]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/sparc/kernel/time_64.c
2ef8cfa9677ed5b034640be15933e0639026ad49
[thirdparty/linux.git] / arch / sparc / kernel / time_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* time.c: UltraSparc timer and TOD clock support.
3 *
4 * Copyright (C) 1997, 2008 David S. Miller (davem@davemloft.net)
5 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
6 *
7 * Based largely on code which is:
8 *
9 * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu)
10 */
11
12 #include <linux/errno.h>
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/param.h>
17 #include <linux/string.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/time.h>
21 #include <linux/timex.h>
22 #include <linux/init.h>
23 #include <linux/ioport.h>
24 #include <linux/mc146818rtc.h>
25 #include <linux/delay.h>
26 #include <linux/profile.h>
27 #include <linux/bcd.h>
28 #include <linux/jiffies.h>
29 #include <linux/cpufreq.h>
30 #include <linux/percpu.h>
31 #include <linux/rtc/m48t59.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/clockchips.h>
34 #include <linux/clocksource.h>
35 #include <linux/platform_device.h>
36 #include <linux/ftrace.h>
37
38 #include <asm/oplib.h>
39 #include <asm/timer.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 #include <asm/prom.h>
43 #include <asm/starfire.h>
44 #include <asm/smp.h>
45 #include <asm/sections.h>
46 #include <asm/cpudata.h>
47 #include <linux/uaccess.h>
48 #include <asm/irq_regs.h>
49 #include <asm/cacheflush.h>
50
51 #include "entry.h"
52 #include "kernel.h"
53
54 DEFINE_SPINLOCK(rtc_lock);
55
56 unsigned int __read_mostly vdso_fix_stick;
57
58 #ifdef CONFIG_SMP
59 unsigned long profile_pc(struct pt_regs *regs)
60 {
61 unsigned long pc = instruction_pointer(regs);
62
63 if (in_lock_functions(pc))
64 return regs->u_regs[UREG_RETPC];
65 return pc;
66 }
67 EXPORT_SYMBOL(profile_pc);
68 #endif
69
70 static void tick_disable_protection(void)
71 {
72 /* Set things up so user can access tick register for profiling
73 * purposes. Also workaround BB_ERRATA_1 by doing a dummy
74 * read back of %tick after writing it.
75 */
76 __asm__ __volatile__(
77 " ba,pt %%xcc, 1f\n"
78 " nop\n"
79 " .align 64\n"
80 "1: rd %%tick, %%g2\n"
81 " add %%g2, 6, %%g2\n"
82 " andn %%g2, %0, %%g2\n"
83 " wrpr %%g2, 0, %%tick\n"
84 " rdpr %%tick, %%g0"
85 : /* no outputs */
86 : "r" (TICK_PRIV_BIT)
87 : "g2");
88 }
89
90 static void tick_disable_irq(void)
91 {
92 __asm__ __volatile__(
93 " ba,pt %%xcc, 1f\n"
94 " nop\n"
95 " .align 64\n"
96 "1: wr %0, 0x0, %%tick_cmpr\n"
97 " rd %%tick_cmpr, %%g0"
98 : /* no outputs */
99 : "r" (TICKCMP_IRQ_BIT));
100 }
101
102 static void tick_init_tick(void)
103 {
104 tick_disable_protection();
105 tick_disable_irq();
106 }
107
108 static unsigned long long tick_get_tick(void)
109 {
110 unsigned long ret;
111
112 __asm__ __volatile__("rd %%tick, %0\n\t"
113 "mov %0, %0"
114 : "=r" (ret));
115
116 return ret & ~TICK_PRIV_BIT;
117 }
118
119 static int tick_add_compare(unsigned long adj)
120 {
121 unsigned long orig_tick, new_tick, new_compare;
122
123 __asm__ __volatile__("rd %%tick, %0"
124 : "=r" (orig_tick));
125
126 orig_tick &= ~TICKCMP_IRQ_BIT;
127
128 /* Workaround for Spitfire Errata (#54 I think??), I discovered
129 * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch
130 * number 103640.
