECD_ECC;
3787
3788 if (vcpu->kvm->arch.crypto.apie)
3789 vcpu->arch.sie_block->eca |= ECA_APIE;
3790
3791 /* Set up protected key support */
3792 if (vcpu->kvm->arch.crypto.aes_kw) {
3793 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
3794 /* ecc is also wrapped with AES key */
3795 if (kvm_has_pckmo_ecc(vcpu->kvm))
3796 vcpu->arch.sie_block->ecd |= ECD_ECC;
3797 }
3798
3799 if (vcpu->kvm->arch.crypto.dea_kw)
3800 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
3801 }
3802
3803 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
3804 {
3805 free_page((unsigned long)phys_to_virt(vcpu->arch.sie_block->cbrlo));
3806 vcpu->arch.sie_block->cbrlo = 0;
3807 }
3808
3809 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
3810 {
3811 void *cbrlo_page = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3812
3813 if (!cbrlo_page)
3814 return -ENOMEM;
3815
3816 vcpu->arch.sie_block->cbrlo = virt_to_phys(cbrlo_page);
3817 return 0;
3818 }
3819
3820 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
3821 {
3822 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
3823
3824 vcpu->arch.sie_block->ibc = model->ibc;
3825 if (test_kvm_facility(vcpu->kvm, 7))
3826 vcpu->arch.sie_block->fac = virt_to_phys(model->fac_list);
3827 }
3828
3829 static int kvm_s390_vcpu_setup(struct kvm_vcpu *vcpu)
3830 {
3831 int rc = 0;
3832 u16 uvrc, uvrrc;
3833
3834 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
3835 CPUSTAT_SM |
3836 CPUSTAT_STOPPED);
3837
3838 if (test_kvm_facility(vcpu->kvm, 78))
3839 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED2);
3840 else if (test_kvm_facility(vcpu->kvm, 8))
3841 kvm_s390_set_cpuflags(vcpu, CPUSTAT_GED);
3842
3843 kvm_s390_vcpu_setup_model(vcpu);
3844
3845 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
3846 if (MACHINE_HAS_ESOP)
3847 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
3848 if (test_kvm_facility(vcpu->kvm, 9))
3849 vcpu->arch.sie_block->ecb |= ECB_SRSI;
3850 if (test_kvm_facility(vcpu->kvm, 11))
3851 vcpu->arch.sie_block->ecb |= ECB_PTF;
3852 if (test_kvm_facility(vcpu->kvm, 73))
3853 vcpu->arch.sie_block->ecb |= ECB_TE;
3854 if (!kvm_is_ucontrol(vcpu->kvm))
3855 vcpu->arch.sie_block->ecb |= ECB_SPECI;
3856
3857 if (test_kvm_facility(vcpu->kvm, 8) && vcpu->kvm->arch.use_pfmfi)
3858 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
3859 if (test_kvm_facility(vcpu->kvm, 130))
3860 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
3861 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
3862 if (sclp.has_cei)
3863 vcpu->arch.sie_block->eca |= ECA_CEI;
3864 if (sclp.has_ib)
3865 vcpu->arch.sie_block->eca |= ECA_IB;
3866 if (sclp.has_siif)
3867 vcpu->arch.sie_block->eca |= ECA_SII;
3868 if (sclp.has_sigpif)
3869 vcpu->arch.sie_block->eca |= ECA_SIGPI;
3870 if (test_kvm_facility(vcpu->kvm, 129)) {
3871 vcpu->arch.sie_block->eca |= ECA_VX;
3872 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3873 }
3874 if (test_kvm_facility(vcpu->kvm, 139))
3875 vcpu->arch.sie_block->ecd |= ECD_MEF;
3876 if (test_kvm_facility(vcpu->kvm, 156))
3877 vcpu->arch.sie_block->ecd |= ECD_ETOKENF;
3878 if (vcpu->arch.sie_block->gd) {
3879 vcpu->arch.sie_block->eca |= ECA_AIV;
3880 VCPU_EVENT(vcpu, 3, "AIV gisa format-%u enabled for cpu %03u",
3881 vcpu->arch.sie_block->gd & 0x3, vcpu->vcpu_id);
3882 }
3883 vcpu->arch.sie_block->sdnxo = virt_to_phys(&vcpu->run->s.regs.sdnx) | SDNXC;
3884 vcpu->arch.sie_block->riccbd = virt_to_phys(&vcpu->run->s.regs.riccb);
3885
3886 if (sclp.has_kss)
3887 kvm_s390_set_cpuflags(vcpu, CPUSTAT_KSS);
3888 else
3889 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
3890
3891 if (vcpu->kvm->arch.use_cmma) {
3892 rc = kvm_s390_vcpu_setup_cmma(vcpu);
3893 if (rc)
3894 return rc;
3895 }
3896 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3897 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
3898
3899 vcpu->arch.sie_block->hpid = HPID_KVM;
3900
3901 kvm_s390_vcpu_crypto_setup(vcpu);
3902
3903 kvm_s390_vcpu_pci_setup(vcpu);
3904
3905 mutex_lock(&vcpu->kvm->lock);
3906 if (kvm_s390_pv_is_protected(vcpu->kvm)) {
3907 rc = kvm_s390_pv_create_cpu(vcpu, &uvrc, &uvrrc);
3908 if (rc)
3909 kvm_s390_vcpu_unsetup_cmma(vcpu);
3910 }
3911 mutex_unlock(&vcpu->kvm->lock);
3912
3913 return rc;
3914 }
3915
3916 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
3917 {
3918 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
3919 return -EINVAL;
3920 return 0;
3921 }
3922
3923 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
3924 {
3925 struct sie_page *sie_page;
3926 int rc;
3927
3928 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
3929 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL_ACCOUNT);
3930 if (!sie_page)
3931 return -ENOMEM;
3932
3933 vcpu->arch.sie_block = &sie_page->sie_block;
3934 vcpu->arch.sie_block->itdba = virt_to_phys(&sie_page->itdb);
3935
3936 /* the real guest size will always be smaller than msl */
3937 vcpu->arch.sie_block->mso = 0;
3938 vcpu->arch.sie_block->msl = sclp.hamax;
3939
3940 vcpu->arch.sie_block->icpua = vcpu->vcpu_id;
3941 spin_lock_init(&vcpu->arch.local_int.lock);
3942 vcpu->arch.sie_block->gd = kvm_s390_get_gisa_desc(vcpu->kvm);
3943 seqcount_init(&vcpu->arch.cputm_seqcount);
3944
3945 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
3946 kvm_clear_async_pf_completion_queue(vcpu);
3947 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
3948 KVM_SYNC_GPRS |
3949 KVM_SYNC_ACRS |
3950 KVM_SYNC_CRS |
3951 KVM_SYNC_ARCH0 |
3952 KVM_SYNC_PFAULT |
3953 KVM_SYNC_DIAG318;
3954 kvm_s390_set_prefix(vcpu, 0);
3955 if (test_kvm_facility(vcpu->kvm, 64))
3956 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
3957 if (test_kvm_facility(vcpu->kvm, 82))
3958 vcpu->run->kvm_valid_regs |= KVM_SYNC_BPBC;
3959 if (test_kvm_facility(vcpu->kvm, 133))
3960 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
3961 if (test_kvm_facility(vcpu->kvm, 156))
3962 vcpu->run->kvm_valid_regs |= KVM_SYNC_ETOKEN;
3963 /* fprs can be synchronized via vrs, even if the guest has no vx. With
3964 * cpu_has_vx(), (load|store)_fpu_regs() will work with vrs format.
3965 */
3966 if (cpu_has_vx())
3967 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
3968 else
3969 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
3970
3971 if (kvm_is_ucontrol(vcpu->kvm)) {
3972 rc = __kvm_ucontrol_vcpu_init(vcpu);
3973 if (rc)
3974 goto out_free_sie_block;
3975 }
3976
3977 VM_EVENT(vcpu->kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK",
3978 vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3979 trace_kvm_s390_create_vcpu(vcpu->vcpu_id, vcpu, vcpu->arch.sie_block);
3980
3981 rc = kvm_s390_vcpu_setup(vcpu);
3982 if (rc)
3983 goto out_ucontrol_uninit;
3984
3985 kvm_s390_update_topology_change_report(vcpu->kvm, 1);
3986 return 0;
3987
3988 out_ucontrol_uninit:
3989 if (kvm_is_ucontrol(vcpu->kvm))
3990 gmap_remove(vcpu->arch.gmap);
3991 out_free_sie_block:
3992 free_page((unsigned long)(vcpu->arch.sie_block));
3993 return rc;
3994 }
3995
3996 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
3997 {
3998 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
3999 return kvm_s390_vcpu_has_irq(vcpu, 0);
4000 }
4001
4002 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
4003 {
4004 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
4005 }
4006
4007 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
4008 {
4009 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4010 exit_sie(vcpu);
4011 }
4012
4013 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
4014 {
4015 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
4016 }
4017
4018 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
4019 {
4020 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4021 exit_sie(vcpu);
4022 }
4023
4024 bool kvm_s390_vcpu_sie_inhibited(struct kvm_vcpu *vcpu)
4025 {
4026 return atomic_read(&vcpu->arch.sie_block->prog20) &
4027 (PROG_BLOCK_SIE | PROG_REQUEST);
4028 }
4029
4030 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
4031 {
4032 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
4033 }
4034
4035 /*
4036 * Kick a guest cpu out of (v)SIE and wait until (v)SIE is not running.
