]> git.ipfire.org Git - people/arne_f/kernel.git/blob - arch/sparc/kernel/irq_64.c
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[people/arne_f/kernel.git] / arch / sparc / kernel / irq_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* irq.c: UltraSparc IRQ handling/init/registry.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
7 */
8
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/ftrace.h>
24 #include <linux/irq.h>
25 #include <linux/kmemleak.h>
26
27 #include <asm/ptrace.h>
28 #include <asm/processor.h>
29 #include <linux/atomic.h>
30 #include <asm/irq.h>
31 #include <asm/io.h>
32 #include <asm/iommu.h>
33 #include <asm/upa.h>
34 #include <asm/oplib.h>
35 #include <asm/prom.h>
36 #include <asm/timer.h>
37 #include <asm/smp.h>
38 #include <asm/starfire.h>
39 #include <linux/uaccess.h>
40 #include <asm/cache.h>
41 #include <asm/cpudata.h>
42 #include <asm/auxio.h>
43 #include <asm/head.h>
44 #include <asm/hypervisor.h>
45 #include <asm/cacheflush.h>
46
47 #include "entry.h"
48 #include "cpumap.h"
49 #include "kstack.h"
50
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
53
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
57 */
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
59 {
60 unsigned long ret;
61
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
68
69 return ret;
70 }
71
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
73 {
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
80 }
81
82 static unsigned int bucket_get_irq(unsigned long bucket_pa)
83 {
84 unsigned int ret;
85
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __irq)),
91 "i" (ASI_PHYS_USE_EC));
92
93 return ret;
94 }
95
96 static void bucket_set_irq(unsigned long bucket_pa, unsigned int irq)
97 {
98 __asm__ __volatile__("stwa %0, [%1] %2"
99 : /* no outputs */
100 : "r" (irq),
101 "r" (bucket_pa +
102 offsetof(struct ino_bucket,
103 __irq)),
104 "i" (ASI_PHYS_USE_EC));
105 }
106
107 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
108
109 static unsigned long hvirq_major __initdata;
110 static int __init early_hvirq_major(char *p)
111 {
112 int rc = kstrtoul(p, 10, &hvirq_major);
113
114 return rc;
115 }
116 early_param("hvirq", early_hvirq_major);
117
118 static int hv_irq_version;
119
120 /* Major version 2.0 of HV_GRP_INTR added support for the VIRQ cookie
121 * based interfaces, but:
122 *
123 * 1) Several OSs, Solaris and Linux included, use them even when only
124 * negotiating version 1.0 (or failing to negotiate at all). So the
125 * hypervisor has a workaround that provides the VIRQ interfaces even
126 * when only verion 1.0 of the API is in use.
127 *
128 * 2) Second, and more importantly, with major version 2.0 these VIRQ
129 * interfaces only were actually hooked up for LDC interrupts, even
130 * though the Hypervisor specification clearly stated:
131 *
132 * The new interrupt API functions will be available to a guest
133 * when it negotiates version 2.0 in the interrupt API group 0x2. When
134 * a guest negotiates version 2.0, all interrupt sources will only
135 * support using the cookie interface, and any attempt to use the
136 * version 1.0 interrupt APIs numbered 0xa0 to 0xa6 will result in the
137 * ENOTSUPPORTED error being returned.
138 *
139 * with an emphasis on "all interrupt sources".
140 *
141 * To correct this, major version 3.0 was created which does actually
142 * support VIRQs for all interrupt sources (not just LDC devices). So
143 * if we want to move completely over the cookie based VIRQs we must
144 * negotiate major version 3.0 or later of HV_GRP_INTR.