131 *
132 * On Blackbird writes to %tick_cmpr can fail, the
133 * workaround seems to be to execute the wr instruction
134 * at the start of an I-cache line, and perform a dummy
135 * read back from %tick_cmpr right after writing to it. -DaveM
136 */
137 __asm__ __volatile__("ba,pt %%xcc, 1f\n\t"
138 " add %1, %2, %0\n\t"
139 ".align 64\n"
140 "1:\n\t"
141 "wr %0, 0, %%tick_cmpr\n\t"
142 "rd %%tick_cmpr, %%g0\n\t"
143 : "=r" (new_compare)
144 : "r" (orig_tick), "r" (adj));
145
146 __asm__ __volatile__("rd %%tick, %0"
147 : "=r" (new_tick));
148 new_tick &= ~TICKCMP_IRQ_BIT;
149
150 return ((long)(new_tick - (orig_tick+adj))) > 0L;
151 }
152
153 static unsigned long tick_add_tick(unsigned long adj)
154 {
155 unsigned long new_tick;
156
157 /* Also need to handle Blackbird bug here too. */
158 __asm__ __volatile__("rd %%tick, %0\n\t"
159 "add %0, %1, %0\n\t"
160 "wrpr %0, 0, %%tick\n\t"
161 : "=&r" (new_tick)
162 : "r" (adj));
163
164 return new_tick;
165 }
166
167 /* Searches for cpu clock frequency with given cpuid in OpenBoot tree */
168 static unsigned long cpuid_to_freq(phandle node, int cpuid)
169 {
170 bool is_cpu_node = false;
171 unsigned long freq = 0;
172 char type[128];
173
174 if (!node)
175 return freq;
176
177 if (prom_getproperty(node, "device_type", type, sizeof(type)) != -1)
178 is_cpu_node = (strcmp(type, "cpu") == 0);
179
180 /* try upa-portid then cpuid to get cpuid, see prom_64.c */
181 if (is_cpu_node && (prom_getint(node, "upa-portid") == cpuid ||
182 prom_getint(node, "cpuid") == cpuid))
183 freq = prom_getintdefault(node, "clock-frequency", 0);
184 if (!freq)
185 freq = cpuid_to_freq(prom_getchild(node), cpuid);
186 if (!freq)
187 freq = cpuid_to_freq(prom_getsibling(node), cpuid);
188
189 return freq;
190 }
191
192 static unsigned long tick_get_frequency(void)
193 {
194 return cpuid_to_freq(prom_root_node, hard_smp_processor_id());
195 }
196
197 static struct sparc64_tick_ops tick_operations __cacheline_aligned = {
198 .name = "tick",
199 .init_tick = tick_init_tick,
200 .disable_irq = tick_disable_irq,
201 .get_tick = tick_get_tick,
202 .add_tick = tick_add_tick,
203 .add_compare = tick_add_compare,
204 .get_frequency = tick_get_frequency,
205 .softint_mask = 1UL << 0,
206 };
207
208 struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations;
209 EXPORT_SYMBOL(tick_ops);
210
211 static void stick_disable_irq(void)
212 {
213 __asm__ __volatile__(
214 "wr %0, 0x0, %%asr25"
215 : /* no outputs */
216 : "r" (TICKCMP_IRQ_BIT));
217 }
218
219 static void stick_init_tick(void)
220 {
221 /* Writes to the %tick and %stick register are not
222 * allowed on sun4v. The Hypervisor controls that
223 * bit, per-strand.
