]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/s390/numa/mode_emu.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / s390 / numa / mode_emu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NUMA support for s390
4 *
5 * NUMA emulation (aka fake NUMA) distributes the available memory to nodes
6 * without using real topology information about the physical memory of the
7 * machine.
8 *
9 * It distributes the available CPUs to nodes while respecting the original
10 * machine topology information. This is done by trying to avoid to separate
11 * CPUs which reside on the same book or even on the same MC.
12 *
13 * Because the current Linux scheduler code requires a stable cpu to node
14 * mapping, cores are pinned to nodes when the first CPU thread is set online.
15 *
16 * Copyright IBM Corp. 2015
17 */
18
19 #define KMSG_COMPONENT "numa_emu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/cpumask.h>
24 #include <linux/memblock.h>
25 #include <linux/bootmem.h>
26 #include <linux/node.h>
27 #include <linux/memory.h>
28 #include <linux/slab.h>
29 #include <asm/smp.h>
30 #include <asm/topology.h>
31 #include "numa_mode.h"
32 #include "toptree.h"
33
34 /* Distances between the different system components */
35 #define DIST_EMPTY 0
36 #define DIST_CORE 1
37 #define DIST_MC 2
38 #define DIST_BOOK 3
39 #define DIST_DRAWER 4
40 #define DIST_MAX 5
41
42 /* Node distance reported to common code */
43 #define EMU_NODE_DIST 10
44
45 /* Node ID for free (not yet pinned) cores */
46 #define NODE_ID_FREE -1
47
48 /* Different levels of toptree */
49 enum toptree_level {CORE, MC, BOOK, DRAWER, NODE, TOPOLOGY};
50
51 /* The two toptree IDs */
52 enum {TOPTREE_ID_PHYS, TOPTREE_ID_NUMA};
53
54 /* Number of NUMA nodes */
55 static int emu_nodes = 1;
56 /* NUMA stripe size */
57 static unsigned long emu_size;
58
59 /*
60 * Node to core pinning information updates are protected by
61 * "sched_domains_mutex".
62 */
63 static struct {
64 s32 to_node_id[CONFIG_NR_CPUS]; /* Pinned core to node mapping */
65 int total; /* Total number of pinned cores */
66 int per_node_target; /* Cores per node without extra cores */
67 int per_node[MAX_NUMNODES]; /* Number of cores pinned to node */
68 } *emu_cores;
69
70 /*
71 * Pin a core to a node
72 */
73 static void pin_core_to_node(int core_id, int node_id)
74 {
75 if (emu_cores->to_node_id[core_id] == NODE_ID_FREE) {
76 emu_cores->per_node[node_id]++;
77 emu_cores->to_node_id[core_id] = node_id;
78 emu_cores->total++;
79 } else {
80 WARN_ON(emu_cores->to_node_id[core_id] != node_id);
81 }
82 }
83
84 /*
85 * Number of pinned cores of a node
86 */
87 static int cores_pinned(struct toptree *node)
88 {
89 return emu_cores->per_node[node->id];
90 }
91
92 /*
93 * ID of the node where the core is pinned (or NODE_ID_FREE)
94 */
95 static int core_pinned_to_node_id(struct toptree *core)
96 {
97 return emu_cores->to_node_id[core->id];
98 }
99
100 /*
101 * Number of cores in the tree that are not yet pinned
102 */
103 static int cores_free(struct toptree *tree)
104 {
105 struct toptree *core;
106 int count = 0;
107
108 toptree_for_each(core, tree, CORE) {
109 if (core_pinned_to_node_id(core) == NODE_ID_FREE)
110 count++;
111 }
112 return count;
113 }
114
115 /*
116 * Return node of core
117 */
118 static struct toptree *core_node(struct toptree *core)
119 {
120 return core->parent->parent->parent->parent;
121 }
122
123 /*
124 * Return drawer of core
125 */
126 static struct toptree *core_drawer(struct toptree *core)
127 {
128 return core->parent->parent->parent;
129 }
130
131 /*
132 * Return book of core
133 */
134 static struct toptree *core_book(struct toptree *core)
135 {
136 return core->parent->parent;
137 }
138
139 /*
140 * Return mc of core
141 */
142 static struct toptree *core_mc(struct toptree *core)
143 {
144 return core->parent;
145 }
146
147 /*
148 * Distance between two cores
149 */
150 static int dist_core_to_core(struct toptree *core1, struct toptree *core2)
151 {
152 if (core_drawer(core1)->id != core_drawer(core2)->id)
153 return DIST_DRAWER;
154 if (core_book(core1)->id != core_book(core2)->id)
155 return DIST_BOOK;
156 if (core_mc(core1)->id != core_mc(core2)->id)
157 return DIST_MC;
158 /* Same core or sibling on same MC */
159 return DIST_CORE;
160 }
161
162 /*
163 * Distance of a node to a core
164 */
165 static int dist_node_to_core(struct toptree *node, struct toptree *core)
166 {
167 struct toptree *core_node;
168 int dist_min = DIST_MAX;
169
170 toptree_for_each(core_node, node, CORE)
171 dist_min = min(dist_min, dist_core_to_core(core_node, core));
172 return dist_min == DIST_MAX ? DIST_EMPTY : dist_min;
173 }
174
175 /*
176 * Unify will delete empty nodes, therefore recreate nodes.