4037 * If the CPU is not running (e.g. waiting as idle) the function will
4038 * return immediately. */
4039 void exit_sie(struct kvm_vcpu *vcpu)
4040 {
4041 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOP_INT);
4042 kvm_s390_vsie_kick(vcpu);
4043 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
4044 cpu_relax();
4045 }
4046
4047 /* Kick a guest cpu out of SIE to process a request synchronously */
4048 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
4049 {
4050 __kvm_make_request(req, vcpu);
4051 kvm_s390_vcpu_request(vcpu);
4052 }
4053
4054 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
4055 unsigned long end)
4056 {
4057 struct kvm *kvm = gmap->private;
4058 struct kvm_vcpu *vcpu;
4059 unsigned long prefix;
4060 unsigned long i;
4061
4062 trace_kvm_s390_gmap_notifier(start, end, gmap_is_shadow(gmap));
4063
4064 if (gmap_is_shadow(gmap))
4065 return;
4066 if (start >= 1UL << 31)
4067 /* We are only interested in prefix pages */
4068 return;
4069 kvm_for_each_vcpu(i, vcpu, kvm) {
4070 /* match against both prefix pages */
4071 prefix = kvm_s390_get_prefix(vcpu);
4072 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
4073 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
4074 start, end);
4075 kvm_s390_sync_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4076 }
4077 }
4078 }
4079
4080 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
4081 {
4082 /* do not poll with more than halt_poll_max_steal percent of steal time */
4083 if (S390_lowcore.avg_steal_timer * 100 / (TICK_USEC << 12) >=
4084 READ_ONCE(halt_poll_max_steal)) {
4085 vcpu->stat.halt_no_poll_steal++;
4086 return true;
4087 }
4088 return false;
4089 }
4090
4091 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
4092 {
4093 /* kvm common code refers to this, but never calls it */
4094 BUG();
4095 return 0;
4096 }
4097
4098 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
4099 struct kvm_one_reg *reg)
4100 {
4101 int r = -EINVAL;
4102
4103 switch (reg->id) {
4104 case KVM_REG_S390_TODPR:
4105 r = put_user(vcpu->arch.sie_block->todpr,
4106 (u32 __user *)reg->addr);
4107 break;
4108 case KVM_REG_S390_EPOCHDIFF:
4109 r = put_user(vcpu->arch.sie_block->epoch,
4110 (u64 __user *)reg->addr);
4111 break;
4112 case KVM_REG_S390_CPU_TIMER:
4113 r = put_user(kvm_s390_get_cpu_timer(vcpu),
4114 (u64 __user *)reg->addr);
4115 break;
4116 case KVM_REG_S390_CLOCK_COMP:
4117 r = put_user(vcpu->arch.sie_block->ckc,
4118 (u64 __user *)reg->addr);
4119 break;
4120 case KVM_REG_S390_PFTOKEN:
4121 r = put_user(vcpu->arch.pfault_token,
4122 (u64 __user *)reg->addr);
4123 break;
4124 case KVM_REG_S390_PFCOMPARE:
4125 r = put_user(vcpu->arch.pfault_compare,
4126 (u64 __user *)reg->addr);
4127 break;
4128 case KVM_REG_S390_PFSELECT:
4129 r = put_user(vcpu->arch.pfault_select,
4130 (u64 __user *)reg->addr);
4131 break;
4132 case KVM_REG_S390_PP:
4133 r = put_user(vcpu->arch.sie_block->pp,
4134 (u64 __user *)reg->addr);
4135 break;
4136 case KVM_REG_S390_GBEA:
4137 r = put_user(vcpu->arch.sie_block->gbea,
4138 (u64 __user *)reg->addr);
4139 break;
4140 default:
4141 break;
4142 }
4143
4144 return r;
4145 }
4146
4147 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
4148 struct kvm_one_reg *reg)
4149 {
4150 int r = -EINVAL;
4151 __u64 val;
4152
4153 switch (reg->id) {
4154 case KVM_REG_S390_TODPR:
4155 r = get_user(vcpu->arch.sie_block->todpr,
4156 (u32 __user *)reg->addr);
4157 break;
4158 case KVM_REG_S390_EPOCHDIFF:
4159 r = get_user(vcpu->arch.sie_block->epoch,
4160 (u64 __user *)reg->addr);
4161 break;
4162 case KVM_REG_S390_CPU_TIMER:
4163 r = get_user(val, (u64 __user *)reg->addr);
4164 if (!r)
4165 kvm_s390_set_cpu_timer(vcpu, val);
4166 break;
4167 case KVM_REG_S390_CLOCK_COMP:
4168 r = get_user(vcpu->arch.sie_block->ckc,
4169 (u64 __user *)reg->addr);
4170 break;
4171 case KVM_REG_S390_PFTOKEN:
4172 r = get_user(vcpu->arch.pfault_token,
4173 (u64 __user *)reg->addr);
4174 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4175 kvm_clear_async_pf_completion_queue(vcpu);
4176 break;
4177 case KVM_REG_S390_PFCOMPARE:
4178 r = get_user(vcpu->arch.pfault_compare,
4179 (u64 __user *)reg->addr);
4180 break;
4181 case KVM_REG_S390_PFSELECT:
4182 r = get_user(vcpu->arch.pfault_select,
4183 (u64 __user *)reg->addr);
4184 break;
4185 case KVM_REG_S390_PP:
4186 r = get_user(vcpu->arch.sie_block->pp,
4187 (u64 __user *)reg->addr);
4188 break;
4189 case KVM_REG_S390_GBEA:
4190 r = get_user(vcpu->arch.sie_block->gbea,
4191 (u64 __user *)reg->addr);
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 return r;
4198 }
4199
4200 static void kvm_arch_vcpu_ioctl_normal_reset(struct kvm_vcpu *vcpu)
4201 {
4202 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_RI;
4203 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
4204 memset(vcpu->run->s.regs.riccb, 0, sizeof(vcpu->run->s.regs.riccb));
4205
4206 kvm_clear_async_pf_completion_queue(vcpu);
4207 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
4208 kvm_s390_vcpu_stop(vcpu);
4209 kvm_s390_clear_local_irqs(vcpu);
4210 }
4211
4212 static void kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
4213 {
4214 /* Initial reset is a superset of the normal reset */
4215 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
4216
4217 /*
4218 * This equals initial cpu reset in pop, but we don't switch to ESA.
4219 * We do not only reset the internal data, but also ...
4220 */
4221 vcpu->arch.sie_block->gpsw.mask = 0;
4222 vcpu->arch.sie_block->gpsw.addr = 0;
4223 kvm_s390_set_prefix(vcpu, 0);
4224 kvm_s390_set_cpu_timer(vcpu, 0);
4225 vcpu->arch.sie_block->ckc = 0;
4226 memset(vcpu->arch.sie_block->gcr, 0, sizeof(vcpu->arch.sie_block->gcr));
4227 vcpu->arch.sie_block->gcr[0] = CR0_INITIAL_MASK;
4228 vcpu->arch.sie_block->gcr[14] = CR14_INITIAL_MASK;
4229
4230 /* ... the data in sync regs */
4231 memset(vcpu->run->s.regs.crs, 0, sizeof(vcpu->run->s.regs.crs));
4232 vcpu->run->s.regs.ckc = 0;
4233 vcpu->run->s.regs.crs[0] = CR0_INITIAL_MASK;
4234 vcpu->run->s.regs.crs[14] = CR14_INITIAL_MASK;
4235 vcpu->run->psw_addr = 0;
4236 vcpu->run->psw_mask = 0;
4237 vcpu->run->s.regs.todpr = 0;
4238 vcpu->run->s.regs.cputm = 0;
4239 vcpu->run->s.regs.ckc = 0;
4240 vcpu->run->s.regs.pp = 0;
4241 vcpu->run->s.regs.gbea = 1;
4242 vcpu->run->s.regs.fpc = 0;
4243 /*
4244 * Do not reset these registers in the protected case, as some of
4245 * them are overlaid and they are not accessible in this case
4246 * anyway.
