]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/events/core.c
net/sched: cls_flower: Reject duplicated rules also under skip_sw
[thirdparty/linux.git] / arch / x86 / events / core.c
1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
67 */
68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 u64 delta;
75
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 return 0;
78
79 /*
80 * Careful: an NMI might modify the previous event value.
81 *
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
85 */
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
93
94 /*
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
98 *
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
101 */
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
104
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
107
108 return new_raw_count;
109 }
110
111 /*
112 * Find and validate any extra registers to set up.
113 */
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
118
119 reg = &event->hw.extra_reg;
120
121 if (!x86_pmu.extra_regs)
122 return 0;
123
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
132
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
136 break;
137 }
138 return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
147 static bool reserve_pmc_hardware(void)
148 {
149 int i;
150
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 goto perfctr_fail;
154 }
155
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 goto eventsel_fail;
159 }
160
161 return true;
162
163 eventsel_fail:
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167 i = x86_pmu.num_counters;
168
169 perfctr_fail:
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173 return false;
174 }
175
176 static void release_pmc_hardware(void)
177 {
178 int i;
179
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
183 }
184 }
185
186 #else
187
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
190
191 #endif
192
193 static bool check_hw_exists(void)
194 {
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
197 int bios_fail = 0;
198 int reg_safe = -1;
199
200 /*
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
203 */
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 } else {
214 reg_safe = i;
215 }
216 }
217
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
228 }
229 }
230 }
231
232 /*
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
236 */
237
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
241 }
242
243 /*
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 */
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
255 goto msr_fail;
256
257 /*
258 * We still allow the PMU driver to operate:
259 */
260 if (bios_fail) {
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
264 }
265
266 return true;
267
268 msr_fail:
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
275 }
276
277 return false;
278 }
279
280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 x86_release_hardware();
283 atomic_dec(&active_events);
284 }
285
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 hw_perf_event_destroy(event);
289
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
294 static inline int x86_pmu_initialized(void)
295 {
296 return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
305
306 config = attr->config;
307
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325 if (val == 0)
326 return -ENOENT;
327
328 if (val == -1)
329 return -EINVAL;
330
331 hwc->config |= val;
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
334 }
335
336 int x86_reserve_hardware(void)
337 {
338 int err = 0;
339
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
347 }
348 if (!err)
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352
353 return err;
354 }
355
356 void x86_release_hardware(void)
357 {
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
362 }
363 }
364
365 /*
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
368 */
369 int x86_add_exclusive(unsigned int what)
370 {
371 int i;
372
373 /*
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
376 */
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 return 0;
379
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
385 }
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
388 }
389
390 atomic_inc(&active_events);
391 return 0;
392
393 fail_unlock:
394 mutex_unlock(&pmc_reserve_mutex);
395 return -EBUSY;
396 }
397
398 void x86_del_exclusive(unsigned int what)
399 {
400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 return;
402
403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 atomic_dec(&active_events);
405 }
406
407 int x86_setup_perfctr(struct perf_event *event)
408 {
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
411 u64 config;
412
413 if (!is_sampling_event(event)) {
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
417 }
418
419 if (attr->type == PERF_TYPE_RAW)
420 return x86_pmu_extra_regs(event->attr.config, event);
421
422 if (attr->type == PERF_TYPE_HW_CACHE)
423 return set_ext_hw_attr(hwc, event);
424
425 if (attr->config >= x86_pmu.max_events)
426 return -EINVAL;
427
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430 /*
431 * The generic map:
432 */
433 config = x86_pmu.event_map(attr->config);
434
435 if (config == 0)
436 return -ENOENT;
437
438 if (config == -1LL)
439 return -EINVAL;
440
441 /*
442 * Branch tracing:
443 */
444 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
445 !attr->freq && hwc->sample_period == 1) {
446 /* BTS is not supported by this architecture. */
447 if (!x86_pmu.bts_active)
448 return -EOPNOTSUPP;
449
450 /* BTS is currently only allowed for user-mode. */
451 if (!attr->exclude_kernel)
452 return -EOPNOTSUPP;
453
454 /* disallow bts if conflicting events are present */
455 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
456 return -EBUSY;
457
458 event->destroy = hw_perf_lbr_event_destroy;
459 }
460
461 hwc->config |= config;
462
463 return 0;
464 }
465
466 /*
467 * check that branch_sample_type is compatible with
468 * settings needed for precise_ip > 1 which implies
469 * using the LBR to capture ALL taken branches at the
470 * priv levels of the measurement
471 */
472 static inline int precise_br_compat(struct perf_event *event)
473 {
474 u64 m = event->attr.branch_sample_type;
475 u64 b = 0;
476
477 /* must capture all branches */
478 if (!(m & PERF_SAMPLE_BRANCH_ANY))
479 return 0;
480
481 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
482
483 if (!event->attr.exclude_user)
484 b |= PERF_SAMPLE_BRANCH_USER;
485
486 if (!event->attr.exclude_kernel)
487 b |= PERF_SAMPLE_BRANCH_KERNEL;
488
489 /*
490 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
491 */
492
493 return m == b;
494 }
495
496 int x86_pmu_max_precise(void)
497 {
498 int precise = 0;
499
500 /* Support for constant skid */
501 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
502 precise++;
503
504 /* Support for IP fixup */
505 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
506 precise++;
507
508 if (x86_pmu.pebs_prec_dist)
509 precise++;
510 }
511 return precise;
512 }
513
514 int x86_pmu_hw_config(struct perf_event *event)
515 {
516 if (event->attr.precise_ip) {
517 int precise = x86_pmu_max_precise();
518
519 if (event->attr.precise_ip > precise)
520 return -EOPNOTSUPP;
521
522 /* There's no sense in having PEBS for non sampling events: */
523 if (!is_sampling_event(event))
524 return -EINVAL;
525 }
526 /*
527 * check that PEBS LBR correction does not conflict with
528 * whatever the user is asking with attr->branch_sample_type
529 */
530 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
531 u64 *br_type = &event->attr.branch_sample_type;
532
533 if (has_branch_stack(event)) {
534 if (!precise_br_compat(event))
535 return -EOPNOTSUPP;
536
537 /* branch_sample_type is compatible */
538
539 } else {
540 /*
541 * user did not specify branch_sample_type
542 *
543 * For PEBS fixups, we capture all
544 * the branches at the priv level of the
545 * event.
546 */
547 *br_type = PERF_SAMPLE_BRANCH_ANY;
548
549 if (!event->attr.exclude_user)
550 *br_type |= PERF_SAMPLE_BRANCH_USER;
551
552 if (!event->attr.exclude_kernel)
553 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
554 }
555 }
556
557 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
558 event->attach_state |= PERF_ATTACH_TASK_DATA;
559
560 /*
561 * Generate PMC IRQs:
562 * (keep 'enabled' bit clear for now)
563 */
564 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
565
566 /*
567 * Count user and OS events unless requested not to
568 */
569 if (!event->attr.exclude_user)
570 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
571 if (!event->attr.exclude_kernel)
572 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
573
574 if (event->attr.type == PERF_TYPE_RAW)
575 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
576
577 if (event->attr.sample_period && x86_pmu.limit_period) {
578 if (x86_pmu.limit_period(event, event->attr.sample_period) >
579 event->attr.sample_period)
580 return -EINVAL;
581 }
582
583 return x86_setup_perfctr(event);
584 }
585
586 /*
587 * Setup the hardware configuration for a given attr_type
588 */
589 static int __x86_pmu_event_init(struct perf_event *event)
590 {
591 int err;
592
593 if (!x86_pmu_initialized())
594 return -ENODEV;
595
596 err = x86_reserve_hardware();
597 if (err)
598 return err;
599
600 atomic_inc(&active_events);
601 event->destroy = hw_perf_event_destroy;
602
603 event->hw.idx = -1;
604 event->hw.last_cpu = -1;
605 event->hw.last_tag = ~0ULL;
606
607 /* mark unused */
608 event->hw.extra_reg.idx = EXTRA_REG_NONE;
609 event->hw.branch_reg.idx = EXTRA_REG_NONE;
610
611 return x86_pmu.hw_config(event);
612 }
613
614 void x86_pmu_disable_all(void)
615 {
616 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617 int idx;
618
619 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620 u64 val;
621
622 if (!test_bit(idx, cpuc->active_mask))
623 continue;
624 rdmsrl(x86_pmu_config_addr(idx), val);
625 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626 continue;
627 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628 wrmsrl(x86_pmu_config_addr(idx), val);
629 }
630 }
631
632 /*
633 * There may be PMI landing after enabled=0. The PMI hitting could be before or
634 * after disable_all.
