]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/s390/mm/hugetlbpage.c
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / s390 / mm / hugetlbpage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * IBM System z Huge TLB Page Support for Kernel.
4 *
5 * Copyright IBM Corp. 2007,2020
6 * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
7 */
8
9 #define KMSG_COMPONENT "hugetlb"
10 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
11
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/sched/mm.h>
16 #include <linux/security.h>
17
18 /*
19 * If the bit selected by single-bit bitmask "a" is set within "x", move
20 * it to the position indicated by single-bit bitmask "b".
21 */
22 #define move_set_bit(x, a, b) (((x) & (a)) >> ilog2(a) << ilog2(b))
23
24 static inline unsigned long __pte_to_rste(pte_t pte)
25 {
26 unsigned long rste;
27
28 /*
29 * Convert encoding pte bits pmd / pud bits
30 * lIR.uswrdy.p dy..R...I...wr
31 * empty 010.000000.0 -> 00..0...1...00
32 * prot-none, clean, old 111.000000.1 -> 00..1...1...00
33 * prot-none, clean, young 111.000001.1 -> 01..1...1...00
34 * prot-none, dirty, old 111.000010.1 -> 10..1...1...00
35 * prot-none, dirty, young 111.000011.1 -> 11..1...1...00
36 * read-only, clean, old 111.000100.1 -> 00..1...1...01
37 * read-only, clean, young 101.000101.1 -> 01..1...0...01
38 * read-only, dirty, old 111.000110.1 -> 10..1...1...01
39 * read-only, dirty, young 101.000111.1 -> 11..1...0...01
40 * read-write, clean, old 111.001100.1 -> 00..1...1...11
41 * read-write, clean, young 101.001101.1 -> 01..1...0...11
42 * read-write, dirty, old 110.001110.1 -> 10..0...1...11
43 * read-write, dirty, young 100.001111.1 -> 11..0...0...11
44 * HW-bits: R read-only, I invalid
45 * SW-bits: p present, y young, d dirty, r read, w write, s special,
46 * u unused, l large
47 */
48 if (pte_present(pte)) {
49 rste = pte_val(pte) & PAGE_MASK;
50 rste |= move_set_bit(pte_val(pte), _PAGE_READ,
51 _SEGMENT_ENTRY_READ);
52 rste |= move_set_bit(pte_val(pte), _PAGE_WRITE,
53 _SEGMENT_ENTRY_WRITE);
54 rste |= move_set_bit(pte_val(pte), _PAGE_INVALID,
55 _SEGMENT_ENTRY_INVALID);
56 rste |= move_set_bit(pte_val(pte), _PAGE_PROTECT,
57 _SEGMENT_ENTRY_PROTECT);
58 rste |= move_set_bit(pte_val(pte), _PAGE_DIRTY,
59 _SEGMENT_ENTRY_DIRTY);
60 rste |= move_set_bit(pte_val(pte), _PAGE_YOUNG,
61 _SEGMENT_ENTRY_YOUNG);
62 #ifdef CONFIG_MEM_SOFT_DIRTY
63 rste |= move_set_bit(pte_val(pte), _PAGE_SOFT_DIRTY,
64 _SEGMENT_ENTRY_SOFT_DIRTY);
65 #endif
66 rste |= move_set_bit(pte_val(pte), _PAGE_NOEXEC,
67 _SEGMENT_ENTRY_NOEXEC);
68 } else
69 rste = _SEGMENT_ENTRY_EMPTY;
70 return rste;
71 }
72
73 static inline pte_t __rste_to_pte(unsigned long rste)
74 {
75 int present;
76 pte_t pte;
77
78 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
79 present = pud_present(__pud(rste));
80 else
81 present = pmd_present(__pmd(rste));
82
83 /*
84 * Convert encoding pmd / pud bits pte bits
85 * dy..R...I...wr lIR.uswrdy.p
86 * empty 00..0...1...00 -> 010.000000.0
87 * prot-none, clean, old 00..1...1...00 -> 111.000000.1
88 * prot-none, clean, young 01..1...1...00 -> 111.000001.1
89 * prot-none, dirty, old 10..1...1...00 -> 111.000010.1
90 * prot-none, dirty, young 11..1...1...00 -> 111.000011.1
91 * read-only, clean, old 00..1...1...01 -> 111.000100.1
92 * read-only, clean, young 01..1...0...01 -> 101.000101.1
93 * read-only, dirty, old 10..1...1...01 -> 111.000110.1
94 * read-only, dirty, young 11..1...0...01 -> 101.000111.1
95 * read-write, clean, old 00..1...1...11 -> 111.001100.1
96 * read-write, clean, young 01..1...0...11 -> 101.001101.1
97 * read-write, dirty, old 10..0...1...11 -> 110.001110.1