145 */
146 static bool sun4v_cookie_only_virqs(void)
147 {
148 if (hv_irq_version >= 3)
149 return true;
150 return false;
151 }
152
153 static void __init irq_init_hv(void)
154 {
155 unsigned long hv_error, major, minor = 0;
156
157 if (tlb_type != hypervisor)
158 return;
159
160 if (hvirq_major)
161 major = hvirq_major;
162 else
163 major = 3;
164
165 hv_error = sun4v_hvapi_register(HV_GRP_INTR, major, &minor);
166 if (!hv_error)
167 hv_irq_version = major;
168 else
169 hv_irq_version = 1;
170
171 pr_info("SUN4V: Using IRQ API major %d, cookie only virqs %s\n",
172 hv_irq_version,
173 sun4v_cookie_only_virqs() ? "enabled" : "disabled");
174 }
175
176 /* This function is for the timer interrupt.*/
177 int __init arch_probe_nr_irqs(void)
178 {
179 return 1;
180 }
181
182 #define DEFAULT_NUM_IVECS (0xfffU)
183 static unsigned int nr_ivec = DEFAULT_NUM_IVECS;
184 #define NUM_IVECS (nr_ivec)
185
186 static unsigned int __init size_nr_ivec(void)
187 {
188 if (tlb_type == hypervisor) {
189 switch (sun4v_chip_type) {
190 /* Athena's devhandle|devino is large.*/
191 case SUN4V_CHIP_SPARC64X:
192 nr_ivec = 0xffff;
193 break;
194 }
195 }
196 return nr_ivec;
197 }
198
199 struct irq_handler_data {
200 union {
201 struct {
202 unsigned int dev_handle;
203 unsigned int dev_ino;
204 };
205 unsigned long sysino;
206 };
207 struct ino_bucket bucket;
208 unsigned long iclr;
209 unsigned long imap;
210 };
211
212 static inline unsigned int irq_data_to_handle(struct irq_data *data)
213 {
214 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
215
216 return ihd->dev_handle;
217 }
218
219 static inline unsigned int irq_data_to_ino(struct irq_data *data)
220 {
221 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
222
223 return ihd->dev_ino;
224 }
225
226 static inline unsigned long irq_data_to_sysino(struct irq_data *data)
227 {
228 struct irq_handler_data *ihd = irq_data_get_irq_handler_data(data);
229
230 return ihd->sysino;
231 }
232
233 void irq_free(unsigned int irq)
234 {
235 void *data = irq_get_handler_data(irq);
236
237 kfree(data);
238 irq_set_handler_data(irq, NULL);
239 irq_free_descs(irq, 1);
240 }
241
242 unsigned int irq_alloc(unsigned int dev_handle, unsigned int dev_ino)
243 {
244 int irq;
245
246 irq = __irq_alloc_descs(-1, 1, 1, numa_node_id(), NULL, NULL);
247 if (irq <= 0)
248 goto out;
249
250 return irq;
251 out:
252 return 0;
253 }
254
255 static unsigned int cookie_exists(u32 devhandle, unsigned int devino)
256 {
257 unsigned long hv_err, cookie;
258 struct ino_bucket *bucket;
259 unsigned int irq = 0U;
260
261 hv_err = sun4v_vintr_get_cookie(devhandle, devino, &cookie);
262 if (hv_err) {
263 pr_err("HV get cookie failed hv_err = %ld\n", hv_err);
264 goto out;
265 }
266
267 if (cookie & ((1UL << 63UL))) {
268 cookie = ~cookie;
269 bucket = (struct ino_bucket *) __va(cookie);
270 irq = bucket->__irq;
271 }
272 out:
273 return irq;
274 }
275
276 static unsigned int sysino_exists(u32 devhandle, unsigned int devino)
277 {
278 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
279 struct ino_bucket *bucket;
280 unsigned int irq;
281
282 bucket = &ivector_table[sysino];
283 irq = bucket_get_irq(__pa(bucket));
284
285 return irq;
286 }
287
288 void ack_bad_irq(unsigned int irq)
289 {
290 pr_crit("BAD IRQ ack %d\n", irq);
291 }
292
293 void irq_install_pre_handler(int irq,
294 void (*func)(unsigned int, void *, void *),
295 void *arg1, void *arg2)
296 {
297 pr_warn("IRQ pre handler NOT supported.\n");
298 }
299
300 /*
301 * /proc/interrupts printing:
302 */
303 int arch_show_interrupts(struct seq_file *p, int prec)
304 {
305 int j;
306
