]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/entry/entry_64.S
io_uring: reset -EBUSY error when io sq thread is waken up
[thirdparty/linux.git] / arch / x86 / entry / entry_64.S
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * linux/arch/x86_64/entry.S
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame: Architecture defined interrupt frame from SS to RIP
15 * at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
20 * - idtentry: Define exception entry points.
21 */
22 #include <linux/linkage.h>
23 #include <asm/segment.h>
24 #include <asm/cache.h>
25 #include <asm/errno.h>
26 #include <asm/asm-offsets.h>
27 #include <asm/msr.h>
28 #include <asm/unistd.h>
29 #include <asm/thread_info.h>
30 #include <asm/hw_irq.h>
31 #include <asm/page_types.h>
32 #include <asm/irqflags.h>
33 #include <asm/paravirt.h>
34 #include <asm/percpu.h>
35 #include <asm/asm.h>
36 #include <asm/smap.h>
37 #include <asm/pgtable_types.h>
38 #include <asm/export.h>
39 #include <asm/frame.h>
40 #include <asm/nospec-branch.h>
41 #include <linux/err.h>
42
43 #include "calling.h"
44
45 .code64
46 .section .entry.text, "ax"
47
48 #ifdef CONFIG_PARAVIRT
49 SYM_CODE_START(native_usergs_sysret64)
50 UNWIND_HINT_EMPTY
51 swapgs
52 sysretq
53 SYM_CODE_END(native_usergs_sysret64)
54 #endif /* CONFIG_PARAVIRT */
55
56 .macro TRACE_IRQS_FLAGS flags:req
57 #ifdef CONFIG_TRACE_IRQFLAGS
58 btl $9, \flags /* interrupts off? */
59 jnc 1f
60 TRACE_IRQS_ON
61 1:
62 #endif
63 .endm
64
65 .macro TRACE_IRQS_IRETQ
66 TRACE_IRQS_FLAGS EFLAGS(%rsp)
67 .endm
68
69 /*
70 * When dynamic function tracer is enabled it will add a breakpoint
71 * to all locations that it is about to modify, sync CPUs, update
72 * all the code, sync CPUs, then remove the breakpoints. In this time
73 * if lockdep is enabled, it might jump back into the debug handler
74 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
75 *
76 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
77 * make sure the stack pointer does not get reset back to the top
78 * of the debug stack, and instead just reuses the current stack.
79 */
80 #if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
81
82 .macro TRACE_IRQS_OFF_DEBUG
83 call debug_stack_set_zero
84 TRACE_IRQS_OFF
85 call debug_stack_reset
86 .endm
87
88 .macro TRACE_IRQS_ON_DEBUG
89 call debug_stack_set_zero
90 TRACE_IRQS_ON
91 call debug_stack_reset
92 .endm
93
94 .macro TRACE_IRQS_IRETQ_DEBUG
95 btl $9, EFLAGS(%rsp) /* interrupts off? */
96 jnc 1f
97 TRACE_IRQS_ON_DEBUG
98 1:
99 .endm
100
101 #else
102 # define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
103 # define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
104 # define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
105 #endif
106
107 /*
108 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
109 *
110 * This is the only entry point used for 64-bit system calls. The
111 * hardware interface is reasonably well designed and the register to
112 * argument mapping Linux uses fits well with the registers that are
113 * available when SYSCALL is used.
114 *
115 * SYSCALL instructions can be found inlined in libc implementations as
116 * well as some other programs and libraries. There are also a handful
117 * of SYSCALL instructions in the vDSO used, for example, as a
118 * clock_gettimeofday fallback.
119 *
120 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
121 * then loads new ss, cs, and rip from previously programmed MSRs.
122 * rflags gets masked by a value from another MSR (so CLD and CLAC
123 * are not needed). SYSCALL does not save anything on the stack
124 * and does not change rsp.
125 *
126 * Registers on entry:
127 * rax system call number
128 * rcx return address
129 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
130 * rdi arg0
131 * rsi arg1
132 * rdx arg2
133 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
134 * r8 arg4
135 * r9 arg5
136 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
137 *
138 * Only called from user space.
139 *
140 * When user can change pt_regs->foo always force IRET. That is because
141 * it deals with uncanonical addresses better. SYSRET has trouble
142 * with them due to bugs in both AMD and Intel CPUs.
143 */
144
145 SYM_CODE_START(entry_SYSCALL_64)
146 UNWIND_HINT_EMPTY
147 /*
148 * Interrupts are off on entry.
149 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
150 * it is too small to ever cause noticeable irq latency.
151 */
152
153 swapgs
154 /* tss.sp2 is scratch space. */
155 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
156 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
157 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
158
159 /* Construct struct pt_regs on stack */
160 pushq $__USER_DS /* pt_regs->ss */
161 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */
162 pushq %r11 /* pt_regs->flags */
163 pushq $__USER_CS /* pt_regs->cs */
164 pushq %rcx /* pt_regs->ip */
165 SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
166 pushq %rax /* pt_regs->orig_ax */
167
168 PUSH_AND_CLEAR_REGS rax=$-ENOSYS
169
170 TRACE_IRQS_OFF
171
172 /* IRQs are off. */
173 movq %rax, %rdi
174 movq %rsp, %rsi
175 call do_syscall_64 /* returns with IRQs disabled */
176
177 TRACE_IRQS_ON /* return enables interrupts */
178
179 /*
180 * Try to use SYSRET instead of IRET if we're returning to
181 * a completely clean 64-bit userspace context. If we're not,
182 * go to the slow exit path.
183 */
184 movq RCX(%rsp), %rcx
185 movq RIP(%rsp), %r11
186
187 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */
188 jne swapgs_restore_regs_and_return_to_usermode
189
190 /*
191 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
192 * in kernel space. This essentially lets the user take over
193 * the kernel, since userspace controls RSP.
194 *
195 * If width of "canonical tail" ever becomes variable, this will need
196 * to be updated to remain correct on both old and new CPUs.
197 *
198 * Change top bits to match most significant bit (47th or 56th bit
199 * depending on paging mode) in the address.
200 */
201 #ifdef CONFIG_X86_5LEVEL
202 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
203 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
204 #else
205 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
206 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
207 #endif
208
209 /* If this changed %rcx, it was not canonical */
210 cmpq %rcx, %r11
211 jne swapgs_restore_regs_and_return_to_usermode
212
213 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
214 jne swapgs_restore_regs_and_return_to_usermode
215
216 movq R11(%rsp), %r11
217 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
218 jne swapgs_restore_regs_and_return_to_usermode
219
220 /*
221 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
222 * restore RF properly. If the slowpath sets it for whatever reason, we
223 * need to restore it correctly.
224 *
225 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
226 * trap from userspace immediately after SYSRET. This would cause an
227 * infinite loop whenever #DB happens with register state that satisfies
228 * the opportunistic SYSRET conditions. For example, single-stepping
229 * this user code:
230 *
231 * movq $stuck_here, %rcx
232 * pushfq
233 * popq %r11
234 * stuck_here:
235 *
236 * would never get past 'stuck_here'.
237 */
238 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
239 jnz swapgs_restore_regs_and_return_to_usermode
240
241 /* nothing to check for RSP */
242
243 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
244 jne swapgs_restore_regs_and_return_to_usermode
245
246 /*
247 * We win! This label is here just for ease of understanding
248 * perf profiles. Nothing jumps here.
249 */
250 syscall_return_via_sysret:
251 /* rcx and r11 are already restored (see code above) */
252 UNWIND_HINT_EMPTY
253 POP_REGS pop_rdi=0 skip_r11rcx=1
254
255 /*
256 * Now all regs are restored except RSP and RDI.
