]> git.ipfire.org Git - people/ms/linux.git/blob - arch/sparc/kernel/perf_event.c
Linux 4.0-rc5
[people/ms/linux.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2 *
3 * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4 *
5 * This code is based almost entirely upon the x86 perf event
6 * code, which is:
7 *
8 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10 * Copyright (C) 2009 Jaswinder Singh Rajput
11 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/cacheflush.h>
29
30 #include "kernel.h"
31 #include "kstack.h"
32
33 /* Two classes of sparc64 chips currently exist. All of which have
34 * 32-bit counters which can generate overflow interrupts on the
35 * transition from 0xffffffff to 0.
36 *
37 * All chips upto and including SPARC-T3 have two performance
38 * counters. The two 32-bit counters are accessed in one go using a
39 * single 64-bit register.
40 *
41 * On these older chips both counters are controlled using a single
42 * control register. The only way to stop all sampling is to clear
43 * all of the context (user, supervisor, hypervisor) sampling enable
44 * bits. But these bits apply to both counters, thus the two counters
45 * can't be enabled/disabled individually.
46 *
47 * Furthermore, the control register on these older chips have two
48 * event fields, one for each of the two counters. It's thus nearly
49 * impossible to have one counter going while keeping the other one
50 * stopped. Therefore it is possible to get overflow interrupts for
51 * counters not currently "in use" and that condition must be checked
52 * in the overflow interrupt handler.
53 *
54 * So we use a hack, in that we program inactive counters with the
55 * "sw_count0" and "sw_count1" events. These count how many times
56 * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57 * unusual way to encode a NOP and therefore will not trigger in
58 * normal code.
59 *
60 * Starting with SPARC-T4 we have one control register per counter.
61 * And the counters are stored in individual registers. The registers
62 * for the counters are 64-bit but only a 32-bit counter is
63 * implemented. The event selections on SPARC-T4 lack any
64 * restrictions, therefore we can elide all of the complicated
65 * conflict resolution code we have for SPARC-T3 and earlier chips.
66 */
67
68 #define MAX_HWEVENTS 4
69 #define MAX_PCRS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
71
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
75
76 struct cpu_hw_events {
77 /* Number of events currently scheduled onto this cpu.
78 * This tells how many entries in the arrays below
79 * are valid.
80 */
81 int n_events;
82
83 /* Number of new events added since the last hw_perf_disable().
84 * This works because the perf event layer always adds new
85 * events inside of a perf_{disable,enable}() sequence.
86 */
87 int n_added;
88
89 /* Array of events current scheduled on this cpu. */
90 struct perf_event *event[MAX_HWEVENTS];
91
92 /* Array of encoded longs, specifying the %pcr register
93 * encoding and the mask of PIC counters this even can
94 * be scheduled on. See perf_event_encode() et al.
95 */
96 unsigned long events[MAX_HWEVENTS];
97
98 /* The current counter index assigned to an event. When the
99 * event hasn't been programmed into the cpu yet, this will
100 * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101 * we ought to schedule the event.
102 */
103 int current_idx[MAX_HWEVENTS];
104
105 /* Software copy of %pcr register(s) on this cpu. */
106 u64 pcr[MAX_HWEVENTS];
107
108 /* Enabled/disable state. */
109 int enabled;
110
111 unsigned int group_flag;
112 };
113 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114
115 /* An event map describes the characteristics of a performance
116 * counter event. In particular it gives the encoding as well as
117 * a mask telling which counters the event can be measured on.
118 *
119 * The mask is unused on SPARC-T4 and later.
120 */
121 struct perf_event_map {
122 u16 encoding;
123 u8 pic_mask;
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
127 };
128
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131 {
132 return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133 }
134
135 static u8 perf_event_get_msk(unsigned long val)
136 {
137 return val & 0xff;
138 }
139
140 static u64 perf_event_get_enc(unsigned long val)
141 {
142 return val >> 16;
143 }
144
145 #define C(x) PERF_COUNT_HW_CACHE_##x
146
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
149
150 typedef struct perf_event_map cache_map_t
151 [PERF_COUNT_HW_CACHE_MAX]
152 [PERF_COUNT_HW_CACHE_OP_MAX]
153 [PERF_COUNT_HW_CACHE_RESULT_MAX];
154
155 struct sparc_pmu {
156 const struct perf_event_map *(*event_map)(int);
157 const cache_map_t *cache_map;
158 int max_events;
159 u32 (*read_pmc)(int);
160 void (*write_pmc)(int, u64);
161 int upper_shift;
162 int lower_shift;
163 int event_mask;
164 int user_bit;
165 int priv_bit;
166 int hv_bit;
167 int irq_bit;
168 int upper_nop;
169 int lower_nop;
170 unsigned int flags;
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
173 int max_hw_events;
174 int num_pcrs;
175 int num_pic_regs;
176 };
177
178 static u32 sparc_default_read_pmc(int idx)
179 {
180 u64 val;
181
182 val = pcr_ops->read_pic(0);
183 if (idx == PIC_UPPER_INDEX)
184 val >>= 32;
185
186 return val & 0xffffffff;
187 }
188
189 static void sparc_default_write_pmc(int idx, u64 val)
190 {
191 u64 shift, mask, pic;
192
193 shift = 0;
194 if (idx == PIC_UPPER_INDEX)
195 shift = 32;
196
197 mask = ((u64) 0xffffffff) << shift;
198 val <<= shift;
199
200 pic = pcr_ops->read_pic(0);
201 pic &= ~mask;
202 pic |= val;
203 pcr_ops->write_pic(0, pic);
204 }
205
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207 [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
208 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
209 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
210 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211 };
212
213 static const struct perf_event_map *ultra3_event_map(int event_id)
214 {
215 return &ultra3_perfmon_event_map[event_id];
216 }
217
218 static const cache_map_t ultra3_cache_map = {
219 [C(L1D)] = {
220 [C(OP_READ)] = {
221 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223 },
224 [C(OP_WRITE)] = {
225 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227 },
228 [C(OP_PREFETCH)] = {
229 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231 },
232 },
233 [C(L1I)] = {
234 [C(OP_READ)] = {
235 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237 },
238 [ C(OP_WRITE) ] = {
239 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
241 },
242 [ C(OP_PREFETCH) ] = {
243 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
245 },
246 },
247 [C(LL)] = {
248 [C(OP_READ)] = {
249 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251 },
252 [C(OP_WRITE)] = {
253 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255 },
256 [C(OP_PREFETCH)] = {