307 seq_printf(p, "NMI: ");
308 for_each_online_cpu(j)
309 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
310 seq_printf(p, " Non-maskable interrupts\n");
311 return 0;
312 }
313
314 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
315 {
316 unsigned int tid;
317
318 if (this_is_starfire) {
319 tid = starfire_translate(imap, cpuid);
320 tid <<= IMAP_TID_SHIFT;
321 tid &= IMAP_TID_UPA;
322 } else {
323 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
324 unsigned long ver;
325
326 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
327 if ((ver >> 32UL) == __JALAPENO_ID ||
328 (ver >> 32UL) == __SERRANO_ID) {
329 tid = cpuid << IMAP_TID_SHIFT;
330 tid &= IMAP_TID_JBUS;
331 } else {
332 unsigned int a = cpuid & 0x1f;
333 unsigned int n = (cpuid >> 5) & 0x1f;
334
335 tid = ((a << IMAP_AID_SHIFT) |
336 (n << IMAP_NID_SHIFT));
337 tid &= (IMAP_AID_SAFARI |
338 IMAP_NID_SAFARI);
339 }
340 } else {
341 tid = cpuid << IMAP_TID_SHIFT;
342 tid &= IMAP_TID_UPA;
343 }
344 }
345
346 return tid;
347 }
348
349 #ifdef CONFIG_SMP
350 static int irq_choose_cpu(unsigned int irq, const struct cpumask *affinity)
351 {
352 cpumask_t mask;
353 int cpuid;
354
355 cpumask_copy(&mask, affinity);
356 if (cpumask_equal(&mask, cpu_online_mask)) {
357 cpuid = map_to_cpu(irq);
358 } else {
359 cpumask_t tmp;
360
361 cpumask_and(&tmp, cpu_online_mask, &mask);
362 cpuid = cpumask_empty(&tmp) ? map_to_cpu(irq) : cpumask_first(&tmp);
363 }
364
365 return cpuid;
366 }
367 #else
368 #define irq_choose_cpu(irq, affinity) \
369 real_hard_smp_processor_id()
370 #endif
371
372 static void sun4u_irq_enable(struct irq_data *data)
373 {
374 struct irq_handler_data *handler_data;
375
376 handler_data = irq_data_get_irq_handler_data(data);
377 if (likely(handler_data)) {
378 unsigned long cpuid, imap, val;
379 unsigned int tid;
380
381 cpuid = irq_choose_cpu(data->irq,
382 irq_data_get_affinity_mask(data));
383 imap = handler_data->imap;
384
385 tid = sun4u_compute_tid(imap, cpuid);
386
387 val = upa_readq(imap);
388 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
389 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
390 val |= tid | IMAP_VALID;
391 upa_writeq(val, imap);
392 upa_writeq(ICLR_IDLE, handler_data->iclr);
393 }
394 }
395
396 static int sun4u_set_affinity(struct irq_data *data,
397 const struct cpumask *mask, bool force)
398 {
399 struct irq_handler_data *handler_data;
400
401 handler_data = irq_data_get_irq_handler_data(data);
402 if (likely(handler_data)) {
403 unsigned long cpuid, imap, val;
404 unsigned int tid;
405
406 cpuid = irq_choose_cpu(data->irq, mask);
407 imap = handler_data->imap;
408
409 tid = sun4u_compute_tid(imap, cpuid);
410
411 val = upa_readq(imap);
412 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
413 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
414 val |= tid | IMAP_VALID;
415 upa_writeq(val, imap);
416 upa_writeq(ICLR_IDLE, handler_data->iclr);
417 }
418
419 return 0;
420 }
421
422 /* Don't do anything. The desc->status check for IRQ_DISABLED in
423 * handler_irq() will skip the handler call and that will leave the
424 * interrupt in the sent state. The next ->enable() call will hit the
425 * ICLR register to reset the state machine.
426 *
427 * This scheme is necessary, instead of clearing the Valid bit in the
428 * IMAP register, to handle the case of IMAP registers being shared by
429 * multiple INOs (and thus ICLR registers). Since we use a different
430 * virtual IRQ for each shared IMAP instance, the generic code thinks
431 * there is only one user so it prematurely calls ->disable() on
432 * free_irq().