4247 */
4248 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4249 vcpu->arch.sie_block->gbea = 1;
4250 vcpu->arch.sie_block->pp = 0;
4251 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4252 vcpu->arch.sie_block->todpr = 0;
4253 }
4254 }
4255
4256 static void kvm_arch_vcpu_ioctl_clear_reset(struct kvm_vcpu *vcpu)
4257 {
4258 struct kvm_sync_regs *regs = &vcpu->run->s.regs;
4259
4260 /* Clear reset is a superset of the initial reset */
4261 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
4262
4263 memset(&regs->gprs, 0, sizeof(regs->gprs));
4264 memset(&regs->vrs, 0, sizeof(regs->vrs));
4265 memset(&regs->acrs, 0, sizeof(regs->acrs));
4266 memset(&regs->gscb, 0, sizeof(regs->gscb));
4267
4268 regs->etoken = 0;
4269 regs->etoken_extension = 0;
4270 }
4271
4272 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4273 {
4274 vcpu_load(vcpu);
4275 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
4276 vcpu_put(vcpu);
4277 return 0;
4278 }
4279
4280 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
4281 {
4282 vcpu_load(vcpu);
4283 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
4284 vcpu_put(vcpu);
4285 return 0;
4286 }
4287
4288 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
4289 struct kvm_sregs *sregs)
4290 {
4291 vcpu_load(vcpu);
4292
4293 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
4294 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
4295
4296 vcpu_put(vcpu);
4297 return 0;
4298 }
4299
4300 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
4301 struct kvm_sregs *sregs)
4302 {
4303 vcpu_load(vcpu);
4304
4305 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
4306 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
4307
4308 vcpu_put(vcpu);
4309 return 0;
4310 }
4311
4312 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4313 {
4314 int ret = 0;
4315
4316 vcpu_load(vcpu);
4317
4318 vcpu->run->s.regs.fpc = fpu->fpc;
4319 if (cpu_has_vx())
4320 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
4321 (freg_t *) fpu->fprs);
4322 else
4323 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
4324
4325 vcpu_put(vcpu);
4326 return ret;
4327 }
4328
4329 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
4330 {
4331 vcpu_load(vcpu);
4332
4333 if (cpu_has_vx())
4334 convert_vx_to_fp((freg_t *) fpu->fprs,
4335 (__vector128 *) vcpu->run->s.regs.vrs);
4336 else
4337 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
4338 fpu->fpc = vcpu->run->s.regs.fpc;
4339
4340 vcpu_put(vcpu);
4341 return 0;
4342 }
4343
4344 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
4345 {
4346 int rc = 0;
4347
4348 if (!is_vcpu_stopped(vcpu))
4349 rc = -EBUSY;
4350 else {
4351 vcpu->run->psw_mask = psw.mask;
4352 vcpu->run->psw_addr = psw.addr;
4353 }
4354 return rc;
4355 }
4356
4357 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
4358 struct kvm_translation *tr)
4359 {
4360 return -EINVAL; /* not implemented yet */
4361 }
4362
4363 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
4364 KVM_GUESTDBG_USE_HW_BP | \
4365 KVM_GUESTDBG_ENABLE)
4366
4367 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
4368 struct kvm_guest_debug *dbg)
4369 {
4370 int rc = 0;
4371
4372 vcpu_load(vcpu);
4373
4374 vcpu->guest_debug = 0;
4375 kvm_s390_clear_bp_data(vcpu);
4376
4377 if (dbg->control & ~VALID_GUESTDBG_FLAGS) {
4378 rc = -EINVAL;
4379 goto out;
4380 }
4381 if (!sclp.has_gpere) {
4382 rc = -EINVAL;
4383 goto out;
4384 }
4385
4386 if (dbg->control & KVM_GUESTDBG_ENABLE) {
4387 vcpu->guest_debug = dbg->control;
4388 /* enforce guest PER */
4389 kvm_s390_set_cpuflags(vcpu, CPUSTAT_P);
4390
4391 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
4392 rc = kvm_s390_import_bp_data(vcpu, dbg);
4393 } else {
4394 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4395 vcpu->arch.guestdbg.last_bp = 0;
4396 }
4397
4398 if (rc) {
4399 vcpu->guest_debug = 0;
4400 kvm_s390_clear_bp_data(vcpu);
4401 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_P);
4402 }
4403
4404 out:
4405 vcpu_put(vcpu);
4406 return rc;
4407 }
4408
4409 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
4410 struct kvm_mp_state *mp_state)
4411 {
4412 int ret;
4413
4414 vcpu_load(vcpu);
4415
4416 /* CHECK_STOP and LOAD are not supported yet */
4417 ret = is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
4418 KVM_MP_STATE_OPERATING;
4419
4420 vcpu_put(vcpu);
4421 return ret;
4422 }
4423
4424 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
4425 struct kvm_mp_state *mp_state)
4426 {
4427 int rc = 0;
4428
4429 vcpu_load(vcpu);
4430
4431 /* user space knows about this interface - let it control the state */
4432 kvm_s390_set_user_cpu_state_ctrl(vcpu->kvm);
4433
4434 switch (mp_state->mp_state) {
4435 case KVM_MP_STATE_STOPPED:
4436 rc = kvm_s390_vcpu_stop(vcpu);
4437 break;
4438 case KVM_MP_STATE_OPERATING:
4439 rc = kvm_s390_vcpu_start(vcpu);
4440 break;
4441 case KVM_MP_STATE_LOAD:
4442 if (!kvm_s390_pv_cpu_is_protected(vcpu)) {
4443 rc = -ENXIO;
4444 break;
4445 }
4446 rc = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR_LOAD);
4447 break;
4448 case KVM_MP_STATE_CHECK_STOP:
4449 fallthrough; /* CHECK_STOP and LOAD are not supported yet */
4450 default:
4451 rc = -ENXIO;
4452 }
4453
4454 vcpu_put(vcpu);
4455 return rc;
4456 }
4457
4458 static bool ibs_enabled(struct kvm_vcpu *vcpu)
4459 {
4460 return kvm_s390_test_cpuflags(vcpu, CPUSTAT_IBS);
4461 }
4462
4463 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
4464 {
4465 retry:
4466 kvm_s390_vcpu_request_handled(vcpu);
4467 if (!kvm_request_pending(vcpu))
4468 return 0;
4469 /*
4470 * If the guest prefix changed, re-arm the ipte notifier for the
4471 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
4472 * This ensures that the ipte instruction for this request has
4473 * already finished. We might race against a second unmapper that
4474 * wants to set the blocking bit. Lets just retry the request loop.
4475 */
4476 if (kvm_check_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu)) {
4477 int rc;
4478 rc = gmap_mprotect_notify(vcpu->arch.gmap,
4479 kvm_s390_get_prefix(vcpu),
4480 PAGE_SIZE * 2, PROT_WRITE);
4481 if (rc) {
4482 kvm_make_request(KVM_REQ_REFRESH_GUEST_PREFIX, vcpu);
4483 return rc;
4484 }
4485 goto retry;
4486 }
4487
4488 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
4489 vcpu->arch.sie_block->ihcpu = 0xffff;
4490 goto retry;
4491 }
4492
4493 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
4494 if (!ibs_enabled(vcpu)) {
4495 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
4496 kvm_s390_set_cpuflags(vcpu, CPUSTAT_IBS);
4497 }
4498 goto retry;
4499 }
4500
4501 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
4502 if (ibs_enabled(vcpu)) {
4503 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
4504 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_IBS);
4505 }
4506 goto retry;
4507 }
4508
4509 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
4510 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
4511 goto retry;
4512 }
4513
4514 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
4515 /*
4516 * Disable CMM virtualization; we will emulate the ESSA
4517 * instruction manually, in order to provide additional
4518 * functionalities needed for live migration.
4519 */
4520 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
4521 goto retry;
4522 }
4523
4524 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
4525 /*
4526 * Re-enable CMM virtualization if CMMA is available and
4527 * CMM has been used.
4528 */
4529 if ((vcpu->kvm->arch.use_cmma) &&
4530 (vcpu->kvm->mm->context.uses_cmm))
4531 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
4532 goto retry;
4533 }
4534
4535 /* we left the vsie handler, nothing to do, just clear the request */
4536 kvm_clear_request(KVM_REQ_VSIE_RESTART, vcpu);
4537
4538 return 0;
4539 }
4540
4541 static void __kvm_s390_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4542 {
4543 struct kvm_vcpu *vcpu;
4544 union tod_clock clk;
4545 unsigned long i;
4546
4547 preempt_disable();
4548
4549 store_tod_clock_ext(&clk);
4550
4551 kvm->arch.epoch = gtod->tod - clk.tod;
4552 kvm->arch.epdx = 0;
4553 if (test_kvm_facility(kvm, 139)) {
4554 kvm->arch.epdx = gtod->epoch_idx - clk.ei;
4555 if (kvm->arch.epoch > gtod->tod)
4556 kvm->arch.epdx -= 1;
4557 }
4558
4559 kvm_s390_vcpu_block_all(kvm);
4560 kvm_for_each_vcpu(i, vcpu, kvm) {
4561 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
4562 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
4563 }
4564
4565 kvm_s390_vcpu_unblock_all(kvm);
4566 preempt_enable();
4567 }
4568
4569 int kvm_s390_try_set_tod_clock(struct kvm *kvm, const struct kvm_s390_vm_tod_clock *gtod)
4570 {
4571 if (!mutex_trylock(&kvm->lock))
4572 return 0;
4573 __kvm_s390_set_tod_clock(kvm, gtod);
4574 mutex_unlock(&kvm->lock);
4575 return 1;
4576 }
4577
4578 /**
4579 * kvm_arch_fault_in_page - fault-in guest page if necessary
4580 * @vcpu: The corresponding virtual cpu
4581 * @gpa: Guest physical address
4582 * @writable: Whether the page should be writable or not
4583 *
4584 * Make sure that a guest page has been faulted-in on the host.