257 * Save old stack pointer and switch to trampoline stack.
258 */
259 movq %rsp, %rdi
260 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
261
262 pushq RSP-RDI(%rdi) /* RSP */
263 pushq (%rdi) /* RDI */
264
265 /*
266 * We are on the trampoline stack. All regs except RDI are live.
267 * We can do future final exit work right here.
268 */
269 STACKLEAK_ERASE_NOCLOBBER
270
271 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
272
273 popq %rdi
274 popq %rsp
275 USERGS_SYSRET64
276 SYM_CODE_END(entry_SYSCALL_64)
277
278 /*
279 * %rdi: prev task
280 * %rsi: next task
281 */
282 SYM_CODE_START(__switch_to_asm)
283 UNWIND_HINT_FUNC
284 /*
285 * Save callee-saved registers
286 * This must match the order in inactive_task_frame
287 */
288 pushq %rbp
289 pushq %rbx
290 pushq %r12
291 pushq %r13
292 pushq %r14
293 pushq %r15
294
295 /* switch stack */
296 movq %rsp, TASK_threadsp(%rdi)
297 movq TASK_threadsp(%rsi), %rsp
298
299 #ifdef CONFIG_STACKPROTECTOR
300 movq TASK_stack_canary(%rsi), %rbx
301 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
302 #endif
303
304 #ifdef CONFIG_RETPOLINE
305 /*
306 * When switching from a shallower to a deeper call stack
307 * the RSB may either underflow or use entries populated
308 * with userspace addresses. On CPUs where those concerns
309 * exist, overwrite the RSB with entries which capture
310 * speculative execution to prevent attack.
311 */
312 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
313 #endif
314
315 /* restore callee-saved registers */
316 popq %r15
317 popq %r14
318 popq %r13
319 popq %r12
320 popq %rbx
321 popq %rbp
322
323 jmp __switch_to
324 SYM_CODE_END(__switch_to_asm)
325
326 /*
327 * A newly forked process directly context switches into this address.
328 *
329 * rax: prev task we switched from
330 * rbx: kernel thread func (NULL for user thread)
331 * r12: kernel thread arg
332 */
333 SYM_CODE_START(ret_from_fork)
334 UNWIND_HINT_EMPTY
335 movq %rax, %rdi
336 call schedule_tail /* rdi: 'prev' task parameter */
337
338 testq %rbx, %rbx /* from kernel_thread? */
339 jnz 1f /* kernel threads are uncommon */
340
341 2:
342 UNWIND_HINT_REGS
343 movq %rsp, %rdi
344 call syscall_return_slowpath /* returns with IRQs disabled */
345 TRACE_IRQS_ON /* user mode is traced as IRQS on */
346 jmp swapgs_restore_regs_and_return_to_usermode
347
348 1:
349 /* kernel thread */
350 UNWIND_HINT_EMPTY
351 movq %r12, %rdi
352 CALL_NOSPEC %rbx
353 /*
354 * A kernel thread is allowed to return here after successfully
355 * calling do_execve(). Exit to userspace to complete the execve()
356 * syscall.
357 */
358 movq $0, RAX(%rsp)
359 jmp 2b
360 SYM_CODE_END(ret_from_fork)
361
362 /*
363 * Build the entry stubs with some assembler magic.
364 * We pack 1 stub into every 8-byte block.
365 */
366 .align 8
367 SYM_CODE_START(irq_entries_start)
368 vector=FIRST_EXTERNAL_VECTOR
369 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
370 UNWIND_HINT_IRET_REGS
371 pushq $(~vector+0x80) /* Note: always in signed byte range */
372 jmp common_interrupt
373 .align 8
374 vector=vector+1
375 .endr
376 SYM_CODE_END(irq_entries_start)
377
378 .align 8
379 SYM_CODE_START(spurious_entries_start)
380 vector=FIRST_SYSTEM_VECTOR
381 .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
382 UNWIND_HINT_IRET_REGS
383 pushq $(~vector+0x80) /* Note: always in signed byte range */
384 jmp common_spurious
385 .align 8
386 vector=vector+1
387 .endr
388 SYM_CODE_END(spurious_entries_start)
389
390 .macro DEBUG_ENTRY_ASSERT_IRQS_OFF
391 #ifdef CONFIG_DEBUG_ENTRY
392 pushq %rax
393 SAVE_FLAGS(CLBR_RAX)
394 testl $X86_EFLAGS_IF, %eax
395 jz .Lokay_\@
396 ud2
397 .Lokay_\@:
398 popq %rax
399 #endif
400 .endm
401
402 /*
403 * Enters the IRQ stack if we're not already using it. NMI-safe. Clobbers
404 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
405 * Requires kernel GSBASE.
406 *
407 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
408 */
409 .macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
410 DEBUG_ENTRY_ASSERT_IRQS_OFF
411
412 .if \save_ret
413 /*
414 * If save_ret is set, the original stack contains one additional
415 * entry -- the return address. Therefore, move the address one
416 * entry below %rsp to \old_rsp.
417 */
418 leaq 8(%rsp), \old_rsp
419 .else
420 movq %rsp, \old_rsp
421 .endif
422
423 .if \regs
424 UNWIND_HINT_REGS base=\old_rsp
425 .endif
426
427 incl PER_CPU_VAR(irq_count)
428 jnz .Lirq_stack_push_old_rsp_\@
429
430 /*
431 * Right now, if we just incremented irq_count to zero, we've
432 * claimed the IRQ stack but we haven't switched to it yet.
433 *
434 * If anything is added that can interrupt us here without using IST,
435 * it must be *extremely* careful to limit its stack usage. This
436 * could include kprobes and a hypothetical future IST-less #DB
437 * handler.
438 *
439 * The OOPS unwinder relies on the word at the top of the IRQ
440 * stack linking back to the previous RSP for the entire time we're
441 * on the IRQ stack. For this to work reliably, we need to write
442 * it before we actually move ourselves to the IRQ stack.
443 */
444
445 movq \old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
446 movq PER_CPU_VAR(hardirq_stack_ptr), %rsp
447
448 #ifdef CONFIG_DEBUG_ENTRY
449 /*
450 * If the first movq above becomes wrong due to IRQ stack layout
451 * changes, the only way we'll notice is if we try to unwind right
452 * here. Assert that we set up the stack right to catch this type
453 * of bug quickly.
454 */
455 cmpq -8(%rsp), \old_rsp
456 je .Lirq_stack_okay\@
457 ud2
458 .Lirq_stack_okay\@:
459 #endif
460
461 .Lirq_stack_push_old_rsp_\@:
462 pushq \old_rsp
463
464 .if \regs
465 UNWIND_HINT_REGS indirect=1
466 .endif
467
468 .if \save_ret
469 /*
470 * Push the return address to the stack. This return address can
471 * be found at the "real" original RSP, which was offset by 8 at
472 * the beginning of this macro.
473 */
474 pushq -8(\old_rsp)
475 .endif
476 .endm
477
478 /*
479 * Undoes ENTER_IRQ_STACK.
480 */
481 .macro LEAVE_IRQ_STACK regs=1
482 DEBUG_ENTRY_ASSERT_IRQS_OFF
483 /* We need to be off the IRQ stack before decrementing irq_count. */
484 popq %rsp
485
486 .if \regs
487 UNWIND_HINT_REGS
488 .endif
489
490 /*
491 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
492 * the irq stack but we're not on it.
493 */
494
495 decl PER_CPU_VAR(irq_count)
496 .endm
497
498 /*
499 * Interrupt entry helper function.