257 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259 },
260 },
261 [C(DTLB)] = {
262 [C(OP_READ)] = {
263 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265 },
266 [ C(OP_WRITE) ] = {
267 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
269 },
270 [ C(OP_PREFETCH) ] = {
271 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
273 },
274 },
275 [C(ITLB)] = {
276 [C(OP_READ)] = {
277 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279 },
280 [ C(OP_WRITE) ] = {
281 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
283 },
284 [ C(OP_PREFETCH) ] = {
285 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
287 },
288 },
289 [C(BPU)] = {
290 [C(OP_READ)] = {
291 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293 },
294 [ C(OP_WRITE) ] = {
295 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
297 },
298 [ C(OP_PREFETCH) ] = {
299 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
301 },
302 },
303 [C(NODE)] = {
304 [C(OP_READ)] = {
305 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307 },
308 [ C(OP_WRITE) ] = {
309 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
311 },
312 [ C(OP_PREFETCH) ] = {
313 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
315 },
316 },
317 };
318
319 static const struct sparc_pmu ultra3_pmu = {
320 .event_map = ultra3_event_map,
321 .cache_map = &ultra3_cache_map,
322 .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323 .read_pmc = sparc_default_read_pmc,
324 .write_pmc = sparc_default_write_pmc,
325 .upper_shift = 11,
326 .lower_shift = 4,
327 .event_mask = 0x3f,
328 .user_bit = PCR_UTRACE,
329 .priv_bit = PCR_STRACE,
330 .upper_nop = 0x1c,
331 .lower_nop = 0x14,
332 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
333 SPARC_PMU_HAS_CONFLICTS),
334 .max_hw_events = 2,
335 .num_pcrs = 1,
336 .num_pic_regs = 1,
337 };
338
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340 * only instructions, so it is free running which creates all kinds of
341 * problems. Some hardware designs make one wonder if the creator
342 * even looked at how this stuff gets used by software.
343 */
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
346 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
347 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
348 [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
349 };
350
351 static const struct perf_event_map *niagara1_event_map(int event_id)
352 {
353 return &niagara1_perfmon_event_map[event_id];
354 }
355
356 static const cache_map_t niagara1_cache_map = {
357 [C(L1D)] = {
358 [C(OP_READ)] = {
359 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361 },
362 [C(OP_WRITE)] = {
363 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365 },
366 [C(OP_PREFETCH)] = {
367 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369 },
370 },
371 [C(L1I)] = {
372 [C(OP_READ)] = {
373 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375 },
376 [ C(OP_WRITE) ] = {
377 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
379 },
380 [ C(OP_PREFETCH) ] = {
381 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
383 },
384 },
385 [C(LL)] = {
386 [C(OP_READ)] = {
387 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389 },
390 [C(OP_WRITE)] = {
391 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393 },
394 [C(OP_PREFETCH)] = {
395 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397 },
398 },
399 [C(DTLB)] = {
400 [C(OP_READ)] = {
401 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403 },
404 [ C(OP_WRITE) ] = {
405 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
407 },
408 [ C(OP_PREFETCH) ] = {
409 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411 },
412 },
413 [C(ITLB)] = {
414 [C(OP_READ)] = {
415 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417 },
418 [ C(OP_WRITE) ] = {
419 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
421 },
422 [ C(OP_PREFETCH) ] = {
423 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425 },
426 },
427 [C(BPU)] = {
428 [C(OP_READ)] = {
429 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431 },
432 [ C(OP_WRITE) ] = {
433 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
435 },
436 [ C(OP_PREFETCH) ] = {
437 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439 },
440 },
441 [C(NODE)] = {
442 [C(OP_READ)] = {
443 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
445 },
446 [ C(OP_WRITE) ] = {
447 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
449 },
450 [ C(OP_PREFETCH) ] = {
451 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453 },
454 },
455 };
456
457 static const struct sparc_pmu niagara1_pmu = {
458 .event_map = niagara1_event_map,
459 .cache_map = &niagara1_cache_map,
460 .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461 .read_pmc = sparc_default_read_pmc,
462 .write_pmc = sparc_default_write_pmc,
463 .upper_shift = 0,
464 .lower_shift = 4,
465 .event_mask = 0x7,
466 .user_bit = PCR_UTRACE,
467 .priv_bit = PCR_STRACE,
468 .upper_nop = 0x0,
469 .lower_nop = 0x0,
470 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
471 SPARC_PMU_HAS_CONFLICTS),
472 .max_hw_events = 2,
473 .num_pcrs = 1,
474 .num_pic_regs = 1,
475 };
476
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478 [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
479 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
480 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
481 [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
482 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
483 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
484 };
485
486 static const struct perf_event_map *niagara2_event_map(int event_id)
487 {
488 return &niagara2_perfmon_event_map[event_id];
489 }
490
491 static const cache_map_t niagara2_cache_map = {
492 [C(L1D)] = {
493 [C(OP_READ)] = {
494 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496 },
497 [C(OP_WRITE)] = {
498 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500 },
501 [C(OP_PREFETCH)] = {
502 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504 },
505 },
506 [C(L1I)] = {
507 [C(OP_READ)] = {
508 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510 },
511 [ C(OP_WRITE) ] = {
512 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
514 },
515 [ C(OP_PREFETCH) ] = {
516 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
518 },
519 },
520 [C(LL)] = {
521 [C(OP_READ)] = {
522 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524 },
525 [C(OP_WRITE)] = {
526 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528 },
529 [C(OP_PREFETCH)] = {
530 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532 },
533 },
534 [C(DTLB)] = {
535 [C(OP_READ)] = {
536 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538 },
539 [ C(OP_WRITE) ] = {
540 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
542 },
543 [ C(OP_PREFETCH) ] = {
544 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
546 },
547 },
548 [C(ITLB)] = {
549 [C(OP_READ)] = {
