]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/s390/mm/gmap.c
mmap locking API: convert mmap_sem comments
[thirdparty/linux.git] / arch / s390 / mm / gmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * KVM guest address space mapping code
4 *
5 * Copyright IBM Corp. 2007, 2016, 2018
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * David Hildenbrand <david@redhat.com>
8 * Janosch Frank <frankja@linux.vnet.ibm.com>
9 */
10
11 #include <linux/kernel.h>
12 #include <linux/pagewalk.h>
13 #include <linux/swap.h>
14 #include <linux/smp.h>
15 #include <linux/spinlock.h>
16 #include <linux/slab.h>
17 #include <linux/swapops.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20 #include <linux/pgtable.h>
21
22 #include <asm/pgalloc.h>
23 #include <asm/gmap.h>
24 #include <asm/tlb.h>
25
26 #define GMAP_SHADOW_FAKE_TABLE 1ULL
27
28 /**
29 * gmap_alloc - allocate and initialize a guest address space
30 * @mm: pointer to the parent mm_struct
31 * @limit: maximum address of the gmap address space
32 *
33 * Returns a guest address space structure.
34 */
35 static struct gmap *gmap_alloc(unsigned long limit)
36 {
37 struct gmap *gmap;
38 struct page *page;
39 unsigned long *table;
40 unsigned long etype, atype;
41
42 if (limit < _REGION3_SIZE) {
43 limit = _REGION3_SIZE - 1;
44 atype = _ASCE_TYPE_SEGMENT;
45 etype = _SEGMENT_ENTRY_EMPTY;
46 } else if (limit < _REGION2_SIZE) {
47 limit = _REGION2_SIZE - 1;
48 atype = _ASCE_TYPE_REGION3;
49 etype = _REGION3_ENTRY_EMPTY;
50 } else if (limit < _REGION1_SIZE) {
51 limit = _REGION1_SIZE - 1;
52 atype = _ASCE_TYPE_REGION2;
53 etype = _REGION2_ENTRY_EMPTY;
54 } else {
55 limit = -1UL;
56 atype = _ASCE_TYPE_REGION1;
57 etype = _REGION1_ENTRY_EMPTY;
58 }
59 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
60 if (!gmap)
61 goto out;
62 INIT_LIST_HEAD(&gmap->crst_list);
63 INIT_LIST_HEAD(&gmap->children);
64 INIT_LIST_HEAD(&gmap->pt_list);
65 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
66 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
67 INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
68 spin_lock_init(&gmap->guest_table_lock);
69 spin_lock_init(&gmap->shadow_lock);
70 refcount_set(&gmap->ref_count, 1);
71 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
72 if (!page)
73 goto out_free;
74 page->index = 0;
75 list_add(&page->lru, &gmap->crst_list);
76 table = (unsigned long *) page_to_phys(page);
77 crst_table_init(table, etype);
78 gmap->table = table;
79 gmap->asce = atype | _ASCE_TABLE_LENGTH |
80 _ASCE_USER_BITS | __pa(table);
81 gmap->asce_end = limit;
82 return gmap;
83
84 out_free:
85 kfree(gmap);
86 out:
87 return NULL;
88 }
89
90 /**
91 * gmap_create - create a guest address space
92 * @mm: pointer to the parent mm_struct
93 * @limit: maximum size of the gmap address space
94 *
95 * Returns a guest address space structure.
96 */
97 struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
98 {
99 struct gmap *gmap;
100 unsigned long gmap_asce;
101
102 gmap = gmap_alloc(limit);
103 if (!gmap)
104 return NULL;
105 gmap->mm = mm;
106 spin_lock(&mm->context.lock);
107 list_add_rcu(&gmap->list, &mm->context.gmap_list);
108 if (list_is_singular(&mm->context.gmap_list))
109 gmap_asce = gmap->asce;
110 else
111 gmap_asce = -1UL;
112 WRITE_ONCE(mm->context.gmap_asce, gmap_asce);
113 spin_unlock(&mm->context.lock);
114 return gmap;
115 }
116 EXPORT_SYMBOL_GPL(gmap_create);
117
118 static void gmap_flush_tlb(struct gmap *gmap)
119 {
120 if (MACHINE_HAS_IDTE)
121 __tlb_flush_idte(gmap->asce);
122 else
123 __tlb_flush_global();
124 }
125
126 static void gmap_radix_tree_free(struct radix_tree_root *root)
127 {
128 struct radix_tree_iter iter;
129 unsigned long indices[16];
130 unsigned long index;
131 void __rcu **slot;
132 int i, nr;
133
134 /* A radix tree is freed by deleting all of its entries */
135 index = 0;
136 do {
137 nr = 0;
138 radix_tree_for_each_slot(slot, root, &iter, index) {
139 indices[nr] = iter.index;
140 if (++nr == 16)
141 break;
142 }
143 for (i = 0; i < nr; i++) {
144 index = indices[i];
145 radix_tree_delete(root, index);
146 }
147 } while (nr > 0);
148 }
149
150 static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
151 {
152 struct gmap_rmap *rmap, *rnext, *head;
153 struct radix_tree_iter iter;
154 unsigned long indices[16];
155 unsigned long index;
156 void __rcu **slot;
157 int i, nr;
158
159 /* A radix tree is freed by deleting all of its entries */
160 index = 0;
161 do {
162 nr = 0;
163 radix_tree_for_each_slot(slot, root, &iter, index) {
164 indices[nr] = iter.index;
165 if (++nr == 16)
166 break;
167 }
168 for (i = 0; i < nr; i++) {
169 index = indices[i];
170 head = radix_tree_delete(root, index);
171 gmap_for_each_rmap_safe(rmap, rnext, head)
172 kfree(rmap);
173 }
174 } while (nr > 0);
175 }
176
177 /**
178 * gmap_free - free a guest address space
179 * @gmap: pointer to the guest address space structure
180 *
181 * No locks required. There are no references to this gmap anymore.
182 */
183 static void gmap_free(struct gmap *gmap)
184 {
185 struct page *page, *next;
186
187 /* Flush tlb of all gmaps (if not already done for shadows) */
188 if (!(gmap_is_shadow(gmap) && gmap->removed))
189 gmap_flush_tlb(gmap);
190 /* Free all segment & region tables. */
191 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
192 __free_pages(page, CRST_ALLOC_ORDER);
193 gmap_radix_tree_free(&gmap->guest_to_host);
194 gmap_radix_tree_free(&gmap->host_to_guest);
195
196 /* Free additional data for a shadow gmap */
197 if (gmap_is_shadow(gmap)) {
198 /* Free all page tables. */
199 list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
200 page_table_free_pgste(page);
201 gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
202 /* Release reference to the parent */
203 gmap_put(gmap->parent);
204 }
205
206 kfree(gmap);
207 }
208
209 /**
210 * gmap_get - increase reference counter for guest address space
211 * @gmap: pointer to the guest address space structure
212 *
213 * Returns the gmap pointer
214 */
215 struct gmap *gmap_get(struct gmap *gmap)
216 {
217 refcount_inc(&gmap->ref_count);
218 return gmap;
219 }
220 EXPORT_SYMBOL_GPL(gmap_get);
221
222 /**
223 * gmap_put - decrease reference counter for guest address space
224 * @gmap: pointer to the guest address space structure
225 *
226 * If the reference counter reaches zero the guest address space is freed.
227 */
228 void gmap_put(struct gmap *gmap)
229 {
230 if (refcount_dec_and_test(&gmap->ref_count))
231 gmap_free(gmap);
232 }
233 EXPORT_SYMBOL_GPL(gmap_put);
234
235 /**
236 * gmap_remove - remove a guest address space but do not free it yet
237 * @gmap: pointer to the guest address space structure
238 */
239 void gmap_remove(struct gmap *gmap)
240 {
241 struct gmap *sg, *next;
242 unsigned long gmap_asce;
243
244 /* Remove all shadow gmaps linked to this gmap */
245 if (!list_empty(&gmap->children)) {
246 spin_lock(&gmap->shadow_lock);
247 list_for_each_entry_safe(sg, next, &gmap->children, list) {
248 list_del(&sg->list);
249 gmap_put(sg);
250 }
251 spin_unlock(&gmap->shadow_lock);
252 }
253 /* Remove gmap from the pre-mm list */
254 spin_lock(&gmap->mm->context.lock);
255 list_del_rcu(&gmap->list);
256 if (list_empty(&gmap->mm->context.gmap_list))
257 gmap_asce = 0;
258 else if (list_is_singular(&gmap->mm->context.gmap_list))
259 gmap_asce = list_first_entry(&gmap->mm->context.gmap_list,
260 struct gmap, list)->asce;
261 else
262 gmap_asce = -1UL;
263 WRITE_ONCE(gmap->mm->context.gmap_asce, gmap_asce);
264 spin_unlock(&gmap->mm->context.lock);
265 synchronize_rcu();
266 /* Put reference */
267 gmap_put(gmap);
268 }
269 EXPORT_SYMBOL_GPL(gmap_remove);
270
271 /**
272 * gmap_enable - switch primary space to the guest address space
273 * @gmap: pointer to the guest address space structure
274 */
275 void gmap_enable(struct gmap *gmap)
276 {
277 S390_lowcore.gmap = (unsigned long) gmap;
278 }
279 EXPORT_SYMBOL_GPL(gmap_enable);
280
281 /**
282 * gmap_disable - switch back to the standard primary address space
283 * @gmap: pointer to the guest address space structure
284 */
285 void gmap_disable(struct gmap *gmap)
286 {
287 S390_lowcore.gmap = 0UL;
288 }
289 EXPORT_SYMBOL_GPL(gmap_disable);
290
291 /**
292 * gmap_get_enabled - get a pointer to the currently enabled gmap
293 *
294 * Returns a pointer to the currently enabled gmap. 0 if none is enabled.
295 */
296 struct gmap *gmap_get_enabled(void)
297 {
298 return (struct gmap *) S390_lowcore.gmap;
299 }
300 EXPORT_SYMBOL_GPL(gmap_get_enabled);
301
302 /*
303 * gmap_alloc_table is assumed to be called with mmap_lock held
304 */
305 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
306 unsigned long init, unsigned long gaddr)
307 {
308 struct page *page;
309 unsigned long *new;
310
311 /* since we dont free the gmap table until gmap_free we can unlock */
312 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
313 if (!page)
314 return -ENOMEM;
315 new = (unsigned long *) page_to_phys(page);
316 crst_table_init(new, init);
317 spin_lock(&gmap->guest_table_lock);
318 if (*table & _REGION_ENTRY_INVALID) {
319 list_add(&page->lru, &gmap->crst_list);
320 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
321 (*table & _REGION_ENTRY_TYPE_MASK);
322 page->index = gaddr;
323 page = NULL;
324 }
325 spin_unlock(&gmap->guest_table_lock);
326 if (page)
327 __free_pages(page, CRST_ALLOC_ORDER);
328 return 0;
329 }
330
331 /**
332 * __gmap_segment_gaddr - find virtual address from segment pointer
333 * @entry: pointer to a segment table entry in the guest address space
334 *
335 * Returns the virtual address in the guest address space for the segment
336 */
337 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
338 {
339 struct page *page;
340 unsigned long offset, mask;
341
342 offset = (unsigned long) entry / sizeof(unsigned long);
343 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
344 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
345 page = virt_to_page((void *)((unsigned long) entry & mask));
346 return page->index + offset;
347 }
348
349 /**
350 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
351 * @gmap: pointer to the guest address space structure
352 * @vmaddr: address in the host process address space
353 *
354 * Returns 1 if a TLB flush is required
355 */
356 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
357 {
358 unsigned long *entry;
359 int flush = 0;
360
361 BUG_ON(gmap_is_shadow(gmap));
362 spin_lock(&gmap->guest_table_lock);
363 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
364 if (entry) {
365 flush = (*entry != _SEGMENT_ENTRY_EMPTY);
366 *entry = _SEGMENT_ENTRY_EMPTY;
367 }
368 spin_unlock(&gmap->guest_table_lock);
369 return flush;
370 }
371
372 /**
373 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
374 * @gmap: pointer to the guest address space structure
375 * @gaddr: address in the guest address space
376 *
377 * Returns 1 if a TLB flush is required
378 */
379 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
380 {
381 unsigned long vmaddr;
382
383 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
384 gaddr >> PMD_SHIFT);
385 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
386 }
387
388 /**
389 * gmap_unmap_segment - unmap segment from the guest address space
390 * @gmap: pointer to the guest address space structure
391 * @to: address in the guest address space
392 * @len: length of the memory area to unmap
393 *
394 * Returns 0 if the unmap succeeded, -EINVAL if not.
