]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/events/amd/core.c
67f7f2525c8c6eeb46b1b90f1ebc52ad7dbeb5a2
[thirdparty/kernel/stable.git] / arch / x86 / events / amd / core.c
1 #include <linux/perf_event.h>
2 #include <linux/export.h>
3 #include <linux/types.h>
4 #include <linux/init.h>
5 #include <linux/slab.h>
6 #include <linux/delay.h>
7 #include <asm/apicdef.h>
8
9 #include "../perf_event.h"
10
11 static __initconst const u64 amd_hw_cache_event_ids
12 [PERF_COUNT_HW_CACHE_MAX]
13 [PERF_COUNT_HW_CACHE_OP_MAX]
14 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
15 {
16 [ C(L1D) ] = {
17 [ C(OP_READ) ] = {
18 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
19 [ C(RESULT_MISS) ] = 0x0141, /* Data Cache Misses */
20 },
21 [ C(OP_WRITE) ] = {
22 [ C(RESULT_ACCESS) ] = 0,
23 [ C(RESULT_MISS) ] = 0,
24 },
25 [ C(OP_PREFETCH) ] = {
26 [ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
27 [ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
28 },
29 },
30 [ C(L1I ) ] = {
31 [ C(OP_READ) ] = {
32 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
33 [ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
34 },
35 [ C(OP_WRITE) ] = {
36 [ C(RESULT_ACCESS) ] = -1,
37 [ C(RESULT_MISS) ] = -1,
38 },
39 [ C(OP_PREFETCH) ] = {
40 [ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
41 [ C(RESULT_MISS) ] = 0,
42 },
43 },
44 [ C(LL ) ] = {
45 [ C(OP_READ) ] = {
46 [ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
47 [ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
48 },
49 [ C(OP_WRITE) ] = {
50 [ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
51 [ C(RESULT_MISS) ] = 0,
52 },
53 [ C(OP_PREFETCH) ] = {
54 [ C(RESULT_ACCESS) ] = 0,
55 [ C(RESULT_MISS) ] = 0,
56 },
57 },
58 [ C(DTLB) ] = {
59 [ C(OP_READ) ] = {
60 [ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
61 [ C(RESULT_MISS) ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
62 },
63 [ C(OP_WRITE) ] = {
64 [ C(RESULT_ACCESS) ] = 0,
65 [ C(RESULT_MISS) ] = 0,
66 },
67 [ C(OP_PREFETCH) ] = {
68 [ C(RESULT_ACCESS) ] = 0,
69 [ C(RESULT_MISS) ] = 0,
70 },
71 },
72 [ C(ITLB) ] = {
73 [ C(OP_READ) ] = {
74 [ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
75 [ C(RESULT_MISS) ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
76 },
77 [ C(OP_WRITE) ] = {
78 [ C(RESULT_ACCESS) ] = -1,
79 [ C(RESULT_MISS) ] = -1,
80 },
81 [ C(OP_PREFETCH) ] = {
82 [ C(RESULT_ACCESS) ] = -1,
83 [ C(RESULT_MISS) ] = -1,
84 },
85 },
86 [ C(BPU ) ] = {
87 [ C(OP_READ) ] = {
88 [ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
89 [ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
90 },
91 [ C(OP_WRITE) ] = {
92 [ C(RESULT_ACCESS) ] = -1,
93 [ C(RESULT_MISS) ] = -1,
94 },
95 [ C(OP_PREFETCH) ] = {
96 [ C(RESULT_ACCESS) ] = -1,
97 [ C(RESULT_MISS) ] = -1,
98 },
99 },
100 [ C(NODE) ] = {
101 [ C(OP_READ) ] = {
102 [ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
103 [ C(RESULT_MISS) ] = 0x98e9, /* CPU Request to Memory, r */
104 },
105 [ C(OP_WRITE) ] = {
106 [ C(RESULT_ACCESS) ] = -1,
107 [ C(RESULT_MISS) ] = -1,
108 },
109 [ C(OP_PREFETCH) ] = {
110 [ C(RESULT_ACCESS) ] = -1,
111 [ C(RESULT_MISS) ] = -1,
112 },
113 },
114 };
115
116 /*
117 * AMD Performance Monitor K7 and later.