4585 *
4586 * Return: Zero on success, negative error code otherwise.
4587 */
4588 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
4589 {
4590 return gmap_fault(vcpu->arch.gmap, gpa,
4591 writable ? FAULT_FLAG_WRITE : 0);
4592 }
4593
4594 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
4595 unsigned long token)
4596 {
4597 struct kvm_s390_interrupt inti;
4598 struct kvm_s390_irq irq;
4599
4600 if (start_token) {
4601 irq.u.ext.ext_params2 = token;
4602 irq.type = KVM_S390_INT_PFAULT_INIT;
4603 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
4604 } else {
4605 inti.type = KVM_S390_INT_PFAULT_DONE;
4606 inti.parm64 = token;
4607 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
4608 }
4609 }
4610
4611 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
4612 struct kvm_async_pf *work)
4613 {
4614 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
4615 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
4616
4617 return true;
4618 }
4619
4620 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
4621 struct kvm_async_pf *work)
4622 {
4623 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
4624 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
4625 }
4626
4627 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
4628 struct kvm_async_pf *work)
4629 {
4630 /* s390 will always inject the page directly */
4631 }
4632
4633 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
4634 {
4635 /*
4636 * s390 will always inject the page directly,
4637 * but we still want check_async_completion to cleanup
4638 */
4639 return true;
4640 }
4641
4642 static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
4643 {
4644 hva_t hva;
4645 struct kvm_arch_async_pf arch;
4646
4647 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4648 return false;
4649 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
4650 vcpu->arch.pfault_compare)
4651 return false;
4652 if (psw_extint_disabled(vcpu))
4653 return false;
4654 if (kvm_s390_vcpu_has_irq(vcpu, 0))
4655 return false;
4656 if (!(vcpu->arch.sie_block->gcr[0] & CR0_SERVICE_SIGNAL_SUBMASK))
4657 return false;
4658 if (!vcpu->arch.gmap->pfault_enabled)
4659 return false;
4660
4661 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
4662 hva += current->thread.gmap_addr & ~PAGE_MASK;
4663 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
4664 return false;
4665
4666 return kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
4667 }
4668
4669 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
4670 {
4671 int rc, cpuflags;
4672
4673 /*
4674 * On s390 notifications for arriving pages will be delivered directly
4675 * to the guest but the house keeping for completed pfaults is
4676 * handled outside the worker.
4677 */
4678 kvm_check_async_pf_completion(vcpu);
4679
4680 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
4681 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
4682
4683 if (need_resched())
4684 schedule();
4685
4686 if (!kvm_is_ucontrol(vcpu->kvm)) {
4687 rc = kvm_s390_deliver_pending_interrupts(vcpu);
4688 if (rc || guestdbg_exit_pending(vcpu))
4689 return rc;
4690 }
4691
4692 rc = kvm_s390_handle_requests(vcpu);
4693 if (rc)
4694 return rc;
4695
4696 if (guestdbg_enabled(vcpu)) {
4697 kvm_s390_backup_guest_per_regs(vcpu);
4698 kvm_s390_patch_guest_per_regs(vcpu);
4699 }
4700
4701 clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.gisa_int.kicked_mask);
4702
4703 vcpu->arch.sie_block->icptcode = 0;
4704 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
4705 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
4706 trace_kvm_s390_sie_enter(vcpu, cpuflags);
4707
4708 return 0;
4709 }
4710
4711 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
4712 {
4713 struct kvm_s390_pgm_info pgm_info = {
4714 .code = PGM_ADDRESSING,
4715 };
4716 u8 opcode, ilen;
4717 int rc;
4718
4719 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
4720 trace_kvm_s390_sie_fault(vcpu);
4721
4722 /*
4723 * We want to inject an addressing exception, which is defined as a
4724 * suppressing or terminating exception. However, since we came here
4725 * by a DAT access exception, the PSW still points to the faulting
4726 * instruction since DAT exceptions are nullifying. So we've got
4727 * to look up the current opcode to get the length of the instruction
4728 * to be able to forward the PSW.
4729 */
4730 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
4731 ilen = insn_length(opcode);
4732 if (rc < 0) {
4733 return rc;
4734 } else if (rc) {
4735 /* Instruction-Fetching Exceptions - we can't detect the ilen.
4736 * Forward by arbitrary ilc, injection will take care of
4737 * nullification if necessary.
4738 */
4739 pgm_info = vcpu->arch.pgm;
4740 ilen = 4;
4741 }
4742 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
4743 kvm_s390_forward_psw(vcpu, ilen);
4744 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
4745 }
4746
4747 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
4748 {
4749 struct mcck_volatile_info *mcck_info;
4750 struct sie_page *sie_page;
4751
4752 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
4753 vcpu->arch.sie_block->icptcode);
4754 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
4755
4756 if (guestdbg_enabled(vcpu))
4757 kvm_s390_restore_guest_per_regs(vcpu);
4758
4759 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
4760 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
4761
4762 if (exit_reason == -EINTR) {
4763 VCPU_EVENT(vcpu, 3, "%s", "machine check");
4764 sie_page = container_of(vcpu->arch.sie_block,
4765 struct sie_page, sie_block);
4766 mcck_info = &sie_page->mcck_info;
4767 kvm_s390_reinject_machine_check(vcpu, mcck_info);
4768 return 0;
4769 }
4770
4771 if (vcpu->arch.sie_block->icptcode > 0) {
4772 int rc = kvm_handle_sie_intercept(vcpu);
4773
4774 if (rc != -EOPNOTSUPP)
4775 return rc;
4776 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
4777 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
4778 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
4779 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
4780 return -EREMOTE;
4781 } else if (exit_reason != -EFAULT) {
4782 vcpu->stat.exit_null++;
4783 return 0;
4784 } else if (kvm_is_ucontrol(vcpu->kvm)) {
4785 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
4786 vcpu->run->s390_ucontrol.trans_exc_code =
4787 current->thread.gmap_addr;
4788 vcpu->run->s390_ucontrol.pgm_code = 0x10;
4789 return -EREMOTE;
4790 } else if (current->thread.gmap_pfault) {
4791 trace_kvm_s390_major_guest_pfault(vcpu);
4792 current->thread.gmap_pfault = 0;
4793 if (kvm_arch_setup_async_pf(vcpu))
4794 return 0;
4795 vcpu->stat.pfault_sync++;
4796 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
4797 }
4798 return vcpu_post_run_fault_in_sie(vcpu);
4799 }
4800
4801 #define PSW_INT_MASK (PSW_MASK_EXT | PSW_MASK_IO | PSW_MASK_MCHECK)
4802 static int __vcpu_run(struct kvm_vcpu *vcpu)
4803 {
4804 int rc, exit_reason;
4805 struct sie_page *sie_page = (struct sie_page *)vcpu->arch.sie_block;
4806
4807 /*
4808 * We try to hold kvm->srcu during most of vcpu_run (except when run-
4809 * ning the guest), so that memslots (and other stuff) are protected
4810 */
4811 kvm_vcpu_srcu_read_lock(vcpu);
4812
4813 do {
4814 rc = vcpu_pre_run(vcpu);
4815 if (rc || guestdbg_exit_pending(vcpu))
4816 break;
4817
4818 kvm_vcpu_srcu_read_unlock(vcpu);
4819 /*
4820 * As PF_VCPU will be used in fault handler, between
4821 * guest_enter and guest_exit should be no uaccess.
4822 */
4823 local_irq_disable();
4824 guest_enter_irqoff();
4825 __disable_cpu_timer_accounting(vcpu);
4826 local_irq_enable();
4827 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4828 memcpy(sie_page->pv_grregs,
4829 vcpu->run->s.regs.gprs,
4830 sizeof(sie_page->pv_grregs));
4831 }
4832 if (test_cpu_flag(CIF_FPU))
4833 load_fpu_regs();
4834 exit_reason = sie64a(vcpu->arch.sie_block,
4835 vcpu->run->s.regs.gprs);
4836 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
4837 memcpy(vcpu->run->s.regs.gprs,
4838 sie_page->pv_grregs,
4839 sizeof(sie_page->pv_grregs));
4840 /*
4841 * We're not allowed to inject interrupts on intercepts
4842 * that leave the guest state in an "in-between" state
4843 * where the next SIE entry will do a continuation.