433 *
434 * We have to provide an explicit ->disable() method instead of using
435 * NULL to get the default. The reason is that if the generic code
436 * sees that, it also hooks up a default ->shutdown method which
437 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
438 */
439 static void sun4u_irq_disable(struct irq_data *data)
440 {
441 }
442
443 static void sun4u_irq_eoi(struct irq_data *data)
444 {
445 struct irq_handler_data *handler_data;
446
447 handler_data = irq_data_get_irq_handler_data(data);
448 if (likely(handler_data))
449 upa_writeq(ICLR_IDLE, handler_data->iclr);
450 }
451
452 static void sun4v_irq_enable(struct irq_data *data)
453 {
454 unsigned long cpuid = irq_choose_cpu(data->irq,
455 irq_data_get_affinity_mask(data));
456 unsigned int ino = irq_data_to_sysino(data);
457 int err;
458
459 err = sun4v_intr_settarget(ino, cpuid);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
462 "err(%d)\n", ino, cpuid, err);
463 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
464 if (err != HV_EOK)
465 printk(KERN_ERR "sun4v_intr_setstate(%x): "
466 "err(%d)\n", ino, err);
467 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
468 if (err != HV_EOK)
469 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
470 ino, err);
471 }
472
473 static int sun4v_set_affinity(struct irq_data *data,
474 const struct cpumask *mask, bool force)
475 {
476 unsigned long cpuid = irq_choose_cpu(data->irq, mask);
477 unsigned int ino = irq_data_to_sysino(data);
478 int err;
479
480 err = sun4v_intr_settarget(ino, cpuid);
481 if (err != HV_EOK)
482 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
483 "err(%d)\n", ino, cpuid, err);
484
485 return 0;
486 }
487
488 static void sun4v_irq_disable(struct irq_data *data)
489 {
490 unsigned int ino = irq_data_to_sysino(data);
491 int err;
492
493 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
494 if (err != HV_EOK)
495 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
496 "err(%d)\n", ino, err);
497 }
498
499 static void sun4v_irq_eoi(struct irq_data *data)
500 {
501 unsigned int ino = irq_data_to_sysino(data);
502 int err;
503
504 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
505 if (err != HV_EOK)
506 printk(KERN_ERR "sun4v_intr_setstate(%x): "
507 "err(%d)\n", ino, err);
508 }
509
510 static void sun4v_virq_enable(struct irq_data *data)
511 {
512 unsigned long dev_handle = irq_data_to_handle(data);
513 unsigned long dev_ino = irq_data_to_ino(data);
514 unsigned long cpuid;
515 int err;
516
517 cpuid = irq_choose_cpu(data->irq, irq_data_get_affinity_mask(data));
518
519 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
520 if (err != HV_EOK)
521 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
522 "err(%d)\n",
523 dev_handle, dev_ino, cpuid, err);
524 err = sun4v_vintr_set_state(dev_handle, dev_ino,
525 HV_INTR_STATE_IDLE);
526 if (err != HV_EOK)
527 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
528 "HV_INTR_STATE_IDLE): err(%d)\n",
529 dev_handle, dev_ino, err);
530 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
531 HV_INTR_ENABLED);
532 if (err != HV_EOK)
533 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
534 "HV_INTR_ENABLED): err(%d)\n",
535 dev_handle, dev_ino, err);
536 }
537
538 static int sun4v_virt_set_affinity(struct irq_data *data,
539 const struct cpumask *mask, bool force)
540 {
541 unsigned long dev_handle = irq_data_to_handle(data);
542 unsigned long dev_ino = irq_data_to_ino(data);
543 unsigned long cpuid;
544 int err;
545
546 cpuid = irq_choose_cpu(data->irq, mask);
547
548 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
549 if (err != HV_EOK)
550 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
551 "err(%d)\n",
552 dev_handle, dev_ino, cpuid, err);