224 */
225 if (tlb_type != hypervisor) {
226 tick_disable_protection();
227 tick_disable_irq();
228
229 /* Let the user get at STICK too. */
230 __asm__ __volatile__(
231 " rd %%asr24, %%g2\n"
232 " andn %%g2, %0, %%g2\n"
233 " wr %%g2, 0, %%asr24"
234 : /* no outputs */
235 : "r" (TICK_PRIV_BIT)
236 : "g1", "g2");
237 }
238
239 stick_disable_irq();
240 }
241
242 static unsigned long long stick_get_tick(void)
243 {
244 unsigned long ret;
245
246 __asm__ __volatile__("rd %%asr24, %0"
247 : "=r" (ret));
248
249 return ret & ~TICK_PRIV_BIT;
250 }
251
252 static unsigned long stick_add_tick(unsigned long adj)
253 {
254 unsigned long new_tick;
255
256 __asm__ __volatile__("rd %%asr24, %0\n\t"
257 "add %0, %1, %0\n\t"
258 "wr %0, 0, %%asr24\n\t"
259 : "=&r" (new_tick)
260 : "r" (adj));
261
262 return new_tick;
263 }
264
265 static int stick_add_compare(unsigned long adj)
266 {
267 unsigned long orig_tick, new_tick;
268
269 __asm__ __volatile__("rd %%asr24, %0"
270 : "=r" (orig_tick));
271 orig_tick &= ~TICKCMP_IRQ_BIT;
272
273 __asm__ __volatile__("wr %0, 0, %%asr25"
274 : /* no outputs */
275 : "r" (orig_tick + adj));
276
277 __asm__ __volatile__("rd %%asr24, %0"
278 : "=r" (new_tick));
279 new_tick &= ~TICKCMP_IRQ_BIT;
280
281 return ((long)(new_tick - (orig_tick+adj))) > 0L;
282 }
283
284 static unsigned long stick_get_frequency(void)
285 {
286 return prom_getintdefault(prom_root_node, "stick-frequency", 0);
287 }
288
289 static struct sparc64_tick_ops stick_operations __read_mostly = {
290 .name = "stick",
291 .init_tick = stick_init_tick,
292 .disable_irq = stick_disable_irq,
293 .get_tick = stick_get_tick,
294 .add_tick = stick_add_tick,
295 .add_compare = stick_add_compare,
296 .get_frequency = stick_get_frequency,
297 .softint_mask = 1UL << 16,
298 };
299
300 /* On Hummingbird the STICK/STICK_CMPR register is implemented
301 * in I/O space. There are two 64-bit registers each, the
302 * first holds the low 32-bits of the value and the second holds
303 * the high 32-bits.
304 *
305 * Since STICK is constantly updating, we have to access it carefully.
306 *
307 * The sequence we use to read is:
308 * 1) read high
309 * 2) read low
310 * 3) read high again, if it rolled re-read both low and high again.
311 *
312 * Writing STICK safely is also tricky:
313 * 1) write low to zero
314 * 2) write high
315 * 3) write low
316 */
317 static unsigned long __hbird_read_stick(void)
318 {
319 unsigned long ret, tmp1, tmp2, tmp3;
320 unsigned long addr = HBIRD_STICK_ADDR+8;
321
322 __asm__ __volatile__("ldxa [%1] %5, %2\n"
323 "1:\n\t"
324 "sub %1, 0x8, %1\n\t"
325 "ldxa [%1] %5, %3\n\t"
326 "add %1, 0x8, %1\n\t"
327 "ldxa [%1] %5, %4\n\t"
328 "cmp %4, %2\n\t"
329 "bne,a,pn %%xcc, 1b\n\t"
330 " mov %4, %2\n\t"
331 "sllx %4, 32, %4\n\t"
332 "or %3, %4, %0\n\t"
333 : "=&r" (ret), "=&r" (addr),
334 "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3)
335 : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr));
336
337 return ret;
338 }
339
340 static void __hbird_write_stick(unsigned long val)
341 {
342 unsigned long low = (val & 0xffffffffUL);
343 unsigned long high = (val >> 32UL);