635 *
636 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637 * It will not be re-enabled in the NMI handler again, because enabled=0. After
638 * handling the NMI, disable_all will be called, which will not change the
639 * state either. If PMI hits after disable_all, the PMU is already disabled
640 * before entering NMI handler. The NMI handler will not change the state
641 * either.
642 *
643 * So either situation is harmless.
644 */
645 static void x86_pmu_disable(struct pmu *pmu)
646 {
647 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
648
649 if (!x86_pmu_initialized())
650 return;
651
652 if (!cpuc->enabled)
653 return;
654
655 cpuc->n_added = 0;
656 cpuc->enabled = 0;
657 barrier();
658
659 x86_pmu.disable_all();
660 }
661
662 void x86_pmu_enable_all(int added)
663 {
664 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665 int idx;
666
667 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
669
670 if (!test_bit(idx, cpuc->active_mask))
671 continue;
672
673 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
674 }
675 }
676
677 static struct pmu pmu;
678
679 static inline int is_x86_event(struct perf_event *event)
680 {
681 return event->pmu == &pmu;
682 }
683
684 /*
685 * Event scheduler state:
686 *
687 * Assign events iterating over all events and counters, beginning
688 * with events with least weights first. Keep the current iterator
689 * state in struct sched_state.
690 */
691 struct sched_state {
692 int weight;
693 int event; /* event index */
694 int counter; /* counter index */
695 int unassigned; /* number of events to be assigned left */
696 int nr_gp; /* number of GP counters used */
697 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
698 };
699
700 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
701 #define SCHED_STATES_MAX 2
702
703 struct perf_sched {
704 int max_weight;
705 int max_events;
706 int max_gp;
707 int saved_states;
708 struct event_constraint **constraints;
709 struct sched_state state;
710 struct sched_state saved[SCHED_STATES_MAX];
711 };
712
713 /*
714 * Initialize interator that runs through all events and counters.
715 */
716 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
717 int num, int wmin, int wmax, int gpmax)
718 {
719 int idx;
720
721 memset(sched, 0, sizeof(*sched));
722 sched->max_events = num;
723 sched->max_weight = wmax;
724 sched->max_gp = gpmax;
725 sched->constraints = constraints;
726
727 for (idx = 0; idx < num; idx++) {
728 if (constraints[idx]->weight == wmin)
729 break;
730 }
731
732 sched->state.event = idx; /* start with min weight */
733 sched->state.weight = wmin;
734 sched->state.unassigned = num;
735 }
736
737 static void perf_sched_save_state(struct perf_sched *sched)
738 {
739 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
740 return;
741
742 sched->saved[sched->saved_states] = sched->state;
743 sched->saved_states++;
744 }
745
746 static bool perf_sched_restore_state(struct perf_sched *sched)
747 {
748 if (!sched->saved_states)
749 return false;
750
751 sched->saved_states--;
752 sched->state = sched->saved[sched->saved_states];
753
754 /* continue with next counter: */
755 clear_bit(sched->state.counter++, sched->state.used);
756
757 return true;
758 }
759
760 /*
761 * Select a counter for the current event to schedule. Return true on
762 * success.
763 */
764 static bool __perf_sched_find_counter(struct perf_sched *sched)
765 {
766 struct event_constraint *c;
767 int idx;
768
769 if (!sched->state.unassigned)
770 return false;
771
772 if (sched->state.event >= sched->max_events)
773 return false;
774
775 c = sched->constraints[sched->state.event];
776 /* Prefer fixed purpose counters */
777 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
778 idx = INTEL_PMC_IDX_FIXED;
779 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
780 if (!__test_and_set_bit(idx, sched->state.used))
781 goto done;
782 }
783 }
784
785 /* Grab the first unused counter starting with idx */
786 idx = sched->state.counter;
787 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
788 if (!__test_and_set_bit(idx, sched->state.used)) {
789 if (sched->state.nr_gp++ >= sched->max_gp)
790 return false;
791
792 goto done;
793 }
794 }
795
796 return false;
797
798 done:
799 sched->state.counter = idx;
800
801 if (c->overlap)
802 perf_sched_save_state(sched);
803
804 return true;
805 }
806
807 static bool perf_sched_find_counter(struct perf_sched *sched)
808 {
809 while (!__perf_sched_find_counter(sched)) {
810 if (!perf_sched_restore_state(sched))
811 return false;
812 }
813
814 return true;
815 }
816
817 /*
818 * Go through all unassigned events and find the next one to schedule.
819 * Take events with the least weight first. Return true on success.
820 */
821 static bool perf_sched_next_event(struct perf_sched *sched)
822 {
823 struct event_constraint *c;
824
825 if (!sched->state.unassigned || !--sched->state.unassigned)
826 return false;
827
828 do {
829 /* next event */
830 sched->state.event++;
831 if (sched->state.event >= sched->max_events) {
832 /* next weight */
833 sched->state.event = 0;
834 sched->state.weight++;
835 if (sched->state.weight > sched->max_weight)
836 return false;
837 }
838 c = sched->constraints[sched->state.event];
839 } while (c->weight != sched->state.weight);
840
841 sched->state.counter = 0; /* start with first counter */
842
843 return true;
844 }
845
846 /*
847 * Assign a counter for each event.
848 */
849 int perf_assign_events(struct event_constraint **constraints, int n,
850 int wmin, int wmax, int gpmax, int *assign)
851 {
852 struct perf_sched sched;
853
854 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
855
856 do {
857 if (!perf_sched_find_counter(&sched))
858 break; /* failed */
859 if (assign)
860 assign[sched.state.event] = sched.state.counter;
861 } while (perf_sched_next_event(&sched));
862
863 return sched.state.unassigned;
864 }
865 EXPORT_SYMBOL_GPL(perf_assign_events);
866
867 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
868 {
869 struct event_constraint *c;
870 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
871 struct perf_event *e;
872 int i, wmin, wmax, unsched = 0;
873 struct hw_perf_event *hwc;
874
875 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
876
877 if (x86_pmu.start_scheduling)
878 x86_pmu.start_scheduling(cpuc);
879
880 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
881 cpuc->event_constraint[i] = NULL;
882 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
883 cpuc->event_constraint[i] = c;
884
885 wmin = min(wmin, c->weight);
886 wmax = max(wmax, c->weight);
887 }
888
889 /*
890 * fastpath, try to reuse previous register
891 */
892 for (i = 0; i < n; i++) {
893 hwc = &cpuc->event_list[i]->hw;
894 c = cpuc->event_constraint[i];
895
896 /* never assigned */
897 if (hwc->idx == -1)
898 break;
899
900 /* constraint still honored */
901 if (!test_bit(hwc->idx, c->idxmsk))
902 break;
903
904 /* not already used */
905 if (test_bit(hwc->idx, used_mask))
906 break;
907
908 __set_bit(hwc->idx, used_mask);
909 if (assign)
910 assign[i] = hwc->idx;
911 }
912
913 /* slow path */
914 if (i != n) {
915 int gpmax = x86_pmu.num_counters;
916
917 /*
918 * Do not allow scheduling of more than half the available
919 * generic counters.