550 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552 },
553 [ C(OP_WRITE) ] = {
554 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
556 },
557 [ C(OP_PREFETCH) ] = {
558 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
560 },
561 },
562 [C(BPU)] = {
563 [C(OP_READ)] = {
564 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566 },
567 [ C(OP_WRITE) ] = {
568 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
570 },
571 [ C(OP_PREFETCH) ] = {
572 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
574 },
575 },
576 [C(NODE)] = {
577 [C(OP_READ)] = {
578 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
580 },
581 [ C(OP_WRITE) ] = {
582 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
584 },
585 [ C(OP_PREFETCH) ] = {
586 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
588 },
589 },
590 };
591
592 static const struct sparc_pmu niagara2_pmu = {
593 .event_map = niagara2_event_map,
594 .cache_map = &niagara2_cache_map,
595 .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596 .read_pmc = sparc_default_read_pmc,
597 .write_pmc = sparc_default_write_pmc,
598 .upper_shift = 19,
599 .lower_shift = 6,
600 .event_mask = 0xfff,
601 .user_bit = PCR_UTRACE,
602 .priv_bit = PCR_STRACE,
603 .hv_bit = PCR_N2_HTRACE,
604 .irq_bit = 0x30,
605 .upper_nop = 0x220,
606 .lower_nop = 0x220,
607 .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
608 SPARC_PMU_HAS_CONFLICTS),
609 .max_hw_events = 2,
610 .num_pcrs = 1,
611 .num_pic_regs = 1,
612 };
613
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615 [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616 [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617 [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618 [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620 [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621 };
622
623 static const struct perf_event_map *niagara4_event_map(int event_id)
624 {
625 return &niagara4_perfmon_event_map[event_id];
626 }
627
628 static const cache_map_t niagara4_cache_map = {
629 [C(L1D)] = {
630 [C(OP_READ)] = {
631 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633 },
634 [C(OP_WRITE)] = {
635 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636 [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637 },
638 [C(OP_PREFETCH)] = {
639 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641 },
642 },
643 [C(L1I)] = {
644 [C(OP_READ)] = {
645 [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646 [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647 },
648 [ C(OP_WRITE) ] = {
649 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650 [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
651 },
652 [ C(OP_PREFETCH) ] = {
653 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
655 },
656 },
657 [C(LL)] = {
658 [C(OP_READ)] = {
659 [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661 },
662 [C(OP_WRITE)] = {
663 [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665 },
666 [C(OP_PREFETCH)] = {
667 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669 },
670 },
671 [C(DTLB)] = {
672 [C(OP_READ)] = {
673 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674 [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675 },
676 [ C(OP_WRITE) ] = {
677 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
679 },
680 [ C(OP_PREFETCH) ] = {
681 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
683 },
684 },
685 [C(ITLB)] = {
686 [C(OP_READ)] = {
687 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688 [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689 },
690 [ C(OP_WRITE) ] = {
691 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
693 },
694 [ C(OP_PREFETCH) ] = {
695 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
697 },
698 },
699 [C(BPU)] = {
700 [C(OP_READ)] = {
701 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703 },
704 [ C(OP_WRITE) ] = {
705 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
707 },
708 [ C(OP_PREFETCH) ] = {
709 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
711 },
712 },
713 [C(NODE)] = {
714 [C(OP_READ)] = {
715 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716 [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
717 },
718 [ C(OP_WRITE) ] = {
719 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
721 },
722 [ C(OP_PREFETCH) ] = {
723 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724 [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
725 },
726 },
727 };
728
729 static u32 sparc_vt_read_pmc(int idx)
730 {
731 u64 val = pcr_ops->read_pic(idx);
732
733 return val & 0xffffffff;
734 }
735
736 static void sparc_vt_write_pmc(int idx, u64 val)
737 {
738 u64 pcr;
739
740 /* There seems to be an internal latch on the overflow event
741 * on SPARC-T4 that prevents it from triggering unless you
742 * update the PIC exactly as we do here. The requirement
743 * seems to be that you have to turn off event counting in the
744 * PCR around the PIC update.
745 *
746 * For example, after the following sequence:
747 *
748 * 1) set PIC to -1
749 * 2) enable event counting and overflow reporting in PCR
750 * 3) overflow triggers, softint 15 handler invoked
751 * 4) clear OV bit in PCR
752 * 5) write PIC to -1
753 *
754 * a subsequent overflow event will not trigger. This
755 * sequence works on SPARC-T3 and previous chips.
756 */
757 pcr = pcr_ops->read_pcr(idx);
758 pcr_ops->write_pcr(idx, PCR_N4_PICNPT);
759
760 pcr_ops->write_pic(idx, val & 0xffffffff);
761
762 pcr_ops->write_pcr(idx, pcr);
763 }
764
765 static const struct sparc_pmu niagara4_pmu = {
766 .event_map = niagara4_event_map,
767 .cache_map = &niagara4_cache_map,
768 .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769 .read_pmc = sparc_vt_read_pmc,
770 .write_pmc = sparc_vt_write_pmc,
771 .upper_shift = 5,
772 .lower_shift = 5,
773 .event_mask = 0x7ff,
774 .user_bit = PCR_N4_UTRACE,
775 .priv_bit = PCR_N4_STRACE,
776
777 /* We explicitly don't support hypervisor tracing. The T4
778 * generates the overflow event for precise events via a trap
779 * which will not be generated (ie. it's completely lost) if
780 * we happen to be in the hypervisor when the event triggers.
781 * Essentially, the overflow event reporting is completely
782 * unusable when you have hypervisor mode tracing enabled.
783 */
784 .hv_bit = 0,
785
786 .irq_bit = PCR_N4_TOE,
787 .upper_nop = 0,
788 .lower_nop = 0,
789 .flags = 0,
790 .max_hw_events = 4,
791 .num_pcrs = 4,
792 .num_pic_regs = 4,
793 };
794
795 static const struct sparc_pmu *sparc_pmu __read_mostly;
796
797 static u64 event_encoding(u64 event_id, int idx)
798 {
799 if (idx == PIC_UPPER_INDEX)
800 event_id <<= sparc_pmu->upper_shift;
801 else
802 event_id <<= sparc_pmu->lower_shift;
803 return event_id;
804 }
805
806 static u64 mask_for_index(int idx)
807 {
808 return event_encoding(sparc_pmu->event_mask, idx);
809 }
810
811 static u64 nop_for_index(int idx)
812 {
813 return event_encoding(idx == PIC_UPPER_INDEX ?