344 unsigned long addr = HBIRD_STICK_ADDR;
345
346 __asm__ __volatile__("stxa %%g0, [%0] %4\n\t"
347 "add %0, 0x8, %0\n\t"
348 "stxa %3, [%0] %4\n\t"
349 "sub %0, 0x8, %0\n\t"
350 "stxa %2, [%0] %4"
351 : "=&r" (addr)
352 : "0" (addr), "r" (low), "r" (high),
353 "i" (ASI_PHYS_BYPASS_EC_E));
354 }
355
356 static void __hbird_write_compare(unsigned long val)
357 {
358 unsigned long low = (val & 0xffffffffUL);
359 unsigned long high = (val >> 32UL);
360 unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL;
361
362 __asm__ __volatile__("stxa %3, [%0] %4\n\t"
363 "sub %0, 0x8, %0\n\t"
364 "stxa %2, [%0] %4"
365 : "=&r" (addr)
366 : "0" (addr), "r" (low), "r" (high),
367 "i" (ASI_PHYS_BYPASS_EC_E));
368 }
369
370 static void hbtick_disable_irq(void)
371 {
372 __hbird_write_compare(TICKCMP_IRQ_BIT);
373 }
374
375 static void hbtick_init_tick(void)
376 {
377 tick_disable_protection();
378
379 /* XXX This seems to be necessary to 'jumpstart' Hummingbird
380 * XXX into actually sending STICK interrupts. I think because
381 * XXX of how we store %tick_cmpr in head.S this somehow resets the
382 * XXX {TICK + STICK} interrupt mux. -DaveM
383 */
384 __hbird_write_stick(__hbird_read_stick());
385
386 hbtick_disable_irq();
387 }
388
389 static unsigned long long hbtick_get_tick(void)
390 {
391 return __hbird_read_stick() & ~TICK_PRIV_BIT;
392 }
393
394 static unsigned long hbtick_add_tick(unsigned long adj)
395 {
396 unsigned long val;
397
398 val = __hbird_read_stick() + adj;
399 __hbird_write_stick(val);
400
401 return val;
402 }
403
404 static int hbtick_add_compare(unsigned long adj)
405 {
406 unsigned long val = __hbird_read_stick();
407 unsigned long val2;
408
409 val &= ~TICKCMP_IRQ_BIT;
410 val += adj;
411 __hbird_write_compare(val);
412
413 val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT;
414
415 return ((long)(val2 - val)) > 0L;
416 }
417
418 static unsigned long hbtick_get_frequency(void)
419 {
420 return prom_getintdefault(prom_root_node, "stick-frequency", 0);
421 }
422
423 static struct sparc64_tick_ops hbtick_operations __read_mostly = {
424 .name = "hbtick",
425 .init_tick = hbtick_init_tick,
426 .disable_irq = hbtick_disable_irq,
427 .get_tick = hbtick_get_tick,
428 .add_tick = hbtick_add_tick,
429 .add_compare = hbtick_add_compare,
430 .get_frequency = hbtick_get_frequency,
431 .softint_mask = 1UL << 0,
432 };
433
434 unsigned long cmos_regs;
435 EXPORT_SYMBOL(cmos_regs);
436
437 static struct resource rtc_cmos_resource;
438
439 static struct platform_device rtc_cmos_device = {
440 .name = "rtc_cmos",
441 .id = -1,
442 .resource = &rtc_cmos_resource,
443 .num_resources = 1,
444 };
445
446 static int rtc_probe(struct platform_device *op)
447 {
448 struct resource *r;
449
450 printk(KERN_INFO "%s: RTC regs at 0x%llx\n",
451 op->dev.of_node->full_name, op->resource[0].start);
452
453 /* The CMOS RTC driver only accepts IORESOURCE_IO, so cons
454 * up a fake resource so that the probe works for all cases.
455 * When the RTC is behind an ISA bus it will have IORESOURCE_IO
456 * already, whereas when it's behind EBUS is will be IORESOURCE_MEM.