920 *
921 * This helps avoid counter starvation of sibling thread by
922 * ensuring at most half the counters cannot be in exclusive
923 * mode. There is no designated counters for the limits. Any
924 * N/2 counters can be used. This helps with events with
925 * specific counter constraints.
926 */
927 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
928 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
929 gpmax /= 2;
930
931 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
932 wmax, gpmax, assign);
933 }
934
935 /*
936 * In case of success (unsched = 0), mark events as committed,
937 * so we do not put_constraint() in case new events are added
938 * and fail to be scheduled
939 *
940 * We invoke the lower level commit callback to lock the resource
941 *
942 * We do not need to do all of this in case we are called to
943 * validate an event group (assign == NULL)
944 */
945 if (!unsched && assign) {
946 for (i = 0; i < n; i++) {
947 e = cpuc->event_list[i];
948 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
949 if (x86_pmu.commit_scheduling)
950 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
951 }
952 } else {
953 for (i = 0; i < n; i++) {
954 e = cpuc->event_list[i];
955 /*
956 * do not put_constraint() on comitted events,
957 * because they are good to go
958 */
959 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
960 continue;
961
962 /*
963 * release events that failed scheduling
964 */
965 if (x86_pmu.put_event_constraints)
966 x86_pmu.put_event_constraints(cpuc, e);
967 }
968 }
969
970 if (x86_pmu.stop_scheduling)
971 x86_pmu.stop_scheduling(cpuc);
972
973 return unsched ? -EINVAL : 0;
974 }
975
976 /*
977 * dogrp: true if must collect siblings events (group)
978 * returns total number of events and error code
979 */
980 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
981 {
982 struct perf_event *event;
983 int n, max_count;
984
985 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
986
987 /* current number of events already accepted */
988 n = cpuc->n_events;
989
990 if (is_x86_event(leader)) {
991 if (n >= max_count)
992 return -EINVAL;
993 cpuc->event_list[n] = leader;
994 n++;
995 }
996 if (!dogrp)
997 return n;
998
999 for_each_sibling_event(event, leader) {
1000 if (!is_x86_event(event) ||
1001 event->state <= PERF_EVENT_STATE_OFF)
1002 continue;
1003
1004 if (n >= max_count)
1005 return -EINVAL;
1006
1007 cpuc->event_list[n] = event;
1008 n++;
1009 }
1010 return n;
1011 }
1012
1013 static inline void x86_assign_hw_event(struct perf_event *event,
1014 struct cpu_hw_events *cpuc, int i)
1015 {
1016 struct hw_perf_event *hwc = &event->hw;
1017
1018 hwc->idx = cpuc->assign[i];
1019 hwc->last_cpu = smp_processor_id();
1020 hwc->last_tag = ++cpuc->tags[i];
1021
1022 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1023 hwc->config_base = 0;
1024 hwc->event_base = 0;
1025 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1026 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1027 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1028 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1029 } else {
1030 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1031 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1032 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1033 }
1034 }
1035
1036 /**
1037 * x86_perf_rdpmc_index - Return PMC counter used for event
1038 * @event: the perf_event to which the PMC counter was assigned
1039 *
1040 * The counter assigned to this performance event may change if interrupts
1041 * are enabled. This counter should thus never be used while interrupts are
1042 * enabled. Before this function is used to obtain the assigned counter the
1043 * event should be checked for validity using, for example,
1044 * perf_event_read_local(), within the same interrupt disabled section in
1045 * which this counter is planned to be used.
1046 *
1047 * Return: The index of the performance monitoring counter assigned to
1048 * @perf_event.
1049 */
1050 int x86_perf_rdpmc_index(struct perf_event *event)
1051 {
1052 lockdep_assert_irqs_disabled();
1053
1054 return event->hw.event_base_rdpmc;
1055 }
1056
1057 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1058 struct cpu_hw_events *cpuc,
1059 int i)
1060 {
1061 return hwc->idx == cpuc->assign[i] &&
1062 hwc->last_cpu == smp_processor_id() &&
1063 hwc->last_tag == cpuc->tags[i];
1064 }
1065
1066 static void x86_pmu_start(struct perf_event *event, int flags);
1067
1068 static void x86_pmu_enable(struct pmu *pmu)
1069 {
1070 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1071 struct perf_event *event;
1072 struct hw_perf_event *hwc;
1073 int i, added = cpuc->n_added;
1074
1075 if (!x86_pmu_initialized())
1076 return;
1077
1078 if (cpuc->enabled)
1079 return;
1080
1081 if (cpuc->n_added) {
1082 int n_running = cpuc->n_events - cpuc->n_added;
1083 /*
1084 * apply assignment obtained either from
1085 * hw_perf_group_sched_in() or x86_pmu_enable()
1086 *
1087 * step1: save events moving to new counters
1088 */
1089 for (i = 0; i < n_running; i++) {
1090 event = cpuc->event_list[i];
1091 hwc = &event->hw;
1092
1093 /*
1094 * we can avoid reprogramming counter if:
1095 * - assigned same counter as last time
1096 * - running on same CPU as last time
1097 * - no other event has used the counter since
1098 */
1099 if (hwc->idx == -1 ||
1100 match_prev_assignment(hwc, cpuc, i))
1101 continue;
1102
1103 /*
1104 * Ensure we don't accidentally enable a stopped
1105 * counter simply because we rescheduled.
1106 */
1107 if (hwc->state & PERF_HES_STOPPED)
1108 hwc->state |= PERF_HES_ARCH;
1109
1110 x86_pmu_stop(event, PERF_EF_UPDATE);
1111 }
1112
1113 /*
1114 * step2: reprogram moved events into new counters
1115 */
1116 for (i = 0; i < cpuc->n_events; i++) {
1117 event = cpuc->event_list[i];
1118 hwc = &event->hw;
1119
1120 if (!match_prev_assignment(hwc, cpuc, i))
1121 x86_assign_hw_event(event, cpuc, i);
1122 else if (i < n_running)
1123 continue;
1124
1125 if (hwc->state & PERF_HES_ARCH)
1126 continue;
1127
1128 x86_pmu_start(event, PERF_EF_RELOAD);
1129 }
1130 cpuc->n_added = 0;
1131 perf_events_lapic_init();
1132 }
1133
1134 cpuc->enabled = 1;
1135 barrier();
1136
1137 x86_pmu.enable_all(added);
1138 }
1139
1140 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1141
1142 /*
1143 * Set the next IRQ period, based on the hwc->period_left value.
1144 * To be called with the event disabled in hw:
1145 */
1146 int x86_perf_event_set_period(struct perf_event *event)
1147 {
1148 struct hw_perf_event *hwc = &event->hw;
1149 s64 left = local64_read(&hwc->period_left);
1150 s64 period = hwc->sample_period;
1151 int ret = 0, idx = hwc->idx;
1152
1153 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1154 return 0;
1155
1156 /*
1157 * If we are way outside a reasonable range then just skip forward:
1158 */
1159 if (unlikely(left <= -period)) {
1160 left = period;
1161 local64_set(&hwc->period_left, left);
1162 hwc->last_period = period;
1163 ret = 1;
1164 }
1165
1166 if (unlikely(left <= 0)) {
1167 left += period;
1168 local64_set(&hwc->period_left, left);
1169 hwc->last_period = period;
1170 ret = 1;
1171 }
1172 /*
1173 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1174 */
1175 if (unlikely(left < 2))
1176 left = 2;
1177
1178 if (left > x86_pmu.max_period)
1179 left = x86_pmu.max_period;
1180
1181 if (x86_pmu.limit_period)
1182 left = x86_pmu.limit_period(event, left);
1183
1184 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1185
1186 /*
1187 * The hw event starts counting from this event offset,
1188 * mark it to be able to extra future deltas:
1189 */
1190 local64_set(&hwc->prev_count, (u64)-left);
1191
1192 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1193
1194 /*
1195 * Due to erratum on certan cpu we need
1196 * a second write to be sure the register
1197 * is updated properly
1198 */
1199 if (x86_pmu.perfctr_second_write) {
1200 wrmsrl(hwc->event_base,
1201 (u64)(-left) & x86_pmu.cntval_mask);
1202 }
1203
1204 perf_event_update_userpage(event);
1205
1206 return ret;
1207 }
1208
1209 void x86_pmu_enable_event(struct perf_event *event)
1210 {
1211 if (__this_cpu_read(cpu_hw_events.enabled))
1212 __x86_pmu_enable_event(&event->hw,
1213 ARCH_PERFMON_EVENTSEL_ENABLE);
1214 }
1215
1216 /*
1217 * Add a single event to the PMU.