4844 * Fence interrupts in our "internal" PSW.
4845 */
4846 if (vcpu->arch.sie_block->icptcode == ICPT_PV_INSTR ||
4847 vcpu->arch.sie_block->icptcode == ICPT_PV_PREF) {
4848 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
4849 }
4850 }
4851 local_irq_disable();
4852 __enable_cpu_timer_accounting(vcpu);
4853 guest_exit_irqoff();
4854 local_irq_enable();
4855 kvm_vcpu_srcu_read_lock(vcpu);
4856
4857 rc = vcpu_post_run(vcpu, exit_reason);
4858 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
4859
4860 kvm_vcpu_srcu_read_unlock(vcpu);
4861 return rc;
4862 }
4863
4864 static void sync_regs_fmt2(struct kvm_vcpu *vcpu)
4865 {
4866 struct kvm_run *kvm_run = vcpu->run;
4867 struct runtime_instr_cb *riccb;
4868 struct gs_cb *gscb;
4869
4870 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
4871 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
4872 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
4873 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
4874 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4875 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
4876 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
4877 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
4878 }
4879 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
4880 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
4881 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
4882 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
4883 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
4884 kvm_clear_async_pf_completion_queue(vcpu);
4885 }
4886 if (kvm_run->kvm_dirty_regs & KVM_SYNC_DIAG318) {
4887 vcpu->arch.diag318_info.val = kvm_run->s.regs.diag318;
4888 vcpu->arch.sie_block->cpnc = vcpu->arch.diag318_info.cpnc;
4889 VCPU_EVENT(vcpu, 3, "setting cpnc to %d", vcpu->arch.diag318_info.cpnc);
4890 }
4891 /*
4892 * If userspace sets the riccb (e.g. after migration) to a valid state,
4893 * we should enable RI here instead of doing the lazy enablement.
4894 */
4895 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
4896 test_kvm_facility(vcpu->kvm, 64) &&
4897 riccb->v &&
4898 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
4899 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
4900 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
4901 }
4902 /*
4903 * If userspace sets the gscb (e.g. after migration) to non-zero,
4904 * we should enable GS here instead of doing the lazy enablement.
4905 */
4906 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
4907 test_kvm_facility(vcpu->kvm, 133) &&
4908 gscb->gssm &&
4909 !vcpu->arch.gs_enabled) {
4910 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
4911 vcpu->arch.sie_block->ecb |= ECB_GS;
4912 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
4913 vcpu->arch.gs_enabled = 1;
4914 }
4915 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_BPBC) &&
4916 test_kvm_facility(vcpu->kvm, 82)) {
4917 vcpu->arch.sie_block->fpf &= ~FPF_BPBC;
4918 vcpu->arch.sie_block->fpf |= kvm_run->s.regs.bpbc ? FPF_BPBC : 0;
4919 }
4920 if (MACHINE_HAS_GS) {
4921 preempt_disable();
4922 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4923 if (current->thread.gs_cb) {
4924 vcpu->arch.host_gscb = current->thread.gs_cb;
4925 save_gs_cb(vcpu->arch.host_gscb);
4926 }
4927 if (vcpu->arch.gs_enabled) {
4928 current->thread.gs_cb = (struct gs_cb *)
4929 &vcpu->run->s.regs.gscb;
4930 restore_gs_cb(current->thread.gs_cb);
4931 }
4932 preempt_enable();
4933 }
4934 /* SIE will load etoken directly from SDNX and therefore kvm_run */
4935 }
4936
4937 static void sync_regs(struct kvm_vcpu *vcpu)
4938 {
4939 struct kvm_run *kvm_run = vcpu->run;
4940
4941 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
4942 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
4943 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
4944 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
4945 /* some control register changes require a tlb flush */
4946 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4947 }
4948 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
4949 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
4950 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
4951 }
4952 save_access_regs(vcpu->arch.host_acrs);
4953 restore_access_regs(vcpu->run->s.regs.acrs);
4954 /* save host (userspace) fprs/vrs */
4955 save_fpu_regs();
4956 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
4957 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
4958 if (cpu_has_vx())
4959 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
4960 else
4961 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
4962 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
4963
4964 /* Sync fmt2 only data */
4965 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu))) {
4966 sync_regs_fmt2(vcpu);
4967 } else {
4968 /*
4969 * In several places we have to modify our internal view to
4970 * not do things that are disallowed by the ultravisor. For
4971 * example we must not inject interrupts after specific exits
4972 * (e.g. 112 prefix page not secure). We do this by turning
4973 * off the machine check, external and I/O interrupt bits
4974 * of our PSW copy. To avoid getting validity intercepts, we
4975 * do only accept the condition code from userspace.
4976 */
4977 vcpu->arch.sie_block->gpsw.mask &= ~PSW_MASK_CC;
4978 vcpu->arch.sie_block->gpsw.mask |= kvm_run->psw_mask &
4979 PSW_MASK_CC;
4980 }
4981
4982 kvm_run->kvm_dirty_regs = 0;
4983 }
4984
4985 static void store_regs_fmt2(struct kvm_vcpu *vcpu)
4986 {
4987 struct kvm_run *kvm_run = vcpu->run;
4988
4989 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
4990 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
4991 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
4992 kvm_run->s.regs.bpbc = (vcpu->arch.sie_block->fpf & FPF_BPBC) == FPF_BPBC;
4993 kvm_run->s.regs.diag318 = vcpu->arch.diag318_info.val;
4994 if (MACHINE_HAS_GS) {
4995 preempt_disable();
4996 local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
4997 if (vcpu->arch.gs_enabled)
4998 save_gs_cb(current->thread.gs_cb);
4999 current->thread.gs_cb = vcpu->arch.host_gscb;
5000 restore_gs_cb(vcpu->arch.host_gscb);
5001 if (!vcpu->arch.host_gscb)
5002 local_ctl_clear_bit(2, CR2_GUARDED_STORAGE_BIT);
5003 vcpu->arch.host_gscb = NULL;
5004 preempt_enable();
5005 }
5006 /* SIE will save etoken directly into SDNX and therefore kvm_run */
5007 }
5008
5009 static void store_regs(struct kvm_vcpu *vcpu)
5010 {
5011 struct kvm_run *kvm_run = vcpu->run;
5012
5013 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
5014 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
5015 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
5016 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
5017 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
5018 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
5019 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
5020 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
5021 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
5022 save_access_regs(vcpu->run->s.regs.acrs);
5023 restore_access_regs(vcpu->arch.host_acrs);
5024 /* Save guest register state */
5025 save_fpu_regs();
5026 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5027 /* Restore will be done lazily at return */
5028 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
5029 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
5030 if (likely(!kvm_s390_pv_cpu_is_protected(vcpu)))
5031 store_regs_fmt2(vcpu);
5032 }
5033
5034 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
5035 {
5036 struct kvm_run *kvm_run = vcpu->run;
5037 int rc;
5038
5039 /*
5040 * Running a VM while dumping always has the potential to
5041 * produce inconsistent dump data. But for PV vcpus a SIE
5042 * entry while dumping could also lead to a fatal validity
5043 * intercept which we absolutely want to avoid.