395 */
396 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
397 {
398 unsigned long off;
399 int flush;
400
401 BUG_ON(gmap_is_shadow(gmap));
402 if ((to | len) & (PMD_SIZE - 1))
403 return -EINVAL;
404 if (len == 0 || to + len < to)
405 return -EINVAL;
406
407 flush = 0;
408 mmap_write_lock(gmap->mm);
409 for (off = 0; off < len; off += PMD_SIZE)
410 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
411 mmap_write_unlock(gmap->mm);
412 if (flush)
413 gmap_flush_tlb(gmap);
414 return 0;
415 }
416 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
417
418 /**
419 * gmap_map_segment - map a segment to the guest address space
420 * @gmap: pointer to the guest address space structure
421 * @from: source address in the parent address space
422 * @to: target address in the guest address space
423 * @len: length of the memory area to map
424 *
425 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
426 */
427 int gmap_map_segment(struct gmap *gmap, unsigned long from,
428 unsigned long to, unsigned long len)
429 {
430 unsigned long off;
431 int flush;
432
433 BUG_ON(gmap_is_shadow(gmap));
434 if ((from | to | len) & (PMD_SIZE - 1))
435 return -EINVAL;
436 if (len == 0 || from + len < from || to + len < to ||
437 from + len - 1 > TASK_SIZE_MAX || to + len - 1 > gmap->asce_end)
438 return -EINVAL;
439
440 flush = 0;
441 mmap_write_lock(gmap->mm);
442 for (off = 0; off < len; off += PMD_SIZE) {
443 /* Remove old translation */
444 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
445 /* Store new translation */
446 if (radix_tree_insert(&gmap->guest_to_host,
447 (to + off) >> PMD_SHIFT,
448 (void *) from + off))
449 break;
450 }
451 mmap_write_unlock(gmap->mm);
452 if (flush)
453 gmap_flush_tlb(gmap);
454 if (off >= len)
455 return 0;
456 gmap_unmap_segment(gmap, to, len);
457 return -ENOMEM;
458 }
459 EXPORT_SYMBOL_GPL(gmap_map_segment);
460
461 /**
462 * __gmap_translate - translate a guest address to a user space address
463 * @gmap: pointer to guest mapping meta data structure
464 * @gaddr: guest address
465 *
466 * Returns user space address which corresponds to the guest address or
467 * -EFAULT if no such mapping exists.
468 * This function does not establish potentially missing page table entries.
469 * The mmap_lock of the mm that belongs to the address space must be held
470 * when this function gets called.
471 *
472 * Note: Can also be called for shadow gmaps.
473 */
474 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
475 {
476 unsigned long vmaddr;
477
478 vmaddr = (unsigned long)
479 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
480 /* Note: guest_to_host is empty for a shadow gmap */
481 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
482 }
483 EXPORT_SYMBOL_GPL(__gmap_translate);
484
485 /**
486 * gmap_translate - translate a guest address to a user space address
487 * @gmap: pointer to guest mapping meta data structure
488 * @gaddr: guest address
489 *
490 * Returns user space address which corresponds to the guest address or
491 * -EFAULT if no such mapping exists.
492 * This function does not establish potentially missing page table entries.
493 */
494 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
495 {
496 unsigned long rc;
497
498 mmap_read_lock(gmap->mm);
499 rc = __gmap_translate(gmap, gaddr);
500 mmap_read_unlock(gmap->mm);
501 return rc;
502 }
503 EXPORT_SYMBOL_GPL(gmap_translate);
504
505 /**
506 * gmap_unlink - disconnect a page table from the gmap shadow tables
507 * @gmap: pointer to guest mapping meta data structure
508 * @table: pointer to the host page table
509 * @vmaddr: vm address associated with the host page table
510 */
511 void gmap_unlink(struct mm_struct *mm, unsigned long *table,
512 unsigned long vmaddr)
513 {
514 struct gmap *gmap;
515 int flush;
516
517 rcu_read_lock();
518 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
519 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
520 if (flush)
521 gmap_flush_tlb(gmap);
522 }
523 rcu_read_unlock();
524 }
525
526 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *old, pmd_t new,
527 unsigned long gaddr);
528
529 /**
530 * gmap_link - set up shadow page tables to connect a host to a guest address
531 * @gmap: pointer to guest mapping meta data structure
532 * @gaddr: guest address
533 * @vmaddr: vm address
534 *
535 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
536 * if the vm address is already mapped to a different guest segment.
537 * The mmap_lock of the mm that belongs to the address space must be held
538 * when this function gets called.
539 */
540 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
541 {
542 struct mm_struct *mm;
543 unsigned long *table;
544 spinlock_t *ptl;
545 pgd_t *pgd;
546 p4d_t *p4d;
547 pud_t *pud;
548 pmd_t *pmd;
549 u64 unprot;
550 int rc;
551
552 BUG_ON(gmap_is_shadow(gmap));
553 /* Create higher level tables in the gmap page table */
554 table = gmap->table;
555 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
556 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
557 if ((*table & _REGION_ENTRY_INVALID) &&
558 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
559 gaddr & _REGION1_MASK))
560 return -ENOMEM;
561 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
562 }
563 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
564 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
565 if ((*table & _REGION_ENTRY_INVALID) &&
566 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
567 gaddr & _REGION2_MASK))
568 return -ENOMEM;
569 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
570 }
571 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
572 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
573 if ((*table & _REGION_ENTRY_INVALID) &&
574 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
575 gaddr & _REGION3_MASK))
576 return -ENOMEM;
577 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
578 }
579 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
580 /* Walk the parent mm page table */
581 mm = gmap->mm;
582 pgd = pgd_offset(mm, vmaddr);
583 VM_BUG_ON(pgd_none(*pgd));
584 p4d = p4d_offset(pgd, vmaddr);
585 VM_BUG_ON(p4d_none(*p4d));
586 pud = pud_offset(p4d, vmaddr);
587 VM_BUG_ON(pud_none(*pud));
588 /* large puds cannot yet be handled */
589 if (pud_large(*pud))
590 return -EFAULT;
591 pmd = pmd_offset(pud, vmaddr);
592 VM_BUG_ON(pmd_none(*pmd));
593 /* Are we allowed to use huge pages? */
594 if (pmd_large(*pmd) && !gmap->mm->context.allow_gmap_hpage_1m)
595 return -EFAULT;
596 /* Link gmap segment table entry location to page table. */
597 rc = radix_tree_preload(GFP_KERNEL);
598 if (rc)
599 return rc;
600 ptl = pmd_lock(mm, pmd);
601 spin_lock(&gmap->guest_table_lock);
602 if (*table == _SEGMENT_ENTRY_EMPTY) {
603 rc = radix_tree_insert(&gmap->host_to_guest,
604 vmaddr >> PMD_SHIFT, table);
605 if (!rc) {
606 if (pmd_large(*pmd)) {
607 *table = (pmd_val(*pmd) &
608 _SEGMENT_ENTRY_HARDWARE_BITS_LARGE)
609 | _SEGMENT_ENTRY_GMAP_UC;
610 } else
611 *table = pmd_val(*pmd) &
612 _SEGMENT_ENTRY_HARDWARE_BITS;
613 }
614 } else if (*table & _SEGMENT_ENTRY_PROTECT &&
615 !(pmd_val(*pmd) & _SEGMENT_ENTRY_PROTECT)) {
616 unprot = (u64)*table;
617 unprot &= ~_SEGMENT_ENTRY_PROTECT;
618 unprot |= _SEGMENT_ENTRY_GMAP_UC;
619 gmap_pmdp_xchg(gmap, (pmd_t *)table, __pmd(unprot), gaddr);
620 }
621 spin_unlock(&gmap->guest_table_lock);
622 spin_unlock(ptl);
623 radix_tree_preload_end();
624 return rc;
625 }
626
627 /**
628 * gmap_fault - resolve a fault on a guest address
629 * @gmap: pointer to guest mapping meta data structure
630 * @gaddr: guest address
631 * @fault_flags: flags to pass down to handle_mm_fault()
632 *
633 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
634 * if the vm address is already mapped to a different guest segment.
635 */
636 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
637 unsigned int fault_flags)
638 {
639 unsigned long vmaddr;
640 int rc;
641 bool unlocked;
642
643 mmap_read_lock(gmap->mm);
644
645 retry:
646 unlocked = false;
647 vmaddr = __gmap_translate(gmap, gaddr);
648 if (IS_ERR_VALUE(vmaddr)) {
649 rc = vmaddr;
650 goto out_up;
651 }
652 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
653 &unlocked)) {
654 rc = -EFAULT;
655 goto out_up;
656 }
657 /*
658 * In the case that fixup_user_fault unlocked the mmap_lock during
659 * faultin redo __gmap_translate to not race with a map/unmap_segment.
660 */
661 if (unlocked)
662 goto retry;
663
664 rc = __gmap_link(gmap, gaddr, vmaddr);
665 out_up:
666 mmap_read_unlock(gmap->mm);
667 return rc;
668 }
669 EXPORT_SYMBOL_GPL(gmap_fault);
670
671 /*
672 * this function is assumed to be called with mmap_lock held
673 */
674 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
675 {
676 unsigned long vmaddr;
677 spinlock_t *ptl;
678 pte_t *ptep;
679
680 /* Find the vm address for the guest address */
681 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
682 gaddr >> PMD_SHIFT);
683 if (vmaddr) {
684 vmaddr |= gaddr & ~PMD_MASK;
685 /* Get pointer to the page table entry */
686 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
687 if (likely(ptep))
688 ptep_zap_unused(gmap->mm, vmaddr, ptep, 0);
689 pte_unmap_unlock(ptep, ptl);
690 }
691 }
692 EXPORT_SYMBOL_GPL(__gmap_zap);
693
694 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
695 {
696 unsigned long gaddr, vmaddr, size;
697 struct vm_area_struct *vma;
698
699 mmap_read_lock(gmap->mm);
700 for (gaddr = from; gaddr < to;
701 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
702 /* Find the vm address for the guest address */
703 vmaddr = (unsigned long)
704 radix_tree_lookup(&gmap->guest_to_host,
705 gaddr >> PMD_SHIFT);
706 if (!vmaddr)
707 continue;
708 vmaddr |= gaddr & ~PMD_MASK;
709 /* Find vma in the parent mm */
710 vma = find_vma(gmap->mm, vmaddr);
711 if (!vma)
712 continue;
713 /*
714 * We do not discard pages that are backed by
715 * hugetlbfs, so we don't have to refault them.