814 sparc_pmu->upper_nop :
815 sparc_pmu->lower_nop, idx);
816 }
817
818 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
819 {
820 u64 enc, val, mask = mask_for_index(idx);
821 int pcr_index = 0;
822
823 if (sparc_pmu->num_pcrs > 1)
824 pcr_index = idx;
825
826 enc = perf_event_get_enc(cpuc->events[idx]);
827
828 val = cpuc->pcr[pcr_index];
829 val &= ~mask;
830 val |= event_encoding(enc, idx);
831 cpuc->pcr[pcr_index] = val;
832
833 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834 }
835
836 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
837 {
838 u64 mask = mask_for_index(idx);
839 u64 nop = nop_for_index(idx);
840 int pcr_index = 0;
841 u64 val;
842
843 if (sparc_pmu->num_pcrs > 1)
844 pcr_index = idx;
845
846 val = cpuc->pcr[pcr_index];
847 val &= ~mask;
848 val |= nop;
849 cpuc->pcr[pcr_index] = val;
850
851 pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852 }
853
854 static u64 sparc_perf_event_update(struct perf_event *event,
855 struct hw_perf_event *hwc, int idx)
856 {
857 int shift = 64 - 32;
858 u64 prev_raw_count, new_raw_count;
859 s64 delta;
860
861 again:
862 prev_raw_count = local64_read(&hwc->prev_count);
863 new_raw_count = sparc_pmu->read_pmc(idx);
864
865 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
866 new_raw_count) != prev_raw_count)
867 goto again;
868
869 delta = (new_raw_count << shift) - (prev_raw_count << shift);
870 delta >>= shift;
871
872 local64_add(delta, &event->count);
873 local64_sub(delta, &hwc->period_left);
874
875 return new_raw_count;
876 }
877
878 static int sparc_perf_event_set_period(struct perf_event *event,
879 struct hw_perf_event *hwc, int idx)
880 {
881 s64 left = local64_read(&hwc->period_left);
882 s64 period = hwc->sample_period;
883 int ret = 0;
884
885 if (unlikely(left <= -period)) {
886 left = period;
887 local64_set(&hwc->period_left, left);
888 hwc->last_period = period;
889 ret = 1;
890 }
891
892 if (unlikely(left <= 0)) {
893 left += period;
894 local64_set(&hwc->period_left, left);
895 hwc->last_period = period;
896 ret = 1;
897 }
898 if (left > MAX_PERIOD)
899 left = MAX_PERIOD;
900
901 local64_set(&hwc->prev_count, (u64)-left);
902
903 sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
904
905 perf_event_update_userpage(event);
906
907 return ret;
908 }
909
910 static void read_in_all_counters(struct cpu_hw_events *cpuc)
911 {
912 int i;
913
914 for (i = 0; i < cpuc->n_events; i++) {
915 struct perf_event *cp = cpuc->event[i];
916
917 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
918 cpuc->current_idx[i] != cp->hw.idx) {
919 sparc_perf_event_update(cp, &cp->hw,
920 cpuc->current_idx[i]);
921 cpuc->current_idx[i] = PIC_NO_INDEX;
922 }
923 }
924 }
925
926 /* On this PMU all PICs are programmed using a single PCR. Calculate
927 * the combined control register value.
928 *
929 * For such chips we require that all of the events have the same
930 * configuration, so just fetch the settings from the first entry.
931 */
932 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
933 {
934 int i;
935
936 if (!cpuc->n_added)
937 goto out;
938
939 /* Assign to counters all unassigned events. */
940 for (i = 0; i < cpuc->n_events; i++) {
941 struct perf_event *cp = cpuc->event[i];
942 struct hw_perf_event *hwc = &cp->hw;
943 int idx = hwc->idx;
944 u64 enc;
945
946 if (cpuc->current_idx[i] != PIC_NO_INDEX)
947 continue;
948
949 sparc_perf_event_set_period(cp, hwc, idx);
950 cpuc->current_idx[i] = idx;
951
952 enc = perf_event_get_enc(cpuc->events[i]);
953 cpuc->pcr[0] &= ~mask_for_index(idx);
954 if (hwc->state & PERF_HES_STOPPED)
955 cpuc->pcr[0] |= nop_for_index(idx);
956 else
957 cpuc->pcr[0] |= event_encoding(enc, idx);
958 }
959 out:
960 cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
961 }
962
963 /* On this PMU each PIC has it's own PCR control register. */
964 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
965 {
966 int i;
967
968 if (!cpuc->n_added)
969 goto out;
970
971 for (i = 0; i < cpuc->n_events; i++) {
972 struct perf_event *cp = cpuc->event[i];
973 struct hw_perf_event *hwc = &cp->hw;
974 int idx = hwc->idx;
975 u64 enc;
976
977 if (cpuc->current_idx[i] != PIC_NO_INDEX)
978 continue;
979
980 sparc_perf_event_set_period(cp, hwc, idx);
981 cpuc->current_idx[i] = idx;
982
983 enc = perf_event_get_enc(cpuc->events[i]);
984 cpuc->pcr[idx] &= ~mask_for_index(idx);
985 if (hwc->state & PERF_HES_STOPPED)
986 cpuc->pcr[idx] |= nop_for_index(idx);
987 else
988 cpuc->pcr[idx] |= event_encoding(enc, idx);
989 }
990 out:
991 for (i = 0; i < cpuc->n_events; i++) {
992 struct perf_event *cp = cpuc->event[i];
993 int idx = cp->hw.idx;
994
995 cpuc->pcr[idx] |= cp->hw.config_base;
996 }
997 }
998
999 /* If performance event entries have been added, move existing events
1000 * around (if necessary) and then assign new entries to counters.