553
554 return 0;
555 }
556
557 static void sun4v_virq_disable(struct irq_data *data)
558 {
559 unsigned long dev_handle = irq_data_to_handle(data);
560 unsigned long dev_ino = irq_data_to_ino(data);
561 int err;
562
563
564 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
565 HV_INTR_DISABLED);
566 if (err != HV_EOK)
567 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
568 "HV_INTR_DISABLED): err(%d)\n",
569 dev_handle, dev_ino, err);
570 }
571
572 static void sun4v_virq_eoi(struct irq_data *data)
573 {
574 unsigned long dev_handle = irq_data_to_handle(data);
575 unsigned long dev_ino = irq_data_to_ino(data);
576 int err;
577
578 err = sun4v_vintr_set_state(dev_handle, dev_ino,
579 HV_INTR_STATE_IDLE);
580 if (err != HV_EOK)
581 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
582 "HV_INTR_STATE_IDLE): err(%d)\n",
583 dev_handle, dev_ino, err);
584 }
585
586 static struct irq_chip sun4u_irq = {
587 .name = "sun4u",
588 .irq_enable = sun4u_irq_enable,
589 .irq_disable = sun4u_irq_disable,
590 .irq_eoi = sun4u_irq_eoi,
591 .irq_set_affinity = sun4u_set_affinity,
592 .flags = IRQCHIP_EOI_IF_HANDLED,
593 };
594
595 static struct irq_chip sun4v_irq = {
596 .name = "sun4v",
597 .irq_enable = sun4v_irq_enable,
598 .irq_disable = sun4v_irq_disable,
599 .irq_eoi = sun4v_irq_eoi,
600 .irq_set_affinity = sun4v_set_affinity,
601 .flags = IRQCHIP_EOI_IF_HANDLED,
602 };
603
604 static struct irq_chip sun4v_virq = {
605 .name = "vsun4v",
606 .irq_enable = sun4v_virq_enable,
607 .irq_disable = sun4v_virq_disable,
608 .irq_eoi = sun4v_virq_eoi,
609 .irq_set_affinity = sun4v_virt_set_affinity,
610 .flags = IRQCHIP_EOI_IF_HANDLED,
611 };
612
613 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
614 {
615 struct irq_handler_data *handler_data;
616 struct ino_bucket *bucket;
617 unsigned int irq;
618 int ino;
619
620 BUG_ON(tlb_type == hypervisor);
621
622 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
623 bucket = &ivector_table[ino];
624 irq = bucket_get_irq(__pa(bucket));
625 if (!irq) {
626 irq = irq_alloc(0, ino);
627 bucket_set_irq(__pa(bucket), irq);
628 irq_set_chip_and_handler_name(irq, &sun4u_irq,
629 handle_fasteoi_irq, "IVEC");
630 }
631
632 handler_data = irq_get_handler_data(irq);
633 if (unlikely(handler_data))
634 goto out;
635
636 handler_data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
637 if (unlikely(!handler_data)) {
638 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
639 prom_halt();
640 }
641 irq_set_handler_data(irq, handler_data);
642
643 handler_data->imap = imap;
644 handler_data->iclr = iclr;
645
646 out:
647 return irq;
648 }
649
650 static unsigned int sun4v_build_common(u32 devhandle, unsigned int devino,
651 void (*handler_data_init)(struct irq_handler_data *data,
652 u32 devhandle, unsigned int devino),
653 struct irq_chip *chip)
654 {
655 struct irq_handler_data *data;
656 unsigned int irq;
657
658 irq = irq_alloc(devhandle, devino);
659 if (!irq)
660 goto out;
661
662 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
663 if (unlikely(!data)) {
664 pr_err("IRQ handler data allocation failed.\n");
665 irq_free(irq);
666 irq = 0;
667 goto out;
668 }
669
670 irq_set_handler_data(irq, data);
671 handler_data_init(data, devhandle, devino);
672 irq_set_chip_and_handler_name(irq, chip, handle_fasteoi_irq, "IVEC");
673 data->imap = ~0UL;
674 data->iclr = ~0UL;
675 out:
676 return irq;
677 }
678
679 static unsigned long cookie_assign(unsigned int irq, u32 devhandle,
680 unsigned int devino)
681 {
682 struct irq_handler_data *ihd = irq_get_handler_data(irq);
683 unsigned long hv_error, cookie;
684
685 /* handler_irq needs to find the irq. cookie is seen signed in
686 * sun4v_dev_mondo and treated as a non ivector_table delivery.