500 *
501 * Entry runs with interrupts off. Stack layout at entry:
502 * +----------------------------------------------------+
503 * | regs->ss |
504 * | regs->rsp |
505 * | regs->eflags |
506 * | regs->cs |
507 * | regs->ip |
508 * +----------------------------------------------------+
509 * | regs->orig_ax = ~(interrupt number) |
510 * +----------------------------------------------------+
511 * | return address |
512 * +----------------------------------------------------+
513 */
514 SYM_CODE_START(interrupt_entry)
515 UNWIND_HINT_FUNC
516 ASM_CLAC
517 cld
518
519 testb $3, CS-ORIG_RAX+8(%rsp)
520 jz 1f
521 SWAPGS
522 FENCE_SWAPGS_USER_ENTRY
523 /*
524 * Switch to the thread stack. The IRET frame and orig_ax are
525 * on the stack, as well as the return address. RDI..R12 are
526 * not (yet) on the stack and space has not (yet) been
527 * allocated for them.
528 */
529 pushq %rdi
530
531 /* Need to switch before accessing the thread stack. */
532 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
533 movq %rsp, %rdi
534 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
535
536 /*
537 * We have RDI, return address, and orig_ax on the stack on
538 * top of the IRET frame. That means offset=24
539 */
540 UNWIND_HINT_IRET_REGS base=%rdi offset=24
541
542 pushq 7*8(%rdi) /* regs->ss */
543 pushq 6*8(%rdi) /* regs->rsp */
544 pushq 5*8(%rdi) /* regs->eflags */
545 pushq 4*8(%rdi) /* regs->cs */
546 pushq 3*8(%rdi) /* regs->ip */
547 pushq 2*8(%rdi) /* regs->orig_ax */
548 pushq 8(%rdi) /* return address */
549 UNWIND_HINT_FUNC
550
551 movq (%rdi), %rdi
552 jmp 2f
553 1:
554 FENCE_SWAPGS_KERNEL_ENTRY
555 2:
556 PUSH_AND_CLEAR_REGS save_ret=1
557 ENCODE_FRAME_POINTER 8
558
559 testb $3, CS+8(%rsp)
560 jz 1f
561
562 /*
563 * IRQ from user mode.
564 *
565 * We need to tell lockdep that IRQs are off. We can't do this until
566 * we fix gsbase, and we should do it before enter_from_user_mode
567 * (which can take locks). Since TRACE_IRQS_OFF is idempotent,
568 * the simplest way to handle it is to just call it twice if
569 * we enter from user mode. There's no reason to optimize this since
570 * TRACE_IRQS_OFF is a no-op if lockdep is off.
571 */
572 TRACE_IRQS_OFF
573
574 CALL_enter_from_user_mode
575
576 1:
577 ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
578 /* We entered an interrupt context - irqs are off: */
579 TRACE_IRQS_OFF
580
581 ret
582 SYM_CODE_END(interrupt_entry)
583 _ASM_NOKPROBE(interrupt_entry)
584
585
586 /* Interrupt entry/exit. */
587
588 /*
589 * The interrupt stubs push (~vector+0x80) onto the stack and
590 * then jump to common_spurious/interrupt.
591 */
592 SYM_CODE_START_LOCAL(common_spurious)
593 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
594 call interrupt_entry
595 UNWIND_HINT_REGS indirect=1
596 call smp_spurious_interrupt /* rdi points to pt_regs */
597 jmp ret_from_intr
598 SYM_CODE_END(common_spurious)
599 _ASM_NOKPROBE(common_spurious)
600
601 /* common_interrupt is a hotpath. Align it */
602 .p2align CONFIG_X86_L1_CACHE_SHIFT
603 SYM_CODE_START_LOCAL(common_interrupt)
604 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
605 call interrupt_entry
606 UNWIND_HINT_REGS indirect=1
607 call do_IRQ /* rdi points to pt_regs */
608 /* 0(%rsp): old RSP */
609 ret_from_intr:
610 DISABLE_INTERRUPTS(CLBR_ANY)
611 TRACE_IRQS_OFF
612
613 LEAVE_IRQ_STACK
614
615 testb $3, CS(%rsp)
616 jz retint_kernel
617
618 /* Interrupt came from user space */
619 .Lretint_user:
620 mov %rsp,%rdi
621 call prepare_exit_to_usermode
622 TRACE_IRQS_ON
623
624 SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
625 #ifdef CONFIG_DEBUG_ENTRY
626 /* Assert that pt_regs indicates user mode. */
627 testb $3, CS(%rsp)
628 jnz 1f
629 ud2
630 1:
631 #endif
632 POP_REGS pop_rdi=0
633
634 /*
635 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
636 * Save old stack pointer and switch to trampoline stack.
637 */
638 movq %rsp, %rdi
639 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
640
641 /* Copy the IRET frame to the trampoline stack. */
642 pushq 6*8(%rdi) /* SS */
643 pushq 5*8(%rdi) /* RSP */
644 pushq 4*8(%rdi) /* EFLAGS */
645 pushq 3*8(%rdi) /* CS */
646 pushq 2*8(%rdi) /* RIP */
647
648 /* Push user RDI on the trampoline stack. */
649 pushq (%rdi)
650
651 /*
652 * We are on the trampoline stack. All regs except RDI are live.
653 * We can do future final exit work right here.
654 */
655 STACKLEAK_ERASE_NOCLOBBER
656
657 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
658
659 /* Restore RDI. */
660 popq %rdi
661 SWAPGS
662 INTERRUPT_RETURN
663
664
665 /* Returning to kernel space */
666 retint_kernel:
667 #ifdef CONFIG_PREEMPTION
668 /* Interrupts are off */
669 /* Check if we need preemption */
670 btl $9, EFLAGS(%rsp) /* were interrupts off? */
671 jnc 1f
672 cmpl $0, PER_CPU_VAR(__preempt_count)
673 jnz 1f
674 call preempt_schedule_irq
675 1:
676 #endif
677 /*
678 * The iretq could re-enable interrupts:
679 */
680 TRACE_IRQS_IRETQ
681
682 SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
683 #ifdef CONFIG_DEBUG_ENTRY
684 /* Assert that pt_regs indicates kernel mode. */
685 testb $3, CS(%rsp)
686 jz 1f
687 ud2
688 1:
689 #endif
690 POP_REGS
691 addq $8, %rsp /* skip regs->orig_ax */
692 /*
693 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
694 * when returning from IPI handler.
695 */
696 INTERRUPT_RETURN
697
698 SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
699 UNWIND_HINT_IRET_REGS
700 /*
701 * Are we returning to a stack segment from the LDT? Note: in
702 * 64-bit mode SS:RSP on the exception stack is always valid.
703 */
704 #ifdef CONFIG_X86_ESPFIX64
705 testb $4, (SS-RIP)(%rsp)
706 jnz native_irq_return_ldt
707 #endif
708
709 SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
710 /*
711 * This may fault. Non-paranoid faults on return to userspace are
712 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
713 * Double-faults due to espfix64 are handled in do_double_fault.
714 * Other faults here are fatal.
715 */
716 iretq
717
718 #ifdef CONFIG_X86_ESPFIX64
719 native_irq_return_ldt:
720 /*
721 * We are running with user GSBASE. All GPRs contain their user
722 * values. We have a percpu ESPFIX stack that is eight slots
723 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom
724 * of the ESPFIX stack.
725 *
726 * We clobber RAX and RDI in this code. We stash RDI on the
727 * normal stack and RAX on the ESPFIX stack.