1001 */
1002 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003 {
1004 if (cpuc->n_added)
1005 read_in_all_counters(cpuc);
1006
1007 if (sparc_pmu->num_pcrs == 1) {
1008 calculate_single_pcr(cpuc);
1009 } else {
1010 calculate_multiple_pcrs(cpuc);
1011 }
1012 }
1013
1014 static void sparc_pmu_enable(struct pmu *pmu)
1015 {
1016 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1017 int i;
1018
1019 if (cpuc->enabled)
1020 return;
1021
1022 cpuc->enabled = 1;
1023 barrier();
1024
1025 if (cpuc->n_events)
1026 update_pcrs_for_enable(cpuc);
1027
1028 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030 }
1031
1032 static void sparc_pmu_disable(struct pmu *pmu)
1033 {
1034 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1035 int i;
1036
1037 if (!cpuc->enabled)
1038 return;
1039
1040 cpuc->enabled = 0;
1041 cpuc->n_added = 0;
1042
1043 for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044 u64 val = cpuc->pcr[i];
1045
1046 val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1047 sparc_pmu->hv_bit | sparc_pmu->irq_bit);
1048 cpuc->pcr[i] = val;
1049 pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050 }
1051 }
1052
1053 static int active_event_index(struct cpu_hw_events *cpuc,
1054 struct perf_event *event)
1055 {
1056 int i;
1057
1058 for (i = 0; i < cpuc->n_events; i++) {
1059 if (cpuc->event[i] == event)
1060 break;
1061 }
1062 BUG_ON(i == cpuc->n_events);
1063 return cpuc->current_idx[i];
1064 }
1065
1066 static void sparc_pmu_start(struct perf_event *event, int flags)
1067 {
1068 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1069 int idx = active_event_index(cpuc, event);
1070
1071 if (flags & PERF_EF_RELOAD) {
1072 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073 sparc_perf_event_set_period(event, &event->hw, idx);
1074 }
1075
1076 event->hw.state = 0;
1077
1078 sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079 }
1080
1081 static void sparc_pmu_stop(struct perf_event *event, int flags)
1082 {
1083 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1084 int idx = active_event_index(cpuc, event);
1085
1086 if (!(event->hw.state & PERF_HES_STOPPED)) {
1087 sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088 event->hw.state |= PERF_HES_STOPPED;
1089 }
1090
1091 if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092 sparc_perf_event_update(event, &event->hw, idx);
1093 event->hw.state |= PERF_HES_UPTODATE;
1094 }
1095 }
1096
1097 static void sparc_pmu_del(struct perf_event *event, int _flags)
1098 {
1099 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1100 unsigned long flags;
1101 int i;
1102
1103 local_irq_save(flags);
1104 perf_pmu_disable(event->pmu);
1105
1106 for (i = 0; i < cpuc->n_events; i++) {
1107 if (event == cpuc->event[i]) {
1108 /* Absorb the final count and turn off the
1109 * event.
1110 */
1111 sparc_pmu_stop(event, PERF_EF_UPDATE);
1112
1113 /* Shift remaining entries down into
1114 * the existing slot.
1115 */
1116 while (++i < cpuc->n_events) {
1117 cpuc->event[i - 1] = cpuc->event[i];
1118 cpuc->events[i - 1] = cpuc->events[i];
1119 cpuc->current_idx[i - 1] =
1120 cpuc->current_idx[i];
1121 }
1122
1123 perf_event_update_userpage(event);
1124
1125 cpuc->n_events--;
1126 break;
1127 }
1128 }
1129
1130 perf_pmu_enable(event->pmu);
1131 local_irq_restore(flags);
1132 }
1133
1134 static void sparc_pmu_read(struct perf_event *event)
1135 {
1136 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1137 int idx = active_event_index(cpuc, event);
1138 struct hw_perf_event *hwc = &event->hw;
1139
1140 sparc_perf_event_update(event, hwc, idx);
1141 }
1142
1143 static atomic_t active_events = ATOMIC_INIT(0);
1144 static DEFINE_MUTEX(pmc_grab_mutex);
1145
1146 static void perf_stop_nmi_watchdog(void *unused)
1147 {
1148 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1149 int i;
1150
1151 stop_nmi_watchdog(NULL);
1152 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153 cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154 }
1155
1156 static void perf_event_grab_pmc(void)
1157 {
1158 if (atomic_inc_not_zero(&active_events))
1159 return;
1160
1161 mutex_lock(&pmc_grab_mutex);
1162 if (atomic_read(&active_events) == 0) {
1163 if (atomic_read(&nmi_active) > 0) {
1164 on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165 BUG_ON(atomic_read(&nmi_active) != 0);
1166 }
1167 atomic_inc(&active_events);
1168 }
1169 mutex_unlock(&pmc_grab_mutex);
1170 }
1171
1172 static void perf_event_release_pmc(void)
1173 {
1174 if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175 if (atomic_read(&nmi_active) == 0)
1176 on_each_cpu(start_nmi_watchdog, NULL, 1);
1177 mutex_unlock(&pmc_grab_mutex);
1178 }
1179 }
1180
1181 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182 {
1183 unsigned int cache_type, cache_op, cache_result;
1184 const struct perf_event_map *pmap;
1185
1186 if (!sparc_pmu->cache_map)
1187 return ERR_PTR(-ENOENT);
1188
1189 cache_type = (config >> 0) & 0xff;
1190 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191 return ERR_PTR(-EINVAL);
1192
1193 cache_op = (config >> 8) & 0xff;
1194 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195 return ERR_PTR(-EINVAL);
1196
1197 cache_result = (config >> 16) & 0xff;
1198 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199 return ERR_PTR(-EINVAL);
1200
1201 pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202
1203 if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204 return ERR_PTR(-ENOENT);
1205
1206 if (pmap->encoding == CACHE_OP_NONSENSE)
1207 return ERR_PTR(-EINVAL);
1208
1209 return pmap;
1210 }
1211
1212 static void hw_perf_event_destroy(struct perf_event *event)
1213 {
1214 perf_event_release_pmc();
1215 }
1216
1217 /* Make sure all events can be scheduled into the hardware at
1218 * the same time. This is simplified by the fact that we only
1219 * need to support 2 simultaneous HW events.