687 */
688 ihd->bucket.__irq = irq;
689 cookie = ~__pa(&ihd->bucket);
690
691 hv_error = sun4v_vintr_set_cookie(devhandle, devino, cookie);
692 if (hv_error)
693 pr_err("HV vintr set cookie failed = %ld\n", hv_error);
694
695 return hv_error;
696 }
697
698 static void cookie_handler_data(struct irq_handler_data *data,
699 u32 devhandle, unsigned int devino)
700 {
701 data->dev_handle = devhandle;
702 data->dev_ino = devino;
703 }
704
705 static unsigned int cookie_build_irq(u32 devhandle, unsigned int devino,
706 struct irq_chip *chip)
707 {
708 unsigned long hv_error;
709 unsigned int irq;
710
711 irq = sun4v_build_common(devhandle, devino, cookie_handler_data, chip);
712
713 hv_error = cookie_assign(irq, devhandle, devino);
714 if (hv_error) {
715 irq_free(irq);
716 irq = 0;
717 }
718
719 return irq;
720 }
721
722 static unsigned int sun4v_build_cookie(u32 devhandle, unsigned int devino)
723 {
724 unsigned int irq;
725
726 irq = cookie_exists(devhandle, devino);
727 if (irq)
728 goto out;
729
730 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
731
732 out:
733 return irq;
734 }
735
736 static void sysino_set_bucket(unsigned int irq)
737 {
738 struct irq_handler_data *ihd = irq_get_handler_data(irq);
739 struct ino_bucket *bucket;
740 unsigned long sysino;
741
742 sysino = sun4v_devino_to_sysino(ihd->dev_handle, ihd->dev_ino);
743 BUG_ON(sysino >= nr_ivec);
744 bucket = &ivector_table[sysino];
745 bucket_set_irq(__pa(bucket), irq);
746 }
747
748 static void sysino_handler_data(struct irq_handler_data *data,
749 u32 devhandle, unsigned int devino)
750 {
751 unsigned long sysino;
752
753 sysino = sun4v_devino_to_sysino(devhandle, devino);
754 data->sysino = sysino;
755 }
756
757 static unsigned int sysino_build_irq(u32 devhandle, unsigned int devino,
758 struct irq_chip *chip)
759 {
760 unsigned int irq;
761
762 irq = sun4v_build_common(devhandle, devino, sysino_handler_data, chip);
763 if (!irq)
764 goto out;
765
766 sysino_set_bucket(irq);
767 out:
768 return irq;
769 }
770
771 static int sun4v_build_sysino(u32 devhandle, unsigned int devino)
772 {
773 int irq;
774
775 irq = sysino_exists(devhandle, devino);
776 if (irq)
777 goto out;
778
779 irq = sysino_build_irq(devhandle, devino, &sun4v_irq);
780 out:
781 return irq;
782 }
783
784 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
785 {
786 unsigned int irq;
787
788 if (sun4v_cookie_only_virqs())
789 irq = sun4v_build_cookie(devhandle, devino);
790 else
791 irq = sun4v_build_sysino(devhandle, devino);
792
793 return irq;
794 }
795
796 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
797 {
798 int irq;
799
800 irq = cookie_build_irq(devhandle, devino, &sun4v_virq);
801 if (!irq)
802 goto out;
803
804 /* This is borrowed from the original function.
805 */
806 irq_set_status_flags(irq, IRQ_NOAUTOEN);
807
808 out:
809 return irq;
810 }
811
812 void *hardirq_stack[NR_CPUS];
813 void *softirq_stack[NR_CPUS];
814
815 void __irq_entry handler_irq(int pil, struct pt_regs *regs)
816 {
817 unsigned long pstate, bucket_pa;
818 struct pt_regs *old_regs;
819 void *orig_sp;
820
821 clear_softint(1 << pil);
822
823 old_regs = set_irq_regs(regs);
824 irq_enter();
825
826 /* Grab an atomic snapshot of the pending IVECs. */
827 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
828 "wrpr %0, %3, %%pstate\n\t"
829 "ldx [%2], %1\n\t"
830 "stx %%g0, [%2]\n\t"
831 "wrpr %0, 0x0, %%pstate\n\t"
832 : "=&r" (pstate), "=&r" (bucket_pa)
833 : "r" (irq_work_pa(smp_processor_id())),
834 "i" (PSTATE_IE)
835 : "memory");
836
837 orig_sp = set_hardirq_stack();
838
839 while (bucket_pa) {
840 unsigned long next_pa;
841 unsigned int irq;
842
843 next_pa = bucket_get_chain_pa(bucket_pa);
844 irq = bucket_get_irq(bucket_pa);
845 bucket_clear_chain_pa(bucket_pa);
846
847 generic_handle_irq(irq);
848
849 bucket_pa = next_pa;
850 }
851
852 restore_hardirq_stack(orig_sp);
853
854 irq_exit();
855 set_irq_regs(old_regs);
856 }
857
858 void do_softirq_own_stack(void)
859 {
860 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
861
862 sp += THREAD_SIZE - 192 - STACK_BIAS;
863
864 __asm__ __volatile__("mov %%sp, %0\n\t"
865 "mov %1, %%sp"
866 : "=&r" (orig_sp)
867 : "r" (sp));