728 *
729 * The ESPFIX stack layout we set up looks like this:
730 *
731 * --- top of ESPFIX stack ---
732 * SS
733 * RSP
734 * RFLAGS
735 * CS
736 * RIP <-- RSP points here when we're done
737 * RAX <-- espfix_waddr points here
738 * --- bottom of ESPFIX stack ---
739 */
740
741 pushq %rdi /* Stash user RDI */
742 SWAPGS /* to kernel GS */
743 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */
744
745 movq PER_CPU_VAR(espfix_waddr), %rdi
746 movq %rax, (0*8)(%rdi) /* user RAX */
747 movq (1*8)(%rsp), %rax /* user RIP */
748 movq %rax, (1*8)(%rdi)
749 movq (2*8)(%rsp), %rax /* user CS */
750 movq %rax, (2*8)(%rdi)
751 movq (3*8)(%rsp), %rax /* user RFLAGS */
752 movq %rax, (3*8)(%rdi)
753 movq (5*8)(%rsp), %rax /* user SS */
754 movq %rax, (5*8)(%rdi)
755 movq (4*8)(%rsp), %rax /* user RSP */
756 movq %rax, (4*8)(%rdi)
757 /* Now RAX == RSP. */
758
759 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */
760
761 /*
762 * espfix_stack[31:16] == 0. The page tables are set up such that
763 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
764 * espfix_waddr for any X. That is, there are 65536 RO aliases of
765 * the same page. Set up RSP so that RSP[31:16] contains the
766 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
767 * still points to an RO alias of the ESPFIX stack.
768 */
769 orq PER_CPU_VAR(espfix_stack), %rax
770
771 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
772 SWAPGS /* to user GS */
773 popq %rdi /* Restore user RDI */
774
775 movq %rax, %rsp
776 UNWIND_HINT_IRET_REGS offset=8
777
778 /*
779 * At this point, we cannot write to the stack any more, but we can
780 * still read.
781 */
782 popq %rax /* Restore user RAX */
783
784 /*
785 * RSP now points to an ordinary IRET frame, except that the page
786 * is read-only and RSP[31:16] are preloaded with the userspace
787 * values. We can now IRET back to userspace.
788 */
789 jmp native_irq_return_iret
790 #endif
791 SYM_CODE_END(common_interrupt)
792 _ASM_NOKPROBE(common_interrupt)
793
794 /*
795 * APIC interrupts.
796 */
797 .macro apicinterrupt3 num sym do_sym
798 SYM_CODE_START(\sym)
799 UNWIND_HINT_IRET_REGS
800 pushq $~(\num)
801 .Lcommon_\sym:
802 call interrupt_entry
803 UNWIND_HINT_REGS indirect=1
804 call \do_sym /* rdi points to pt_regs */
805 jmp ret_from_intr
806 SYM_CODE_END(\sym)
807 _ASM_NOKPROBE(\sym)
808 .endm
809
810 /* Make sure APIC interrupt handlers end up in the irqentry section: */
811 #define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
812 #define POP_SECTION_IRQENTRY .popsection
813
814 .macro apicinterrupt num sym do_sym
815 PUSH_SECTION_IRQENTRY
816 apicinterrupt3 \num \sym \do_sym
817 POP_SECTION_IRQENTRY
818 .endm
819
820 #ifdef CONFIG_SMP
821 apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
822 apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
823 #endif
824
825 #ifdef CONFIG_X86_UV
826 apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
827 #endif
828
829 apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
830 apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
831
832 #ifdef CONFIG_HAVE_KVM
833 apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
834 apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
835 apicinterrupt3 POSTED_INTR_NESTED_VECTOR kvm_posted_intr_nested_ipi smp_kvm_posted_intr_nested_ipi
836 #endif
837
838 #ifdef CONFIG_X86_MCE_THRESHOLD
839 apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
840 #endif
841
842 #ifdef CONFIG_X86_MCE_AMD
843 apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
844 #endif
845
846 #ifdef CONFIG_X86_THERMAL_VECTOR
847 apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
848 #endif
849
850 #ifdef CONFIG_SMP
851 apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
852 apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
853 apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
854 #endif
855
856 apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
857 apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
858
859 #ifdef CONFIG_IRQ_WORK
860 apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
861 #endif
862
863 /*
864 * Exception entry points.
865 */
866 #define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)
867
868 .macro idtentry_part do_sym, has_error_code:req, read_cr2:req, paranoid:req, shift_ist=-1, ist_offset=0
869
870 .if \paranoid
871 call paranoid_entry
872 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
873 .else
874 call error_entry
875 .endif
876 UNWIND_HINT_REGS
877
878 .if \read_cr2
879 /*
880 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
881 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
882 * GET_CR2_INTO can clobber RAX.
883 */
884 GET_CR2_INTO(%r12);
885 .endif
886
887 .if \shift_ist != -1
888 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
889 .else
890 TRACE_IRQS_OFF
891 .endif
892
893 .if \paranoid == 0
894 testb $3, CS(%rsp)
895 jz .Lfrom_kernel_no_context_tracking_\@
896 CALL_enter_from_user_mode
897 .Lfrom_kernel_no_context_tracking_\@:
898 .endif
899
900 movq %rsp, %rdi /* pt_regs pointer */
901
902 .if \has_error_code
903 movq ORIG_RAX(%rsp), %rsi /* get error code */
904 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
905 .else
906 xorl %esi, %esi /* no error code */
907 .endif
908
909 .if \shift_ist != -1
910 subq $\ist_offset, CPU_TSS_IST(\shift_ist)
911 .endif
912
913 .if \read_cr2
914 movq %r12, %rdx /* Move CR2 into 3rd argument */
915 .endif
916
917 call \do_sym
918
919 .if \shift_ist != -1
920 addq $\ist_offset, CPU_TSS_IST(\shift_ist)
921 .endif
922
923 .if \paranoid
924 /* this procedure expect "no swapgs" flag in ebx */
925 jmp paranoid_exit
926 .else
927 jmp error_exit
928 .endif
929
930 .endm
931
932 /**
933 * idtentry - Generate an IDT entry stub
934 * @sym: Name of the generated entry point
935 * @do_sym: C function to be called
936 * @has_error_code: True if this IDT vector has an error code on the stack
937 * @paranoid: non-zero means that this vector may be invoked from
938 * kernel mode with user GSBASE and/or user CR3.
939 * 2 is special -- see below.
940 * @shift_ist: Set to an IST index if entries from kernel mode should
941 * decrement the IST stack so that nested entries get a
942 * fresh stack. (This is for #DB, which has a nasty habit
943 * of recursing.)
944 * @create_gap: create a 6-word stack gap when coming from kernel mode.
945 * @read_cr2: load CR2 into the 3rd argument; done before calling any C code
946 *
947 * idtentry generates an IDT stub that sets up a usable kernel context,
948 * creates struct pt_regs, and calls @do_sym. The stub has the following
949 * special behaviors:
950 *
951 * On an entry from user mode, the stub switches from the trampoline or
952 * IST stack to the normal thread stack. On an exit to user mode, the
953 * normal exit-to-usermode path is invoked.
954 *
955 * On an exit to kernel mode, if @paranoid == 0, we check for preemption,
956 * whereas we omit the preemption check if @paranoid != 0. This is purely
957 * because the implementation is simpler this way. The kernel only needs
958 * to check for asynchronous kernel preemption when IRQ handlers return.