1220 *
1221 * As a side effect, the evts[]->hw.idx values will be assigned
1222 * on success. These are pending indexes. When the events are
1223 * actually programmed into the chip, these values will propagate
1224 * to the per-cpu cpuc->current_idx[] slots, see the code in
1225 * maybe_change_configuration() for details.
1226 */
1227 static int sparc_check_constraints(struct perf_event **evts,
1228 unsigned long *events, int n_ev)
1229 {
1230 u8 msk0 = 0, msk1 = 0;
1231 int idx0 = 0;
1232
1233 /* This case is possible when we are invoked from
1234 * hw_perf_group_sched_in().
1235 */
1236 if (!n_ev)
1237 return 0;
1238
1239 if (n_ev > sparc_pmu->max_hw_events)
1240 return -1;
1241
1242 if (!(sparc_pmu->flags & SPARC_PMU_HAS_CONFLICTS)) {
1243 int i;
1244
1245 for (i = 0; i < n_ev; i++)
1246 evts[i]->hw.idx = i;
1247 return 0;
1248 }
1249
1250 msk0 = perf_event_get_msk(events[0]);
1251 if (n_ev == 1) {
1252 if (msk0 & PIC_LOWER)
1253 idx0 = 1;
1254 goto success;
1255 }
1256 BUG_ON(n_ev != 2);
1257 msk1 = perf_event_get_msk(events[1]);
1258
1259 /* If both events can go on any counter, OK. */
1260 if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261 msk1 == (PIC_UPPER | PIC_LOWER))
1262 goto success;
1263
1264 /* If one event is limited to a specific counter,
1265 * and the other can go on both, OK.
1266 */
1267 if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268 msk1 == (PIC_UPPER | PIC_LOWER)) {
1269 if (msk0 & PIC_LOWER)
1270 idx0 = 1;
1271 goto success;
1272 }
1273
1274 if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275 msk0 == (PIC_UPPER | PIC_LOWER)) {
1276 if (msk1 & PIC_UPPER)
1277 idx0 = 1;
1278 goto success;
1279 }
1280
1281 /* If the events are fixed to different counters, OK. */
1282 if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283 (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284 if (msk0 & PIC_LOWER)
1285 idx0 = 1;
1286 goto success;
1287 }
1288
1289 /* Otherwise, there is a conflict. */
1290 return -1;
1291
1292 success:
1293 evts[0]->hw.idx = idx0;
1294 if (n_ev == 2)
1295 evts[1]->hw.idx = idx0 ^ 1;
1296 return 0;
1297 }
1298
1299 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300 {
1301 int eu = 0, ek = 0, eh = 0;
1302 struct perf_event *event;
1303 int i, n, first;
1304
1305 if (!(sparc_pmu->flags & SPARC_PMU_ALL_EXCLUDES_SAME))
1306 return 0;
1307
1308 n = n_prev + n_new;
1309 if (n <= 1)
1310 return 0;
1311
1312 first = 1;
1313 for (i = 0; i < n; i++) {
1314 event = evts[i];
1315 if (first) {
1316 eu = event->attr.exclude_user;
1317 ek = event->attr.exclude_kernel;
1318 eh = event->attr.exclude_hv;
1319 first = 0;
1320 } else if (event->attr.exclude_user != eu ||
1321 event->attr.exclude_kernel != ek ||
1322 event->attr.exclude_hv != eh) {
1323 return -EAGAIN;
1324 }
1325 }
1326
1327 return 0;
1328 }
1329
1330 static int collect_events(struct perf_event *group, int max_count,
1331 struct perf_event *evts[], unsigned long *events,
1332 int *current_idx)
1333 {
1334 struct perf_event *event;
1335 int n = 0;
1336
1337 if (!is_software_event(group)) {
1338 if (n >= max_count)
1339 return -1;
1340 evts[n] = group;
1341 events[n] = group->hw.event_base;
1342 current_idx[n++] = PIC_NO_INDEX;
1343 }
1344 list_for_each_entry(event, &group->sibling_list, group_entry) {
1345 if (!is_software_event(event) &&
1346 event->state != PERF_EVENT_STATE_OFF) {
1347 if (n >= max_count)
1348 return -1;
1349 evts[n] = event;
1350 events[n] = event->hw.event_base;
1351 current_idx[n++] = PIC_NO_INDEX;
1352 }
1353 }
1354 return n;
1355 }
1356
1357 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358 {
1359 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1360 int n0, ret = -EAGAIN;
1361 unsigned long flags;
1362
1363 local_irq_save(flags);
1364 perf_pmu_disable(event->pmu);
1365
1366 n0 = cpuc->n_events;
1367 if (n0 >= sparc_pmu->max_hw_events)
1368 goto out;
1369
1370 cpuc->event[n0] = event;
1371 cpuc->events[n0] = event->hw.event_base;
1372 cpuc->current_idx[n0] = PIC_NO_INDEX;
1373
1374 event->hw.state = PERF_HES_UPTODATE;
1375 if (!(ef_flags & PERF_EF_START))
1376 event->hw.state |= PERF_HES_STOPPED;
1377
1378 /*
1379 * If group events scheduling transaction was started,
1380 * skip the schedulability test here, it will be performed
1381 * at commit time(->commit_txn) as a whole
1382 */
1383 if (cpuc->group_flag & PERF_EVENT_TXN)
1384 goto nocheck;
1385
1386 if (check_excludes(cpuc->event, n0, 1))
1387 goto out;
1388 if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389 goto out;
1390
1391 nocheck:
1392 cpuc->n_events++;
1393 cpuc->n_added++;
1394
1395 ret = 0;
1396 out:
1397 perf_pmu_enable(event->pmu);
1398 local_irq_restore(flags);
1399 return ret;
1400 }
1401
1402 static int sparc_pmu_event_init(struct perf_event *event)
1403 {
1404 struct perf_event_attr *attr = &event->attr;
1405 struct perf_event *evts[MAX_HWEVENTS];
1406 struct hw_perf_event *hwc = &event->hw;
1407 unsigned long events[MAX_HWEVENTS];
1408 int current_idx_dmy[MAX_HWEVENTS];
1409 const struct perf_event_map *pmap;
1410 int n;
1411
1412 if (atomic_read(&nmi_active) < 0)
1413 return -ENODEV;
1414
1415 /* does not support taken branch sampling */
1416 if (has_branch_stack(event))
1417 return -EOPNOTSUPP;
1418
1419 switch (attr->type) {
1420 case PERF_TYPE_HARDWARE:
1421 if (attr->config >= sparc_pmu->max_events)
1422 return -EINVAL;
1423 pmap = sparc_pmu->event_map(attr->config);
1424 break;
1425
1426 case PERF_TYPE_HW_CACHE:
1427 pmap = sparc_map_cache_event(attr->config);
1428 if (IS_ERR(pmap))
1429 return PTR_ERR(pmap);
1430 break;
1431
1432 case PERF_TYPE_RAW:
1433 pmap = NULL;
1434 break;
1435
1436 default:
1437 return -ENOENT;
1438
1439 }
1440
1441 if (pmap) {
1442 hwc->event_base = perf_event_encode(pmap);
1443 } else {
1444 /*
1445 * User gives us "(encoding << 16) | pic_mask" for
1446 * PERF_TYPE_RAW events.