118 */
119 static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
120 {
121 [PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
122 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
123 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x077d,
124 [PERF_COUNT_HW_CACHE_MISSES] = 0x077e,
125 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c2,
126 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c3,
127 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 0x00d0, /* "Decoder empty" event */
128 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 0x00d1, /* "Dispatch stalls" event */
129 };
130
131 static u64 amd_pmu_event_map(int hw_event)
132 {
133 return amd_perfmon_event_map[hw_event];
134 }
135
136 /*
137 * Previously calculated offsets
138 */
139 static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
140 static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;
141
142 /*
143 * Legacy CPUs:
144 * 4 counters starting at 0xc0010000 each offset by 1
145 *
146 * CPUs with core performance counter extensions:
147 * 6 counters starting at 0xc0010200 each offset by 2
148 */
149 static inline int amd_pmu_addr_offset(int index, bool eventsel)
150 {
151 int offset;
152
153 if (!index)
154 return index;
155
156 if (eventsel)
157 offset = event_offsets[index];
158 else
159 offset = count_offsets[index];
160
161 if (offset)
162 return offset;
163
164 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
165 offset = index;
166 else
167 offset = index << 1;
168
169 if (eventsel)
170 event_offsets[index] = offset;
171 else
172 count_offsets[index] = offset;
173
174 return offset;
175 }
176
177 static int amd_core_hw_config(struct perf_event *event)
178 {
179 if (event->attr.exclude_host && event->attr.exclude_guest)
180 /*
181 * When HO == GO == 1 the hardware treats that as GO == HO == 0
182 * and will count in both modes. We don't want to count in that
183 * case so we emulate no-counting by setting US = OS = 0.
184 */
185 event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
186 ARCH_PERFMON_EVENTSEL_OS);
187 else if (event->attr.exclude_host)
188 event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
189 else if (event->attr.exclude_guest)
190 event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
191
192 return 0;
193 }
194
195 /*
196 * AMD64 events are detected based on their event codes.
197 */
198 static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
199 {
200 return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
201 }
202
203 static inline int amd_is_nb_event(struct hw_perf_event *hwc)
204 {
205 return (hwc->config & 0xe0) == 0xe0;
206 }
207
208 static inline int amd_has_nb(struct cpu_hw_events *cpuc)
209 {
210 struct amd_nb *nb = cpuc->amd_nb;
211
212 return nb && nb->nb_id != -1;
213 }
214
215 static int amd_pmu_hw_config(struct perf_event *event)
216 {
217 int ret;
218
219 /* pass precise event sampling to ibs: */
220 if (event->attr.precise_ip && get_ibs_caps())
221 return -ENOENT;
222
223 if (has_branch_stack(event))
224 return -EOPNOTSUPP;
225
226 ret = x86_pmu_hw_config(event);
227 if (ret)
228 return ret;
229
230 if (event->attr.type == PERF_TYPE_RAW)
231 event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;
232
233 return amd_core_hw_config(event);
234 }
235
236 static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
237 struct perf_event *event)
238 {
239 struct amd_nb *nb = cpuc->amd_nb;
240 int i;
241
242 /*
243 * need to scan whole list because event may not have
244 * been assigned during scheduling
245 *
246 * no race condition possible because event can only
247 * be removed on one CPU at a time AND PMU is disabled
248 * when we come here
249 */
250 for (i = 0; i < x86_pmu.num_counters; i++) {
251 if (cmpxchg(nb->owners + i, event, NULL) == event)
252 break;
253 }
254 }
255
256 /*
257 * AMD64 NorthBridge events need special treatment because
258 * counter access needs to be synchronized across all cores
259 * of a package. Refer to BKDG section 3.12
260 *
261 * NB events are events measuring L3 cache, Hypertransport
262 * traffic. They are identified by an event code >= 0xe00.
263 * They measure events on the NorthBride which is shared
264 * by all cores on a package. NB events are counted on a
265 * shared set of counters. When a NB event is programmed
266 * in a counter, the data actually comes from a shared
267 * counter. Thus, access to those counters needs to be
268 * synchronized.
269 *
270 * We implement the synchronization such that no two cores
271 * can be measuring NB events using the same counters. Thus,
272 * we maintain a per-NB allocation table. The available slot
273 * is propagated using the event_constraint structure.
274 *
275 * We provide only one choice for each NB event based on
276 * the fact that only NB events have restrictions. Consequently,
277 * if a counter is available, there is a guarantee the NB event
278 * will be assigned to it. If no slot is available, an empty
279 * constraint is returned and scheduling will eventually fail
280 * for this event.