959 *
960 * If @paranoid == 0, then the stub will handle IRET faults by pretending
961 * that the fault came from user mode. It will handle gs_change faults by
962 * pretending that the fault happened with kernel GSBASE. Since this handling
963 * is omitted for @paranoid != 0, the #GP, #SS, and #NP stubs must have
964 * @paranoid == 0. This special handling will do the wrong thing for
965 * espfix-induced #DF on IRET, so #DF must not use @paranoid == 0.
966 *
967 * @paranoid == 2 is special: the stub will never switch stacks. This is for
968 * #DF: if the thread stack is somehow unusable, we'll still get a useful OOPS.
969 */
970 .macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1 ist_offset=0 create_gap=0 read_cr2=0
971 SYM_CODE_START(\sym)
972 UNWIND_HINT_IRET_REGS offset=\has_error_code*8
973
974 /* Sanity check */
975 .if \shift_ist != -1 && \paranoid != 1
976 .error "using shift_ist requires paranoid=1"
977 .endif
978
979 .if \create_gap && \paranoid
980 .error "using create_gap requires paranoid=0"
981 .endif
982
983 ASM_CLAC
984
985 .if \has_error_code == 0
986 pushq $-1 /* ORIG_RAX: no syscall to restart */
987 .endif
988
989 .if \paranoid == 1
990 testb $3, CS-ORIG_RAX(%rsp) /* If coming from userspace, switch stacks */
991 jnz .Lfrom_usermode_switch_stack_\@
992 .endif
993
994 .if \create_gap == 1
995 /*
996 * If coming from kernel space, create a 6-word gap to allow the
997 * int3 handler to emulate a call instruction.
998 */
999 testb $3, CS-ORIG_RAX(%rsp)
1000 jnz .Lfrom_usermode_no_gap_\@
1001 .rept 6
1002 pushq 5*8(%rsp)
1003 .endr
1004 UNWIND_HINT_IRET_REGS offset=8
1005 .Lfrom_usermode_no_gap_\@:
1006 .endif
1007
1008 idtentry_part \do_sym, \has_error_code, \read_cr2, \paranoid, \shift_ist, \ist_offset
1009
1010 .if \paranoid == 1
1011 /*
1012 * Entry from userspace. Switch stacks and treat it
1013 * as a normal entry. This means that paranoid handlers
1014 * run in real process context if user_mode(regs).
1015 */
1016 .Lfrom_usermode_switch_stack_\@:
1017 idtentry_part \do_sym, \has_error_code, \read_cr2, paranoid=0
1018 .endif
1019
1020 _ASM_NOKPROBE(\sym)
1021 SYM_CODE_END(\sym)
1022 .endm
1023
1024 idtentry divide_error do_divide_error has_error_code=0
1025 idtentry overflow do_overflow has_error_code=0
1026 idtentry bounds do_bounds has_error_code=0
1027 idtentry invalid_op do_invalid_op has_error_code=0
1028 idtentry device_not_available do_device_not_available has_error_code=0
1029 idtentry double_fault do_double_fault has_error_code=1 paranoid=2 read_cr2=1
1030 idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
1031 idtentry invalid_TSS do_invalid_TSS has_error_code=1
1032 idtentry segment_not_present do_segment_not_present has_error_code=1
1033 idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
1034 idtentry coprocessor_error do_coprocessor_error has_error_code=0
1035 idtentry alignment_check do_alignment_check has_error_code=1
1036 idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
1037
1038
1039 /*
1040 * Reload gs selector with exception handling
1041 * edi: new selector
1042 */
1043 SYM_FUNC_START(native_load_gs_index)
1044 FRAME_BEGIN
1045 pushfq
1046 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
1047 TRACE_IRQS_OFF
1048 SWAPGS
1049 .Lgs_change:
1050 movl %edi, %gs
1051 2: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1052 SWAPGS
1053 TRACE_IRQS_FLAGS (%rsp)
1054 popfq
1055 FRAME_END
1056 ret
1057 SYM_FUNC_END(native_load_gs_index)
1058 EXPORT_SYMBOL(native_load_gs_index)
1059
1060 _ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1061 .section .fixup, "ax"
1062 /* running with kernelgs */
1063 SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
1064 SWAPGS /* switch back to user gs */
1065 .macro ZAP_GS
1066 /* This can't be a string because the preprocessor needs to see it. */
1067 movl $__USER_DS, %eax
1068 movl %eax, %gs
1069 .endm
1070 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1071 xorl %eax, %eax
1072 movl %eax, %gs
1073 jmp 2b
1074 SYM_CODE_END(.Lbad_gs)
1075 .previous
1076
1077 /* Call softirq on interrupt stack. Interrupts are off. */
1078 SYM_FUNC_START(do_softirq_own_stack)
1079 pushq %rbp
1080 mov %rsp, %rbp
1081 ENTER_IRQ_STACK regs=0 old_rsp=%r11
1082 call __do_softirq
1083 LEAVE_IRQ_STACK regs=0
1084 leaveq
1085 ret
1086 SYM_FUNC_END(do_softirq_own_stack)
1087
1088 #ifdef CONFIG_XEN_PV
1089 idtentry hypervisor_callback xen_do_hypervisor_callback has_error_code=0
1090
1091 /*
1092 * A note on the "critical region" in our callback handler.
1093 * We want to avoid stacking callback handlers due to events occurring
1094 * during handling of the last event. To do this, we keep events disabled
1095 * until we've done all processing. HOWEVER, we must enable events before
1096 * popping the stack frame (can't be done atomically) and so it would still
1097 * be possible to get enough handler activations to overflow the stack.
1098 * Although unlikely, bugs of that kind are hard to track down, so we'd
1099 * like to avoid the possibility.
1100 * So, on entry to the handler we detect whether we interrupted an
1101 * existing activation in its critical region -- if so, we pop the current
1102 * activation and restart the handler using the previous one.
1103 */
1104 /* do_hypervisor_callback(struct *pt_regs) */
1105 SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
1106
1107 /*
1108 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
1109 * see the correct pointer to the pt_regs
1110 */
1111 UNWIND_HINT_FUNC
1112 movq %rdi, %rsp /* we don't return, adjust the stack frame */
1113 UNWIND_HINT_REGS
1114
1115 ENTER_IRQ_STACK old_rsp=%r10
1116 call xen_evtchn_do_upcall
1117 LEAVE_IRQ_STACK
1118
1119 #ifndef CONFIG_PREEMPTION
1120 call xen_maybe_preempt_hcall
1121 #endif
1122 jmp error_exit
1123 SYM_CODE_END(xen_do_hypervisor_callback)
1124
1125 /*
1126 * Hypervisor uses this for application faults while it executes.
1127 * We get here for two reasons:
1128 * 1. Fault while reloading DS, ES, FS or GS
1129 * 2. Fault while executing IRET
1130 * Category 1 we do not need to fix up as Xen has already reloaded all segment
1131 * registers that could be reloaded and zeroed the others.
1132 * Category 2 we fix up by killing the current process. We cannot use the
1133 * normal Linux return path in this case because if we use the IRET hypercall
1134 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
1135 * We distinguish between categories by comparing each saved segment register
1136 * with its current contents: any discrepancy means we in category 1.