98 * read-write, dirty, young 11..0...0...11 -> 100.001111.1
99 * HW-bits: R read-only, I invalid
100 * SW-bits: p present, y young, d dirty, r read, w write, s special,
101 * u unused, l large
102 */
103 if (present) {
104 pte_val(pte) = rste & _SEGMENT_ENTRY_ORIGIN_LARGE;
105 pte_val(pte) |= _PAGE_LARGE | _PAGE_PRESENT;
106 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_READ,
107 _PAGE_READ);
108 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_WRITE,
109 _PAGE_WRITE);
110 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_INVALID,
111 _PAGE_INVALID);
112 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_PROTECT,
113 _PAGE_PROTECT);
114 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_DIRTY,
115 _PAGE_DIRTY);
116 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_YOUNG,
117 _PAGE_YOUNG);
118 #ifdef CONFIG_MEM_SOFT_DIRTY
119 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_SOFT_DIRTY,
120 _PAGE_DIRTY);
121 #endif
122 pte_val(pte) |= move_set_bit(rste, _SEGMENT_ENTRY_NOEXEC,
123 _PAGE_NOEXEC);
124 } else
125 pte_val(pte) = _PAGE_INVALID;
126 return pte;
127 }
128
129 static void clear_huge_pte_skeys(struct mm_struct *mm, unsigned long rste)
130 {
131 struct page *page;
132 unsigned long size, paddr;
133
134 if (!mm_uses_skeys(mm) ||
135 rste & _SEGMENT_ENTRY_INVALID)
136 return;
137
138 if ((rste & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
139 page = pud_page(__pud(rste));
140 size = PUD_SIZE;
141 paddr = rste & PUD_MASK;
142 } else {
143 page = pmd_page(__pmd(rste));
144 size = PMD_SIZE;
145 paddr = rste & PMD_MASK;
146 }
147
148 if (!test_and_set_bit(PG_arch_1, &page->flags))
149 __storage_key_init_range(paddr, paddr + size - 1);
150 }
151
152 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
153 pte_t *ptep, pte_t pte)
154 {
155 unsigned long rste;
156
157 rste = __pte_to_rste(pte);
158 if (!MACHINE_HAS_NX)
159 rste &= ~_SEGMENT_ENTRY_NOEXEC;
160
161 /* Set correct table type for 2G hugepages */
162 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) {
163 if (likely(pte_present(pte)))
164 rste |= _REGION3_ENTRY_LARGE;
165 rste |= _REGION_ENTRY_TYPE_R3;
166 } else if (likely(pte_present(pte)))
167 rste |= _SEGMENT_ENTRY_LARGE;
168
169 clear_huge_pte_skeys(mm, rste);
170 pte_val(*ptep) = rste;
171 }
172
173 pte_t huge_ptep_get(pte_t *ptep)
174 {
175 return __rste_to_pte(pte_val(*ptep));
176 }
177
178 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
179 unsigned long addr, pte_t *ptep)
180 {
181 pte_t pte = huge_ptep_get(ptep);
182 pmd_t *pmdp = (pmd_t *) ptep;
183 pud_t *pudp = (pud_t *) ptep;
184
185 if ((pte_val(*ptep) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
186 pudp_xchg_direct(mm, addr, pudp, __pud(_REGION3_ENTRY_EMPTY));
187 else
188 pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
189 return pte;
190 }
191
192 pte_t *huge_pte_alloc(struct mm_struct *mm,
193 unsigned long addr, unsigned long sz)
194 {
195 pgd_t *pgdp;
196 p4d_t *p4dp;
197 pud_t *pudp;
198 pmd_t *pmdp = NULL;
199
200 pgdp = pgd_offset(mm, addr);
201 p4dp = p4d_alloc(mm, pgdp, addr);
202 if (p4dp) {
203 pudp = pud_alloc(mm, p4dp, addr);
204 if (pudp) {
205 if (sz == PUD_SIZE)
206 return (pte_t *) pudp;
207 else if (sz == PMD_SIZE)
208 pmdp = pmd_alloc(mm, pudp, addr);
209 }
210 }
211 return (pte_t *) pmdp;
212 }
213
214 pte_t *huge_pte_offset(struct mm_struct *mm,
215 unsigned long addr, unsigned long sz)
216 {
217 pgd_t *pgdp;
218 p4d_t *p4dp;
219 pud_t *pudp;
220 pmd_t *pmdp = NULL;
221
222 pgdp = pgd_offset(mm, addr);
223 if (pgd_present(*pgdp)) {
224 p4dp = p4d_offset(pgdp, addr);
225 if (p4d_present(*p4dp)) {
226 pudp = pud_offset(p4dp, addr);
227 if (pud_present(*pudp)) {