868 __do_softirq();
869 __asm__ __volatile__("mov %0, %%sp"
870 : : "r" (orig_sp));
871 }
872
873 #ifdef CONFIG_HOTPLUG_CPU
874 void fixup_irqs(void)
875 {
876 unsigned int irq;
877
878 for (irq = 0; irq < NR_IRQS; irq++) {
879 struct irq_desc *desc = irq_to_desc(irq);
880 struct irq_data *data;
881 unsigned long flags;
882
883 if (!desc)
884 continue;
885 data = irq_desc_get_irq_data(desc);
886 raw_spin_lock_irqsave(&desc->lock, flags);
887 if (desc->action && !irqd_is_per_cpu(data)) {
888 if (data->chip->irq_set_affinity)
889 data->chip->irq_set_affinity(data,
890 irq_data_get_affinity_mask(data),
891 false);
892 }
893 raw_spin_unlock_irqrestore(&desc->lock, flags);
894 }
895
896 tick_ops->disable_irq();
897 }
898 #endif
899
900 struct sun5_timer {
901 u64 count0;
902 u64 limit0;
903 u64 count1;
904 u64 limit1;
905 };
906
907 static struct sun5_timer *prom_timers;
908 static u64 prom_limit0, prom_limit1;
909
910 static void map_prom_timers(void)
911 {
912 struct device_node *dp;
913 const unsigned int *addr;
914
915 /* PROM timer node hangs out in the top level of device siblings... */
916 dp = of_find_node_by_path("/");
917 dp = dp->child;
918 while (dp) {
919 if (!strcmp(dp->name, "counter-timer"))
920 break;
921 dp = dp->sibling;
922 }
923
924 /* Assume if node is not present, PROM uses different tick mechanism
925 * which we should not care about.
926 */
927 if (!dp) {
928 prom_timers = (struct sun5_timer *) 0;
929 return;
930 }
931
932 /* If PROM is really using this, it must be mapped by him. */
933 addr = of_get_property(dp, "address", NULL);
934 if (!addr) {
935 prom_printf("PROM does not have timer mapped, trying to continue.\n");
936 prom_timers = (struct sun5_timer *) 0;
937 return;
938 }
939 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
940 }
941
942 static void kill_prom_timer(void)
943 {
944 if (!prom_timers)
945 return;
946
947 /* Save them away for later. */
948 prom_limit0 = prom_timers->limit0;
949 prom_limit1 = prom_timers->limit1;
950
951 /* Just as in sun4c PROM uses timer which ticks at IRQ 14.
952 * We turn both off here just to be paranoid.
953 */
954 prom_timers->limit0 = 0;
955 prom_timers->limit1 = 0;
956
957 /* Wheee, eat the interrupt packet too... */
958 __asm__ __volatile__(
959 " mov 0x40, %%g2\n"
960 " ldxa [%%g0] %0, %%g1\n"
961 " ldxa [%%g2] %1, %%g1\n"
962 " stxa %%g0, [%%g0] %0\n"
963 " membar #Sync\n"
964 : /* no outputs */
965 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
966 : "g1", "g2");
967 }
968
969 void notrace init_irqwork_curcpu(void)
970 {
971 int cpu = hard_smp_processor_id();
972
973 trap_block[cpu].irq_worklist_pa = 0UL;
974 }
975
976 /* Please be very careful with register_one_mondo() and
977 * sun4v_register_mondo_queues().
978 *
979 * On SMP this gets invoked from the CPU trampoline before
980 * the cpu has fully taken over the trap table from OBP,
981 * and it's kernel stack + %g6 thread register state is
982 * not fully cooked yet.
983 *
984 * Therefore you cannot make any OBP calls, not even prom_printf,
985 * from these two routines.
986 */
987 static void notrace register_one_mondo(unsigned long paddr, unsigned long type,
988 unsigned long qmask)
989 {
990 unsigned long num_entries = (qmask + 1) / 64;
991 unsigned long status;
992
993 status = sun4v_cpu_qconf(type, paddr, num_entries);
994 if (status != HV_EOK) {
995 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
996 "err %lu\n", type, paddr, num_entries, status);
997 prom_halt();
998 }
999 }
1000
1001 void notrace sun4v_register_mondo_queues(int this_cpu)
1002 {
1003 struct trap_per_cpu *tb = &trap_block[this_cpu];
1004
1005 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
1006 tb->cpu_mondo_qmask);
1007 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
1008 tb->dev_mondo_qmask);
1009 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
1010 tb->resum_qmask);
1011 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
1012 tb->nonresum_qmask);
1013 }
1014
1015 /* Each queue region must be a power of 2 multiple of 64 bytes in
1016 * size. The base real address must be aligned to the size of the
1017 * region. Thus, an 8KB queue must be 8KB aligned, for example.