1137 */
1138 SYM_CODE_START(xen_failsafe_callback)
1139 UNWIND_HINT_EMPTY
1140 movl %ds, %ecx
1141 cmpw %cx, 0x10(%rsp)
1142 jne 1f
1143 movl %es, %ecx
1144 cmpw %cx, 0x18(%rsp)
1145 jne 1f
1146 movl %fs, %ecx
1147 cmpw %cx, 0x20(%rsp)
1148 jne 1f
1149 movl %gs, %ecx
1150 cmpw %cx, 0x28(%rsp)
1151 jne 1f
1152 /* All segments match their saved values => Category 2 (Bad IRET). */
1153 movq (%rsp), %rcx
1154 movq 8(%rsp), %r11
1155 addq $0x30, %rsp
1156 pushq $0 /* RIP */
1157 UNWIND_HINT_IRET_REGS offset=8
1158 jmp general_protection
1159 1: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1160 movq (%rsp), %rcx
1161 movq 8(%rsp), %r11
1162 addq $0x30, %rsp
1163 UNWIND_HINT_IRET_REGS
1164 pushq $-1 /* orig_ax = -1 => not a system call */
1165 PUSH_AND_CLEAR_REGS
1166 ENCODE_FRAME_POINTER
1167 jmp error_exit
1168 SYM_CODE_END(xen_failsafe_callback)
1169 #endif /* CONFIG_XEN_PV */
1170
1171 #ifdef CONFIG_XEN_PVHVM
1172 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1173 xen_hvm_callback_vector xen_evtchn_do_upcall
1174 #endif
1175
1176
1177 #if IS_ENABLED(CONFIG_HYPERV)
1178 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1179 hyperv_callback_vector hyperv_vector_handler
1180
1181 apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
1182 hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1183
1184 apicinterrupt3 HYPERV_STIMER0_VECTOR \
1185 hv_stimer0_callback_vector hv_stimer0_vector_handler
1186 #endif /* CONFIG_HYPERV */
1187
1188 #if IS_ENABLED(CONFIG_ACRN_GUEST)
1189 apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1190 acrn_hv_callback_vector acrn_hv_vector_handler
1191 #endif
1192
1193 idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=IST_INDEX_DB ist_offset=DB_STACK_OFFSET
1194 idtentry int3 do_int3 has_error_code=0 create_gap=1
1195 idtentry stack_segment do_stack_segment has_error_code=1
1196
1197 #ifdef CONFIG_XEN_PV
1198 idtentry xennmi do_nmi has_error_code=0
1199 idtentry xendebug do_debug has_error_code=0
1200 #endif
1201
1202 idtentry general_protection do_general_protection has_error_code=1
1203 idtentry page_fault do_page_fault has_error_code=1 read_cr2=1
1204
1205 #ifdef CONFIG_KVM_GUEST
1206 idtentry async_page_fault do_async_page_fault has_error_code=1 read_cr2=1
1207 #endif
1208
1209 #ifdef CONFIG_X86_MCE
1210 idtentry machine_check do_mce has_error_code=0 paranoid=1
1211 #endif
1212
1213 /*
1214 * Save all registers in pt_regs, and switch gs if needed.
1215 * Use slow, but surefire "are we in kernel?" check.
1216 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
1217 */
1218 SYM_CODE_START_LOCAL(paranoid_entry)
1219 UNWIND_HINT_FUNC
1220 cld
1221 PUSH_AND_CLEAR_REGS save_ret=1
1222 ENCODE_FRAME_POINTER 8
1223 movl $1, %ebx
1224 movl $MSR_GS_BASE, %ecx
1225 rdmsr
1226 testl %edx, %edx
1227 js 1f /* negative -> in kernel */
1228 SWAPGS
1229 xorl %ebx, %ebx
1230
1231 1:
1232 /*
1233 * Always stash CR3 in %r14. This value will be restored,
1234 * verbatim, at exit. Needed if paranoid_entry interrupted
1235 * another entry that already switched to the user CR3 value
1236 * but has not yet returned to userspace.
1237 *
1238 * This is also why CS (stashed in the "iret frame" by the
1239 * hardware at entry) can not be used: this may be a return
1240 * to kernel code, but with a user CR3 value.
1241 */
1242 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
1243
1244 /*
1245 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
1246 * unconditional CR3 write, even in the PTI case. So do an lfence
1247 * to prevent GS speculation, regardless of whether PTI is enabled.
1248 */
1249 FENCE_SWAPGS_KERNEL_ENTRY
1250
1251 ret
1252 SYM_CODE_END(paranoid_entry)
1253
1254 /*
1255 * "Paranoid" exit path from exception stack. This is invoked
1256 * only on return from non-NMI IST interrupts that came
1257 * from kernel space.
1258 *
1259 * We may be returning to very strange contexts (e.g. very early
1260 * in syscall entry), so checking for preemption here would
1261 * be complicated. Fortunately, we there's no good reason
1262 * to try to handle preemption here.
1263 *
1264 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1265 */
1266 SYM_CODE_START_LOCAL(paranoid_exit)
1267 UNWIND_HINT_REGS
1268 DISABLE_INTERRUPTS(CLBR_ANY)
1269 TRACE_IRQS_OFF_DEBUG
1270 testl %ebx, %ebx /* swapgs needed? */
1271 jnz .Lparanoid_exit_no_swapgs
1272 TRACE_IRQS_IRETQ
1273 /* Always restore stashed CR3 value (see paranoid_entry) */
1274 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1275 SWAPGS_UNSAFE_STACK
1276 jmp restore_regs_and_return_to_kernel
1277 .Lparanoid_exit_no_swapgs:
1278 TRACE_IRQS_IRETQ_DEBUG
1279 /* Always restore stashed CR3 value (see paranoid_entry) */
1280 RESTORE_CR3 scratch_reg=%rbx save_reg=%r14
1281 jmp restore_regs_and_return_to_kernel
1282 SYM_CODE_END(paranoid_exit)
1283
1284 /*
1285 * Save all registers in pt_regs, and switch GS if needed.
1286 */
1287 SYM_CODE_START_LOCAL(error_entry)
1288 UNWIND_HINT_FUNC
1289 cld
1290 PUSH_AND_CLEAR_REGS save_ret=1
1291 ENCODE_FRAME_POINTER 8
1292 testb $3, CS+8(%rsp)
1293 jz .Lerror_kernelspace
1294
1295 /*
1296 * We entered from user mode or we're pretending to have entered
1297 * from user mode due to an IRET fault.
1298 */
1299 SWAPGS
1300 FENCE_SWAPGS_USER_ENTRY
1301 /* We have user CR3. Change to kernel CR3. */
1302 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1303
1304 .Lerror_entry_from_usermode_after_swapgs:
1305 /* Put us onto the real thread stack. */
1306 popq %r12 /* save return addr in %12 */
1307 movq %rsp, %rdi /* arg0 = pt_regs pointer */
1308 call sync_regs
1309 movq %rax, %rsp /* switch stack */
1310 ENCODE_FRAME_POINTER
1311 pushq %r12
1312 ret
1313
1314 .Lerror_entry_done_lfence:
1315 FENCE_SWAPGS_KERNEL_ENTRY
1316 .Lerror_entry_done:
1317 ret
1318
1319 /*
1320 * There are two places in the kernel that can potentially fault with
1321 * usergs. Handle them here. B stepping K8s sometimes report a
1322 * truncated RIP for IRET exceptions returning to compat mode. Check
1323 * for these here too.
1324 */
1325 .Lerror_kernelspace:
1326 leaq native_irq_return_iret(%rip), %rcx
1327 cmpq %rcx, RIP+8(%rsp)
1328 je .Lerror_bad_iret
1329 movl %ecx, %eax /* zero extend */
1330 cmpq %rax, RIP+8(%rsp)
1331 je .Lbstep_iret
1332 cmpq $.Lgs_change, RIP+8(%rsp)
1333 jne .Lerror_entry_done_lfence
1334
1335 /*
1336 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
1337 * gsbase and proceed. We'll fix up the exception and land in
1338 * .Lgs_change's error handler with kernel gsbase.