177 */
178 static void toptree_unify_tree(struct toptree *tree)
179 {
180 int nid;
181
182 toptree_unify(tree);
183 for (nid = 0; nid < emu_nodes; nid++)
184 toptree_get_child(tree, nid);
185 }
186
187 /*
188 * Find the best/nearest node for a given core and ensure that no node
189 * gets more than "emu_cores->per_node_target + extra" cores.
190 */
191 static struct toptree *node_for_core(struct toptree *numa, struct toptree *core,
192 int extra)
193 {
194 struct toptree *node, *node_best = NULL;
195 int dist_cur, dist_best, cores_target;
196
197 cores_target = emu_cores->per_node_target + extra;
198 dist_best = DIST_MAX;
199 node_best = NULL;
200 toptree_for_each(node, numa, NODE) {
201 /* Already pinned cores must use their nodes */
202 if (core_pinned_to_node_id(core) == node->id) {
203 node_best = node;
204 break;
205 }
206 /* Skip nodes that already have enough cores */
207 if (cores_pinned(node) >= cores_target)
208 continue;
209 dist_cur = dist_node_to_core(node, core);
210 if (dist_cur < dist_best) {
211 dist_best = dist_cur;
212 node_best = node;
213 }
214 }
215 return node_best;
216 }
217
218 /*
219 * Find the best node for each core with respect to "extra" core count
220 */
221 static void toptree_to_numa_single(struct toptree *numa, struct toptree *phys,
222 int extra)
223 {
224 struct toptree *node, *core, *tmp;
225
226 toptree_for_each_safe(core, tmp, phys, CORE) {
227 node = node_for_core(numa, core, extra);
228 if (!node)
229 return;
230 toptree_move(core, node);
231 pin_core_to_node(core->id, node->id);
232 }
233 }
234
235 /*
236 * Move structures of given level to specified NUMA node
237 */
238 static void move_level_to_numa_node(struct toptree *node, struct toptree *phys,
239 enum toptree_level level, bool perfect)
240 {
241 int cores_free, cores_target = emu_cores->per_node_target;
242 struct toptree *cur, *tmp;
243
244 toptree_for_each_safe(cur, tmp, phys, level) {
245 cores_free = cores_target - toptree_count(node, CORE);
246 if (perfect) {
247 if (cores_free == toptree_count(cur, CORE))
248 toptree_move(cur, node);
249 } else {
250 if (cores_free >= toptree_count(cur, CORE))
251 toptree_move(cur, node);
252 }
253 }
254 }
255
256 /*
257 * Move structures of a given level to NUMA nodes. If "perfect" is specified
258 * move only perfectly fitting structures. Otherwise move also smaller
259 * than needed structures.
260 */
261 static void move_level_to_numa(struct toptree *numa, struct toptree *phys,
262 enum toptree_level level, bool perfect)
263 {
264 struct toptree *node;
265
266 toptree_for_each(node, numa, NODE)
267 move_level_to_numa_node(node, phys, level, perfect);
268 }
269
270 /*
271 * For the first run try to move the big structures
272 */
273 static void toptree_to_numa_first(struct toptree *numa, struct toptree *phys)
274 {
275 struct toptree *core;
276
277 /* Always try to move perfectly fitting structures first */
278 move_level_to_numa(numa, phys, DRAWER, true);
279 move_level_to_numa(numa, phys, DRAWER, false);
280 move_level_to_numa(numa, phys, BOOK, true);
281 move_level_to_numa(numa, phys, BOOK, false);
282 move_level_to_numa(numa, phys, MC, true);
283 move_level_to_numa(numa, phys, MC, false);
284 /* Now pin all the moved cores */
285 toptree_for_each(core, numa, CORE)
286 pin_core_to_node(core->id, core_node(core)->id);
287 }
288
289 /*
290 * Allocate new topology and create required nodes
291 */
292 static struct toptree *toptree_new(int id, int nodes)
293 {
294 struct toptree *tree;
295 int nid;
296
297 tree = toptree_alloc(TOPOLOGY, id);
298 if (!tree)
299 goto fail;
300 for (nid = 0; nid < nodes; nid++) {
301 if (!toptree_get_child(tree, nid))
302 goto fail;
303 }
304 return tree;
305 fail:
306 panic("NUMA emulation could not allocate topology");
307 }
308
309 /*
310 * Allocate and initialize core to node mapping
311 */
312 static void __ref create_core_to_node_map(void)
313 {
314 int i;
315
316 emu_cores = memblock_virt_alloc(sizeof(*emu_cores), 8);
317 for (i = 0; i < ARRAY_SIZE(emu_cores->to_node_id); i++)
318 emu_cores->to_node_id[i] = NODE_ID_FREE;
319 }
320
321 /*
322 * Move cores from physical topology into NUMA target topology
323 * and try to keep as much of the physical topology as possible.