1218 *
1219 * The event is added to the group of enabled events
1220 * but only if it can be scehduled with existing events.
1221 */
1222 static int x86_pmu_add(struct perf_event *event, int flags)
1223 {
1224 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1225 struct hw_perf_event *hwc;
1226 int assign[X86_PMC_IDX_MAX];
1227 int n, n0, ret;
1228
1229 hwc = &event->hw;
1230
1231 n0 = cpuc->n_events;
1232 ret = n = collect_events(cpuc, event, false);
1233 if (ret < 0)
1234 goto out;
1235
1236 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1237 if (!(flags & PERF_EF_START))
1238 hwc->state |= PERF_HES_ARCH;
1239
1240 /*
1241 * If group events scheduling transaction was started,
1242 * skip the schedulability test here, it will be performed
1243 * at commit time (->commit_txn) as a whole.
1244 *
1245 * If commit fails, we'll call ->del() on all events
1246 * for which ->add() was called.
1247 */
1248 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1249 goto done_collect;
1250
1251 ret = x86_pmu.schedule_events(cpuc, n, assign);
1252 if (ret)
1253 goto out;
1254 /*
1255 * copy new assignment, now we know it is possible
1256 * will be used by hw_perf_enable()
1257 */
1258 memcpy(cpuc->assign, assign, n*sizeof(int));
1259
1260 done_collect:
1261 /*
1262 * Commit the collect_events() state. See x86_pmu_del() and
1263 * x86_pmu_*_txn().
1264 */
1265 cpuc->n_events = n;
1266 cpuc->n_added += n - n0;
1267 cpuc->n_txn += n - n0;
1268
1269 if (x86_pmu.add) {
1270 /*
1271 * This is before x86_pmu_enable() will call x86_pmu_start(),
1272 * so we enable LBRs before an event needs them etc..
1273 */
1274 x86_pmu.add(event);
1275 }
1276
1277 ret = 0;
1278 out:
1279 return ret;
1280 }
1281
1282 static void x86_pmu_start(struct perf_event *event, int flags)
1283 {
1284 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1285 int idx = event->hw.idx;
1286
1287 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1288 return;
1289
1290 if (WARN_ON_ONCE(idx == -1))
1291 return;
1292
1293 if (flags & PERF_EF_RELOAD) {
1294 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1295 x86_perf_event_set_period(event);
1296 }
1297
1298 event->hw.state = 0;
1299
1300 cpuc->events[idx] = event;
1301 __set_bit(idx, cpuc->active_mask);
1302 __set_bit(idx, cpuc->running);
1303 x86_pmu.enable(event);
1304 perf_event_update_userpage(event);
1305 }
1306
1307 void perf_event_print_debug(void)
1308 {
1309 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1310 u64 pebs, debugctl;
1311 struct cpu_hw_events *cpuc;
1312 unsigned long flags;
1313 int cpu, idx;
1314
1315 if (!x86_pmu.num_counters)
1316 return;
1317
1318 local_irq_save(flags);
1319
1320 cpu = smp_processor_id();
1321 cpuc = &per_cpu(cpu_hw_events, cpu);
1322
1323 if (x86_pmu.version >= 2) {
1324 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1325 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1326 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1327 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1328
1329 pr_info("\n");
1330 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1331 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1332 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1333 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1334 if (x86_pmu.pebs_constraints) {
1335 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1336 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1337 }
1338 if (x86_pmu.lbr_nr) {
1339 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1340 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1341 }
1342 }
1343 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1344
1345 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1346 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1347 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1348
1349 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1350
1351 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1352 cpu, idx, pmc_ctrl);
1353 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1354 cpu, idx, pmc_count);
1355 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1356 cpu, idx, prev_left);
1357 }
1358 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1359 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1360
1361 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1362 cpu, idx, pmc_count);
1363 }
1364 local_irq_restore(flags);
1365 }
1366
1367 void x86_pmu_stop(struct perf_event *event, int flags)
1368 {
1369 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1370 struct hw_perf_event *hwc = &event->hw;
1371
1372 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1373 x86_pmu.disable(event);
1374 cpuc->events[hwc->idx] = NULL;
1375 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1376 hwc->state |= PERF_HES_STOPPED;
1377 }
1378
1379 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1380 /*
1381 * Drain the remaining delta count out of a event
1382 * that we are disabling:
1383 */
1384 x86_perf_event_update(event);
1385 hwc->state |= PERF_HES_UPTODATE;
1386 }
1387 }
1388
1389 static void x86_pmu_del(struct perf_event *event, int flags)
1390 {
1391 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1392 int i;
1393
1394 /*
1395 * event is descheduled
1396 */
1397 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1398
1399 /*
1400 * If we're called during a txn, we only need to undo x86_pmu.add.
1401 * The events never got scheduled and ->cancel_txn will truncate
1402 * the event_list.
1403 *
1404 * XXX assumes any ->del() called during a TXN will only be on
1405 * an event added during that same TXN.
1406 */
1407 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1408 goto do_del;
1409
1410 /*
1411 * Not a TXN, therefore cleanup properly.
1412 */
1413 x86_pmu_stop(event, PERF_EF_UPDATE);
1414
1415 for (i = 0; i < cpuc->n_events; i++) {
1416 if (event == cpuc->event_list[i])
1417 break;
1418 }
1419
1420 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1421 return;
1422
1423 /* If we have a newly added event; make sure to decrease n_added. */
1424 if (i >= cpuc->n_events - cpuc->n_added)
1425 --cpuc->n_added;
1426
1427 if (x86_pmu.put_event_constraints)
1428 x86_pmu.put_event_constraints(cpuc, event);
1429
1430 /* Delete the array entry. */
1431 while (++i < cpuc->n_events) {
1432 cpuc->event_list[i-1] = cpuc->event_list[i];
1433 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1434 }
1435 --cpuc->n_events;
1436
1437 perf_event_update_userpage(event);
1438
1439 do_del:
1440 if (x86_pmu.del) {
1441 /*
1442 * This is after x86_pmu_stop(); so we disable LBRs after any
1443 * event can need them etc..
1444 */
1445 x86_pmu.del(event);
1446 }
1447 }
1448
1449 int x86_pmu_handle_irq(struct pt_regs *regs)
1450 {
1451 struct perf_sample_data data;
1452 struct cpu_hw_events *cpuc;
1453 struct perf_event *event;
1454 int idx, handled = 0;
1455 u64 val;
1456
1457 cpuc = this_cpu_ptr(&cpu_hw_events);
1458
1459 /*
1460 * Some chipsets need to unmask the LVTPC in a particular spot
1461 * inside the nmi handler. As a result, the unmasking was pushed
1462 * into all the nmi handlers.