1339 */
1340 SWAPGS
1341 FENCE_SWAPGS_USER_ENTRY
1342 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1343 jmp .Lerror_entry_done
1344
1345 .Lbstep_iret:
1346 /* Fix truncated RIP */
1347 movq %rcx, RIP+8(%rsp)
1348 /* fall through */
1349
1350 .Lerror_bad_iret:
1351 /*
1352 * We came from an IRET to user mode, so we have user
1353 * gsbase and CR3. Switch to kernel gsbase and CR3:
1354 */
1355 SWAPGS
1356 FENCE_SWAPGS_USER_ENTRY
1357 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1358
1359 /*
1360 * Pretend that the exception came from user mode: set up pt_regs
1361 * as if we faulted immediately after IRET.
1362 */
1363 mov %rsp, %rdi
1364 call fixup_bad_iret
1365 mov %rax, %rsp
1366 jmp .Lerror_entry_from_usermode_after_swapgs
1367 SYM_CODE_END(error_entry)
1368
1369 SYM_CODE_START_LOCAL(error_exit)
1370 UNWIND_HINT_REGS
1371 DISABLE_INTERRUPTS(CLBR_ANY)
1372 TRACE_IRQS_OFF
1373 testb $3, CS(%rsp)
1374 jz retint_kernel
1375 jmp .Lretint_user
1376 SYM_CODE_END(error_exit)
1377
1378 /*
1379 * Runs on exception stack. Xen PV does not go through this path at all,
1380 * so we can use real assembly here.
1381 *
1382 * Registers:
1383 * %r14: Used to save/restore the CR3 of the interrupted context
1384 * when PAGE_TABLE_ISOLATION is in use. Do not clobber.
1385 */
1386 SYM_CODE_START(nmi)
1387 UNWIND_HINT_IRET_REGS
1388
1389 /*
1390 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1391 * the iretq it performs will take us out of NMI context.
1392 * This means that we can have nested NMIs where the next
1393 * NMI is using the top of the stack of the previous NMI. We
1394 * can't let it execute because the nested NMI will corrupt the
1395 * stack of the previous NMI. NMI handlers are not re-entrant
1396 * anyway.
1397 *
1398 * To handle this case we do the following:
1399 * Check the a special location on the stack that contains
1400 * a variable that is set when NMIs are executing.
1401 * The interrupted task's stack is also checked to see if it
1402 * is an NMI stack.
1403 * If the variable is not set and the stack is not the NMI
1404 * stack then:
1405 * o Set the special variable on the stack
1406 * o Copy the interrupt frame into an "outermost" location on the
1407 * stack
1408 * o Copy the interrupt frame into an "iret" location on the stack
1409 * o Continue processing the NMI
1410 * If the variable is set or the previous stack is the NMI stack:
1411 * o Modify the "iret" location to jump to the repeat_nmi
1412 * o return back to the first NMI
1413 *
1414 * Now on exit of the first NMI, we first clear the stack variable
1415 * The NMI stack will tell any nested NMIs at that point that it is
1416 * nested. Then we pop the stack normally with iret, and if there was
1417 * a nested NMI that updated the copy interrupt stack frame, a
1418 * jump will be made to the repeat_nmi code that will handle the second
1419 * NMI.
1420 *
1421 * However, espfix prevents us from directly returning to userspace
1422 * with a single IRET instruction. Similarly, IRET to user mode
1423 * can fault. We therefore handle NMIs from user space like
1424 * other IST entries.
1425 */
1426
1427 ASM_CLAC
1428
1429 /* Use %rdx as our temp variable throughout */
1430 pushq %rdx
1431
1432 testb $3, CS-RIP+8(%rsp)
1433 jz .Lnmi_from_kernel
1434
1435 /*
1436 * NMI from user mode. We need to run on the thread stack, but we
1437 * can't go through the normal entry paths: NMIs are masked, and
1438 * we don't want to enable interrupts, because then we'll end
1439 * up in an awkward situation in which IRQs are on but NMIs
1440 * are off.
1441 *
1442 * We also must not push anything to the stack before switching
1443 * stacks lest we corrupt the "NMI executing" variable.
1444 */
1445
1446 swapgs
1447 cld
1448 FENCE_SWAPGS_USER_ENTRY
1449 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1450 movq %rsp, %rdx
1451 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1452 UNWIND_HINT_IRET_REGS base=%rdx offset=8
1453 pushq 5*8(%rdx) /* pt_regs->ss */
1454 pushq 4*8(%rdx) /* pt_regs->rsp */
1455 pushq 3*8(%rdx) /* pt_regs->flags */
1456 pushq 2*8(%rdx) /* pt_regs->cs */
1457 pushq 1*8(%rdx) /* pt_regs->rip */
1458 UNWIND_HINT_IRET_REGS
1459 pushq $-1 /* pt_regs->orig_ax */
1460 PUSH_AND_CLEAR_REGS rdx=(%rdx)
1461 ENCODE_FRAME_POINTER
1462
1463 /*
1464 * At this point we no longer need to worry about stack damage
1465 * due to nesting -- we're on the normal thread stack and we're
1466 * done with the NMI stack.
1467 */
1468
1469 movq %rsp, %rdi
1470 movq $-1, %rsi
1471 call do_nmi
1472
1473 /*
1474 * Return back to user mode. We must *not* do the normal exit
1475 * work, because we don't want to enable interrupts.
1476 */
1477 jmp swapgs_restore_regs_and_return_to_usermode
1478
1479 .Lnmi_from_kernel:
1480 /*
1481 * Here's what our stack frame will look like:
1482 * +---------------------------------------------------------+
1483 * | original SS |
1484 * | original Return RSP |
1485 * | original RFLAGS |
1486 * | original CS |
1487 * | original RIP |
1488 * +---------------------------------------------------------+
1489 * | temp storage for rdx |
1490 * +---------------------------------------------------------+
1491 * | "NMI executing" variable |
1492 * +---------------------------------------------------------+
1493 * | iret SS } Copied from "outermost" frame |
1494 * | iret Return RSP } on each loop iteration; overwritten |
1495 * | iret RFLAGS } by a nested NMI to force another |
1496 * | iret CS } iteration if needed. |
1497 * | iret RIP } |
1498 * +---------------------------------------------------------+
1499 * | outermost SS } initialized in first_nmi; |
1500 * | outermost Return RSP } will not be changed before |
1501 * | outermost RFLAGS } NMI processing is done. |
1502 * | outermost CS } Copied to "iret" frame on each |
1503 * | outermost RIP } iteration. |
1504 * +---------------------------------------------------------+
1505 * | pt_regs |
1506 * +---------------------------------------------------------+
1507 *
1508 * The "original" frame is used by hardware. Before re-enabling
1509 * NMIs, we need to be done with it, and we need to leave enough
1510 * space for the asm code here.
1511 *
1512 * We return by executing IRET while RSP points to the "iret" frame.
1513 * That will either return for real or it will loop back into NMI
1514 * processing.
1515 *
1516 * The "outermost" frame is copied to the "iret" frame on each
1517 * iteration of the loop, so each iteration starts with the "iret"
1518 * frame pointing to the final return target.
1519 */
1520
1521 /*
1522 * Determine whether we're a nested NMI.
1523 *
1524 * If we interrupted kernel code between repeat_nmi and
1525 * end_repeat_nmi, then we are a nested NMI. We must not
1526 * modify the "iret" frame because it's being written by
1527 * the outer NMI. That's okay; the outer NMI handler is
1528 * about to about to call do_nmi anyway, so we can just
1529 * resume the outer NMI.