281 *
282 * Note that all cores attached the same NB compete for the same
283 * counters to host NB events, this is why we use atomic ops. Some
284 * multi-chip CPUs may have more than one NB.
285 *
286 * Given that resources are allocated (cmpxchg), they must be
287 * eventually freed for others to use. This is accomplished by
288 * calling __amd_put_nb_event_constraints()
289 *
290 * Non NB events are not impacted by this restriction.
291 */
292 static struct event_constraint *
293 __amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
294 struct event_constraint *c)
295 {
296 struct hw_perf_event *hwc = &event->hw;
297 struct amd_nb *nb = cpuc->amd_nb;
298 struct perf_event *old;
299 int idx, new = -1;
300
301 if (!c)
302 c = &unconstrained;
303
304 if (cpuc->is_fake)
305 return c;
306
307 /*
308 * detect if already present, if so reuse
309 *
310 * cannot merge with actual allocation
311 * because of possible holes
312 *
313 * event can already be present yet not assigned (in hwc->idx)
314 * because of successive calls to x86_schedule_events() from
315 * hw_perf_group_sched_in() without hw_perf_enable()
316 */
317 for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
318 if (new == -1 || hwc->idx == idx)
319 /* assign free slot, prefer hwc->idx */
320 old = cmpxchg(nb->owners + idx, NULL, event);
321 else if (nb->owners[idx] == event)
322 /* event already present */
323 old = event;
324 else
325 continue;
326
327 if (old && old != event)
328 continue;
329
330 /* reassign to this slot */
331 if (new != -1)
332 cmpxchg(nb->owners + new, event, NULL);
333 new = idx;
334
335 /* already present, reuse */
336 if (old == event)
337 break;
338 }
339
340 if (new == -1)
341 return &emptyconstraint;
342
343 return &nb->event_constraints[new];
344 }
345
346 static struct amd_nb *amd_alloc_nb(int cpu)
347 {
348 struct amd_nb *nb;
349 int i;
350
351 nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
352 if (!nb)
353 return NULL;
354
355 nb->nb_id = -1;
356
357 /*
358 * initialize all possible NB constraints
359 */
360 for (i = 0; i < x86_pmu.num_counters; i++) {
361 __set_bit(i, nb->event_constraints[i].idxmsk);
362 nb->event_constraints[i].weight = 1;
363 }
364 return nb;
365 }
366
367 static int amd_pmu_cpu_prepare(int cpu)
368 {
369 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
370
371 WARN_ON_ONCE(cpuc->amd_nb);
372
373 if (!x86_pmu.amd_nb_constraints)
374 return 0;
375
376 cpuc->amd_nb = amd_alloc_nb(cpu);
377 if (!cpuc->amd_nb)
378 return -ENOMEM;
379
380 return 0;
381 }
382
383 static void amd_pmu_cpu_starting(int cpu)
384 {
385 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
386 void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
387 struct amd_nb *nb;
388 int i, nb_id;
389
390 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
391
392 if (!x86_pmu.amd_nb_constraints)
393 return;
394
395 nb_id = amd_get_nb_id(cpu);
396 WARN_ON_ONCE(nb_id == BAD_APICID);
397
398 for_each_online_cpu(i) {
399 nb = per_cpu(cpu_hw_events, i).amd_nb;
400 if (WARN_ON_ONCE(!nb))
401 continue;
402
403 if (nb->nb_id == nb_id) {
404 *onln = cpuc->amd_nb;
405 cpuc->amd_nb = nb;
406 break;
407 }
408 }
409
410 cpuc->amd_nb->nb_id = nb_id;
411 cpuc->amd_nb->refcnt++;
412 }
413
414 static void amd_pmu_cpu_dead(int cpu)
415 {
416 struct cpu_hw_events *cpuhw;
417
418 if (!x86_pmu.amd_nb_constraints)
419 return;
420
421 cpuhw = &per_cpu(cpu_hw_events, cpu);
422
423 if (cpuhw->amd_nb) {
424 struct amd_nb *nb = cpuhw->amd_nb;
425
426 if (nb->nb_id == -1 || --nb->refcnt == 0)
427 kfree(nb);
428
429 cpuhw->amd_nb = NULL;
430 }
431 }
432
433 /*
434 * When a PMC counter overflows, an NMI is used to process the event and
435 * reset the counter. NMI latency can result in the counter being updated
436 * before the NMI can run, which can result in what appear to be spurious
437 * NMIs. This function is intended to wait for the NMI to run and reset
438 * the counter to avoid possible unhandled NMI messages.