1463 *
1464 * This generic handler doesn't seem to have any issues where the
1465 * unmasking occurs so it was left at the top.
1466 */
1467 apic_write(APIC_LVTPC, APIC_DM_NMI);
1468
1469 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1470 if (!test_bit(idx, cpuc->active_mask)) {
1471 /*
1472 * Though we deactivated the counter some cpus
1473 * might still deliver spurious interrupts still
1474 * in flight. Catch them:
1475 */
1476 if (__test_and_clear_bit(idx, cpuc->running))
1477 handled++;
1478 continue;
1479 }
1480
1481 event = cpuc->events[idx];
1482
1483 val = x86_perf_event_update(event);
1484 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1485 continue;
1486
1487 /*
1488 * event overflow
1489 */
1490 handled++;
1491 perf_sample_data_init(&data, 0, event->hw.last_period);
1492
1493 if (!x86_perf_event_set_period(event))
1494 continue;
1495
1496 if (perf_event_overflow(event, &data, regs))
1497 x86_pmu_stop(event, 0);
1498 }
1499
1500 if (handled)
1501 inc_irq_stat(apic_perf_irqs);
1502
1503 return handled;
1504 }
1505
1506 void perf_events_lapic_init(void)
1507 {
1508 if (!x86_pmu.apic || !x86_pmu_initialized())
1509 return;
1510
1511 /*
1512 * Always use NMI for PMU
1513 */
1514 apic_write(APIC_LVTPC, APIC_DM_NMI);
1515 }
1516
1517 static int
1518 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1519 {
1520 u64 start_clock;
1521 u64 finish_clock;
1522 int ret;
1523
1524 /*
1525 * All PMUs/events that share this PMI handler should make sure to
1526 * increment active_events for their events.
1527 */
1528 if (!atomic_read(&active_events))
1529 return NMI_DONE;
1530
1531 start_clock = sched_clock();
1532 ret = x86_pmu.handle_irq(regs);
1533 finish_clock = sched_clock();
1534
1535 perf_sample_event_took(finish_clock - start_clock);
1536
1537 return ret;
1538 }
1539 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1540
1541 struct event_constraint emptyconstraint;
1542 struct event_constraint unconstrained;
1543
1544 static int x86_pmu_prepare_cpu(unsigned int cpu)
1545 {
1546 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1547 int i;
1548
1549 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1550 cpuc->kfree_on_online[i] = NULL;
1551 if (x86_pmu.cpu_prepare)
1552 return x86_pmu.cpu_prepare(cpu);
1553 return 0;
1554 }
1555
1556 static int x86_pmu_dead_cpu(unsigned int cpu)
1557 {
1558 if (x86_pmu.cpu_dead)
1559 x86_pmu.cpu_dead(cpu);
1560 return 0;
1561 }
1562
1563 static int x86_pmu_online_cpu(unsigned int cpu)
1564 {
1565 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1566 int i;
1567
1568 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1569 kfree(cpuc->kfree_on_online[i]);
1570 cpuc->kfree_on_online[i] = NULL;
1571 }
1572 return 0;
1573 }
1574
1575 static int x86_pmu_starting_cpu(unsigned int cpu)
1576 {
1577 if (x86_pmu.cpu_starting)
1578 x86_pmu.cpu_starting(cpu);
1579 return 0;
1580 }
1581
1582 static int x86_pmu_dying_cpu(unsigned int cpu)
1583 {
1584 if (x86_pmu.cpu_dying)
1585 x86_pmu.cpu_dying(cpu);
1586 return 0;
1587 }
1588
1589 static void __init pmu_check_apic(void)
1590 {
1591 if (boot_cpu_has(X86_FEATURE_APIC))
1592 return;
1593
1594 x86_pmu.apic = 0;
1595 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1596 pr_info("no hardware sampling interrupt available.\n");
1597
1598 /*
1599 * If we have a PMU initialized but no APIC
1600 * interrupts, we cannot sample hardware
1601 * events (user-space has to fall back and
1602 * sample via a hrtimer based software event):
1603 */
1604 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1605
1606 }
1607
1608 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1609 .name = "format",
1610 .attrs = NULL,
1611 };
1612
1613 /*
1614 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1615 * out of events_attr attributes.
1616 */
1617 static void __init filter_events(struct attribute **attrs)
1618 {
1619 struct device_attribute *d;
1620 struct perf_pmu_events_attr *pmu_attr;
1621 int offset = 0;
1622 int i, j;
1623
1624 for (i = 0; attrs[i]; i++) {
1625 d = (struct device_attribute *)attrs[i];
1626 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1627 /* str trumps id */
1628 if (pmu_attr->event_str)
1629 continue;
1630 if (x86_pmu.event_map(i + offset))
1631 continue;
1632
1633 for (j = i; attrs[j]; j++)
1634 attrs[j] = attrs[j + 1];
1635
1636 /* Check the shifted attr. */
1637 i--;
1638
1639 /*
1640 * event_map() is index based, the attrs array is organized
1641 * by increasing event index. If we shift the events, then
1642 * we need to compensate for the event_map(), otherwise
1643 * we are looking up the wrong event in the map
1644 */
1645 offset++;
1646 }
1647 }
1648
1649 /* Merge two pointer arrays */
1650 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1651 {
1652 struct attribute **new;
1653 int j, i;
1654
1655 for (j = 0; a && a[j]; j++)
1656 ;
1657 for (i = 0; b && b[i]; i++)
1658 j++;
1659 j++;
1660
1661 new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1662 if (!new)
1663 return NULL;
1664
1665 j = 0;
1666 for (i = 0; a && a[i]; i++)
1667 new[j++] = a[i];
1668 for (i = 0; b && b[i]; i++)
1669 new[j++] = b[i];
1670 new[j] = NULL;
1671
1672 return new;
1673 }
1674
1675 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1676 {
1677 struct perf_pmu_events_attr *pmu_attr = \
1678 container_of(attr, struct perf_pmu_events_attr, attr);
1679 u64 config = x86_pmu.event_map(pmu_attr->id);
1680
1681 /* string trumps id */
1682 if (pmu_attr->event_str)
1683 return sprintf(page, "%s", pmu_attr->event_str);
1684
1685 return x86_pmu.events_sysfs_show(page, config);
1686 }
1687 EXPORT_SYMBOL_GPL(events_sysfs_show);
1688
1689 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1690 char *page)
1691 {
1692 struct perf_pmu_events_ht_attr *pmu_attr =
1693 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1694
1695 /*
1696 * Report conditional events depending on Hyper-Threading.
1697 *
1698 * This is overly conservative as usually the HT special
1699 * handling is not needed if the other CPU thread is idle.
1700 *
1701 * Note this does not (and cannot) handle the case when thread
1702 * siblings are invisible, for example with virtualization
1703 * if they are owned by some other guest. The user tool
1704 * has to re-read when a thread sibling gets onlined later.
1705 */
1706 return sprintf(page, "%s",
1707 topology_max_smt_threads() > 1 ?
1708 pmu_attr->event_str_ht :
1709 pmu_attr->event_str_noht);
1710 }
1711
1712 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1713 EVENT_ATTR(instructions, INSTRUCTIONS );
1714 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1715 EVENT_ATTR(cache-misses, CACHE_MISSES );
1716 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1717 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1718 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1719 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1720 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1721 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1722
1723 static struct attribute *empty_attrs;
1724
1725 static struct attribute *events_attr[] = {
1726 EVENT_PTR(CPU_CYCLES),
1727 EVENT_PTR(INSTRUCTIONS),
1728 EVENT_PTR(CACHE_REFERENCES),
1729 EVENT_PTR(CACHE_MISSES),
1730 EVENT_PTR(BRANCH_INSTRUCTIONS),
1731 EVENT_PTR(BRANCH_MISSES),
1732 EVENT_PTR(BUS_CYCLES),
1733 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1734 EVENT_PTR(STALLED_CYCLES_BACKEND),
1735 EVENT_PTR(REF_CPU_CYCLES),
1736 NULL,
1737 };
1738
1739 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1740 .name = "events",
1741 .attrs = events_attr,
1742 };
1743
1744 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1745 {
1746 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1747 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1748 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1749 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1750 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1751 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1752 ssize_t ret;
1753
1754 /*
1755 * We have whole page size to spend and just little data
1756 * to write, so we can safely use sprintf.