324 */
325 static struct toptree *toptree_to_numa(struct toptree *phys)
326 {
327 static int first = 1;
328 struct toptree *numa;
329 int cores_total;
330
331 cores_total = emu_cores->total + cores_free(phys);
332 emu_cores->per_node_target = cores_total / emu_nodes;
333 numa = toptree_new(TOPTREE_ID_NUMA, emu_nodes);
334 if (first) {
335 toptree_to_numa_first(numa, phys);
336 first = 0;
337 }
338 toptree_to_numa_single(numa, phys, 0);
339 toptree_to_numa_single(numa, phys, 1);
340 toptree_unify_tree(numa);
341
342 WARN_ON(cpumask_weight(&phys->mask));
343 return numa;
344 }
345
346 /*
347 * Create a toptree out of the physical topology that we got from the hypervisor
348 */
349 static struct toptree *toptree_from_topology(void)
350 {
351 struct toptree *phys, *node, *drawer, *book, *mc, *core;
352 struct cpu_topology_s390 *top;
353 int cpu;
354
355 phys = toptree_new(TOPTREE_ID_PHYS, 1);
356
357 for_each_cpu(cpu, &cpus_with_topology) {
358 top = &cpu_topology[cpu];
359 node = toptree_get_child(phys, 0);
360 drawer = toptree_get_child(node, top->drawer_id);
361 book = toptree_get_child(drawer, top->book_id);
362 mc = toptree_get_child(book, top->socket_id);
363 core = toptree_get_child(mc, smp_get_base_cpu(cpu));
364 if (!drawer || !book || !mc || !core)
365 panic("NUMA emulation could not allocate memory");
366 cpumask_set_cpu(cpu, &core->mask);
367 toptree_update_mask(mc);
368 }
369 return phys;
370 }
371
372 /*
373 * Add toptree core to topology and create correct CPU masks
374 */
375 static void topology_add_core(struct toptree *core)
376 {
377 struct cpu_topology_s390 *top;
378 int cpu;
379
380 for_each_cpu(cpu, &core->mask) {
381 top = &cpu_topology[cpu];
382 cpumask_copy(&top->thread_mask, &core->mask);
383 cpumask_copy(&top->core_mask, &core_mc(core)->mask);
384 cpumask_copy(&top->book_mask, &core_book(core)->mask);
385 cpumask_copy(&top->drawer_mask, &core_drawer(core)->mask);
386 cpumask_set_cpu(cpu, &node_to_cpumask_map[core_node(core)->id]);
387 top->node_id = core_node(core)->id;
388 }
389 }
390
391 /*
392 * Apply toptree to topology and create CPU masks
393 */
394 static void toptree_to_topology(struct toptree *numa)
395 {
396 struct toptree *core;
397 int i;
398
399 /* Clear all node masks */
400 for (i = 0; i < MAX_NUMNODES; i++)
401 cpumask_clear(&node_to_cpumask_map[i]);
402
403 /* Rebuild all masks */
404 toptree_for_each(core, numa, CORE)
405 topology_add_core(core);
406 }
407
408 /*
409 * Show the node to core mapping
410 */
411 static void print_node_to_core_map(void)
412 {
413 int nid, cid;
414
415 if (!numa_debug_enabled)
416 return;
417 printk(KERN_DEBUG "NUMA node to core mapping\n");
418 for (nid = 0; nid < emu_nodes; nid++) {
419 printk(KERN_DEBUG " node %3d: ", nid);
420 for (cid = 0; cid < ARRAY_SIZE(emu_cores->to_node_id); cid++) {
421 if (emu_cores->to_node_id[cid] == nid)
422 printk(KERN_CONT "%d ", cid);
423 }
424 printk(KERN_CONT "\n");
425 }
426 }
427
428 static void pin_all_possible_cpus(void)
429 {
430 int core_id, node_id, cpu;
431 static int initialized;
432
433 if (initialized)
434 return;
435 print_node_to_core_map();
436 node_id = 0;
437 for_each_possible_cpu(cpu) {
438 core_id = smp_get_base_cpu(cpu);
439 if (emu_cores->to_node_id[core_id] != NODE_ID_FREE)
440 continue;
441 pin_core_to_node(core_id, node_id);
442 cpu_topology[cpu].node_id = node_id;
443 node_id = (node_id + 1) % emu_nodes;
444 }
445 print_node_to_core_map();
446 initialized = 1;
447 }
448
449 /*
450 * Transfer physical topology into a NUMA topology and modify CPU masks
451 * according to the NUMA topology.