439 */
440 #define OVERFLOW_WAIT_COUNT 50
441
442 static void amd_pmu_wait_on_overflow(int idx)
443 {
444 unsigned int i;
445 u64 counter;
446
447 /*
448 * Wait for the counter to be reset if it has overflowed. This loop
449 * should exit very, very quickly, but just in case, don't wait
450 * forever...
451 */
452 for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
453 rdmsrl(x86_pmu_event_addr(idx), counter);
454 if (counter & (1ULL << (x86_pmu.cntval_bits - 1)))
455 break;
456
457 /* Might be in IRQ context, so can't sleep */
458 udelay(1);
459 }
460 }
461
462 static void amd_pmu_disable_all(void)
463 {
464 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
465 int idx;
466
467 x86_pmu_disable_all();
468
469 /*
470 * This shouldn't be called from NMI context, but add a safeguard here
471 * to return, since if we're in NMI context we can't wait for an NMI
472 * to reset an overflowed counter value.
473 */
474 if (in_nmi())
475 return;
476
477 /*
478 * Check each counter for overflow and wait for it to be reset by the
479 * NMI if it has overflowed. This relies on the fact that all active
480 * counters are always enabled when this function is caled and
481 * ARCH_PERFMON_EVENTSEL_INT is always set.
482 */
483 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
484 if (!test_bit(idx, cpuc->active_mask))
485 continue;
486
487 amd_pmu_wait_on_overflow(idx);
488 }
489 }
490
491 static struct event_constraint *
492 amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
493 struct perf_event *event)
494 {
495 /*
496 * if not NB event or no NB, then no constraints
497 */
498 if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
499 return &unconstrained;
500
501 return __amd_get_nb_event_constraints(cpuc, event, NULL);
502 }
503
504 static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
505 struct perf_event *event)
506 {
507 if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
508 __amd_put_nb_event_constraints(cpuc, event);
509 }
510
511 PMU_FORMAT_ATTR(event, "config:0-7,32-35");
512 PMU_FORMAT_ATTR(umask, "config:8-15" );
513 PMU_FORMAT_ATTR(edge, "config:18" );
514 PMU_FORMAT_ATTR(inv, "config:23" );
515 PMU_FORMAT_ATTR(cmask, "config:24-31" );
516
517 static struct attribute *amd_format_attr[] = {
518 &format_attr_event.attr,
519 &format_attr_umask.attr,
520 &format_attr_edge.attr,
521 &format_attr_inv.attr,
522 &format_attr_cmask.attr,
523 NULL,
524 };
525
526 /* AMD Family 15h */
527
528 #define AMD_EVENT_TYPE_MASK 0x000000F0ULL
529
530 #define AMD_EVENT_FP 0x00000000ULL ... 0x00000010ULL
531 #define AMD_EVENT_LS 0x00000020ULL ... 0x00000030ULL
532 #define AMD_EVENT_DC 0x00000040ULL ... 0x00000050ULL
533 #define AMD_EVENT_CU 0x00000060ULL ... 0x00000070ULL
534 #define AMD_EVENT_IC_DE 0x00000080ULL ... 0x00000090ULL
535 #define AMD_EVENT_EX_LS 0x000000C0ULL
536 #define AMD_EVENT_DE 0x000000D0ULL
537 #define AMD_EVENT_NB 0x000000E0ULL ... 0x000000F0ULL
538
539 /*
540 * AMD family 15h event code/PMC mappings:
541 *
542 * type = event_code & 0x0F0:
543 *
544 * 0x000 FP PERF_CTL[5:3]
545 * 0x010 FP PERF_CTL[5:3]
546 * 0x020 LS PERF_CTL[5:0]
547 * 0x030 LS PERF_CTL[5:0]
548 * 0x040 DC PERF_CTL[5:0]
549 * 0x050 DC PERF_CTL[5:0]
550 * 0x060 CU PERF_CTL[2:0]
551 * 0x070 CU PERF_CTL[2:0]
552 * 0x080 IC/DE PERF_CTL[2:0]
553 * 0x090 IC/DE PERF_CTL[2:0]
554 * 0x0A0 ---
555 * 0x0B0 ---
556 * 0x0C0 EX/LS PERF_CTL[5:0]
557 * 0x0D0 DE PERF_CTL[2:0]
558 * 0x0E0 NB NB_PERF_CTL[3:0]
559 * 0x0F0 NB NB_PERF_CTL[3:0]