1530 */
1531
1532 movq $repeat_nmi, %rdx
1533 cmpq 8(%rsp), %rdx
1534 ja 1f
1535 movq $end_repeat_nmi, %rdx
1536 cmpq 8(%rsp), %rdx
1537 ja nested_nmi_out
1538 1:
1539
1540 /*
1541 * Now check "NMI executing". If it's set, then we're nested.
1542 * This will not detect if we interrupted an outer NMI just
1543 * before IRET.
1544 */
1545 cmpl $1, -8(%rsp)
1546 je nested_nmi
1547
1548 /*
1549 * Now test if the previous stack was an NMI stack. This covers
1550 * the case where we interrupt an outer NMI after it clears
1551 * "NMI executing" but before IRET. We need to be careful, though:
1552 * there is one case in which RSP could point to the NMI stack
1553 * despite there being no NMI active: naughty userspace controls
1554 * RSP at the very beginning of the SYSCALL targets. We can
1555 * pull a fast one on naughty userspace, though: we program
1556 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1557 * if it controls the kernel's RSP. We set DF before we clear
1558 * "NMI executing".
1559 */
1560 lea 6*8(%rsp), %rdx
1561 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1562 cmpq %rdx, 4*8(%rsp)
1563 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1564 ja first_nmi
1565
1566 subq $EXCEPTION_STKSZ, %rdx
1567 cmpq %rdx, 4*8(%rsp)
1568 /* If it is below the NMI stack, it is a normal NMI */
1569 jb first_nmi
1570
1571 /* Ah, it is within the NMI stack. */
1572
1573 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1574 jz first_nmi /* RSP was user controlled. */
1575
1576 /* This is a nested NMI. */
1577
1578 nested_nmi:
1579 /*
1580 * Modify the "iret" frame to point to repeat_nmi, forcing another
1581 * iteration of NMI handling.
1582 */
1583 subq $8, %rsp
1584 leaq -10*8(%rsp), %rdx
1585 pushq $__KERNEL_DS
1586 pushq %rdx
1587 pushfq
1588 pushq $__KERNEL_CS
1589 pushq $repeat_nmi
1590
1591 /* Put stack back */
1592 addq $(6*8), %rsp
1593
1594 nested_nmi_out:
1595 popq %rdx
1596
1597 /* We are returning to kernel mode, so this cannot result in a fault. */
1598 iretq
1599
1600 first_nmi:
1601 /* Restore rdx. */
1602 movq (%rsp), %rdx
1603
1604 /* Make room for "NMI executing". */
1605 pushq $0
1606
1607 /* Leave room for the "iret" frame */
1608 subq $(5*8), %rsp
1609
1610 /* Copy the "original" frame to the "outermost" frame */
1611 .rept 5
1612 pushq 11*8(%rsp)
1613 .endr
1614 UNWIND_HINT_IRET_REGS
1615
1616 /* Everything up to here is safe from nested NMIs */
1617
1618 #ifdef CONFIG_DEBUG_ENTRY
1619 /*
1620 * For ease of testing, unmask NMIs right away. Disabled by
1621 * default because IRET is very expensive.
1622 */
1623 pushq $0 /* SS */
1624 pushq %rsp /* RSP (minus 8 because of the previous push) */
1625 addq $8, (%rsp) /* Fix up RSP */
1626 pushfq /* RFLAGS */
1627 pushq $__KERNEL_CS /* CS */
1628 pushq $1f /* RIP */
1629 iretq /* continues at repeat_nmi below */
1630 UNWIND_HINT_IRET_REGS
1631 1:
1632 #endif
1633
1634 repeat_nmi:
1635 /*
1636 * If there was a nested NMI, the first NMI's iret will return
1637 * here. But NMIs are still enabled and we can take another
1638 * nested NMI. The nested NMI checks the interrupted RIP to see
1639 * if it is between repeat_nmi and end_repeat_nmi, and if so
1640 * it will just return, as we are about to repeat an NMI anyway.
1641 * This makes it safe to copy to the stack frame that a nested
1642 * NMI will update.
1643 *
1644 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1645 * we're repeating an NMI, gsbase has the same value that it had on
1646 * the first iteration. paranoid_entry will load the kernel
1647 * gsbase if needed before we call do_nmi. "NMI executing"
1648 * is zero.
1649 */
1650 movq $1, 10*8(%rsp) /* Set "NMI executing". */
1651
1652 /*
1653 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1654 * here must not modify the "iret" frame while we're writing to
1655 * it or it will end up containing garbage.
1656 */
1657 addq $(10*8), %rsp
1658 .rept 5
1659 pushq -6*8(%rsp)
1660 .endr
1661 subq $(5*8), %rsp
1662 end_repeat_nmi:
1663
1664 /*
1665 * Everything below this point can be preempted by a nested NMI.
1666 * If this happens, then the inner NMI will change the "iret"
1667 * frame to point back to repeat_nmi.
1668 */
1669 pushq $-1 /* ORIG_RAX: no syscall to restart */
1670
1671 /*
1672 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1673 * as we should not be calling schedule in NMI context.
1674 * Even with normal interrupts enabled. An NMI should not be
1675 * setting NEED_RESCHED or anything that normal interrupts and
1676 * exceptions might do.
1677 */
1678 call paranoid_entry
1679 UNWIND_HINT_REGS
1680
1681 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
1682 movq %rsp, %rdi
1683 movq $-1, %rsi
1684 call do_nmi
1685
1686 /* Always restore stashed CR3 value (see paranoid_entry) */
1687 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1688
1689 testl %ebx, %ebx /* swapgs needed? */
1690 jnz nmi_restore
1691 nmi_swapgs:
1692 SWAPGS_UNSAFE_STACK
1693 nmi_restore:
1694 POP_REGS
1695
1696 /*
1697 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1698 * at the "iret" frame.
1699 */
1700 addq $6*8, %rsp
1701
1702 /*
1703 * Clear "NMI executing". Set DF first so that we can easily
1704 * distinguish the remaining code between here and IRET from
1705 * the SYSCALL entry and exit paths.
1706 *
1707 * We arguably should just inspect RIP instead, but I (Andy) wrote
1708 * this code when I had the misapprehension that Xen PV supported
1709 * NMIs, and Xen PV would break that approach.
1710 */
1711 std
1712 movq $0, 5*8(%rsp) /* clear "NMI executing" */
1713
1714 /*
1715 * iretq reads the "iret" frame and exits the NMI stack in a
1716 * single instruction. We are returning to kernel mode, so this
1717 * cannot result in a fault. Similarly, we don't need to worry
1718 * about espfix64 on the way back to kernel mode.
1719 */
1720 iretq
1721 SYM_CODE_END(nmi)
1722
1723 #ifndef CONFIG_IA32_EMULATION
1724 /*
1725 * This handles SYSCALL from 32-bit code. There is no way to program
1726 * MSRs to fully disable 32-bit SYSCALL.
1727 */
1728 SYM_CODE_START(ignore_sysret)
1729 UNWIND_HINT_EMPTY
1730 mov $-ENOSYS, %eax
1731 sysretl
1732 SYM_CODE_END(ignore_sysret)
1733 #endif
1734
1735 SYM_CODE_START(rewind_stack_do_exit)
1736 UNWIND_HINT_FUNC
1737 /* Prevent any naive code from trying to unwind to our caller. */
1738 xorl %ebp, %ebp
1739
1740 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1741 leaq -PTREGS_SIZE(%rax), %rsp
1742 UNWIND_HINT_FUNC sp_offset=PTREGS_SIZE
1743
1744 call do_exit
1745 SYM_CODE_END(rewind_stack_do_exit)