1018 */
1019 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
1020 {
1021 unsigned long size = PAGE_ALIGN(qmask + 1);
1022 unsigned long order = get_order(size);
1023 unsigned long p;
1024
1025 p = __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1026 if (!p) {
1027 prom_printf("SUN4V: Error, cannot allocate queue.\n");
1028 prom_halt();
1029 }
1030
1031 *pa_ptr = __pa(p);
1032 }
1033
1034 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
1035 {
1036 #ifdef CONFIG_SMP
1037 unsigned long page;
1038 void *mondo, *p;
1039
1040 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > PAGE_SIZE);
1041
1042 /* Make sure mondo block is 64byte aligned */
1043 p = kzalloc(127, GFP_KERNEL);
1044 if (!p) {
1045 prom_printf("SUN4V: Error, cannot allocate mondo block.\n");
1046 prom_halt();
1047 }
1048 mondo = (void *)(((unsigned long)p + 63) & ~0x3f);
1049 tb->cpu_mondo_block_pa = __pa(mondo);
1050
1051 page = get_zeroed_page(GFP_KERNEL);
1052 if (!page) {
1053 prom_printf("SUN4V: Error, cannot allocate cpu list page.\n");
1054 prom_halt();
1055 }
1056
1057 tb->cpu_list_pa = __pa(page);
1058 #endif
1059 }
1060
1061 /* Allocate mondo and error queues for all possible cpus. */
1062 static void __init sun4v_init_mondo_queues(void)
1063 {
1064 int cpu;
1065
1066 for_each_possible_cpu(cpu) {
1067 struct trap_per_cpu *tb = &trap_block[cpu];
1068
1069 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
1070 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
1071 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
1072 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
1073 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
1074 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
1075 tb->nonresum_qmask);
1076 }
1077 }
1078
1079 static void __init init_send_mondo_info(void)
1080 {
1081 int cpu;
1082
1083 for_each_possible_cpu(cpu) {
1084 struct trap_per_cpu *tb = &trap_block[cpu];
1085
1086 init_cpu_send_mondo_info(tb);
1087 }
1088 }
1089
1090 static struct irqaction timer_irq_action = {
1091 .name = "timer",
1092 };
1093
1094 static void __init irq_ivector_init(void)
1095 {
1096 unsigned long size, order;
1097 unsigned int ivecs;
1098
1099 /* If we are doing cookie only VIRQs then we do not need the ivector
1100 * table to process interrupts.
1101 */
1102 if (sun4v_cookie_only_virqs())
1103 return;
1104
1105 ivecs = size_nr_ivec();
1106 size = sizeof(struct ino_bucket) * ivecs;
1107 order = get_order(size);
1108 ivector_table = (struct ino_bucket *)
1109 __get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1110 if (!ivector_table) {
1111 prom_printf("Fatal error, cannot allocate ivector_table\n");
1112 prom_halt();
1113 }
1114 __flush_dcache_range((unsigned long) ivector_table,
1115 ((unsigned long) ivector_table) + size);
1116
1117 ivector_table_pa = __pa(ivector_table);
1118 }
1119
1120 /* Only invoked on boot processor.*/
1121 void __init init_IRQ(void)
1122 {
1123 irq_init_hv();
1124 irq_ivector_init();
1125 map_prom_timers();
1126 kill_prom_timer();
1127
1128 if (tlb_type == hypervisor)
1129 sun4v_init_mondo_queues();
1130
1131 init_send_mondo_info();
1132
1133 if (tlb_type == hypervisor) {
1134 /* Load up the boot cpu's entries. */
1135 sun4v_register_mondo_queues(hard_smp_processor_id());
1136 }
1137
1138 /* We need to clear any IRQ's pending in the soft interrupt
1139 * registers, a spurious one could be left around from the
1140 * PROM timer which we just disabled.
1141 */
1142 clear_softint(get_softint());
1143
1144 /* Now that ivector table is initialized, it is safe
1145 * to receive IRQ vector traps. We will normally take
1146 * one or two right now, in case some device PROM used
1147 * to boot us wants to speak to us. We just ignore them.
1148 */
1149 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1150 "or %%g1, %0, %%g1\n\t"
1151 "wrpr %%g1, 0x0, %%pstate"
1152 : /* No outputs */
1153 : "i" (PSTATE_IE)
1154 : "g1");
1155
1156 irq_to_desc(0)->action = &timer_irq_action;
1157 }