716 */
717 if (is_vm_hugetlb_page(vma))
718 continue;
719 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
720 zap_page_range(vma, vmaddr, size);
721 }
722 mmap_read_unlock(gmap->mm);
723 }
724 EXPORT_SYMBOL_GPL(gmap_discard);
725
726 static LIST_HEAD(gmap_notifier_list);
727 static DEFINE_SPINLOCK(gmap_notifier_lock);
728
729 /**
730 * gmap_register_pte_notifier - register a pte invalidation callback
731 * @nb: pointer to the gmap notifier block
732 */
733 void gmap_register_pte_notifier(struct gmap_notifier *nb)
734 {
735 spin_lock(&gmap_notifier_lock);
736 list_add_rcu(&nb->list, &gmap_notifier_list);
737 spin_unlock(&gmap_notifier_lock);
738 }
739 EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
740
741 /**
742 * gmap_unregister_pte_notifier - remove a pte invalidation callback
743 * @nb: pointer to the gmap notifier block
744 */
745 void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
746 {
747 spin_lock(&gmap_notifier_lock);
748 list_del_rcu(&nb->list);
749 spin_unlock(&gmap_notifier_lock);
750 synchronize_rcu();
751 }
752 EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
753
754 /**
755 * gmap_call_notifier - call all registered invalidation callbacks
756 * @gmap: pointer to guest mapping meta data structure
757 * @start: start virtual address in the guest address space
758 * @end: end virtual address in the guest address space
759 */
760 static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
761 unsigned long end)
762 {
763 struct gmap_notifier *nb;
764
765 list_for_each_entry(nb, &gmap_notifier_list, list)
766 nb->notifier_call(gmap, start, end);
767 }
768
769 /**
770 * gmap_table_walk - walk the gmap page tables
771 * @gmap: pointer to guest mapping meta data structure
772 * @gaddr: virtual address in the guest address space
773 * @level: page table level to stop at
774 *
775 * Returns a table entry pointer for the given guest address and @level
776 * @level=0 : returns a pointer to a page table table entry (or NULL)
777 * @level=1 : returns a pointer to a segment table entry (or NULL)
778 * @level=2 : returns a pointer to a region-3 table entry (or NULL)
779 * @level=3 : returns a pointer to a region-2 table entry (or NULL)
780 * @level=4 : returns a pointer to a region-1 table entry (or NULL)
781 *
782 * Returns NULL if the gmap page tables could not be walked to the
783 * requested level.
784 *
785 * Note: Can also be called for shadow gmaps.
786 */
787 static inline unsigned long *gmap_table_walk(struct gmap *gmap,
788 unsigned long gaddr, int level)
789 {
790 const int asce_type = gmap->asce & _ASCE_TYPE_MASK;
791 unsigned long *table = gmap->table;
792
793 if (gmap_is_shadow(gmap) && gmap->removed)
794 return NULL;
795
796 if (WARN_ON_ONCE(level > (asce_type >> 2) + 1))
797 return NULL;
798
799 if (asce_type != _ASCE_TYPE_REGION1 &&
800 gaddr & (-1UL << (31 + (asce_type >> 2) * 11)))
801 return NULL;
802
803 switch (asce_type) {
804 case _ASCE_TYPE_REGION1:
805 table += (gaddr & _REGION1_INDEX) >> _REGION1_SHIFT;
806 if (level == 4)
807 break;
808 if (*table & _REGION_ENTRY_INVALID)
809 return NULL;
810 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
811 fallthrough;
812 case _ASCE_TYPE_REGION2:
813 table += (gaddr & _REGION2_INDEX) >> _REGION2_SHIFT;
814 if (level == 3)
815 break;
816 if (*table & _REGION_ENTRY_INVALID)
817 return NULL;
818 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
819 fallthrough;
820 case _ASCE_TYPE_REGION3:
821 table += (gaddr & _REGION3_INDEX) >> _REGION3_SHIFT;
822 if (level == 2)
823 break;
824 if (*table & _REGION_ENTRY_INVALID)
825 return NULL;
826 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
827 fallthrough;
828 case _ASCE_TYPE_SEGMENT:
829 table += (gaddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
830 if (level == 1)
831 break;
832 if (*table & _REGION_ENTRY_INVALID)
833 return NULL;
834 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
835 table += (gaddr & _PAGE_INDEX) >> _PAGE_SHIFT;
836 }
837 return table;
838 }
839
840 /**
841 * gmap_pte_op_walk - walk the gmap page table, get the page table lock
842 * and return the pte pointer
843 * @gmap: pointer to guest mapping meta data structure
844 * @gaddr: virtual address in the guest address space
845 * @ptl: pointer to the spinlock pointer
846 *
847 * Returns a pointer to the locked pte for a guest address, or NULL
848 */
849 static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
850 spinlock_t **ptl)
851 {
852 unsigned long *table;
853
854 BUG_ON(gmap_is_shadow(gmap));
855 /* Walk the gmap page table, lock and get pte pointer */
856 table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
857 if (!table || *table & _SEGMENT_ENTRY_INVALID)
858 return NULL;
859 return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
860 }
861
862 /**
863 * gmap_pte_op_fixup - force a page in and connect the gmap page table
864 * @gmap: pointer to guest mapping meta data structure
865 * @gaddr: virtual address in the guest address space
866 * @vmaddr: address in the host process address space
867 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
868 *
869 * Returns 0 if the caller can retry __gmap_translate (might fail again),
870 * -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
871 * up or connecting the gmap page table.
872 */
873 static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
874 unsigned long vmaddr, int prot)
875 {
876 struct mm_struct *mm = gmap->mm;
877 unsigned int fault_flags;
878 bool unlocked = false;
879
880 BUG_ON(gmap_is_shadow(gmap));
881 fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
882 if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
883 return -EFAULT;
884 if (unlocked)
885 /* lost mmap_lock, caller has to retry __gmap_translate */
886 return 0;
887 /* Connect the page tables */
888 return __gmap_link(gmap, gaddr, vmaddr);
889 }
890
891 /**
892 * gmap_pte_op_end - release the page table lock
893 * @ptl: pointer to the spinlock pointer
894 */
895 static void gmap_pte_op_end(spinlock_t *ptl)
896 {
897 if (ptl)
898 spin_unlock(ptl);
899 }
900
901 /**
902 * gmap_pmd_op_walk - walk the gmap tables, get the guest table lock
903 * and return the pmd pointer
904 * @gmap: pointer to guest mapping meta data structure
905 * @gaddr: virtual address in the guest address space
906 *
907 * Returns a pointer to the pmd for a guest address, or NULL
908 */
909 static inline pmd_t *gmap_pmd_op_walk(struct gmap *gmap, unsigned long gaddr)
910 {
911 pmd_t *pmdp;
912
913 BUG_ON(gmap_is_shadow(gmap));
914 pmdp = (pmd_t *) gmap_table_walk(gmap, gaddr, 1);
915 if (!pmdp)
916 return NULL;
917
918 /* without huge pages, there is no need to take the table lock */
919 if (!gmap->mm->context.allow_gmap_hpage_1m)
920 return pmd_none(*pmdp) ? NULL : pmdp;
921
922 spin_lock(&gmap->guest_table_lock);
923 if (pmd_none(*pmdp)) {
924 spin_unlock(&gmap->guest_table_lock);
925 return NULL;
926 }
927
928 /* 4k page table entries are locked via the pte (pte_alloc_map_lock). */
929 if (!pmd_large(*pmdp))
930 spin_unlock(&gmap->guest_table_lock);
931 return pmdp;
932 }
933
934 /**
935 * gmap_pmd_op_end - release the guest_table_lock if needed
936 * @gmap: pointer to the guest mapping meta data structure
937 * @pmdp: pointer to the pmd
938 */
939 static inline void gmap_pmd_op_end(struct gmap *gmap, pmd_t *pmdp)
940 {
941 if (pmd_large(*pmdp))
942 spin_unlock(&gmap->guest_table_lock);
943 }
944
945 /*
946 * gmap_protect_pmd - remove access rights to memory and set pmd notification bits
947 * @pmdp: pointer to the pmd to be protected
948 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
949 * @bits: notification bits to set
950 *
951 * Returns:
952 * 0 if successfully protected
953 * -EAGAIN if a fixup is needed
954 * -EINVAL if unsupported notifier bits have been specified
955 *
956 * Expected to be called with sg->mm->mmap_lock in read and
957 * guest_table_lock held.
958 */
959 static int gmap_protect_pmd(struct gmap *gmap, unsigned long gaddr,
960 pmd_t *pmdp, int prot, unsigned long bits)
961 {
962 int pmd_i = pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID;
963 int pmd_p = pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT;
964 pmd_t new = *pmdp;
965
966 /* Fixup needed */
967 if ((pmd_i && (prot != PROT_NONE)) || (pmd_p && (prot == PROT_WRITE)))
968 return -EAGAIN;
969
970 if (prot == PROT_NONE && !pmd_i) {
971 pmd_val(new) |= _SEGMENT_ENTRY_INVALID;
972 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
973 }
974
975 if (prot == PROT_READ && !pmd_p) {
976 pmd_val(new) &= ~_SEGMENT_ENTRY_INVALID;
977 pmd_val(new) |= _SEGMENT_ENTRY_PROTECT;
978 gmap_pmdp_xchg(gmap, pmdp, new, gaddr);
979 }
980
981 if (bits & GMAP_NOTIFY_MPROT)
982 pmd_val(*pmdp) |= _SEGMENT_ENTRY_GMAP_IN;
983
984 /* Shadow GMAP protection needs split PMDs */
985 if (bits & GMAP_NOTIFY_SHADOW)
986 return -EINVAL;
987
988 return 0;
989 }
990
991 /*
992 * gmap_protect_pte - remove access rights to memory and set pgste bits
993 * @gmap: pointer to guest mapping meta data structure
994 * @gaddr: virtual address in the guest address space
995 * @pmdp: pointer to the pmd associated with the pte
996 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
997 * @bits: notification bits to set
998 *
999 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1000 * -EAGAIN if a fixup is needed.
1001 *
1002 * Expected to be called with sg->mm->mmap_lock in read
1003 */
1004 static int gmap_protect_pte(struct gmap *gmap, unsigned long gaddr,
1005 pmd_t *pmdp, int prot, unsigned long bits)
1006 {
1007 int rc;
1008 pte_t *ptep;
1009 spinlock_t *ptl = NULL;
1010 unsigned long pbits = 0;
1011
1012 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1013 return -EAGAIN;
1014
1015 ptep = pte_alloc_map_lock(gmap->mm, pmdp, gaddr, &ptl);
1016 if (!ptep)
1017 return -ENOMEM;
1018
1019 pbits |= (bits & GMAP_NOTIFY_MPROT) ? PGSTE_IN_BIT : 0;
1020 pbits |= (bits & GMAP_NOTIFY_SHADOW) ? PGSTE_VSIE_BIT : 0;
1021 /* Protect and unlock. */
1022 rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, pbits);
1023 gmap_pte_op_end(ptl);
1024 return rc;
1025 }
1026
1027 /*
1028 * gmap_protect_range - remove access rights to memory and set pgste bits
1029 * @gmap: pointer to guest mapping meta data structure
1030 * @gaddr: virtual address in the guest address space
1031 * @len: size of area
1032 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1033 * @bits: pgste notification bits to set
1034 *
1035 * Returns 0 if successfully protected, -ENOMEM if out of memory and
1036 * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
1037 *
1038 * Called with sg->mm->mmap_lock in read.
1039 */
1040 static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
1041 unsigned long len, int prot, unsigned long bits)
1042 {
1043 unsigned long vmaddr, dist;
1044 pmd_t *pmdp;
1045 int rc;
1046
1047 BUG_ON(gmap_is_shadow(gmap));
1048 while (len) {
1049 rc = -EAGAIN;
1050 pmdp = gmap_pmd_op_walk(gmap, gaddr);
1051 if (pmdp) {
1052 if (!pmd_large(*pmdp)) {
1053 rc = gmap_protect_pte(gmap, gaddr, pmdp, prot,
1054 bits);
1055 if (!rc) {
1056 len -= PAGE_SIZE;
1057 gaddr += PAGE_SIZE;
1058 }
1059 } else {
1060 rc = gmap_protect_pmd(gmap, gaddr, pmdp, prot,
1061 bits);
1062 if (!rc) {
1063 dist = HPAGE_SIZE - (gaddr & ~HPAGE_MASK);
1064 len = len < dist ? 0 : len - dist;
1065 gaddr = (gaddr & HPAGE_MASK) + HPAGE_SIZE;
1066 }
1067 }
1068 gmap_pmd_op_end(gmap, pmdp);
1069 }
1070 if (rc) {
1071 if (rc == -EINVAL)
1072 return rc;
1073
1074 /* -EAGAIN, fixup of userspace mm and gmap */
1075 vmaddr = __gmap_translate(gmap, gaddr);
1076 if (IS_ERR_VALUE(vmaddr))
1077 return vmaddr;
1078 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
1079 if (rc)
1080 return rc;
1081 }
1082 }
1083 return 0;
1084 }
1085
1086 /**
1087 * gmap_mprotect_notify - change access rights for a range of ptes and
1088 * call the notifier if any pte changes again
1089 * @gmap: pointer to guest mapping meta data structure
1090 * @gaddr: virtual address in the guest address space
1091 * @len: size of area
1092 * @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
1093 *
1094 * Returns 0 if for each page in the given range a gmap mapping exists,
1095 * the new access rights could be set and the notifier could be armed.