1447 */
1448 hwc->event_base = attr->config;
1449 }
1450
1451 /* We save the enable bits in the config_base. */
1452 hwc->config_base = sparc_pmu->irq_bit;
1453 if (!attr->exclude_user)
1454 hwc->config_base |= sparc_pmu->user_bit;
1455 if (!attr->exclude_kernel)
1456 hwc->config_base |= sparc_pmu->priv_bit;
1457 if (!attr->exclude_hv)
1458 hwc->config_base |= sparc_pmu->hv_bit;
1459
1460 n = 0;
1461 if (event->group_leader != event) {
1462 n = collect_events(event->group_leader,
1463 sparc_pmu->max_hw_events - 1,
1464 evts, events, current_idx_dmy);
1465 if (n < 0)
1466 return -EINVAL;
1467 }
1468 events[n] = hwc->event_base;
1469 evts[n] = event;
1470
1471 if (check_excludes(evts, n, 1))
1472 return -EINVAL;
1473
1474 if (sparc_check_constraints(evts, events, n + 1))
1475 return -EINVAL;
1476
1477 hwc->idx = PIC_NO_INDEX;
1478
1479 /* Try to do all error checking before this point, as unwinding
1480 * state after grabbing the PMC is difficult.
1481 */
1482 perf_event_grab_pmc();
1483 event->destroy = hw_perf_event_destroy;
1484
1485 if (!hwc->sample_period) {
1486 hwc->sample_period = MAX_PERIOD;
1487 hwc->last_period = hwc->sample_period;
1488 local64_set(&hwc->period_left, hwc->sample_period);
1489 }
1490
1491 return 0;
1492 }
1493
1494 /*
1495 * Start group events scheduling transaction
1496 * Set the flag to make pmu::enable() not perform the
1497 * schedulability test, it will be performed at commit time
1498 */
1499 static void sparc_pmu_start_txn(struct pmu *pmu)
1500 {
1501 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1502
1503 perf_pmu_disable(pmu);
1504 cpuhw->group_flag |= PERF_EVENT_TXN;
1505 }
1506
1507 /*
1508 * Stop group events scheduling transaction
1509 * Clear the flag and pmu::enable() will perform the
1510 * schedulability test.
1511 */
1512 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513 {
1514 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1515
1516 cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517 perf_pmu_enable(pmu);
1518 }
1519
1520 /*
1521 * Commit group events scheduling transaction
1522 * Perform the group schedulability test as a whole
1523 * Return 0 if success
1524 */
1525 static int sparc_pmu_commit_txn(struct pmu *pmu)
1526 {
1527 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1528 int n;
1529
1530 if (!sparc_pmu)
1531 return -EINVAL;
1532
1533 cpuc = this_cpu_ptr(&cpu_hw_events);
1534 n = cpuc->n_events;
1535 if (check_excludes(cpuc->event, 0, n))
1536 return -EINVAL;
1537 if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538 return -EAGAIN;
1539
1540 cpuc->group_flag &= ~PERF_EVENT_TXN;
1541 perf_pmu_enable(pmu);
1542 return 0;
1543 }
1544
1545 static struct pmu pmu = {
1546 .pmu_enable = sparc_pmu_enable,
1547 .pmu_disable = sparc_pmu_disable,
1548 .event_init = sparc_pmu_event_init,
1549 .add = sparc_pmu_add,
1550 .del = sparc_pmu_del,
1551 .start = sparc_pmu_start,
1552 .stop = sparc_pmu_stop,
1553 .read = sparc_pmu_read,
1554 .start_txn = sparc_pmu_start_txn,
1555 .cancel_txn = sparc_pmu_cancel_txn,
1556 .commit_txn = sparc_pmu_commit_txn,
1557 };
1558
1559 void perf_event_print_debug(void)
1560 {
1561 unsigned long flags;
1562 int cpu, i;
1563
1564 if (!sparc_pmu)
1565 return;
1566
1567 local_irq_save(flags);
1568
1569 cpu = smp_processor_id();
1570
1571 pr_info("\n");
1572 for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573 pr_info("CPU#%d: PCR%d[%016llx]\n",
1574 cpu, i, pcr_ops->read_pcr(i));
1575 for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576 pr_info("CPU#%d: PIC%d[%016llx]\n",
1577 cpu, i, pcr_ops->read_pic(i));
1578
1579 local_irq_restore(flags);
1580 }
1581
1582 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583 unsigned long cmd, void *__args)
1584 {
1585 struct die_args *args = __args;
1586 struct perf_sample_data data;
1587 struct cpu_hw_events *cpuc;
1588 struct pt_regs *regs;
1589 int i;
1590
1591 if (!atomic_read(&active_events))
1592 return NOTIFY_DONE;
1593
1594 switch (cmd) {
1595 case DIE_NMI:
1596 break;
1597
1598 default:
1599 return NOTIFY_DONE;
1600 }
1601
1602 regs = args->regs;
1603
1604 cpuc = this_cpu_ptr(&cpu_hw_events);
1605
1606 /* If the PMU has the TOE IRQ enable bits, we need to do a
1607 * dummy write to the %pcr to clear the overflow bits and thus
1608 * the interrupt.