560 *
561 * Exceptions:
562 *
563 * 0x000 FP PERF_CTL[3], PERF_CTL[5:3] (*)
564 * 0x003 FP PERF_CTL[3]
565 * 0x004 FP PERF_CTL[3], PERF_CTL[5:3] (*)
566 * 0x00B FP PERF_CTL[3]
567 * 0x00D FP PERF_CTL[3]
568 * 0x023 DE PERF_CTL[2:0]
569 * 0x02D LS PERF_CTL[3]
570 * 0x02E LS PERF_CTL[3,0]
571 * 0x031 LS PERF_CTL[2:0] (**)
572 * 0x043 CU PERF_CTL[2:0]
573 * 0x045 CU PERF_CTL[2:0]
574 * 0x046 CU PERF_CTL[2:0]
575 * 0x054 CU PERF_CTL[2:0]
576 * 0x055 CU PERF_CTL[2:0]
577 * 0x08F IC PERF_CTL[0]
578 * 0x187 DE PERF_CTL[0]
579 * 0x188 DE PERF_CTL[0]
580 * 0x0DB EX PERF_CTL[5:0]
581 * 0x0DC LS PERF_CTL[5:0]
582 * 0x0DD LS PERF_CTL[5:0]
583 * 0x0DE LS PERF_CTL[5:0]
584 * 0x0DF LS PERF_CTL[5:0]
585 * 0x1C0 EX PERF_CTL[5:3]
586 * 0x1D6 EX PERF_CTL[5:0]
587 * 0x1D8 EX PERF_CTL[5:0]
588 *
589 * (*) depending on the umask all FPU counters may be used
590 * (**) only one unitmask enabled at a time
591 */
592
593 static struct event_constraint amd_f15_PMC0 = EVENT_CONSTRAINT(0, 0x01, 0);
594 static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
595 static struct event_constraint amd_f15_PMC3 = EVENT_CONSTRAINT(0, 0x08, 0);
596 static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
597 static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
598 static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);
599
600 static struct event_constraint *
601 amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
602 struct perf_event *event)
603 {
604 struct hw_perf_event *hwc = &event->hw;
605 unsigned int event_code = amd_get_event_code(hwc);
606
607 switch (event_code & AMD_EVENT_TYPE_MASK) {
608 case AMD_EVENT_FP:
609 switch (event_code) {
610 case 0x000:
611 if (!(hwc->config & 0x0000F000ULL))
612 break;
613 if (!(hwc->config & 0x00000F00ULL))
614 break;
615 return &amd_f15_PMC3;
616 case 0x004:
617 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
618 break;
619 return &amd_f15_PMC3;
620 case 0x003:
621 case 0x00B:
622 case 0x00D:
623 return &amd_f15_PMC3;
624 }
625 return &amd_f15_PMC53;
626 case AMD_EVENT_LS:
627 case AMD_EVENT_DC:
628 case AMD_EVENT_EX_LS:
629 switch (event_code) {
630 case 0x023:
631 case 0x043:
632 case 0x045:
633 case 0x046:
634 case 0x054:
635 case 0x055:
636 return &amd_f15_PMC20;
637 case 0x02D:
638 return &amd_f15_PMC3;
639 case 0x02E:
640 return &amd_f15_PMC30;
641 case 0x031:
642 if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
643 return &amd_f15_PMC20;
644 return &emptyconstraint;
645 case 0x1C0:
646 return &amd_f15_PMC53;
647 default:
648 return &amd_f15_PMC50;
649 }
650 case AMD_EVENT_CU:
651 case AMD_EVENT_IC_DE:
652 case AMD_EVENT_DE:
653 switch (event_code) {
654 case 0x08F:
655 case 0x187:
656 case 0x188:
657 return &amd_f15_PMC0;
658 case 0x0DB ... 0x0DF:
659 case 0x1D6:
660 case 0x1D8:
661 return &amd_f15_PMC50;
662 default:
663 return &amd_f15_PMC20;
664 }
665 case AMD_EVENT_NB:
666 /* moved to uncore.c */
667 return &emptyconstraint;
668 default:
669 return &emptyconstraint;
670 }
671 }
672
673 static ssize_t amd_event_sysfs_show(char *page, u64 config)
674 {
675 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
676 (config & AMD64_EVENTSEL_EVENT) >> 24;
677
678 return x86_event_sysfs_show(page, config, event);
679 }
680
681 static __initconst const struct x86_pmu amd_pmu = {
682 .name = "AMD",
683 .handle_irq = x86_pmu_handle_irq,
684 .disable_all = amd_pmu_disable_all,
685 .enable_all = x86_pmu_enable_all,
686 .enable = x86_pmu_enable_event,