1096 * If the gmap mapping is missing for one or more pages -EFAULT is
1097 * returned. If no memory could be allocated -ENOMEM is returned.
1098 * This function establishes missing page table entries.
1099 */
1100 int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
1101 unsigned long len, int prot)
1102 {
1103 int rc;
1104
1105 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
1106 return -EINVAL;
1107 if (!MACHINE_HAS_ESOP && prot == PROT_READ)
1108 return -EINVAL;
1109 mmap_read_lock(gmap->mm);
1110 rc = gmap_protect_range(gmap, gaddr, len, prot, GMAP_NOTIFY_MPROT);
1111 mmap_read_unlock(gmap->mm);
1112 return rc;
1113 }
1114 EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
1115
1116 /**
1117 * gmap_read_table - get an unsigned long value from a guest page table using
1118 * absolute addressing, without marking the page referenced.
1119 * @gmap: pointer to guest mapping meta data structure
1120 * @gaddr: virtual address in the guest address space
1121 * @val: pointer to the unsigned long value to return
1122 *
1123 * Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
1124 * if reading using the virtual address failed. -EINVAL if called on a gmap
1125 * shadow.
1126 *
1127 * Called with gmap->mm->mmap_lock in read.
1128 */
1129 int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
1130 {
1131 unsigned long address, vmaddr;
1132 spinlock_t *ptl;
1133 pte_t *ptep, pte;
1134 int rc;
1135
1136 if (gmap_is_shadow(gmap))
1137 return -EINVAL;
1138
1139 while (1) {
1140 rc = -EAGAIN;
1141 ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
1142 if (ptep) {
1143 pte = *ptep;
1144 if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
1145 address = pte_val(pte) & PAGE_MASK;
1146 address += gaddr & ~PAGE_MASK;
1147 *val = *(unsigned long *) address;
1148 pte_val(*ptep) |= _PAGE_YOUNG;
1149 /* Do *NOT* clear the _PAGE_INVALID bit! */
1150 rc = 0;
1151 }
1152 gmap_pte_op_end(ptl);
1153 }
1154 if (!rc)
1155 break;
1156 vmaddr = __gmap_translate(gmap, gaddr);
1157 if (IS_ERR_VALUE(vmaddr)) {
1158 rc = vmaddr;
1159 break;
1160 }
1161 rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
1162 if (rc)
1163 break;
1164 }
1165 return rc;
1166 }
1167 EXPORT_SYMBOL_GPL(gmap_read_table);
1168
1169 /**
1170 * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
1171 * @sg: pointer to the shadow guest address space structure
1172 * @vmaddr: vm address associated with the rmap
1173 * @rmap: pointer to the rmap structure
1174 *
1175 * Called with the sg->guest_table_lock
1176 */
1177 static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
1178 struct gmap_rmap *rmap)
1179 {
1180 void __rcu **slot;
1181
1182 BUG_ON(!gmap_is_shadow(sg));
1183 slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
1184 if (slot) {
1185 rmap->next = radix_tree_deref_slot_protected(slot,
1186 &sg->guest_table_lock);
1187 radix_tree_replace_slot(&sg->host_to_rmap, slot, rmap);
1188 } else {
1189 rmap->next = NULL;
1190 radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
1191 rmap);
1192 }
1193 }
1194
1195 /**
1196 * gmap_protect_rmap - restrict access rights to memory (RO) and create an rmap
1197 * @sg: pointer to the shadow guest address space structure
1198 * @raddr: rmap address in the shadow gmap
1199 * @paddr: address in the parent guest address space
1200 * @len: length of the memory area to protect
1201 *
1202 * Returns 0 if successfully protected and the rmap was created, -ENOMEM
1203 * if out of memory and -EFAULT if paddr is invalid.
1204 */
1205 static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
1206 unsigned long paddr, unsigned long len)
1207 {
1208 struct gmap *parent;
1209 struct gmap_rmap *rmap;
1210 unsigned long vmaddr;
1211 spinlock_t *ptl;
1212 pte_t *ptep;
1213 int rc;
1214
1215 BUG_ON(!gmap_is_shadow(sg));
1216 parent = sg->parent;
1217 while (len) {
1218 vmaddr = __gmap_translate(parent, paddr);
1219 if (IS_ERR_VALUE(vmaddr))
1220 return vmaddr;
1221 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
1222 if (!rmap)
1223 return -ENOMEM;
1224 rmap->raddr = raddr;
1225 rc = radix_tree_preload(GFP_KERNEL);
1226 if (rc) {
1227 kfree(rmap);
1228 return rc;
1229 }
1230 rc = -EAGAIN;
1231 ptep = gmap_pte_op_walk(parent, paddr, &ptl);
1232 if (ptep) {
1233 spin_lock(&sg->guest_table_lock);
1234 rc = ptep_force_prot(parent->mm, paddr, ptep, PROT_READ,
1235 PGSTE_VSIE_BIT);
1236 if (!rc)
1237 gmap_insert_rmap(sg, vmaddr, rmap);
1238 spin_unlock(&sg->guest_table_lock);
1239 gmap_pte_op_end(ptl);
1240 }
1241 radix_tree_preload_end();
1242 if (rc) {
1243 kfree(rmap);
1244 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, PROT_READ);
1245 if (rc)
1246 return rc;
1247 continue;
1248 }
1249 paddr += PAGE_SIZE;
1250 len -= PAGE_SIZE;
1251 }
1252 return 0;
1253 }
1254
1255 #define _SHADOW_RMAP_MASK 0x7
1256 #define _SHADOW_RMAP_REGION1 0x5
1257 #define _SHADOW_RMAP_REGION2 0x4
1258 #define _SHADOW_RMAP_REGION3 0x3
1259 #define _SHADOW_RMAP_SEGMENT 0x2
1260 #define _SHADOW_RMAP_PGTABLE 0x1
1261
1262 /**
1263 * gmap_idte_one - invalidate a single region or segment table entry
1264 * @asce: region or segment table *origin* + table-type bits
1265 * @vaddr: virtual address to identify the table entry to flush
1266 *
1267 * The invalid bit of a single region or segment table entry is set
1268 * and the associated TLB entries depending on the entry are flushed.
1269 * The table-type of the @asce identifies the portion of the @vaddr
1270 * that is used as the invalidation index.
1271 */
1272 static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
1273 {
1274 asm volatile(
1275 " .insn rrf,0xb98e0000,%0,%1,0,0"
1276 : : "a" (asce), "a" (vaddr) : "cc", "memory");
1277 }
1278
1279 /**
1280 * gmap_unshadow_page - remove a page from a shadow page table
1281 * @sg: pointer to the shadow guest address space structure
1282 * @raddr: rmap address in the shadow guest address space
1283 *
1284 * Called with the sg->guest_table_lock
1285 */
1286 static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
1287 {
1288 unsigned long *table;
1289
1290 BUG_ON(!gmap_is_shadow(sg));
1291 table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
1292 if (!table || *table & _PAGE_INVALID)
1293 return;
1294 gmap_call_notifier(sg, raddr, raddr + _PAGE_SIZE - 1);
1295 ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
1296 }
1297
1298 /**
1299 * __gmap_unshadow_pgt - remove all entries from a shadow page table
1300 * @sg: pointer to the shadow guest address space structure
1301 * @raddr: rmap address in the shadow guest address space
1302 * @pgt: pointer to the start of a shadow page table
1303 *
1304 * Called with the sg->guest_table_lock
1305 */
1306 static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
1307 unsigned long *pgt)
1308 {
1309 int i;
1310
1311 BUG_ON(!gmap_is_shadow(sg));
1312 for (i = 0; i < _PAGE_ENTRIES; i++, raddr += _PAGE_SIZE)
1313 pgt[i] = _PAGE_INVALID;
1314 }
1315
1316 /**
1317 * gmap_unshadow_pgt - remove a shadow page table from a segment entry
1318 * @sg: pointer to the shadow guest address space structure
1319 * @raddr: address in the shadow guest address space
1320 *
1321 * Called with the sg->guest_table_lock
1322 */
1323 static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
1324 {
1325 unsigned long sto, *ste, *pgt;
1326 struct page *page;
1327
1328 BUG_ON(!gmap_is_shadow(sg));
1329 ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
1330 if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
1331 return;
1332 gmap_call_notifier(sg, raddr, raddr + _SEGMENT_SIZE - 1);
1333 sto = (unsigned long) (ste - ((raddr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT));
1334 gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
1335 pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
1336 *ste = _SEGMENT_ENTRY_EMPTY;
1337 __gmap_unshadow_pgt(sg, raddr, pgt);
1338 /* Free page table */
1339 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1340 list_del(&page->lru);
1341 page_table_free_pgste(page);
1342 }
1343
1344 /**
1345 * __gmap_unshadow_sgt - remove all entries from a shadow segment table
1346 * @sg: pointer to the shadow guest address space structure
1347 * @raddr: rmap address in the shadow guest address space
1348 * @sgt: pointer to the start of a shadow segment table
1349 *
1350 * Called with the sg->guest_table_lock
1351 */
1352 static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
1353 unsigned long *sgt)
1354 {
1355 unsigned long *pgt;
1356 struct page *page;
1357 int i;
1358
1359 BUG_ON(!gmap_is_shadow(sg));
1360 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _SEGMENT_SIZE) {
1361 if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
1362 continue;
1363 pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
1364 sgt[i] = _SEGMENT_ENTRY_EMPTY;
1365 __gmap_unshadow_pgt(sg, raddr, pgt);
1366 /* Free page table */
1367 page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
1368 list_del(&page->lru);
1369 page_table_free_pgste(page);
1370 }
1371 }
1372
1373 /**
1374 * gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
1375 * @sg: pointer to the shadow guest address space structure
1376 * @raddr: rmap address in the shadow guest address space
1377 *
1378 * Called with the shadow->guest_table_lock
1379 */
1380 static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
1381 {
1382 unsigned long r3o, *r3e, *sgt;
1383 struct page *page;
1384
1385 BUG_ON(!gmap_is_shadow(sg));
1386 r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
1387 if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
1388 return;
1389 gmap_call_notifier(sg, raddr, raddr + _REGION3_SIZE - 1);
1390 r3o = (unsigned long) (r3e - ((raddr & _REGION3_INDEX) >> _REGION3_SHIFT));
1391 gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
1392 sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
1393 *r3e = _REGION3_ENTRY_EMPTY;
1394 __gmap_unshadow_sgt(sg, raddr, sgt);
1395 /* Free segment table */
1396 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1397 list_del(&page->lru);
1398 __free_pages(page, CRST_ALLOC_ORDER);
1399 }
1400
1401 /**
1402 * __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
1403 * @sg: pointer to the shadow guest address space structure
1404 * @raddr: address in the shadow guest address space
1405 * @r3t: pointer to the start of a shadow region-3 table
1406 *
1407 * Called with the sg->guest_table_lock
1408 */
1409 static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
1410 unsigned long *r3t)
1411 {
1412 unsigned long *sgt;
1413 struct page *page;
1414 int i;
1415
1416 BUG_ON(!gmap_is_shadow(sg));
1417 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION3_SIZE) {
1418 if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
1419 continue;
1420 sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
1421 r3t[i] = _REGION3_ENTRY_EMPTY;
1422 __gmap_unshadow_sgt(sg, raddr, sgt);