5044 */
5045 if (vcpu->kvm->arch.pv.dumping)
5046 return -EINVAL;
5047
5048 if (kvm_run->immediate_exit)
5049 return -EINTR;
5050
5051 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_S390_VALID_FIELDS ||
5052 kvm_run->kvm_dirty_regs & ~KVM_SYNC_S390_VALID_FIELDS)
5053 return -EINVAL;
5054
5055 vcpu_load(vcpu);
5056
5057 if (guestdbg_exit_pending(vcpu)) {
5058 kvm_s390_prepare_debug_exit(vcpu);
5059 rc = 0;
5060 goto out;
5061 }
5062
5063 kvm_sigset_activate(vcpu);
5064
5065 /*
5066 * no need to check the return value of vcpu_start as it can only have
5067 * an error for protvirt, but protvirt means user cpu state
5068 */
5069 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
5070 kvm_s390_vcpu_start(vcpu);
5071 } else if (is_vcpu_stopped(vcpu)) {
5072 pr_err_ratelimited("can't run stopped vcpu %d\n",
5073 vcpu->vcpu_id);
5074 rc = -EINVAL;
5075 goto out;
5076 }
5077
5078 sync_regs(vcpu);
5079 enable_cpu_timer_accounting(vcpu);
5080
5081 might_fault();
5082 rc = __vcpu_run(vcpu);
5083
5084 if (signal_pending(current) && !rc) {
5085 kvm_run->exit_reason = KVM_EXIT_INTR;
5086 rc = -EINTR;
5087 }
5088
5089 if (guestdbg_exit_pending(vcpu) && !rc) {
5090 kvm_s390_prepare_debug_exit(vcpu);
5091 rc = 0;
5092 }
5093
5094 if (rc == -EREMOTE) {
5095 /* userspace support is needed, kvm_run has been prepared */
5096 rc = 0;
5097 }
5098
5099 disable_cpu_timer_accounting(vcpu);
5100 store_regs(vcpu);
5101
5102 kvm_sigset_deactivate(vcpu);
5103
5104 vcpu->stat.exit_userspace++;
5105 out:
5106 vcpu_put(vcpu);
5107 return rc;
5108 }
5109
5110 /*
5111 * store status at address
5112 * we use have two special cases:
5113 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
5114 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
5115 */
5116 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
5117 {
5118 unsigned char archmode = 1;
5119 freg_t fprs[NUM_FPRS];
5120 unsigned int px;
5121 u64 clkcomp, cputm;
5122 int rc;
5123
5124 px = kvm_s390_get_prefix(vcpu);
5125 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
5126 if (write_guest_abs(vcpu, 163, &archmode, 1))
5127 return -EFAULT;
5128 gpa = 0;
5129 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
5130 if (write_guest_real(vcpu, 163, &archmode, 1))
5131 return -EFAULT;
5132 gpa = px;
5133 } else
5134 gpa -= __LC_FPREGS_SAVE_AREA;
5135
5136 /* manually convert vector registers if necessary */
5137 if (cpu_has_vx()) {
5138 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
5139 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5140 fprs, 128);
5141 } else {
5142 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
5143 vcpu->run->s.regs.fprs, 128);
5144 }
5145 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
5146 vcpu->run->s.regs.gprs, 128);
5147 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
5148 &vcpu->arch.sie_block->gpsw, 16);
5149 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
5150 &px, 4);
5151 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
5152 &vcpu->run->s.regs.fpc, 4);
5153 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
5154 &vcpu->arch.sie_block->todpr, 4);
5155 cputm = kvm_s390_get_cpu_timer(vcpu);
5156 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
5157 &cputm, 8);
5158 clkcomp = vcpu->arch.sie_block->ckc >> 8;
5159 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
5160 &clkcomp, 8);
5161 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
5162 &vcpu->run->s.regs.acrs, 64);
5163 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
5164 &vcpu->arch.sie_block->gcr, 128);
5165 return rc ? -EFAULT : 0;
5166 }
5167
5168 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
5169 {
5170 /*
5171 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
5172 * switch in the run ioctl. Let's update our copies before we save
5173 * it into the save area
5174 */
5175 save_fpu_regs();
5176 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
5177 save_access_regs(vcpu->run->s.regs.acrs);
5178
5179 return kvm_s390_store_status_unloaded(vcpu, addr);
5180 }
5181
5182 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5183 {
5184 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
5185 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
5186 }
5187
5188 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
5189 {
5190 unsigned long i;
5191 struct kvm_vcpu *vcpu;
5192
5193 kvm_for_each_vcpu(i, vcpu, kvm) {
5194 __disable_ibs_on_vcpu(vcpu);
5195 }
5196 }
5197
5198 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
5199 {
5200 if (!sclp.has_ibs)
5201 return;
5202 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
5203 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
5204 }
5205
5206 int kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
5207 {
5208 int i, online_vcpus, r = 0, started_vcpus = 0;
5209
5210 if (!is_vcpu_stopped(vcpu))
5211 return 0;
5212
5213 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
5214 /* Only one cpu at a time may enter/leave the STOPPED state. */
5215 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5216 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5217
5218 /* Let's tell the UV that we want to change into the operating state */
5219 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5220 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_OPR);
5221 if (r) {
5222 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5223 return r;
5224 }
5225 }
5226
5227 for (i = 0; i < online_vcpus; i++) {
5228 if (!is_vcpu_stopped(kvm_get_vcpu(vcpu->kvm, i)))
5229 started_vcpus++;
5230 }
5231
5232 if (started_vcpus == 0) {
5233 /* we're the only active VCPU -> speed it up */
5234 __enable_ibs_on_vcpu(vcpu);
5235 } else if (started_vcpus == 1) {
5236 /*
5237 * As we are starting a second VCPU, we have to disable
5238 * the IBS facility on all VCPUs to remove potentially
5239 * outstanding ENABLE requests.
5240 */
5241 __disable_ibs_on_all_vcpus(vcpu->kvm);
5242 }
5243
5244 kvm_s390_clear_cpuflags(vcpu, CPUSTAT_STOPPED);
5245 /*
5246 * The real PSW might have changed due to a RESTART interpreted by the
5247 * ultravisor. We block all interrupts and let the next sie exit
5248 * refresh our view.
5249 */
5250 if (kvm_s390_pv_cpu_is_protected(vcpu))
5251 vcpu->arch.sie_block->gpsw.mask &= ~PSW_INT_MASK;
5252 /*
5253 * Another VCPU might have used IBS while we were offline.
5254 * Let's play safe and flush the VCPU at startup.
5255 */
5256 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5257 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5258 return 0;
5259 }
5260
5261 int kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
5262 {
5263 int i, online_vcpus, r = 0, started_vcpus = 0;
5264 struct kvm_vcpu *started_vcpu = NULL;
5265
5266 if (is_vcpu_stopped(vcpu))
5267 return 0;
5268
5269 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
5270 /* Only one cpu at a time may enter/leave the STOPPED state. */
5271 spin_lock(&vcpu->kvm->arch.start_stop_lock);
5272 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
5273
5274 /* Let's tell the UV that we want to change into the stopped state */
5275 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5276 r = kvm_s390_pv_set_cpu_state(vcpu, PV_CPU_STATE_STP);
5277 if (r) {
5278 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5279 return r;
5280 }
5281 }
5282
5283 /*
5284 * Set the VCPU to STOPPED and THEN clear the interrupt flag,
5285 * now that the SIGP STOP and SIGP STOP AND STORE STATUS orders
5286 * have been fully processed. This will ensure that the VCPU
5287 * is kept BUSY if another VCPU is inquiring with SIGP SENSE.
5288 */
5289 kvm_s390_set_cpuflags(vcpu, CPUSTAT_STOPPED);
5290 kvm_s390_clear_stop_irq(vcpu);
5291
5292 __disable_ibs_on_vcpu(vcpu);
5293
5294 for (i = 0; i < online_vcpus; i++) {
5295 struct kvm_vcpu *tmp = kvm_get_vcpu(vcpu->kvm, i);
5296
5297 if (!is_vcpu_stopped(tmp)) {
5298 started_vcpus++;
5299 started_vcpu = tmp;
5300 }
5301 }
5302
5303 if (started_vcpus == 1) {
5304 /*
5305 * As we only have one VCPU left, we want to enable the
5306 * IBS facility for that VCPU to speed it up.