687 .disable = x86_pmu_disable_event,
688 .hw_config = amd_pmu_hw_config,
689 .schedule_events = x86_schedule_events,
690 .eventsel = MSR_K7_EVNTSEL0,
691 .perfctr = MSR_K7_PERFCTR0,
692 .addr_offset = amd_pmu_addr_offset,
693 .event_map = amd_pmu_event_map,
694 .max_events = ARRAY_SIZE(amd_perfmon_event_map),
695 .num_counters = AMD64_NUM_COUNTERS,
696 .cntval_bits = 48,
697 .cntval_mask = (1ULL << 48) - 1,
698 .apic = 1,
699 /* use highest bit to detect overflow */
700 .max_period = (1ULL << 47) - 1,
701 .get_event_constraints = amd_get_event_constraints,
702 .put_event_constraints = amd_put_event_constraints,
703
704 .format_attrs = amd_format_attr,
705 .events_sysfs_show = amd_event_sysfs_show,
706
707 .cpu_prepare = amd_pmu_cpu_prepare,
708 .cpu_starting = amd_pmu_cpu_starting,
709 .cpu_dead = amd_pmu_cpu_dead,
710
711 .amd_nb_constraints = 1,
712 };
713
714 static int __init amd_core_pmu_init(void)
715 {
716 if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
717 return 0;
718
719 switch (boot_cpu_data.x86) {
720 case 0x15:
721 pr_cont("Fam15h ");
722 x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
723 break;
724 case 0x17:
725 pr_cont("Fam17h ");
726 /*
727 * In family 17h, there are no event constraints in the PMC hardware.
728 * We fallback to using default amd_get_event_constraints.
729 */
730 break;
731 default:
732 pr_err("core perfctr but no constraints; unknown hardware!\n");
733 return -ENODEV;
734 }
735
736 /*
737 * If core performance counter extensions exists, we must use
738 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
739 * amd_pmu_addr_offset().
740 */
741 x86_pmu.eventsel = MSR_F15H_PERF_CTL;
742 x86_pmu.perfctr = MSR_F15H_PERF_CTR;
743 x86_pmu.num_counters = AMD64_NUM_COUNTERS_CORE;
744 /*
745 * AMD Core perfctr has separate MSRs for the NB events, see
746 * the amd/uncore.c driver.
747 */
748 x86_pmu.amd_nb_constraints = 0;
749
750 pr_cont("core perfctr, ");
751 return 0;
752 }
753
754 __init int amd_pmu_init(void)
755 {
756 int ret;
757
758 /* Performance-monitoring supported from K7 and later: */
759 if (boot_cpu_data.x86 < 6)
760 return -ENODEV;
761
762 x86_pmu = amd_pmu;
763
764 ret = amd_core_pmu_init();
765 if (ret)
766 return ret;
767
768 if (num_possible_cpus() == 1) {
769 /*
770 * No point in allocating data structures to serialize
771 * against other CPUs, when there is only the one CPU.
772 */
773 x86_pmu.amd_nb_constraints = 0;
774 }
775
776 /* Events are common for all AMDs */
777 memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
778 sizeof(hw_cache_event_ids));
779
780 return 0;
781 }
782
783 void amd_pmu_enable_virt(void)
784 {
785 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
786
787 cpuc->perf_ctr_virt_mask = 0;
788
789 /* Reload all events */
790 amd_pmu_disable_all();
791 x86_pmu_enable_all(0);
792 }
793 EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);
794
795 void amd_pmu_disable_virt(void)
796 {
797 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
798
799 /*
800 * We only mask out the Host-only bit so that host-only counting works
801 * when SVM is disabled. If someone sets up a guest-only counter when
802 * SVM is disabled the Guest-only bits still gets set and the counter
803 * will not count anything.
804 */
805 cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
806
807 /* Reload all events */
808 amd_pmu_disable_all();
809 x86_pmu_enable_all(0);
810 }
811 EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);