1423 /* Free segment table */
1424 page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
1425 list_del(&page->lru);
1426 __free_pages(page, CRST_ALLOC_ORDER);
1427 }
1428 }
1429
1430 /**
1431 * gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
1432 * @sg: pointer to the shadow guest address space structure
1433 * @raddr: rmap address in the shadow guest address space
1434 *
1435 * Called with the sg->guest_table_lock
1436 */
1437 static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
1438 {
1439 unsigned long r2o, *r2e, *r3t;
1440 struct page *page;
1441
1442 BUG_ON(!gmap_is_shadow(sg));
1443 r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
1444 if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
1445 return;
1446 gmap_call_notifier(sg, raddr, raddr + _REGION2_SIZE - 1);
1447 r2o = (unsigned long) (r2e - ((raddr & _REGION2_INDEX) >> _REGION2_SHIFT));
1448 gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
1449 r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
1450 *r2e = _REGION2_ENTRY_EMPTY;
1451 __gmap_unshadow_r3t(sg, raddr, r3t);
1452 /* Free region 3 table */
1453 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1454 list_del(&page->lru);
1455 __free_pages(page, CRST_ALLOC_ORDER);
1456 }
1457
1458 /**
1459 * __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
1460 * @sg: pointer to the shadow guest address space structure
1461 * @raddr: rmap address in the shadow guest address space
1462 * @r2t: pointer to the start of a shadow region-2 table
1463 *
1464 * Called with the sg->guest_table_lock
1465 */
1466 static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
1467 unsigned long *r2t)
1468 {
1469 unsigned long *r3t;
1470 struct page *page;
1471 int i;
1472
1473 BUG_ON(!gmap_is_shadow(sg));
1474 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION2_SIZE) {
1475 if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
1476 continue;
1477 r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
1478 r2t[i] = _REGION2_ENTRY_EMPTY;
1479 __gmap_unshadow_r3t(sg, raddr, r3t);
1480 /* Free region 3 table */
1481 page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
1482 list_del(&page->lru);
1483 __free_pages(page, CRST_ALLOC_ORDER);
1484 }
1485 }
1486
1487 /**
1488 * gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
1489 * @sg: pointer to the shadow guest address space structure
1490 * @raddr: rmap address in the shadow guest address space
1491 *
1492 * Called with the sg->guest_table_lock
1493 */
1494 static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
1495 {
1496 unsigned long r1o, *r1e, *r2t;
1497 struct page *page;
1498
1499 BUG_ON(!gmap_is_shadow(sg));
1500 r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
1501 if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
1502 return;
1503 gmap_call_notifier(sg, raddr, raddr + _REGION1_SIZE - 1);
1504 r1o = (unsigned long) (r1e - ((raddr & _REGION1_INDEX) >> _REGION1_SHIFT));
1505 gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
1506 r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
1507 *r1e = _REGION1_ENTRY_EMPTY;
1508 __gmap_unshadow_r2t(sg, raddr, r2t);
1509 /* Free region 2 table */
1510 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1511 list_del(&page->lru);
1512 __free_pages(page, CRST_ALLOC_ORDER);
1513 }
1514
1515 /**
1516 * __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
1517 * @sg: pointer to the shadow guest address space structure
1518 * @raddr: rmap address in the shadow guest address space
1519 * @r1t: pointer to the start of a shadow region-1 table
1520 *
1521 * Called with the shadow->guest_table_lock
1522 */
1523 static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
1524 unsigned long *r1t)
1525 {
1526 unsigned long asce, *r2t;
1527 struct page *page;
1528 int i;
1529
1530 BUG_ON(!gmap_is_shadow(sg));
1531 asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
1532 for (i = 0; i < _CRST_ENTRIES; i++, raddr += _REGION1_SIZE) {
1533 if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
1534 continue;
1535 r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
1536 __gmap_unshadow_r2t(sg, raddr, r2t);
1537 /* Clear entry and flush translation r1t -> r2t */
1538 gmap_idte_one(asce, raddr);
1539 r1t[i] = _REGION1_ENTRY_EMPTY;
1540 /* Free region 2 table */
1541 page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
1542 list_del(&page->lru);
1543 __free_pages(page, CRST_ALLOC_ORDER);
1544 }
1545 }
1546
1547 /**
1548 * gmap_unshadow - remove a shadow page table completely
1549 * @sg: pointer to the shadow guest address space structure
1550 *
1551 * Called with sg->guest_table_lock
1552 */
1553 static void gmap_unshadow(struct gmap *sg)
1554 {
1555 unsigned long *table;
1556
1557 BUG_ON(!gmap_is_shadow(sg));
1558 if (sg->removed)
1559 return;
1560 sg->removed = 1;
1561 gmap_call_notifier(sg, 0, -1UL);
1562 gmap_flush_tlb(sg);
1563 table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
1564 switch (sg->asce & _ASCE_TYPE_MASK) {
1565 case _ASCE_TYPE_REGION1:
1566 __gmap_unshadow_r1t(sg, 0, table);
1567 break;
1568 case _ASCE_TYPE_REGION2:
1569 __gmap_unshadow_r2t(sg, 0, table);
1570 break;
1571 case _ASCE_TYPE_REGION3:
1572 __gmap_unshadow_r3t(sg, 0, table);
1573 break;
1574 case _ASCE_TYPE_SEGMENT:
1575 __gmap_unshadow_sgt(sg, 0, table);
1576 break;
1577 }
1578 }
1579
1580 /**
1581 * gmap_find_shadow - find a specific asce in the list of shadow tables
1582 * @parent: pointer to the parent gmap
1583 * @asce: ASCE for which the shadow table is created
1584 * @edat_level: edat level to be used for the shadow translation
1585 *
1586 * Returns the pointer to a gmap if a shadow table with the given asce is
1587 * already available, ERR_PTR(-EAGAIN) if another one is just being created,
1588 * otherwise NULL
1589 */
1590 static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
1591 int edat_level)
1592 {
1593 struct gmap *sg;
1594
1595 list_for_each_entry(sg, &parent->children, list) {
1596 if (sg->orig_asce != asce || sg->edat_level != edat_level ||
1597 sg->removed)
1598 continue;
1599 if (!sg->initialized)
1600 return ERR_PTR(-EAGAIN);
1601 refcount_inc(&sg->ref_count);
1602 return sg;
1603 }
1604 return NULL;
1605 }
1606
1607 /**
1608 * gmap_shadow_valid - check if a shadow guest address space matches the
1609 * given properties and is still valid
1610 * @sg: pointer to the shadow guest address space structure
1611 * @asce: ASCE for which the shadow table is requested
1612 * @edat_level: edat level to be used for the shadow translation
1613 *
1614 * Returns 1 if the gmap shadow is still valid and matches the given
1615 * properties, the caller can continue using it. Returns 0 otherwise, the
1616 * caller has to request a new shadow gmap in this case.
1617 *
1618 */
1619 int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
1620 {
1621 if (sg->removed)
1622 return 0;
1623 return sg->orig_asce == asce && sg->edat_level == edat_level;
1624 }
1625 EXPORT_SYMBOL_GPL(gmap_shadow_valid);
1626
1627 /**
1628 * gmap_shadow - create/find a shadow guest address space
1629 * @parent: pointer to the parent gmap
1630 * @asce: ASCE for which the shadow table is created
1631 * @edat_level: edat level to be used for the shadow translation
1632 *
1633 * The pages of the top level page table referred by the asce parameter
1634 * will be set to read-only and marked in the PGSTEs of the kvm process.
1635 * The shadow table will be removed automatically on any change to the
1636 * PTE mapping for the source table.
1637 *
1638 * Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
1639 * ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
1640 * parent gmap table could not be protected.
1641 */
1642 struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
1643 int edat_level)
1644 {
1645 struct gmap *sg, *new;
1646 unsigned long limit;
1647 int rc;
1648
1649 BUG_ON(parent->mm->context.allow_gmap_hpage_1m);
1650 BUG_ON(gmap_is_shadow(parent));
1651 spin_lock(&parent->shadow_lock);
1652 sg = gmap_find_shadow(parent, asce, edat_level);
1653 spin_unlock(&parent->shadow_lock);
1654 if (sg)
1655 return sg;
1656 /* Create a new shadow gmap */
1657 limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
1658 if (asce & _ASCE_REAL_SPACE)
1659 limit = -1UL;
1660 new = gmap_alloc(limit);
1661 if (!new)
1662 return ERR_PTR(-ENOMEM);
1663 new->mm = parent->mm;
1664 new->parent = gmap_get(parent);
1665 new->orig_asce = asce;
1666 new->edat_level = edat_level;
1667 new->initialized = false;
1668 spin_lock(&parent->shadow_lock);
1669 /* Recheck if another CPU created the same shadow */
1670 sg = gmap_find_shadow(parent, asce, edat_level);
1671 if (sg) {
1672 spin_unlock(&parent->shadow_lock);
1673 gmap_free(new);
1674 return sg;
1675 }
1676 if (asce & _ASCE_REAL_SPACE) {
1677 /* only allow one real-space gmap shadow */
1678 list_for_each_entry(sg, &parent->children, list) {
1679 if (sg->orig_asce & _ASCE_REAL_SPACE) {
1680 spin_lock(&sg->guest_table_lock);
1681 gmap_unshadow(sg);
1682 spin_unlock(&sg->guest_table_lock);
1683 list_del(&sg->list);
1684 gmap_put(sg);
1685 break;
1686 }
1687 }
1688 }
1689 refcount_set(&new->ref_count, 2);
1690 list_add(&new->list, &parent->children);
1691 if (asce & _ASCE_REAL_SPACE) {
1692 /* nothing to protect, return right away */
1693 new->initialized = true;
1694 spin_unlock(&parent->shadow_lock);
1695 return new;
1696 }
1697 spin_unlock(&parent->shadow_lock);
1698 /* protect after insertion, so it will get properly invalidated */
1699 mmap_read_lock(parent->mm);
1700 rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
1701 ((asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE,
1702 PROT_READ, GMAP_NOTIFY_SHADOW);
1703 mmap_read_unlock(parent->mm);
1704 spin_lock(&parent->shadow_lock);
1705 new->initialized = true;
1706 if (rc) {
1707 list_del(&new->list);
1708 gmap_free(new);
1709 new = ERR_PTR(rc);
1710 }
1711 spin_unlock(&parent->shadow_lock);
1712 return new;
1713 }
1714 EXPORT_SYMBOL_GPL(gmap_shadow);
1715
1716 /**
1717 * gmap_shadow_r2t - create an empty shadow region 2 table
1718 * @sg: pointer to the shadow guest address space structure
1719 * @saddr: faulting address in the shadow gmap
1720 * @r2t: parent gmap address of the region 2 table to get shadowed
1721 * @fake: r2t references contiguous guest memory block, not a r2t
1722 *
1723 * The r2t parameter specifies the address of the source table. The
1724 * four pages of the source table are made read-only in the parent gmap
1725 * address space. A write to the source table area @r2t will automatically
1726 * remove the shadow r2 table and all of its decendents.
1727 *
1728 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1729 * shadow table structure is incomplete, -ENOMEM if out of memory and
1730 * -EFAULT if an address in the parent gmap could not be resolved.
1731 *
1732 * Called with sg->mm->mmap_lock in read.