457 */
458
459 r = &rtc_cmos_resource;
460 r->flags = IORESOURCE_IO;
461 r->name = op->resource[0].name;
462 r->start = op->resource[0].start;
463 r->end = op->resource[0].end;
464
465 cmos_regs = op->resource[0].start;
466 return platform_device_register(&rtc_cmos_device);
467 }
468
469 static const struct of_device_id rtc_match[] = {
470 {
471 .name = "rtc",
472 .compatible = "m5819",
473 },
474 {
475 .name = "rtc",
476 .compatible = "isa-m5819p",
477 },
478 {
479 .name = "rtc",
480 .compatible = "isa-m5823p",
481 },
482 {
483 .name = "rtc",
484 .compatible = "ds1287",
485 },
486 {},
487 };
488
489 static struct platform_driver rtc_driver = {
490 .probe = rtc_probe,
491 .driver = {
492 .name = "rtc",
493 .of_match_table = rtc_match,
494 },
495 };
496
497 static struct platform_device rtc_bq4802_device = {
498 .name = "rtc-bq4802",
499 .id = -1,
500 .num_resources = 1,
501 };
502
503 static int bq4802_probe(struct platform_device *op)
504 {
505
506 printk(KERN_INFO "%s: BQ4802 regs at 0x%llx\n",
507 op->dev.of_node->full_name, op->resource[0].start);
508
509 rtc_bq4802_device.resource = &op->resource[0];
510 return platform_device_register(&rtc_bq4802_device);
511 }
512
513 static const struct of_device_id bq4802_match[] = {
514 {
515 .name = "rtc",
516 .compatible = "bq4802",
517 },
518 {},
519 };
520
521 static struct platform_driver bq4802_driver = {
522 .probe = bq4802_probe,
523 .driver = {
524 .name = "bq4802",
525 .of_match_table = bq4802_match,
526 },
527 };
528
529 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
530 {
531 struct platform_device *pdev = to_platform_device(dev);
532 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
533
534 return readb(regs + ofs);
535 }
536
537 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
538 {
539 struct platform_device *pdev = to_platform_device(dev);
540 void __iomem *regs = (void __iomem *) pdev->resource[0].start;
541
542 writeb(val, regs + ofs);
543 }
544
545 static struct m48t59_plat_data m48t59_data = {
546 .read_byte = mostek_read_byte,
547 .write_byte = mostek_write_byte,
548 };
549
550 static struct platform_device m48t59_rtc = {
551 .name = "rtc-m48t59",
552 .id = 0,
553 .num_resources = 1,
554 .dev = {
555 .platform_data = &m48t59_data,
556 },
557 };
558
559 static int mostek_probe(struct platform_device *op)
560 {
561 struct device_node *dp = op->dev.of_node;
562
563 /* On an Enterprise system there can be multiple mostek clocks.
564 * We should only match the one that is on the central FHC bus.
565 */
566 if (!strcmp(dp->parent->name, "fhc") &&
567 strcmp(dp->parent->parent->name, "central") != 0)
568 return -ENODEV;
569
570 printk(KERN_INFO "%s: Mostek regs at 0x%llx\n",
571 dp->full_name, op->resource[0].start);
572
573 m48t59_rtc.resource = &op->resource[0];
574 return platform_device_register(&m48t59_rtc);
575 }
576
577 static const struct of_device_id mostek_match[] = {
578 {
579 .name = "eeprom",
580 },
581 {},
582 };
583
584 static struct platform_driver mostek_driver = {
585 .probe = mostek_probe,
586 .driver = {
587 .name = "mostek",
588 .of_match_table = mostek_match,
589 },
590 };
591
592 static struct platform_device rtc_sun4v_device = {
593 .name = "rtc-sun4v",
594 .id = -1,
595 };
596
597 static struct platform_device rtc_starfire_device = {
598 .name = "rtc-starfire",
599 .id = -1,
600 };
601
602 static int __init clock_init(void)
603 {
604 if (this_is_starfire)
605 return platform_device_register(&rtc_starfire_device);
606
607 if (tlb_type == hypervisor)
608 return platform_device_register(&rtc_sun4v_device);
609
610 (void) platform_driver_register(&rtc_driver);
611 (void) platform_driver_register(&mostek_driver);
612 (void) platform_driver_register(&bq4802_driver);
613
614 return 0;
615 }
616
617 /* Must be after subsys_initcall() so that busses are probed. Must
618 * be before device_initcall() because things like the RTC driver
619 * need to see the clock registers.