1757 */
1758 ret = sprintf(page, "event=0x%02llx", event);
1759
1760 if (umask)
1761 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1762
1763 if (edge)
1764 ret += sprintf(page + ret, ",edge");
1765
1766 if (pc)
1767 ret += sprintf(page + ret, ",pc");
1768
1769 if (any)
1770 ret += sprintf(page + ret, ",any");
1771
1772 if (inv)
1773 ret += sprintf(page + ret, ",inv");
1774
1775 if (cmask)
1776 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1777
1778 ret += sprintf(page + ret, "\n");
1779
1780 return ret;
1781 }
1782
1783 static struct attribute_group x86_pmu_attr_group;
1784 static struct attribute_group x86_pmu_caps_group;
1785
1786 static int __init init_hw_perf_events(void)
1787 {
1788 struct x86_pmu_quirk *quirk;
1789 int err;
1790
1791 pr_info("Performance Events: ");
1792
1793 switch (boot_cpu_data.x86_vendor) {
1794 case X86_VENDOR_INTEL:
1795 err = intel_pmu_init();
1796 break;
1797 case X86_VENDOR_AMD:
1798 err = amd_pmu_init();
1799 break;
1800 case X86_VENDOR_HYGON:
1801 err = amd_pmu_init();
1802 x86_pmu.name = "HYGON";
1803 break;
1804 default:
1805 err = -ENOTSUPP;
1806 }
1807 if (err != 0) {
1808 pr_cont("no PMU driver, software events only.\n");
1809 return 0;
1810 }
1811
1812 pmu_check_apic();
1813
1814 /* sanity check that the hardware exists or is emulated */
1815 if (!check_hw_exists())
1816 return 0;
1817
1818 pr_cont("%s PMU driver.\n", x86_pmu.name);
1819
1820 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1821
1822 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1823 quirk->func();
1824
1825 if (!x86_pmu.intel_ctrl)
1826 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1827
1828 perf_events_lapic_init();
1829 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1830
1831 unconstrained = (struct event_constraint)
1832 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1833 0, x86_pmu.num_counters, 0, 0);
1834
1835 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1836
1837 if (x86_pmu.caps_attrs) {
1838 struct attribute **tmp;
1839
1840 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1841 if (!WARN_ON(!tmp))
1842 x86_pmu_caps_group.attrs = tmp;
1843 }
1844
1845 if (x86_pmu.event_attrs)
1846 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1847
1848 if (!x86_pmu.events_sysfs_show)
1849 x86_pmu_events_group.attrs = &empty_attrs;
1850 else
1851 filter_events(x86_pmu_events_group.attrs);
1852
1853 if (x86_pmu.cpu_events) {
1854 struct attribute **tmp;
1855
1856 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1857 if (!WARN_ON(!tmp))
1858 x86_pmu_events_group.attrs = tmp;
1859 }
1860
1861 if (x86_pmu.attrs) {
1862 struct attribute **tmp;
1863
1864 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1865 if (!WARN_ON(!tmp))
1866 x86_pmu_attr_group.attrs = tmp;
1867 }
1868
1869 pr_info("... version: %d\n", x86_pmu.version);
1870 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1871 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1872 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1873 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1874 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1875 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1876
1877 /*
1878 * Install callbacks. Core will call them for each online
1879 * cpu.
1880 */
1881 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1882 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1883 if (err)
1884 return err;
1885
1886 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1887 "perf/x86:starting", x86_pmu_starting_cpu,
1888 x86_pmu_dying_cpu);
1889 if (err)
1890 goto out;
1891
1892 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1893 x86_pmu_online_cpu, NULL);
1894 if (err)
1895 goto out1;
1896
1897 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1898 if (err)
1899 goto out2;
1900
1901 return 0;
1902
1903 out2:
1904 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1905 out1:
1906 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1907 out:
1908 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1909 return err;
1910 }
1911 early_initcall(init_hw_perf_events);
1912
1913 static inline void x86_pmu_read(struct perf_event *event)
1914 {
1915 if (x86_pmu.read)
1916 return x86_pmu.read(event);
1917 x86_perf_event_update(event);
1918 }
1919
1920 /*
1921 * Start group events scheduling transaction
1922 * Set the flag to make pmu::enable() not perform the
1923 * schedulability test, it will be performed at commit time
1924 *
1925 * We only support PERF_PMU_TXN_ADD transactions. Save the
1926 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1927 * transactions.
1928 */
1929 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1930 {
1931 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1932
1933 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1934
1935 cpuc->txn_flags = txn_flags;
1936 if (txn_flags & ~PERF_PMU_TXN_ADD)
1937 return;
1938
1939 perf_pmu_disable(pmu);
1940 __this_cpu_write(cpu_hw_events.n_txn, 0);
1941 }
1942
1943 /*
1944 * Stop group events scheduling transaction
1945 * Clear the flag and pmu::enable() will perform the
1946 * schedulability test.
1947 */
1948 static void x86_pmu_cancel_txn(struct pmu *pmu)
1949 {
1950 unsigned int txn_flags;
1951 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1952
1953 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1954
1955 txn_flags = cpuc->txn_flags;
1956 cpuc->txn_flags = 0;
1957 if (txn_flags & ~PERF_PMU_TXN_ADD)
1958 return;
1959
1960 /*
1961 * Truncate collected array by the number of events added in this
1962 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1963 */
1964 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1965 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1966 perf_pmu_enable(pmu);
1967 }
1968
1969 /*
1970 * Commit group events scheduling transaction
1971 * Perform the group schedulability test as a whole
1972 * Return 0 if success
1973 *
1974 * Does not cancel the transaction on failure; expects the caller to do this.
1975 */
1976 static int x86_pmu_commit_txn(struct pmu *pmu)
1977 {
1978 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1979 int assign[X86_PMC_IDX_MAX];
1980 int n, ret;
1981
1982 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1983
1984 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1985 cpuc->txn_flags = 0;
1986 return 0;
1987 }
1988
1989 n = cpuc->n_events;
1990
1991 if (!x86_pmu_initialized())
1992 return -EAGAIN;
1993
1994 ret = x86_pmu.schedule_events(cpuc, n, assign);
1995 if (ret)
1996 return ret;
1997
1998 /*
1999 * copy new assignment, now we know it is possible
2000 * will be used by hw_perf_enable()
2001 */
2002 memcpy(cpuc->assign, assign, n*sizeof(int));
2003
2004 cpuc->txn_flags = 0;
2005 perf_pmu_enable(pmu);
2006 return 0;
2007 }
2008 /*
2009 * a fake_cpuc is used to validate event groups. Due to
2010 * the extra reg logic, we need to also allocate a fake
2011 * per_core and per_cpu structure. Otherwise, group events
2012 * using extra reg may conflict without the kernel being
2013 * able to catch this when the last event gets added to
2014 * the group.