5307 */
5308 __enable_ibs_on_vcpu(started_vcpu);
5309 }
5310
5311 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
5312 return 0;
5313 }
5314
5315 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5316 struct kvm_enable_cap *cap)
5317 {
5318 int r;
5319
5320 if (cap->flags)
5321 return -EINVAL;
5322
5323 switch (cap->cap) {
5324 case KVM_CAP_S390_CSS_SUPPORT:
5325 if (!vcpu->kvm->arch.css_support) {
5326 vcpu->kvm->arch.css_support = 1;
5327 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
5328 trace_kvm_s390_enable_css(vcpu->kvm);
5329 }
5330 r = 0;
5331 break;
5332 default:
5333 r = -EINVAL;
5334 break;
5335 }
5336 return r;
5337 }
5338
5339 static long kvm_s390_vcpu_sida_op(struct kvm_vcpu *vcpu,
5340 struct kvm_s390_mem_op *mop)
5341 {
5342 void __user *uaddr = (void __user *)mop->buf;
5343 void *sida_addr;
5344 int r = 0;
5345
5346 if (mop->flags || !mop->size)
5347 return -EINVAL;
5348 if (mop->size + mop->sida_offset < mop->size)
5349 return -EINVAL;
5350 if (mop->size + mop->sida_offset > sida_size(vcpu->arch.sie_block))
5351 return -E2BIG;
5352 if (!kvm_s390_pv_cpu_is_protected(vcpu))
5353 return -EINVAL;
5354
5355 sida_addr = (char *)sida_addr(vcpu->arch.sie_block) + mop->sida_offset;
5356
5357 switch (mop->op) {
5358 case KVM_S390_MEMOP_SIDA_READ:
5359 if (copy_to_user(uaddr, sida_addr, mop->size))
5360 r = -EFAULT;
5361
5362 break;
5363 case KVM_S390_MEMOP_SIDA_WRITE:
5364 if (copy_from_user(sida_addr, uaddr, mop->size))
5365 r = -EFAULT;
5366 break;
5367 }
5368 return r;
5369 }
5370
5371 static long kvm_s390_vcpu_mem_op(struct kvm_vcpu *vcpu,
5372 struct kvm_s390_mem_op *mop)
5373 {
5374 void __user *uaddr = (void __user *)mop->buf;
5375 enum gacc_mode acc_mode;
5376 void *tmpbuf = NULL;
5377 int r;
5378
5379 r = mem_op_validate_common(mop, KVM_S390_MEMOP_F_INJECT_EXCEPTION |
5380 KVM_S390_MEMOP_F_CHECK_ONLY |
5381 KVM_S390_MEMOP_F_SKEY_PROTECTION);
5382 if (r)
5383 return r;
5384 if (mop->ar >= NUM_ACRS)
5385 return -EINVAL;
5386 if (kvm_s390_pv_cpu_is_protected(vcpu))
5387 return -EINVAL;
5388 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
5389 tmpbuf = vmalloc(mop->size);
5390 if (!tmpbuf)
5391 return -ENOMEM;
5392 }
5393
5394 acc_mode = mop->op == KVM_S390_MEMOP_LOGICAL_READ ? GACC_FETCH : GACC_STORE;
5395 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
5396 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size,
5397 acc_mode, mop->key);
5398 goto out_inject;
5399 }
5400 if (acc_mode == GACC_FETCH) {
5401 r = read_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5402 mop->size, mop->key);
5403 if (r)
5404 goto out_inject;
5405 if (copy_to_user(uaddr, tmpbuf, mop->size)) {
5406 r = -EFAULT;
5407 goto out_free;
5408 }
5409 } else {
5410 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
5411 r = -EFAULT;
5412 goto out_free;
5413 }
5414 r = write_guest_with_key(vcpu, mop->gaddr, mop->ar, tmpbuf,
5415 mop->size, mop->key);
5416 }
5417
5418 out_inject:
5419 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
5420 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
5421
5422 out_free:
5423 vfree(tmpbuf);
5424 return r;
5425 }
5426
5427 static long kvm_s390_vcpu_memsida_op(struct kvm_vcpu *vcpu,
5428 struct kvm_s390_mem_op *mop)
5429 {
5430 int r, srcu_idx;
5431
5432 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5433
5434 switch (mop->op) {
5435 case KVM_S390_MEMOP_LOGICAL_READ:
5436 case KVM_S390_MEMOP_LOGICAL_WRITE:
5437 r = kvm_s390_vcpu_mem_op(vcpu, mop);
5438 break;
5439 case KVM_S390_MEMOP_SIDA_READ:
5440 case KVM_S390_MEMOP_SIDA_WRITE:
5441 /* we are locked against sida going away by the vcpu->mutex */
5442 r = kvm_s390_vcpu_sida_op(vcpu, mop);
5443 break;
5444 default:
5445 r = -EINVAL;
5446 }
5447
5448 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
5449 return r;
5450 }
5451
5452 long kvm_arch_vcpu_async_ioctl(struct file *filp,
5453 unsigned int ioctl, unsigned long arg)
5454 {
5455 struct kvm_vcpu *vcpu = filp->private_data;
5456 void __user *argp = (void __user *)arg;
5457 int rc;
5458
5459 switch (ioctl) {
5460 case KVM_S390_IRQ: {
5461 struct kvm_s390_irq s390irq;
5462
5463 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
5464 return -EFAULT;
5465 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5466 break;
5467 }
5468 case KVM_S390_INTERRUPT: {
5469 struct kvm_s390_interrupt s390int;
5470 struct kvm_s390_irq s390irq = {};
5471
5472 if (copy_from_user(&s390int, argp, sizeof(s390int)))
5473 return -EFAULT;
5474 if (s390int_to_s390irq(&s390int, &s390irq))
5475 return -EINVAL;
5476 rc = kvm_s390_inject_vcpu(vcpu, &s390irq);
5477 break;
5478 }
5479 default:
5480 rc = -ENOIOCTLCMD;
5481 break;
5482 }
5483
5484 /*
5485 * To simplify single stepping of userspace-emulated instructions,
5486 * KVM_EXIT_S390_SIEIC exit sets KVM_GUESTDBG_EXIT_PENDING (see
5487 * should_handle_per_ifetch()). However, if userspace emulation injects
5488 * an interrupt, it needs to be cleared, so that KVM_EXIT_DEBUG happens
5489 * after (and not before) the interrupt delivery.
5490 */
5491 if (!rc)
5492 vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING;
5493
5494 return rc;
5495 }
5496
5497 static int kvm_s390_handle_pv_vcpu_dump(struct kvm_vcpu *vcpu,
5498 struct kvm_pv_cmd *cmd)
5499 {
5500 struct kvm_s390_pv_dmp dmp;
5501 void *data;
5502 int ret;
5503
5504 /* Dump initialization is a prerequisite */
5505 if (!vcpu->kvm->arch.pv.dumping)
5506 return -EINVAL;
5507
5508 if (copy_from_user(&dmp, (__u8 __user *)cmd->data, sizeof(dmp)))
5509 return -EFAULT;
5510
5511 /* We only handle this subcmd right now */
5512 if (dmp.subcmd != KVM_PV_DUMP_CPU)
5513 return -EINVAL;
5514
5515 /* CPU dump length is the same as create cpu storage donation. */
5516 if (dmp.buff_len != uv_info.guest_cpu_stor_len)
5517 return -EINVAL;
5518
5519 data = kvzalloc(uv_info.guest_cpu_stor_len, GFP_KERNEL);
5520 if (!data)
5521 return -ENOMEM;
5522
5523 ret = kvm_s390_pv_dump_cpu(vcpu, data, &cmd->rc, &cmd->rrc);
5524
5525 VCPU_EVENT(vcpu, 3, "PROTVIRT DUMP CPU %d rc %x rrc %x",
5526 vcpu->vcpu_id, cmd->rc, cmd->rrc);
5527
5528 if (ret)
5529 ret = -EINVAL;
5530
5531 /* On success copy over the dump data */
5532 if (!ret && copy_to_user((__u8 __user *)dmp.buff_addr, data, uv_info.guest_cpu_stor_len))
5533 ret = -EFAULT;
5534
5535 kvfree(data);
5536 return ret;
5537 }
5538
5539 long kvm_arch_vcpu_ioctl(struct file *filp,
5540 unsigned int ioctl, unsigned long arg)
5541 {
5542 struct kvm_vcpu *vcpu = filp->private_data;
5543 void __user *argp = (void __user *)arg;
5544 int idx;
5545 long r;
5546 u16 rc, rrc;
5547
5548 vcpu_load(vcpu);
5549
5550 switch (ioctl) {
5551 case KVM_S390_STORE_STATUS:
5552 idx = srcu_read_lock(&vcpu->kvm->srcu);
5553 r = kvm_s390_store_status_unloaded(vcpu, arg);
5554 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5555 break;
5556 case KVM_S390_SET_INITIAL_PSW: {
5557 psw_t psw;
5558
5559 r = -EFAULT;
5560 if (copy_from_user(&psw, argp, sizeof(psw)))
5561 break;
5562 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
5563 break;
5564 }
5565 case KVM_S390_CLEAR_RESET:
5566 r = 0;
5567 kvm_arch_vcpu_ioctl_clear_reset(vcpu);
5568 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5569 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5570 UVC_CMD_CPU_RESET_CLEAR, &rc, &rrc);
5571 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET CLEAR VCPU: rc %x rrc %x",
5572 rc, rrc);
5573 }
5574 break;
5575 case KVM_S390_INITIAL_RESET:
5576 r = 0;
5577 kvm_arch_vcpu_ioctl_initial_reset(vcpu);
5578 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5579 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5580 UVC_CMD_CPU_RESET_INITIAL,
5581 &rc, &rrc);
5582 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET INITIAL VCPU: rc %x rrc %x",
5583 rc, rrc);
5584 }
5585 break;
5586 case KVM_S390_NORMAL_RESET:
5587 r = 0;
5588 kvm_arch_vcpu_ioctl_normal_reset(vcpu);