620 */
621 fs_initcall(clock_init);
622
623 /* Return true if this is Hummingbird, aka Ultra-IIe */
624 static bool is_hummingbird(void)
625 {
626 unsigned long ver, manuf, impl;
627
628 __asm__ __volatile__ ("rdpr %%ver, %0"
629 : "=&r" (ver));
630 manuf = ((ver >> 48) & 0xffff);
631 impl = ((ver >> 32) & 0xffff);
632
633 return (manuf == 0x17 && impl == 0x13);
634 }
635
636 struct freq_table {
637 unsigned long clock_tick_ref;
638 unsigned int ref_freq;
639 };
640 static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 };
641
642 unsigned long sparc64_get_clock_tick(unsigned int cpu)
643 {
644 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
645
646 if (ft->clock_tick_ref)
647 return ft->clock_tick_ref;
648 return cpu_data(cpu).clock_tick;
649 }
650 EXPORT_SYMBOL(sparc64_get_clock_tick);
651
652 #ifdef CONFIG_CPU_FREQ
653
654 static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
655 void *data)
656 {
657 struct cpufreq_freqs *freq = data;
658 unsigned int cpu = freq->cpu;
659 struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu);
660
661 if (!ft->ref_freq) {
662 ft->ref_freq = freq->old;
663 ft->clock_tick_ref = cpu_data(cpu).clock_tick;
664 }
665 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
666 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
667 cpu_data(cpu).clock_tick =
668 cpufreq_scale(ft->clock_tick_ref,
669 ft->ref_freq,
670 freq->new);
671 }
672
673 return 0;
674 }
675
676 static struct notifier_block sparc64_cpufreq_notifier_block = {
677 .notifier_call = sparc64_cpufreq_notifier
678 };
679
680 static int __init register_sparc64_cpufreq_notifier(void)
681 {
682
683 cpufreq_register_notifier(&sparc64_cpufreq_notifier_block,
684 CPUFREQ_TRANSITION_NOTIFIER);
685 return 0;
686 }
687
688 core_initcall(register_sparc64_cpufreq_notifier);
689
690 #endif /* CONFIG_CPU_FREQ */
691
692 static int sparc64_next_event(unsigned long delta,
693 struct clock_event_device *evt)
694 {
695 return tick_operations.add_compare(delta) ? -ETIME : 0;
696 }
697
698 static int sparc64_timer_shutdown(struct clock_event_device *evt)
699 {
700 tick_operations.disable_irq();
701 return 0;
702 }
703
704 static struct clock_event_device sparc64_clockevent = {
705 .features = CLOCK_EVT_FEAT_ONESHOT,
706 .set_state_shutdown = sparc64_timer_shutdown,
707 .set_next_event = sparc64_next_event,
708 .rating = 100,
709 .shift = 30,
710 .irq = -1,
711 };
712 static DEFINE_PER_CPU(struct clock_event_device, sparc64_events);
713
714 void __irq_entry timer_interrupt(int irq, struct pt_regs *regs)
715 {
716 struct pt_regs *old_regs = set_irq_regs(regs);
717 unsigned long tick_mask = tick_operations.softint_mask;
718 int cpu = smp_processor_id();
719 struct clock_event_device *evt = &per_cpu(sparc64_events, cpu);
720
721 clear_softint(tick_mask);
722
723 irq_enter();
724
725 local_cpu_data().irq0_irqs++;
726 kstat_incr_irq_this_cpu(0);
727
728 if (unlikely(!evt->event_handler)) {
729 printk(KERN_WARNING
730 "Spurious SPARC64 timer interrupt on cpu %d\n", cpu);
731 } else
732 evt->event_handler(evt);
733
734 irq_exit();
735
736 set_irq_regs(old_regs);
737 }
738
739 void setup_sparc64_timer(void)
740 {
741 struct clock_event_device *sevt;
742 unsigned long pstate;
743
744 /* Guarantee that the following sequences execute
745 * uninterrupted.