228 if (pud_large(*pudp))
229 return (pte_t *) pudp;
230 pmdp = pmd_offset(pudp, addr);
231 }
232 }
233 }
234 return (pte_t *) pmdp;
235 }
236
237 int pmd_huge(pmd_t pmd)
238 {
239 return pmd_large(pmd);
240 }
241
242 int pud_huge(pud_t pud)
243 {
244 return pud_large(pud);
245 }
246
247 struct page *
248 follow_huge_pud(struct mm_struct *mm, unsigned long address,
249 pud_t *pud, int flags)
250 {
251 if (flags & FOLL_GET)
252 return NULL;
253
254 return pud_page(*pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
255 }
256
257 static __init int setup_hugepagesz(char *opt)
258 {
259 unsigned long size;
260 char *string = opt;
261
262 size = memparse(opt, &opt);
263 if (MACHINE_HAS_EDAT1 && size == PMD_SIZE) {
264 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
265 } else if (MACHINE_HAS_EDAT2 && size == PUD_SIZE) {
266 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
267 } else {
268 hugetlb_bad_size();
269 pr_err("hugepagesz= specifies an unsupported page size %s\n",
270 string);
271 return 0;
272 }
273 return 1;
274 }
275 __setup("hugepagesz=", setup_hugepagesz);
276
277 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
278 unsigned long addr, unsigned long len,
279 unsigned long pgoff, unsigned long flags)
280 {
281 struct hstate *h = hstate_file(file);
282 struct vm_unmapped_area_info info;
283
284 info.flags = 0;
285 info.length = len;
286 info.low_limit = current->mm->mmap_base;
287 info.high_limit = TASK_SIZE;
288 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
289 info.align_offset = 0;
290 return vm_unmapped_area(&info);
291 }
292
293 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
294 unsigned long addr0, unsigned long len,
295 unsigned long pgoff, unsigned long flags)
296 {
297 struct hstate *h = hstate_file(file);
298 struct vm_unmapped_area_info info;
299 unsigned long addr;
300
301 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
302 info.length = len;
303 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
304 info.high_limit = current->mm->mmap_base;
305 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
306 info.align_offset = 0;
307 addr = vm_unmapped_area(&info);
308
309 /*
310 * A failed mmap() very likely causes application failure,
311 * so fall back to the bottom-up function here. This scenario
312 * can happen with large stack limits and large mmap()
313 * allocations.
314 */
315 if (addr & ~PAGE_MASK) {
316 VM_BUG_ON(addr != -ENOMEM);
317 info.flags = 0;
318 info.low_limit = TASK_UNMAPPED_BASE;
319 info.high_limit = TASK_SIZE;
320 addr = vm_unmapped_area(&info);
321 }
322
323 return addr;
324 }
325
326 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
327 unsigned long len, unsigned long pgoff, unsigned long flags)
328 {
329 struct hstate *h = hstate_file(file);
330 struct mm_struct *mm = current->mm;
331 struct vm_area_struct *vma;
332
333 if (len & ~huge_page_mask(h))
334 return -EINVAL;
335 if (len > TASK_SIZE - mmap_min_addr)
336 return -ENOMEM;
337
338 if (flags & MAP_FIXED) {
339 if (prepare_hugepage_range(file, addr, len))
340 return -EINVAL;
341 goto check_asce_limit;
342 }
343
344 if (addr) {
345 addr = ALIGN(addr, huge_page_size(h));
346 vma = find_vma(mm, addr);
347 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
348 (!vma || addr + len <= vm_start_gap(vma)))
349 goto check_asce_limit;
350 }
351
352 if (mm->get_unmapped_area == arch_get_unmapped_area)
353 addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
354 pgoff, flags);
355 else
356 addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
357 pgoff, flags);
358 if (offset_in_page(addr))
359 return addr;
360
361 check_asce_limit:
362 return check_asce_limit(mm, addr, len);
363 }