1733 */
1734 int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
1735 int fake)
1736 {
1737 unsigned long raddr, origin, offset, len;
1738 unsigned long *s_r2t, *table;
1739 struct page *page;
1740 int rc;
1741
1742 BUG_ON(!gmap_is_shadow(sg));
1743 /* Allocate a shadow region second table */
1744 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1745 if (!page)
1746 return -ENOMEM;
1747 page->index = r2t & _REGION_ENTRY_ORIGIN;
1748 if (fake)
1749 page->index |= GMAP_SHADOW_FAKE_TABLE;
1750 s_r2t = (unsigned long *) page_to_phys(page);
1751 /* Install shadow region second table */
1752 spin_lock(&sg->guest_table_lock);
1753 table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
1754 if (!table) {
1755 rc = -EAGAIN; /* Race with unshadow */
1756 goto out_free;
1757 }
1758 if (!(*table & _REGION_ENTRY_INVALID)) {
1759 rc = 0; /* Already established */
1760 goto out_free;
1761 } else if (*table & _REGION_ENTRY_ORIGIN) {
1762 rc = -EAGAIN; /* Race with shadow */
1763 goto out_free;
1764 }
1765 crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
1766 /* mark as invalid as long as the parent table is not protected */
1767 *table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
1768 _REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
1769 if (sg->edat_level >= 1)
1770 *table |= (r2t & _REGION_ENTRY_PROTECT);
1771 list_add(&page->lru, &sg->crst_list);
1772 if (fake) {
1773 /* nothing to protect for fake tables */
1774 *table &= ~_REGION_ENTRY_INVALID;
1775 spin_unlock(&sg->guest_table_lock);
1776 return 0;
1777 }
1778 spin_unlock(&sg->guest_table_lock);
1779 /* Make r2t read-only in parent gmap page table */
1780 raddr = (saddr & _REGION1_MASK) | _SHADOW_RMAP_REGION1;
1781 origin = r2t & _REGION_ENTRY_ORIGIN;
1782 offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1783 len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1784 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1785 spin_lock(&sg->guest_table_lock);
1786 if (!rc) {
1787 table = gmap_table_walk(sg, saddr, 4);
1788 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1789 (unsigned long) s_r2t)
1790 rc = -EAGAIN; /* Race with unshadow */
1791 else
1792 *table &= ~_REGION_ENTRY_INVALID;
1793 } else {
1794 gmap_unshadow_r2t(sg, raddr);
1795 }
1796 spin_unlock(&sg->guest_table_lock);
1797 return rc;
1798 out_free:
1799 spin_unlock(&sg->guest_table_lock);
1800 __free_pages(page, CRST_ALLOC_ORDER);
1801 return rc;
1802 }
1803 EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
1804
1805 /**
1806 * gmap_shadow_r3t - create a shadow region 3 table
1807 * @sg: pointer to the shadow guest address space structure
1808 * @saddr: faulting address in the shadow gmap
1809 * @r3t: parent gmap address of the region 3 table to get shadowed
1810 * @fake: r3t references contiguous guest memory block, not a r3t
1811 *
1812 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
1813 * shadow table structure is incomplete, -ENOMEM if out of memory and
1814 * -EFAULT if an address in the parent gmap could not be resolved.
1815 *
1816 * Called with sg->mm->mmap_lock in read.
1817 */
1818 int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
1819 int fake)
1820 {
1821 unsigned long raddr, origin, offset, len;
1822 unsigned long *s_r3t, *table;
1823 struct page *page;
1824 int rc;
1825
1826 BUG_ON(!gmap_is_shadow(sg));
1827 /* Allocate a shadow region second table */
1828 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1829 if (!page)
1830 return -ENOMEM;
1831 page->index = r3t & _REGION_ENTRY_ORIGIN;
1832 if (fake)
1833 page->index |= GMAP_SHADOW_FAKE_TABLE;
1834 s_r3t = (unsigned long *) page_to_phys(page);
1835 /* Install shadow region second table */
1836 spin_lock(&sg->guest_table_lock);
1837 table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
1838 if (!table) {
1839 rc = -EAGAIN; /* Race with unshadow */
1840 goto out_free;
1841 }
1842 if (!(*table & _REGION_ENTRY_INVALID)) {
1843 rc = 0; /* Already established */
1844 goto out_free;
1845 } else if (*table & _REGION_ENTRY_ORIGIN) {
1846 rc = -EAGAIN; /* Race with shadow */
1847 goto out_free;
1848 }
1849 crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
1850 /* mark as invalid as long as the parent table is not protected */
1851 *table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
1852 _REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
1853 if (sg->edat_level >= 1)
1854 *table |= (r3t & _REGION_ENTRY_PROTECT);
1855 list_add(&page->lru, &sg->crst_list);
1856 if (fake) {
1857 /* nothing to protect for fake tables */
1858 *table &= ~_REGION_ENTRY_INVALID;
1859 spin_unlock(&sg->guest_table_lock);
1860 return 0;
1861 }
1862 spin_unlock(&sg->guest_table_lock);
1863 /* Make r3t read-only in parent gmap page table */
1864 raddr = (saddr & _REGION2_MASK) | _SHADOW_RMAP_REGION2;
1865 origin = r3t & _REGION_ENTRY_ORIGIN;
1866 offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1867 len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1868 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1869 spin_lock(&sg->guest_table_lock);
1870 if (!rc) {
1871 table = gmap_table_walk(sg, saddr, 3);
1872 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1873 (unsigned long) s_r3t)
1874 rc = -EAGAIN; /* Race with unshadow */
1875 else
1876 *table &= ~_REGION_ENTRY_INVALID;
1877 } else {
1878 gmap_unshadow_r3t(sg, raddr);
1879 }
1880 spin_unlock(&sg->guest_table_lock);
1881 return rc;
1882 out_free:
1883 spin_unlock(&sg->guest_table_lock);
1884 __free_pages(page, CRST_ALLOC_ORDER);
1885 return rc;
1886 }
1887 EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
1888
1889 /**
1890 * gmap_shadow_sgt - create a shadow segment table
1891 * @sg: pointer to the shadow guest address space structure
1892 * @saddr: faulting address in the shadow gmap
1893 * @sgt: parent gmap address of the segment table to get shadowed
1894 * @fake: sgt references contiguous guest memory block, not a sgt
1895 *
1896 * Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
1897 * shadow table structure is incomplete, -ENOMEM if out of memory and
1898 * -EFAULT if an address in the parent gmap could not be resolved.
1899 *
1900 * Called with sg->mm->mmap_lock in read.
1901 */
1902 int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
1903 int fake)
1904 {
1905 unsigned long raddr, origin, offset, len;
1906 unsigned long *s_sgt, *table;
1907 struct page *page;
1908 int rc;
1909
1910 BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
1911 /* Allocate a shadow segment table */
1912 page = alloc_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
1913 if (!page)
1914 return -ENOMEM;
1915 page->index = sgt & _REGION_ENTRY_ORIGIN;
1916 if (fake)
1917 page->index |= GMAP_SHADOW_FAKE_TABLE;
1918 s_sgt = (unsigned long *) page_to_phys(page);
1919 /* Install shadow region second table */
1920 spin_lock(&sg->guest_table_lock);
1921 table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
1922 if (!table) {
1923 rc = -EAGAIN; /* Race with unshadow */
1924 goto out_free;
1925 }
1926 if (!(*table & _REGION_ENTRY_INVALID)) {
1927 rc = 0; /* Already established */
1928 goto out_free;
1929 } else if (*table & _REGION_ENTRY_ORIGIN) {
1930 rc = -EAGAIN; /* Race with shadow */
1931 goto out_free;
1932 }
1933 crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
1934 /* mark as invalid as long as the parent table is not protected */
1935 *table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
1936 _REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
1937 if (sg->edat_level >= 1)
1938 *table |= sgt & _REGION_ENTRY_PROTECT;
1939 list_add(&page->lru, &sg->crst_list);
1940 if (fake) {
1941 /* nothing to protect for fake tables */
1942 *table &= ~_REGION_ENTRY_INVALID;
1943 spin_unlock(&sg->guest_table_lock);
1944 return 0;
1945 }
1946 spin_unlock(&sg->guest_table_lock);
1947 /* Make sgt read-only in parent gmap page table */
1948 raddr = (saddr & _REGION3_MASK) | _SHADOW_RMAP_REGION3;
1949 origin = sgt & _REGION_ENTRY_ORIGIN;
1950 offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * PAGE_SIZE;
1951 len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * PAGE_SIZE - offset;
1952 rc = gmap_protect_rmap(sg, raddr, origin + offset, len);
1953 spin_lock(&sg->guest_table_lock);
1954 if (!rc) {
1955 table = gmap_table_walk(sg, saddr, 2);
1956 if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
1957 (unsigned long) s_sgt)
1958 rc = -EAGAIN; /* Race with unshadow */
1959 else
1960 *table &= ~_REGION_ENTRY_INVALID;
1961 } else {
1962 gmap_unshadow_sgt(sg, raddr);
1963 }
1964 spin_unlock(&sg->guest_table_lock);
1965 return rc;
1966 out_free:
1967 spin_unlock(&sg->guest_table_lock);
1968 __free_pages(page, CRST_ALLOC_ORDER);
1969 return rc;
1970 }
1971 EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
1972
1973 /**
1974 * gmap_shadow_lookup_pgtable - find a shadow page table
1975 * @sg: pointer to the shadow guest address space structure
1976 * @saddr: the address in the shadow aguest address space
1977 * @pgt: parent gmap address of the page table to get shadowed
1978 * @dat_protection: if the pgtable is marked as protected by dat
1979 * @fake: pgt references contiguous guest memory block, not a pgtable
1980 *
1981 * Returns 0 if the shadow page table was found and -EAGAIN if the page
1982 * table was not found.
1983 *
1984 * Called with sg->mm->mmap_lock in read.
1985 */
1986 int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
1987 unsigned long *pgt, int *dat_protection,
1988 int *fake)
1989 {
1990 unsigned long *table;
1991 struct page *page;
1992 int rc;
1993
1994 BUG_ON(!gmap_is_shadow(sg));
1995 spin_lock(&sg->guest_table_lock);
1996 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
1997 if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
1998 /* Shadow page tables are full pages (pte+pgste) */
1999 page = pfn_to_page(*table >> PAGE_SHIFT);
2000 *pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
2001 *dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
2002 *fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
2003 rc = 0;
2004 } else {
2005 rc = -EAGAIN;
2006 }
2007 spin_unlock(&sg->guest_table_lock);
2008 return rc;
2009
2010 }
2011 EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
2012
2013 /**
2014 * gmap_shadow_pgt - instantiate a shadow page table
2015 * @sg: pointer to the shadow guest address space structure
2016 * @saddr: faulting address in the shadow gmap
2017 * @pgt: parent gmap address of the page table to get shadowed
2018 * @fake: pgt references contiguous guest memory block, not a pgtable
2019 *
2020 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2021 * shadow table structure is incomplete, -ENOMEM if out of memory,
2022 * -EFAULT if an address in the parent gmap could not be resolved and
2023 *
2024 * Called with gmap->mm->mmap_lock in read
2025 */
2026 int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
2027 int fake)
2028 {
2029 unsigned long raddr, origin;
2030 unsigned long *s_pgt, *table;
2031 struct page *page;
2032 int rc;
2033
2034 BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
2035 /* Allocate a shadow page table */
2036 page = page_table_alloc_pgste(sg->mm);
2037 if (!page)
2038 return -ENOMEM;
2039 page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
2040 if (fake)
2041 page->index |= GMAP_SHADOW_FAKE_TABLE;
2042 s_pgt = (unsigned long *) page_to_phys(page);
2043 /* Install shadow page table */
2044 spin_lock(&sg->guest_table_lock);
2045 table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
2046 if (!table) {
2047 rc = -EAGAIN; /* Race with unshadow */
2048 goto out_free;
2049 }
2050 if (!(*table & _SEGMENT_ENTRY_INVALID)) {
2051 rc = 0; /* Already established */
2052 goto out_free;
2053 } else if (*table & _SEGMENT_ENTRY_ORIGIN) {
2054 rc = -EAGAIN; /* Race with shadow */
2055 goto out_free;
2056 }
2057 /* mark as invalid as long as the parent table is not protected */
2058 *table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
2059 (pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
2060 list_add(&page->lru, &sg->pt_list);
2061 if (fake) {
2062 /* nothing to protect for fake tables */
2063 *table &= ~_SEGMENT_ENTRY_INVALID;
2064 spin_unlock(&sg->guest_table_lock);
2065 return 0;
2066 }
2067 spin_unlock(&sg->guest_table_lock);
2068 /* Make pgt read-only in parent gmap page table (not the pgste) */
2069 raddr = (saddr & _SEGMENT_MASK) | _SHADOW_RMAP_SEGMENT;
2070 origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
2071 rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE);
2072 spin_lock(&sg->guest_table_lock);
2073 if (!rc) {
2074 table = gmap_table_walk(sg, saddr, 1);
2075 if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
2076 (unsigned long) s_pgt)
2077 rc = -EAGAIN; /* Race with unshadow */
2078 else
2079 *table &= ~_SEGMENT_ENTRY_INVALID;
2080 } else {
2081 gmap_unshadow_pgt(sg, raddr);
2082 }
2083 spin_unlock(&sg->guest_table_lock);
2084 return rc;
2085 out_free:
2086 spin_unlock(&sg->guest_table_lock);
2087 page_table_free_pgste(page);
2088 return rc;
2089
2090 }
2091 EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
2092
2093 /**
2094 * gmap_shadow_page - create a shadow page mapping
2095 * @sg: pointer to the shadow guest address space structure
2096 * @saddr: faulting address in the shadow gmap
2097 * @pte: pte in parent gmap address space to get shadowed
2098 *
2099 * Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
2100 * shadow table structure is incomplete, -ENOMEM if out of memory and
2101 * -EFAULT if an address in the parent gmap could not be resolved.