5589 if (kvm_s390_pv_cpu_is_protected(vcpu)) {
5590 r = uv_cmd_nodata(kvm_s390_pv_cpu_get_handle(vcpu),
5591 UVC_CMD_CPU_RESET, &rc, &rrc);
5592 VCPU_EVENT(vcpu, 3, "PROTVIRT RESET NORMAL VCPU: rc %x rrc %x",
5593 rc, rrc);
5594 }
5595 break;
5596 case KVM_SET_ONE_REG:
5597 case KVM_GET_ONE_REG: {
5598 struct kvm_one_reg reg;
5599 r = -EINVAL;
5600 if (kvm_s390_pv_cpu_is_protected(vcpu))
5601 break;
5602 r = -EFAULT;
5603 if (copy_from_user(&reg, argp, sizeof(reg)))
5604 break;
5605 if (ioctl == KVM_SET_ONE_REG)
5606 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
5607 else
5608 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
5609 break;
5610 }
5611 #ifdef CONFIG_KVM_S390_UCONTROL
5612 case KVM_S390_UCAS_MAP: {
5613 struct kvm_s390_ucas_mapping ucasmap;
5614
5615 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5616 r = -EFAULT;
5617 break;
5618 }
5619
5620 if (!kvm_is_ucontrol(vcpu->kvm)) {
5621 r = -EINVAL;
5622 break;
5623 }
5624
5625 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
5626 ucasmap.vcpu_addr, ucasmap.length);
5627 break;
5628 }
5629 case KVM_S390_UCAS_UNMAP: {
5630 struct kvm_s390_ucas_mapping ucasmap;
5631
5632 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
5633 r = -EFAULT;
5634 break;
5635 }
5636
5637 if (!kvm_is_ucontrol(vcpu->kvm)) {
5638 r = -EINVAL;
5639 break;
5640 }
5641
5642 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
5643 ucasmap.length);
5644 break;
5645 }
5646 #endif
5647 case KVM_S390_VCPU_FAULT: {
5648 r = gmap_fault(vcpu->arch.gmap, arg, 0);
5649 break;
5650 }
5651 case KVM_ENABLE_CAP:
5652 {
5653 struct kvm_enable_cap cap;
5654 r = -EFAULT;
5655 if (copy_from_user(&cap, argp, sizeof(cap)))
5656 break;
5657 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5658 break;
5659 }
5660 case KVM_S390_MEM_OP: {
5661 struct kvm_s390_mem_op mem_op;
5662
5663 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
5664 r = kvm_s390_vcpu_memsida_op(vcpu, &mem_op);
5665 else
5666 r = -EFAULT;
5667 break;
5668 }
5669 case KVM_S390_SET_IRQ_STATE: {
5670 struct kvm_s390_irq_state irq_state;
5671
5672 r = -EFAULT;
5673 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5674 break;
5675 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
5676 irq_state.len == 0 ||
5677 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
5678 r = -EINVAL;
5679 break;
5680 }
5681 /* do not use irq_state.flags, it will break old QEMUs */
5682 r = kvm_s390_set_irq_state(vcpu,
5683 (void __user *) irq_state.buf,
5684 irq_state.len);
5685 break;
5686 }
5687 case KVM_S390_GET_IRQ_STATE: {
5688 struct kvm_s390_irq_state irq_state;
5689
5690 r = -EFAULT;
5691 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
5692 break;
5693 if (irq_state.len == 0) {
5694 r = -EINVAL;
5695 break;
5696 }
5697 /* do not use irq_state.flags, it will break old QEMUs */
5698 r = kvm_s390_get_irq_state(vcpu,
5699 (__u8 __user *) irq_state.buf,
5700 irq_state.len);
5701 break;
5702 }
5703 case KVM_S390_PV_CPU_COMMAND: {
5704 struct kvm_pv_cmd cmd;
5705
5706 r = -EINVAL;
5707 if (!is_prot_virt_host())
5708 break;
5709
5710 r = -EFAULT;
5711 if (copy_from_user(&cmd, argp, sizeof(cmd)))
5712 break;
5713
5714 r = -EINVAL;
5715 if (cmd.flags)
5716 break;
5717
5718 /* We only handle this cmd right now */
5719 if (cmd.cmd != KVM_PV_DUMP)
5720 break;
5721
5722 r = kvm_s390_handle_pv_vcpu_dump(vcpu, &cmd);
5723
5724 /* Always copy over UV rc / rrc data */
5725 if (copy_to_user((__u8 __user *)argp, &cmd.rc,
5726 sizeof(cmd.rc) + sizeof(cmd.rrc)))
5727 r = -EFAULT;
5728 break;
5729 }
5730 default:
5731 r = -ENOTTY;
5732 }
5733
5734 vcpu_put(vcpu);
5735 return r;
5736 }
5737
5738 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5739 {
5740 #ifdef CONFIG_KVM_S390_UCONTROL
5741 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
5742 && (kvm_is_ucontrol(vcpu->kvm))) {
5743 vmf->page = virt_to_page(vcpu->arch.sie_block);
5744 get_page(vmf->page);
5745 return 0;
5746 }
5747 #endif
5748 return VM_FAULT_SIGBUS;
5749 }
5750
5751 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
5752 {
5753 return true;
5754 }
5755
5756 /* Section: memory related */
5757 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5758 const struct kvm_memory_slot *old,
5759 struct kvm_memory_slot *new,
5760 enum kvm_mr_change change)
5761 {
5762 gpa_t size;
5763
5764 /* When we are protected, we should not change the memory slots */
5765 if (kvm_s390_pv_get_handle(kvm))
5766 return -EINVAL;
5767
5768 if (change != KVM_MR_DELETE && change != KVM_MR_FLAGS_ONLY) {
5769 /*
5770 * A few sanity checks. We can have memory slots which have to be
5771 * located/ended at a segment boundary (1MB). The memory in userland is
5772 * ok to be fragmented into various different vmas. It is okay to mmap()
5773 * and munmap() stuff in this slot after doing this call at any time
5774 */
5775
5776 if (new->userspace_addr & 0xffffful)
5777 return -EINVAL;
5778
5779 size = new->npages * PAGE_SIZE;
5780 if (size & 0xffffful)
5781 return -EINVAL;
5782
5783 if ((new->base_gfn * PAGE_SIZE) + size > kvm->arch.mem_limit)
5784 return -EINVAL;
5785 }
5786
5787 if (!kvm->arch.migration_mode)
5788 return 0;
5789
5790 /*
5791 * Turn off migration mode when:
5792 * - userspace creates a new memslot with dirty logging off,
5793 * - userspace modifies an existing memslot (MOVE or FLAGS_ONLY) and
5794 * dirty logging is turned off.
5795 * Migration mode expects dirty page logging being enabled to store
5796 * its dirty bitmap.
5797 */
5798 if (change != KVM_MR_DELETE &&
5799 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
5800 WARN(kvm_s390_vm_stop_migration(kvm),
5801 "Failed to stop migration mode");
5802
5803 return 0;
5804 }
5805
5806 void kvm_arch_commit_memory_region(struct kvm *kvm,
5807 struct kvm_memory_slot *old,
5808 const struct kvm_memory_slot *new,
5809 enum kvm_mr_change change)
5810 {
5811 int rc = 0;
5812
5813 switch (change) {
5814 case KVM_MR_DELETE:
5815 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5816 old->npages * PAGE_SIZE);
5817 break;
5818 case KVM_MR_MOVE:
5819 rc = gmap_unmap_segment(kvm->arch.gmap, old->base_gfn * PAGE_SIZE,
5820 old->npages * PAGE_SIZE);
5821 if (rc)
5822 break;
5823 fallthrough;
5824 case KVM_MR_CREATE:
5825 rc = gmap_map_segment(kvm->arch.gmap, new->userspace_addr,
5826 new->base_gfn * PAGE_SIZE,
5827 new->npages * PAGE_SIZE);
5828 break;
5829 case KVM_MR_FLAGS_ONLY:
5830 break;
5831 default:
5832 WARN(1, "Unknown KVM MR CHANGE: %d\n", change);
5833 }
5834 if (rc)
5835 pr_warn("failed to commit memory region\n");
5836 return;
5837 }
5838
5839 static inline unsigned long nonhyp_mask(int i)
5840 {
5841 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
5842
5843 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
5844 }
5845
5846 static int __init kvm_s390_init(void)
5847 {
5848 int i, r;
5849
5850 if (!sclp.has_sief2) {
5851 pr_info("SIE is not available\n");
5852 return -ENODEV;
5853 }
5854
5855 if (nested && hpage) {
5856 pr_info("A KVM host that supports nesting cannot back its KVM guests with huge pages\n");
5857 return -EINVAL;
5858 }
5859
5860 for (i = 0; i < 16; i++)
5861 kvm_s390_fac_base[i] |=
5862 stfle_fac_list[i] & nonhyp_mask(i);
5863
5864 r = __kvm_s390_init();
5865 if (r)
5866 return r;
5867
5868 r = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
5869 if (r) {
5870 __kvm_s390_exit();
5871 return r;
5872 }
5873 return 0;
5874 }
5875
5876 static void __exit kvm_s390_exit(void)
5877 {
5878 kvm_exit();
5879
5880 __kvm_s390_exit();
5881 }
5882
5883 module_init(kvm_s390_init);
5884 module_exit(kvm_s390_exit);
5885
5886 /*
5887 * Enable autoloading of the kvm module.
5888 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
5889 * since x86 takes a different approach.
5890 */
5891 #include <linux/miscdevice.h>
5892 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5893 MODULE_ALIAS("devname:kvm");