2015 */
2016 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2017 {
2018 kfree(cpuc->shared_regs);
2019 kfree(cpuc);
2020 }
2021
2022 static struct cpu_hw_events *allocate_fake_cpuc(void)
2023 {
2024 struct cpu_hw_events *cpuc;
2025 int cpu = raw_smp_processor_id();
2026
2027 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2028 if (!cpuc)
2029 return ERR_PTR(-ENOMEM);
2030
2031 /* only needed, if we have extra_regs */
2032 if (x86_pmu.extra_regs) {
2033 cpuc->shared_regs = allocate_shared_regs(cpu);
2034 if (!cpuc->shared_regs)
2035 goto error;
2036 }
2037 cpuc->is_fake = 1;
2038 return cpuc;
2039 error:
2040 free_fake_cpuc(cpuc);
2041 return ERR_PTR(-ENOMEM);
2042 }
2043
2044 /*
2045 * validate that we can schedule this event
2046 */
2047 static int validate_event(struct perf_event *event)
2048 {
2049 struct cpu_hw_events *fake_cpuc;
2050 struct event_constraint *c;
2051 int ret = 0;
2052
2053 fake_cpuc = allocate_fake_cpuc();
2054 if (IS_ERR(fake_cpuc))
2055 return PTR_ERR(fake_cpuc);
2056
2057 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2058
2059 if (!c || !c->weight)
2060 ret = -EINVAL;
2061
2062 if (x86_pmu.put_event_constraints)
2063 x86_pmu.put_event_constraints(fake_cpuc, event);
2064
2065 free_fake_cpuc(fake_cpuc);
2066
2067 return ret;
2068 }
2069
2070 /*
2071 * validate a single event group
2072 *
2073 * validation include:
2074 * - check events are compatible which each other
2075 * - events do not compete for the same counter
2076 * - number of events <= number of counters
2077 *
2078 * validation ensures the group can be loaded onto the
2079 * PMU if it was the only group available.
2080 */
2081 static int validate_group(struct perf_event *event)
2082 {
2083 struct perf_event *leader = event->group_leader;
2084 struct cpu_hw_events *fake_cpuc;
2085 int ret = -EINVAL, n;
2086
2087 fake_cpuc = allocate_fake_cpuc();
2088 if (IS_ERR(fake_cpuc))
2089 return PTR_ERR(fake_cpuc);
2090 /*
2091 * the event is not yet connected with its
2092 * siblings therefore we must first collect
2093 * existing siblings, then add the new event
2094 * before we can simulate the scheduling
2095 */
2096 n = collect_events(fake_cpuc, leader, true);
2097 if (n < 0)
2098 goto out;
2099
2100 fake_cpuc->n_events = n;
2101 n = collect_events(fake_cpuc, event, false);
2102 if (n < 0)
2103 goto out;
2104
2105 fake_cpuc->n_events = n;
2106
2107 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2108
2109 out:
2110 free_fake_cpuc(fake_cpuc);
2111 return ret;
2112 }
2113
2114 static int x86_pmu_event_init(struct perf_event *event)
2115 {
2116 struct pmu *tmp;
2117 int err;
2118
2119 switch (event->attr.type) {
2120 case PERF_TYPE_RAW:
2121 case PERF_TYPE_HARDWARE:
2122 case PERF_TYPE_HW_CACHE:
2123 break;
2124
2125 default:
2126 return -ENOENT;
2127 }
2128
2129 err = __x86_pmu_event_init(event);
2130 if (!err) {
2131 /*
2132 * we temporarily connect event to its pmu
2133 * such that validate_group() can classify
2134 * it as an x86 event using is_x86_event()
2135 */
2136 tmp = event->pmu;
2137 event->pmu = &pmu;
2138
2139 if (event->group_leader != event)
2140 err = validate_group(event);
2141 else
2142 err = validate_event(event);
2143
2144 event->pmu = tmp;
2145 }
2146 if (err) {
2147 if (event->destroy)
2148 event->destroy(event);
2149 }
2150
2151 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2152 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2153 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2154
2155 return err;
2156 }
2157
2158 static void refresh_pce(void *ignored)
2159 {
2160 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2161 }
2162
2163 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2164 {
2165 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2166 return;
2167
2168 /*
2169 * This function relies on not being called concurrently in two
2170 * tasks in the same mm. Otherwise one task could observe
2171 * perf_rdpmc_allowed > 1 and return all the way back to
2172 * userspace with CR4.PCE clear while another task is still
2173 * doing on_each_cpu_mask() to propagate CR4.PCE.
2174 *
2175 * For now, this can't happen because all callers hold mmap_sem
2176 * for write. If this changes, we'll need a different solution.
2177 */
2178 lockdep_assert_held_exclusive(&mm->mmap_sem);
2179
2180 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2181 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2182 }
2183
2184 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2185 {
2186
2187 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2188 return;
2189
2190 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2191 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2192 }
2193
2194 static int x86_pmu_event_idx(struct perf_event *event)
2195 {
2196 int idx = event->hw.idx;
2197
2198 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2199 return 0;
2200
2201 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2202 idx -= INTEL_PMC_IDX_FIXED;
2203 idx |= 1 << 30;
2204 }
2205
2206 return idx + 1;
2207 }
2208
2209 static ssize_t get_attr_rdpmc(struct device *cdev,
2210 struct device_attribute *attr,
2211 char *buf)
2212 {
2213 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2214 }
2215
2216 static ssize_t set_attr_rdpmc(struct device *cdev,
2217 struct device_attribute *attr,
2218 const char *buf, size_t count)
2219 {
2220 unsigned long val;
2221 ssize_t ret;
2222
2223 ret = kstrtoul(buf, 0, &val);
2224 if (ret)
2225 return ret;
2226
2227 if (val > 2)
2228 return -EINVAL;
2229
2230 if (x86_pmu.attr_rdpmc_broken)
2231 return -ENOTSUPP;
2232
2233 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2234 /*
2235 * Changing into or out of always available, aka
2236 * perf-event-bypassing mode. This path is extremely slow,
2237 * but only root can trigger it, so it's okay.
2238 */
2239 if (val == 2)
2240 static_branch_inc(&rdpmc_always_available_key);
2241 else
2242 static_branch_dec(&rdpmc_always_available_key);
2243 on_each_cpu(refresh_pce, NULL, 1);
2244 }
2245
2246 x86_pmu.attr_rdpmc = val;
2247
2248 return count;
2249 }
2250
2251 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2252
2253 static struct attribute *x86_pmu_attrs[] = {
2254 &dev_attr_rdpmc.attr,
2255 NULL,
2256 };
2257
2258 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2259 .attrs = x86_pmu_attrs,
2260 };
2261
2262 static ssize_t max_precise_show(struct device *cdev,
2263 struct device_attribute *attr,
2264 char *buf)
2265 {
2266 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2267 }
2268
2269 static DEVICE_ATTR_RO(max_precise);
2270
2271 static struct attribute *x86_pmu_caps_attrs[] = {
2272 &dev_attr_max_precise.attr,
2273 NULL
2274 };
2275
2276 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2277 .name = "caps",
2278 .attrs = x86_pmu_caps_attrs,
2279 };
2280
2281 static const struct attribute_group *x86_pmu_attr_groups[] = {
2282 &x86_pmu_attr_group,
2283 &x86_pmu_format_group,
2284 &x86_pmu_events_group,
2285 &x86_pmu_caps_group,
2286 NULL,
2287 };
2288
2289 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2290 {
2291 if (x86_pmu.sched_task)
2292 x86_pmu.sched_task(ctx, sched_in);
2293 }
2294
2295 void perf_check_microcode(void)
2296 {
2297 if (x86_pmu.check_microcode)
2298 x86_pmu.check_microcode();
2299 }
2300
2301 static struct pmu pmu = {
2302 .pmu_enable = x86_pmu_enable,
2303 .pmu_disable = x86_pmu_disable,
2304
2305 .attr_groups = x86_pmu_attr_groups,
2306
2307 .event_init = x86_pmu_event_init,
2308
2309 .event_mapped = x86_pmu_event_mapped,
2310 .event_unmapped = x86_pmu_event_unmapped,
2311
2312 .add = x86_pmu_add,
2313 .del = x86_pmu_del,
2314 .start = x86_pmu_start,
2315 .stop = x86_pmu_stop,
2316 .read = x86_pmu_read,
2317
2318 .start_txn = x86_pmu_start_txn,
2319 .cancel_txn = x86_pmu_cancel_txn,
2320 .commit_txn = x86_pmu_commit_txn,
2321
2322 .event_idx = x86_pmu_event_idx,
2323 .sched_task = x86_pmu_sched_task,
2324 .task_ctx_size = sizeof(struct x86_perf_task_context),
2325 };
2326
2327 void arch_perf_update_userpage(struct perf_event *event,
2328 struct perf_event_mmap_page *userpg, u64 now)
2329 {
2330 struct cyc2ns_data data;
2331 u64 offset;
2332
2333 userpg->cap_user_time = 0;
2334 userpg->cap_user_time_zero = 0;
2335 userpg->cap_user_rdpmc =
2336 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2337 userpg->pmc_width = x86_pmu.cntval_bits;
2338
2339 if (!using_native_sched_clock() || !sched_clock_stable())
2340 return;
2341
2342 cyc2ns_read_begin(&data);
2343
2344 offset = data.cyc2ns_offset + __sched_clock_offset;
2345
2346 /*
2347 * Internal timekeeping for enabled/running/stopped times
2348 * is always in the local_clock domain.