2102 *
2103 * Called with sg->mm->mmap_lock in read.
2104 */
2105 int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
2106 {
2107 struct gmap *parent;
2108 struct gmap_rmap *rmap;
2109 unsigned long vmaddr, paddr;
2110 spinlock_t *ptl;
2111 pte_t *sptep, *tptep;
2112 int prot;
2113 int rc;
2114
2115 BUG_ON(!gmap_is_shadow(sg));
2116 parent = sg->parent;
2117 prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
2118
2119 rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
2120 if (!rmap)
2121 return -ENOMEM;
2122 rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
2123
2124 while (1) {
2125 paddr = pte_val(pte) & PAGE_MASK;
2126 vmaddr = __gmap_translate(parent, paddr);
2127 if (IS_ERR_VALUE(vmaddr)) {
2128 rc = vmaddr;
2129 break;
2130 }
2131 rc = radix_tree_preload(GFP_KERNEL);
2132 if (rc)
2133 break;
2134 rc = -EAGAIN;
2135 sptep = gmap_pte_op_walk(parent, paddr, &ptl);
2136 if (sptep) {
2137 spin_lock(&sg->guest_table_lock);
2138 /* Get page table pointer */
2139 tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
2140 if (!tptep) {
2141 spin_unlock(&sg->guest_table_lock);
2142 gmap_pte_op_end(ptl);
2143 radix_tree_preload_end();
2144 break;
2145 }
2146 rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
2147 if (rc > 0) {
2148 /* Success and a new mapping */
2149 gmap_insert_rmap(sg, vmaddr, rmap);
2150 rmap = NULL;
2151 rc = 0;
2152 }
2153 gmap_pte_op_end(ptl);
2154 spin_unlock(&sg->guest_table_lock);
2155 }
2156 radix_tree_preload_end();
2157 if (!rc)
2158 break;
2159 rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
2160 if (rc)
2161 break;
2162 }
2163 kfree(rmap);
2164 return rc;
2165 }
2166 EXPORT_SYMBOL_GPL(gmap_shadow_page);
2167
2168 /**
2169 * gmap_shadow_notify - handle notifications for shadow gmap
2170 *
2171 * Called with sg->parent->shadow_lock.
2172 */
2173 static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
2174 unsigned long gaddr)
2175 {
2176 struct gmap_rmap *rmap, *rnext, *head;
2177 unsigned long start, end, bits, raddr;
2178
2179 BUG_ON(!gmap_is_shadow(sg));
2180
2181 spin_lock(&sg->guest_table_lock);
2182 if (sg->removed) {
2183 spin_unlock(&sg->guest_table_lock);
2184 return;
2185 }
2186 /* Check for top level table */
2187 start = sg->orig_asce & _ASCE_ORIGIN;
2188 end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * PAGE_SIZE;
2189 if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
2190 gaddr < end) {
2191 /* The complete shadow table has to go */
2192 gmap_unshadow(sg);
2193 spin_unlock(&sg->guest_table_lock);
2194 list_del(&sg->list);
2195 gmap_put(sg);
2196 return;
2197 }
2198 /* Remove the page table tree from on specific entry */
2199 head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
2200 gmap_for_each_rmap_safe(rmap, rnext, head) {
2201 bits = rmap->raddr & _SHADOW_RMAP_MASK;
2202 raddr = rmap->raddr ^ bits;
2203 switch (bits) {
2204 case _SHADOW_RMAP_REGION1:
2205 gmap_unshadow_r2t(sg, raddr);
2206 break;
2207 case _SHADOW_RMAP_REGION2:
2208 gmap_unshadow_r3t(sg, raddr);
2209 break;
2210 case _SHADOW_RMAP_REGION3:
2211 gmap_unshadow_sgt(sg, raddr);
2212 break;
2213 case _SHADOW_RMAP_SEGMENT:
2214 gmap_unshadow_pgt(sg, raddr);
2215 break;
2216 case _SHADOW_RMAP_PGTABLE:
2217 gmap_unshadow_page(sg, raddr);
2218 break;
2219 }
2220 kfree(rmap);
2221 }
2222 spin_unlock(&sg->guest_table_lock);
2223 }
2224
2225 /**
2226 * ptep_notify - call all invalidation callbacks for a specific pte.
2227 * @mm: pointer to the process mm_struct
2228 * @addr: virtual address in the process address space
2229 * @pte: pointer to the page table entry
2230 * @bits: bits from the pgste that caused the notify call
2231 *
2232 * This function is assumed to be called with the page table lock held
2233 * for the pte to notify.
2234 */
2235 void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
2236 pte_t *pte, unsigned long bits)
2237 {
2238 unsigned long offset, gaddr = 0;
2239 unsigned long *table;
2240 struct gmap *gmap, *sg, *next;
2241
2242 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
2243 offset = offset * (PAGE_SIZE / sizeof(pte_t));
2244 rcu_read_lock();
2245 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2246 spin_lock(&gmap->guest_table_lock);
2247 table = radix_tree_lookup(&gmap->host_to_guest,
2248 vmaddr >> PMD_SHIFT);
2249 if (table)
2250 gaddr = __gmap_segment_gaddr(table) + offset;
2251 spin_unlock(&gmap->guest_table_lock);
2252 if (!table)
2253 continue;
2254
2255 if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
2256 spin_lock(&gmap->shadow_lock);
2257 list_for_each_entry_safe(sg, next,
2258 &gmap->children, list)
2259 gmap_shadow_notify(sg, vmaddr, gaddr);
2260 spin_unlock(&gmap->shadow_lock);
2261 }
2262 if (bits & PGSTE_IN_BIT)
2263 gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
2264 }
2265 rcu_read_unlock();
2266 }
2267 EXPORT_SYMBOL_GPL(ptep_notify);
2268
2269 static void pmdp_notify_gmap(struct gmap *gmap, pmd_t *pmdp,
2270 unsigned long gaddr)
2271 {
2272 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_IN;
2273 gmap_call_notifier(gmap, gaddr, gaddr + HPAGE_SIZE - 1);
2274 }
2275
2276 /**
2277 * gmap_pmdp_xchg - exchange a gmap pmd with another
2278 * @gmap: pointer to the guest address space structure
2279 * @pmdp: pointer to the pmd entry
2280 * @new: replacement entry
2281 * @gaddr: the affected guest address
2282 *
2283 * This function is assumed to be called with the guest_table_lock
2284 * held.
2285 */
2286 static void gmap_pmdp_xchg(struct gmap *gmap, pmd_t *pmdp, pmd_t new,
2287 unsigned long gaddr)
2288 {
2289 gaddr &= HPAGE_MASK;
2290 pmdp_notify_gmap(gmap, pmdp, gaddr);
2291 pmd_val(new) &= ~_SEGMENT_ENTRY_GMAP_IN;
2292 if (MACHINE_HAS_TLB_GUEST)
2293 __pmdp_idte(gaddr, (pmd_t *)pmdp, IDTE_GUEST_ASCE, gmap->asce,
2294 IDTE_GLOBAL);
2295 else if (MACHINE_HAS_IDTE)
2296 __pmdp_idte(gaddr, (pmd_t *)pmdp, 0, 0, IDTE_GLOBAL);
2297 else
2298 __pmdp_csp(pmdp);
2299 *pmdp = new;
2300 }
2301
2302 static void gmap_pmdp_clear(struct mm_struct *mm, unsigned long vmaddr,
2303 int purge)
2304 {
2305 pmd_t *pmdp;
2306 struct gmap *gmap;
2307 unsigned long gaddr;
2308
2309 rcu_read_lock();
2310 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2311 spin_lock(&gmap->guest_table_lock);
2312 pmdp = (pmd_t *)radix_tree_delete(&gmap->host_to_guest,
2313 vmaddr >> PMD_SHIFT);
2314 if (pmdp) {
2315 gaddr = __gmap_segment_gaddr((unsigned long *)pmdp);
2316 pmdp_notify_gmap(gmap, pmdp, gaddr);
2317 WARN_ON(pmd_val(*pmdp) & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2318 _SEGMENT_ENTRY_GMAP_UC));
2319 if (purge)
2320 __pmdp_csp(pmdp);
2321 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
2322 }
2323 spin_unlock(&gmap->guest_table_lock);
2324 }
2325 rcu_read_unlock();
2326 }
2327
2328 /**
2329 * gmap_pmdp_invalidate - invalidate all affected guest pmd entries without
2330 * flushing
2331 * @mm: pointer to the process mm_struct
2332 * @vmaddr: virtual address in the process address space
2333 */
2334 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr)
2335 {
2336 gmap_pmdp_clear(mm, vmaddr, 0);
2337 }
2338 EXPORT_SYMBOL_GPL(gmap_pmdp_invalidate);
2339
2340 /**
2341 * gmap_pmdp_csp - csp all affected guest pmd entries
2342 * @mm: pointer to the process mm_struct
2343 * @vmaddr: virtual address in the process address space
2344 */
2345 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr)
2346 {
2347 gmap_pmdp_clear(mm, vmaddr, 1);
2348 }
2349 EXPORT_SYMBOL_GPL(gmap_pmdp_csp);
2350
2351 /**
2352 * gmap_pmdp_idte_local - invalidate and clear a guest pmd entry
2353 * @mm: pointer to the process mm_struct
2354 * @vmaddr: virtual address in the process address space
2355 */
2356 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr)
2357 {
2358 unsigned long *entry, gaddr;
2359 struct gmap *gmap;
2360 pmd_t *pmdp;
2361
2362 rcu_read_lock();
2363 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2364 spin_lock(&gmap->guest_table_lock);
2365 entry = radix_tree_delete(&gmap->host_to_guest,
2366 vmaddr >> PMD_SHIFT);
2367 if (entry) {
2368 pmdp = (pmd_t *)entry;
2369 gaddr = __gmap_segment_gaddr(entry);
2370 pmdp_notify_gmap(gmap, pmdp, gaddr);
2371 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2372 _SEGMENT_ENTRY_GMAP_UC));
2373 if (MACHINE_HAS_TLB_GUEST)
2374 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2375 gmap->asce, IDTE_LOCAL);
2376 else if (MACHINE_HAS_IDTE)
2377 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_LOCAL);
2378 *entry = _SEGMENT_ENTRY_EMPTY;
2379 }
2380 spin_unlock(&gmap->guest_table_lock);
2381 }
2382 rcu_read_unlock();
2383 }
2384 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_local);
2385
2386 /**
2387 * gmap_pmdp_idte_global - invalidate and clear a guest pmd entry
2388 * @mm: pointer to the process mm_struct
2389 * @vmaddr: virtual address in the process address space
2390 */
2391 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr)
2392 {
2393 unsigned long *entry, gaddr;
2394 struct gmap *gmap;
2395 pmd_t *pmdp;
2396
2397 rcu_read_lock();
2398 list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
2399 spin_lock(&gmap->guest_table_lock);
2400 entry = radix_tree_delete(&gmap->host_to_guest,
2401 vmaddr >> PMD_SHIFT);
2402 if (entry) {
2403 pmdp = (pmd_t *)entry;
2404 gaddr = __gmap_segment_gaddr(entry);
2405 pmdp_notify_gmap(gmap, pmdp, gaddr);
2406 WARN_ON(*entry & ~(_SEGMENT_ENTRY_HARDWARE_BITS_LARGE |
2407 _SEGMENT_ENTRY_GMAP_UC));
2408 if (MACHINE_HAS_TLB_GUEST)
2409 __pmdp_idte(gaddr, pmdp, IDTE_GUEST_ASCE,
2410 gmap->asce, IDTE_GLOBAL);
2411 else if (MACHINE_HAS_IDTE)
2412 __pmdp_idte(gaddr, pmdp, 0, 0, IDTE_GLOBAL);
2413 else
2414 __pmdp_csp(pmdp);
2415 *entry = _SEGMENT_ENTRY_EMPTY;
2416 }
2417 spin_unlock(&gmap->guest_table_lock);
2418 }
2419 rcu_read_unlock();
2420 }
2421 EXPORT_SYMBOL_GPL(gmap_pmdp_idte_global);
2422
2423 /**
2424 * gmap_test_and_clear_dirty_pmd - test and reset segment dirty status
2425 * @gmap: pointer to guest address space
2426 * @pmdp: pointer to the pmd to be tested
2427 * @gaddr: virtual address in the guest address space
2428 *
2429 * This function is assumed to be called with the guest_table_lock
2430 * held.