452 *
453 * Must be called with "sched_domains_mutex" lock held.
454 */
455 static void emu_update_cpu_topology(void)
456 {
457 struct toptree *phys, *numa;
458
459 if (emu_cores == NULL)
460 create_core_to_node_map();
461 phys = toptree_from_topology();
462 numa = toptree_to_numa(phys);
463 toptree_free(phys);
464 toptree_to_topology(numa);
465 toptree_free(numa);
466 pin_all_possible_cpus();
467 }
468
469 /*
470 * If emu_size is not set, use CONFIG_EMU_SIZE. Then round to minimum
471 * alignment (needed for memory hotplug).
472 */
473 static unsigned long emu_setup_size_adjust(unsigned long size)
474 {
475 unsigned long size_new;
476
477 size = size ? : CONFIG_EMU_SIZE;
478 size_new = roundup(size, memory_block_size_bytes());
479 if (size_new == size)
480 return size;
481 pr_warn("Increasing memory stripe size from %ld MB to %ld MB\n",
482 size >> 20, size_new >> 20);
483 return size_new;
484 }
485
486 /*
487 * If we have not enough memory for the specified nodes, reduce the node count.
488 */
489 static int emu_setup_nodes_adjust(int nodes)
490 {
491 int nodes_max;
492
493 nodes_max = memblock.memory.total_size / emu_size;
494 nodes_max = max(nodes_max, 1);
495 if (nodes_max >= nodes)
496 return nodes;
497 pr_warn("Not enough memory for %d nodes, reducing node count\n", nodes);
498 return nodes_max;
499 }
500
501 /*
502 * Early emu setup
503 */
504 static void emu_setup(void)
505 {
506 int nid;
507
508 emu_size = emu_setup_size_adjust(emu_size);
509 emu_nodes = emu_setup_nodes_adjust(emu_nodes);
510 for (nid = 0; nid < emu_nodes; nid++)
511 node_set(nid, node_possible_map);
512 pr_info("Creating %d nodes with memory stripe size %ld MB\n",
513 emu_nodes, emu_size >> 20);
514 }
515
516 /*
517 * Return node id for given page number
518 */
519 static int emu_pfn_to_nid(unsigned long pfn)
520 {
521 return (pfn / (emu_size >> PAGE_SHIFT)) % emu_nodes;
522 }
523
524 /*
525 * Return stripe size
526 */
527 static unsigned long emu_align(void)
528 {
529 return emu_size;
530 }
531
532 /*
533 * Return distance between two nodes
534 */
535 static int emu_distance(int node1, int node2)
536 {
537 return (node1 != node2) * EMU_NODE_DIST;
538 }
539
540 /*
541 * Define callbacks for generic s390 NUMA infrastructure
542 */
543 const struct numa_mode numa_mode_emu = {
544 .name = "emu",
545 .setup = emu_setup,
546 .update_cpu_topology = emu_update_cpu_topology,
547 .__pfn_to_nid = emu_pfn_to_nid,
548 .align = emu_align,
549 .distance = emu_distance,
550 };
551
552 /*
553 * Kernel parameter: emu_nodes=<n>
554 */
555 static int __init early_parse_emu_nodes(char *p)
556 {
557 int count;
558
559 if (kstrtoint(p, 0, &count) != 0 || count <= 0)
560 return 0;
561 if (count <= 0)
562 return 0;
563 emu_nodes = min(count, MAX_NUMNODES);
564 return 0;
565 }
566 early_param("emu_nodes", early_parse_emu_nodes);
567
568 /*
569 * Kernel parameter: emu_size=[<n>[k|M|G|T]]
570 */
571 static int __init early_parse_emu_size(char *p)
572 {
573 emu_size = memparse(p, NULL);
574 return 0;
575 }
576 early_param("emu_size", early_parse_emu_size);