1609 *
1610 * Do this before we peek at the counters to determine
1611 * overflow so we don't lose any events.
1612 */
1613 if (sparc_pmu->irq_bit &&
1614 sparc_pmu->num_pcrs == 1)
1615 pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616
1617 for (i = 0; i < cpuc->n_events; i++) {
1618 struct perf_event *event = cpuc->event[i];
1619 int idx = cpuc->current_idx[i];
1620 struct hw_perf_event *hwc;
1621 u64 val;
1622
1623 if (sparc_pmu->irq_bit &&
1624 sparc_pmu->num_pcrs > 1)
1625 pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626
1627 hwc = &event->hw;
1628 val = sparc_perf_event_update(event, hwc, idx);
1629 if (val & (1ULL << 31))
1630 continue;
1631
1632 perf_sample_data_init(&data, 0, hwc->last_period);
1633 if (!sparc_perf_event_set_period(event, hwc, idx))
1634 continue;
1635
1636 if (perf_event_overflow(event, &data, regs))
1637 sparc_pmu_stop(event, 0);
1638 }
1639
1640 return NOTIFY_STOP;
1641 }
1642
1643 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644 .notifier_call = perf_event_nmi_handler,
1645 };
1646
1647 static bool __init supported_pmu(void)
1648 {
1649 if (!strcmp(sparc_pmu_type, "ultra3") ||
1650 !strcmp(sparc_pmu_type, "ultra3+") ||
1651 !strcmp(sparc_pmu_type, "ultra3i") ||
1652 !strcmp(sparc_pmu_type, "ultra4+")) {
1653 sparc_pmu = &ultra3_pmu;
1654 return true;
1655 }
1656 if (!strcmp(sparc_pmu_type, "niagara")) {
1657 sparc_pmu = &niagara1_pmu;
1658 return true;
1659 }
1660 if (!strcmp(sparc_pmu_type, "niagara2") ||
1661 !strcmp(sparc_pmu_type, "niagara3")) {
1662 sparc_pmu = &niagara2_pmu;
1663 return true;
1664 }
1665 if (!strcmp(sparc_pmu_type, "niagara4") ||
1666 !strcmp(sparc_pmu_type, "niagara5")) {
1667 sparc_pmu = &niagara4_pmu;
1668 return true;
1669 }
1670 return false;
1671 }
1672
1673 static int __init init_hw_perf_events(void)
1674 {
1675 int err;
1676
1677 pr_info("Performance events: ");
1678
1679 err = pcr_arch_init();
1680 if (err || !supported_pmu()) {
1681 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1682 return 0;
1683 }
1684
1685 pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1686
1687 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1688 register_die_notifier(&perf_event_nmi_notifier);
1689
1690 return 0;
1691 }
1692 pure_initcall(init_hw_perf_events);
1693
1694 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1695 struct pt_regs *regs)
1696 {
1697 unsigned long ksp, fp;
1698 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1699 int graph = 0;
1700 #endif
1701
1702 stack_trace_flush();
1703
1704 perf_callchain_store(entry, regs->tpc);
1705
1706 ksp = regs->u_regs[UREG_I6];
1707 fp = ksp + STACK_BIAS;
1708 do {
1709 struct sparc_stackf *sf;
1710 struct pt_regs *regs;
1711 unsigned long pc;
1712
1713 if (!kstack_valid(current_thread_info(), fp))
1714 break;
1715
1716 sf = (struct sparc_stackf *) fp;
1717 regs = (struct pt_regs *) (sf + 1);
1718
1719 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1720 if (user_mode(regs))
1721 break;
1722 pc = regs->tpc;
1723 fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1724 } else {
1725 pc = sf->callers_pc;
1726 fp = (unsigned long)sf->fp + STACK_BIAS;
1727 }
1728 perf_callchain_store(entry, pc);
1729 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1730 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1731 int index = current->curr_ret_stack;
1732 if (current->ret_stack && index >= graph) {
1733 pc = current->ret_stack[index - graph].ret;
1734 perf_callchain_store(entry, pc);
1735 graph++;
1736 }
1737 }
1738 #endif
1739 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1740 }
1741
1742 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1743 struct pt_regs *regs)
1744 {
1745 unsigned long ufp;
1746
1747 ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1748 do {
1749 struct sparc_stackf __user *usf;
1750 struct sparc_stackf sf;
1751 unsigned long pc;
1752
1753 usf = (struct sparc_stackf __user *)ufp;
1754 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1755 break;
1756
1757 pc = sf.callers_pc;
1758 ufp = (unsigned long)sf.fp + STACK_BIAS;
1759 perf_callchain_store(entry, pc);
1760 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1761 }
1762
1763 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1764 struct pt_regs *regs)
1765 {
1766 unsigned long ufp;
1767
1768 ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1769 do {
1770 unsigned long pc;
1771
1772 if (thread32_stack_is_64bit(ufp)) {
1773 struct sparc_stackf __user *usf;
1774 struct sparc_stackf sf;
1775
1776 ufp += STACK_BIAS;
1777 usf = (struct sparc_stackf __user *)ufp;
1778 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1779 break;
1780 pc = sf.callers_pc & 0xffffffff;
1781 ufp = ((unsigned long) sf.fp) & 0xffffffff;
1782 } else {
1783 struct sparc_stackf32 __user *usf;
1784 struct sparc_stackf32 sf;
1785 usf = (struct sparc_stackf32 __user *)ufp;
1786 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1787 break;
1788 pc = sf.callers_pc;
1789 ufp = (unsigned long)sf.fp;
1790 }
1791 perf_callchain_store(entry, pc);
1792 } while (entry->nr < PERF_MAX_STACK_DEPTH);
1793 }
1794
1795 void
1796 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1797 {
1798 perf_callchain_store(entry, regs->tpc);
1799
1800 if (!current->mm)
1801 return;
1802
1803 flushw_user();
1804 if (test_thread_flag(TIF_32BIT))
1805 perf_callchain_user_32(entry, regs);
1806 else
1807 perf_callchain_user_64(entry, regs);
1808 }