746 */
747 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
748 "wrpr %0, %1, %%pstate"
749 : "=r" (pstate)
750 : "i" (PSTATE_IE));
751
752 tick_operations.init_tick();
753
754 /* Restore PSTATE_IE. */
755 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
756 : /* no outputs */
757 : "r" (pstate));
758
759 sevt = this_cpu_ptr(&sparc64_events);
760
761 memcpy(sevt, &sparc64_clockevent, sizeof(*sevt));
762 sevt->cpumask = cpumask_of(smp_processor_id());
763
764 clockevents_register_device(sevt);
765 }
766
767 #define SPARC64_NSEC_PER_CYC_SHIFT 10UL
768
769 static struct clocksource clocksource_tick = {
770 .rating = 100,
771 .mask = CLOCKSOURCE_MASK(64),
772 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
773 };
774
775 static unsigned long tb_ticks_per_usec __read_mostly;
776
777 void __delay(unsigned long loops)
778 {
779 unsigned long bclock = get_tick();
780
781 while ((get_tick() - bclock) < loops)
782 ;
783 }
784 EXPORT_SYMBOL(__delay);
785
786 void udelay(unsigned long usecs)
787 {
788 __delay(tb_ticks_per_usec * usecs);
789 }
790 EXPORT_SYMBOL(udelay);
791
792 static u64 clocksource_tick_read(struct clocksource *cs)
793 {
794 return get_tick();
795 }
796
797 static void __init get_tick_patch(void)
798 {
799 unsigned int *addr, *instr, i;
800 struct get_tick_patch *p;
801
802 if (tlb_type == spitfire && is_hummingbird())
803 return;
804
805 for (p = &__get_tick_patch; p < &__get_tick_patch_end; p++) {
806 instr = (tlb_type == spitfire) ? p->tick : p->stick;
807 addr = (unsigned int *)(unsigned long)p->addr;
808 for (i = 0; i < GET_TICK_NINSTR; i++) {
809 addr[i] = instr[i];
810 /* ensure that address is modified before flush */
811 wmb();
812 flushi(&addr[i]);
813 }
814 }
815 }
816
817 static void init_tick_ops(struct sparc64_tick_ops *ops)
818 {
819 unsigned long freq, quotient, tick;
820
821 freq = ops->get_frequency();
822 quotient = clocksource_hz2mult(freq, SPARC64_NSEC_PER_CYC_SHIFT);
823 tick = ops->get_tick();
824
825 ops->offset = (tick * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT;
826 ops->ticks_per_nsec_quotient = quotient;
827 ops->frequency = freq;
828 tick_operations = *ops;
829 get_tick_patch();
830 }
831
832 void __init time_init_early(void)
833 {
834 if (tlb_type == spitfire) {
835 if (is_hummingbird()) {
836 init_tick_ops(&hbtick_operations);
837 clocksource_tick.archdata.vclock_mode = VCLOCK_NONE;
838 } else {
839 init_tick_ops(&tick_operations);
840 clocksource_tick.archdata.vclock_mode = VCLOCK_TICK;
841 vdso_fix_stick = 1;
842 }
843 } else {
844 init_tick_ops(&stick_operations);
845 clocksource_tick.archdata.vclock_mode = VCLOCK_STICK;
846 }
847 }
848
849 void __init time_init(void)
850 {
851 unsigned long freq;
852
853 freq = tick_operations.frequency;
854 tb_ticks_per_usec = freq / USEC_PER_SEC;
855
856 clocksource_tick.name = tick_operations.name;
857 clocksource_tick.read = clocksource_tick_read;
858
859 clocksource_register_hz(&clocksource_tick, freq);
860 printk("clocksource: mult[%x] shift[%d]\n",
861 clocksource_tick.mult, clocksource_tick.shift);
862
863 sparc64_clockevent.name = tick_operations.name;
864 clockevents_calc_mult_shift(&sparc64_clockevent, freq, 4);
865
866 sparc64_clockevent.max_delta_ns =
867 clockevent_delta2ns(0x7fffffffffffffffUL, &sparc64_clockevent);
868 sparc64_clockevent.max_delta_ticks = 0x7fffffffffffffffUL;
869 sparc64_clockevent.min_delta_ns =
870 clockevent_delta2ns(0xF, &sparc64_clockevent);
871 sparc64_clockevent.min_delta_ticks = 0xF;
872
873 printk("clockevent: mult[%x] shift[%d]\n",
874 sparc64_clockevent.mult, sparc64_clockevent.shift);
875
876 setup_sparc64_timer();
877 }
878
879 unsigned long long sched_clock(void)
880 {
881 unsigned long quotient = tick_operations.ticks_per_nsec_quotient;
882 unsigned long offset = tick_operations.offset;
883
884 /* Use barrier so the compiler emits the loads first and overlaps load
885 * latency with reading tick, because reading %tick/%stick is a
886 * post-sync instruction that will flush and restart subsequent
887 * instructions after it commits.
888 */
889 barrier();
890
891 return ((get_tick() * quotient) >> SPARC64_NSEC_PER_CYC_SHIFT) - offset;
892 }
893
894 int read_current_timer(unsigned long *timer_val)
895 {
896 *timer_val = get_tick();
897 return 0;
898 }