2431 */
2432 static bool gmap_test_and_clear_dirty_pmd(struct gmap *gmap, pmd_t *pmdp,
2433 unsigned long gaddr)
2434 {
2435 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
2436 return false;
2437
2438 /* Already protected memory, which did not change is clean */
2439 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_PROTECT &&
2440 !(pmd_val(*pmdp) & _SEGMENT_ENTRY_GMAP_UC))
2441 return false;
2442
2443 /* Clear UC indication and reset protection */
2444 pmd_val(*pmdp) &= ~_SEGMENT_ENTRY_GMAP_UC;
2445 gmap_protect_pmd(gmap, gaddr, pmdp, PROT_READ, 0);
2446 return true;
2447 }
2448
2449 /**
2450 * gmap_sync_dirty_log_pmd - set bitmap based on dirty status of segment
2451 * @gmap: pointer to guest address space
2452 * @bitmap: dirty bitmap for this pmd
2453 * @gaddr: virtual address in the guest address space
2454 * @vmaddr: virtual address in the host address space
2455 *
2456 * This function is assumed to be called with the guest_table_lock
2457 * held.
2458 */
2459 void gmap_sync_dirty_log_pmd(struct gmap *gmap, unsigned long bitmap[4],
2460 unsigned long gaddr, unsigned long vmaddr)
2461 {
2462 int i;
2463 pmd_t *pmdp;
2464 pte_t *ptep;
2465 spinlock_t *ptl;
2466
2467 pmdp = gmap_pmd_op_walk(gmap, gaddr);
2468 if (!pmdp)
2469 return;
2470
2471 if (pmd_large(*pmdp)) {
2472 if (gmap_test_and_clear_dirty_pmd(gmap, pmdp, gaddr))
2473 bitmap_fill(bitmap, _PAGE_ENTRIES);
2474 } else {
2475 for (i = 0; i < _PAGE_ENTRIES; i++, vmaddr += PAGE_SIZE) {
2476 ptep = pte_alloc_map_lock(gmap->mm, pmdp, vmaddr, &ptl);
2477 if (!ptep)
2478 continue;
2479 if (ptep_test_and_clear_uc(gmap->mm, vmaddr, ptep))
2480 set_bit(i, bitmap);
2481 spin_unlock(ptl);
2482 }
2483 }
2484 gmap_pmd_op_end(gmap, pmdp);
2485 }
2486 EXPORT_SYMBOL_GPL(gmap_sync_dirty_log_pmd);
2487
2488 static inline void thp_split_mm(struct mm_struct *mm)
2489 {
2490 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2491 struct vm_area_struct *vma;
2492 unsigned long addr;
2493
2494 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
2495 for (addr = vma->vm_start;
2496 addr < vma->vm_end;
2497 addr += PAGE_SIZE)
2498 follow_page(vma, addr, FOLL_SPLIT);
2499 vma->vm_flags &= ~VM_HUGEPAGE;
2500 vma->vm_flags |= VM_NOHUGEPAGE;
2501 }
2502 mm->def_flags |= VM_NOHUGEPAGE;
2503 #endif
2504 }
2505
2506 /*
2507 * Remove all empty zero pages from the mapping for lazy refaulting
2508 * - This must be called after mm->context.has_pgste is set, to avoid
2509 * future creation of zero pages
2510 * - This must be called after THP was enabled
2511 */
2512 static int __zap_zero_pages(pmd_t *pmd, unsigned long start,
2513 unsigned long end, struct mm_walk *walk)
2514 {
2515 unsigned long addr;
2516
2517 for (addr = start; addr != end; addr += PAGE_SIZE) {
2518 pte_t *ptep;
2519 spinlock_t *ptl;
2520
2521 ptep = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2522 if (is_zero_pfn(pte_pfn(*ptep)))
2523 ptep_xchg_direct(walk->mm, addr, ptep, __pte(_PAGE_INVALID));
2524 pte_unmap_unlock(ptep, ptl);
2525 }
2526 return 0;
2527 }
2528
2529 static const struct mm_walk_ops zap_zero_walk_ops = {
2530 .pmd_entry = __zap_zero_pages,
2531 };
2532
2533 /*
2534 * switch on pgstes for its userspace process (for kvm)
2535 */
2536 int s390_enable_sie(void)
2537 {
2538 struct mm_struct *mm = current->mm;
2539
2540 /* Do we have pgstes? if yes, we are done */
2541 if (mm_has_pgste(mm))
2542 return 0;
2543 /* Fail if the page tables are 2K */
2544 if (!mm_alloc_pgste(mm))
2545 return -EINVAL;
2546 mmap_write_lock(mm);
2547 mm->context.has_pgste = 1;
2548 /* split thp mappings and disable thp for future mappings */
2549 thp_split_mm(mm);
2550 walk_page_range(mm, 0, TASK_SIZE, &zap_zero_walk_ops, NULL);
2551 mmap_write_unlock(mm);
2552 return 0;
2553 }
2554 EXPORT_SYMBOL_GPL(s390_enable_sie);
2555
2556 int gmap_mark_unmergeable(void)
2557 {
2558 struct mm_struct *mm = current->mm;
2559 struct vm_area_struct *vma;
2560 int ret;
2561
2562 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2563 ret = ksm_madvise(vma, vma->vm_start, vma->vm_end,
2564 MADV_UNMERGEABLE, &vma->vm_flags);
2565 if (ret)
2566 return ret;
2567 }
2568 mm->def_flags &= ~VM_MERGEABLE;
2569 return 0;
2570 }
2571 EXPORT_SYMBOL_GPL(gmap_mark_unmergeable);
2572
2573 /*
2574 * Enable storage key handling from now on and initialize the storage
2575 * keys with the default key.
2576 */
2577 static int __s390_enable_skey_pte(pte_t *pte, unsigned long addr,
2578 unsigned long next, struct mm_walk *walk)
2579 {
2580 /* Clear storage key */
2581 ptep_zap_key(walk->mm, addr, pte);
2582 return 0;
2583 }
2584
2585 static int __s390_enable_skey_hugetlb(pte_t *pte, unsigned long addr,
2586 unsigned long hmask, unsigned long next,
2587 struct mm_walk *walk)
2588 {
2589 pmd_t *pmd = (pmd_t *)pte;
2590 unsigned long start, end;
2591 struct page *page = pmd_page(*pmd);
2592
2593 /*
2594 * The write check makes sure we do not set a key on shared
2595 * memory. This is needed as the walker does not differentiate
2596 * between actual guest memory and the process executable or
2597 * shared libraries.
2598 */
2599 if (pmd_val(*pmd) & _SEGMENT_ENTRY_INVALID ||
2600 !(pmd_val(*pmd) & _SEGMENT_ENTRY_WRITE))
2601 return 0;
2602
2603 start = pmd_val(*pmd) & HPAGE_MASK;
2604 end = start + HPAGE_SIZE - 1;
2605 __storage_key_init_range(start, end);
2606 set_bit(PG_arch_1, &page->flags);
2607 return 0;
2608 }
2609
2610 static const struct mm_walk_ops enable_skey_walk_ops = {
2611 .hugetlb_entry = __s390_enable_skey_hugetlb,
2612 .pte_entry = __s390_enable_skey_pte,
2613 };
2614
2615 int s390_enable_skey(void)
2616 {
2617 struct mm_struct *mm = current->mm;
2618 int rc = 0;
2619
2620 mmap_write_lock(mm);
2621 if (mm_uses_skeys(mm))
2622 goto out_up;
2623
2624 mm->context.uses_skeys = 1;
2625 rc = gmap_mark_unmergeable();
2626 if (rc) {
2627 mm->context.uses_skeys = 0;
2628 goto out_up;
2629 }
2630 walk_page_range(mm, 0, TASK_SIZE, &enable_skey_walk_ops, NULL);
2631
2632 out_up:
2633 mmap_write_unlock(mm);
2634 return rc;
2635 }
2636 EXPORT_SYMBOL_GPL(s390_enable_skey);
2637
2638 /*
2639 * Reset CMMA state, make all pages stable again.
2640 */
2641 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
2642 unsigned long next, struct mm_walk *walk)
2643 {
2644 ptep_zap_unused(walk->mm, addr, pte, 1);
2645 return 0;
2646 }
2647
2648 static const struct mm_walk_ops reset_cmma_walk_ops = {
2649 .pte_entry = __s390_reset_cmma,
2650 };
2651
2652 void s390_reset_cmma(struct mm_struct *mm)
2653 {
2654 mmap_write_lock(mm);
2655 walk_page_range(mm, 0, TASK_SIZE, &reset_cmma_walk_ops, NULL);
2656 mmap_write_unlock(mm);
2657 }
2658 EXPORT_SYMBOL_GPL(s390_reset_cmma);
2659
2660 /*
2661 * make inaccessible pages accessible again
2662 */
2663 static int __s390_reset_acc(pte_t *ptep, unsigned long addr,
2664 unsigned long next, struct mm_walk *walk)
2665 {
2666 pte_t pte = READ_ONCE(*ptep);
2667
2668 if (pte_present(pte))
2669 WARN_ON_ONCE(uv_convert_from_secure(pte_val(pte) & PAGE_MASK));
2670 return 0;
2671 }
2672
2673 static const struct mm_walk_ops reset_acc_walk_ops = {
2674 .pte_entry = __s390_reset_acc,
2675 };
2676
2677 #include <linux/sched/mm.h>
2678 void s390_reset_acc(struct mm_struct *mm)
2679 {
2680 /*
2681 * we might be called during
2682 * reset: we walk the pages and clear
2683 * close of all kvm file descriptors: we walk the pages and clear
2684 * exit of process on fd closure: vma already gone, do nothing
2685 */
2686 if (!mmget_not_zero(mm))
2687 return;
2688 mmap_read_lock(mm);
2689 walk_page_range(mm, 0, TASK_SIZE, &reset_acc_walk_ops, NULL);
2690 mmap_read_unlock(mm);
2691 mmput(mm);
2692 }
2693 EXPORT_SYMBOL_GPL(s390_reset_acc);