2349 */
2350 userpg->cap_user_time = 1;
2351 userpg->time_mult = data.cyc2ns_mul;
2352 userpg->time_shift = data.cyc2ns_shift;
2353 userpg->time_offset = offset - now;
2354
2355 /*
2356 * cap_user_time_zero doesn't make sense when we're using a different
2357 * time base for the records.
2358 */
2359 if (!event->attr.use_clockid) {
2360 userpg->cap_user_time_zero = 1;
2361 userpg->time_zero = offset;
2362 }
2363
2364 cyc2ns_read_end();
2365 }
2366
2367 void
2368 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2369 {
2370 struct unwind_state state;
2371 unsigned long addr;
2372
2373 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2374 /* TODO: We don't support guest os callchain now */
2375 return;
2376 }
2377
2378 if (perf_callchain_store(entry, regs->ip))
2379 return;
2380
2381 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2382 unwind_next_frame(&state)) {
2383 addr = unwind_get_return_address(&state);
2384 if (!addr || perf_callchain_store(entry, addr))
2385 return;
2386 }
2387 }
2388
2389 static inline int
2390 valid_user_frame(const void __user *fp, unsigned long size)
2391 {
2392 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2393 }
2394
2395 static unsigned long get_segment_base(unsigned int segment)
2396 {
2397 struct desc_struct *desc;
2398 unsigned int idx = segment >> 3;
2399
2400 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2401 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2402 struct ldt_struct *ldt;
2403
2404 /* IRQs are off, so this synchronizes with smp_store_release */
2405 ldt = READ_ONCE(current->active_mm->context.ldt);
2406 if (!ldt || idx >= ldt->nr_entries)
2407 return 0;
2408
2409 desc = &ldt->entries[idx];
2410 #else
2411 return 0;
2412 #endif
2413 } else {
2414 if (idx >= GDT_ENTRIES)
2415 return 0;
2416
2417 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2418 }
2419
2420 return get_desc_base(desc);
2421 }
2422
2423 #ifdef CONFIG_IA32_EMULATION
2424
2425 #include <linux/compat.h>
2426
2427 static inline int
2428 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2429 {
2430 /* 32-bit process in 64-bit kernel. */
2431 unsigned long ss_base, cs_base;
2432 struct stack_frame_ia32 frame;
2433 const void __user *fp;
2434
2435 if (!test_thread_flag(TIF_IA32))
2436 return 0;
2437
2438 cs_base = get_segment_base(regs->cs);
2439 ss_base = get_segment_base(regs->ss);
2440
2441 fp = compat_ptr(ss_base + regs->bp);
2442 pagefault_disable();
2443 while (entry->nr < entry->max_stack) {
2444 unsigned long bytes;
2445 frame.next_frame = 0;
2446 frame.return_address = 0;
2447
2448 if (!valid_user_frame(fp, sizeof(frame)))
2449 break;
2450
2451 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2452 if (bytes != 0)
2453 break;
2454 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2455 if (bytes != 0)
2456 break;
2457
2458 perf_callchain_store(entry, cs_base + frame.return_address);
2459 fp = compat_ptr(ss_base + frame.next_frame);
2460 }
2461 pagefault_enable();
2462 return 1;
2463 }
2464 #else
2465 static inline int
2466 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2467 {
2468 return 0;
2469 }
2470 #endif
2471
2472 void
2473 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2474 {
2475 struct stack_frame frame;
2476 const unsigned long __user *fp;
2477
2478 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2479 /* TODO: We don't support guest os callchain now */
2480 return;
2481 }
2482
2483 /*
2484 * We don't know what to do with VM86 stacks.. ignore them for now.
2485 */
2486 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2487 return;
2488
2489 fp = (unsigned long __user *)regs->bp;
2490
2491 perf_callchain_store(entry, regs->ip);
2492
2493 if (!nmi_uaccess_okay())
2494 return;
2495
2496 if (perf_callchain_user32(regs, entry))
2497 return;
2498
2499 pagefault_disable();
2500 while (entry->nr < entry->max_stack) {
2501 unsigned long bytes;
2502
2503 frame.next_frame = NULL;
2504 frame.return_address = 0;
2505
2506 if (!valid_user_frame(fp, sizeof(frame)))
2507 break;
2508
2509 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2510 if (bytes != 0)
2511 break;
2512 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2513 if (bytes != 0)
2514 break;
2515
2516 perf_callchain_store(entry, frame.return_address);
2517 fp = (void __user *)frame.next_frame;
2518 }
2519 pagefault_enable();
2520 }
2521
2522 /*
2523 * Deal with code segment offsets for the various execution modes:
2524 *
2525 * VM86 - the good olde 16 bit days, where the linear address is
2526 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2527 *
2528 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2529 * to figure out what the 32bit base address is.
2530 *
2531 * X32 - has TIF_X32 set, but is running in x86_64
2532 *
2533 * X86_64 - CS,DS,SS,ES are all zero based.
2534 */
2535 static unsigned long code_segment_base(struct pt_regs *regs)
2536 {
2537 /*
2538 * For IA32 we look at the GDT/LDT segment base to convert the
2539 * effective IP to a linear address.
2540 */
2541
2542 #ifdef CONFIG_X86_32
2543 /*
2544 * If we are in VM86 mode, add the segment offset to convert to a
2545 * linear address.
2546 */
2547 if (regs->flags & X86_VM_MASK)
2548 return 0x10 * regs->cs;
2549
2550 if (user_mode(regs) && regs->cs != __USER_CS)
2551 return get_segment_base(regs->cs);
2552 #else
2553 if (user_mode(regs) && !user_64bit_mode(regs) &&
2554 regs->cs != __USER32_CS)
2555 return get_segment_base(regs->cs);
2556 #endif
2557 return 0;
2558 }
2559
2560 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2561 {
2562 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2563 return perf_guest_cbs->get_guest_ip();
2564
2565 return regs->ip + code_segment_base(regs);
2566 }
2567
2568 unsigned long perf_misc_flags(struct pt_regs *regs)
2569 {
2570 int misc = 0;
2571
2572 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2573 if (perf_guest_cbs->is_user_mode())
2574 misc |= PERF_RECORD_MISC_GUEST_USER;
2575 else
2576 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2577 } else {
2578 if (user_mode(regs))
2579 misc |= PERF_RECORD_MISC_USER;
2580 else
2581 misc |= PERF_RECORD_MISC_KERNEL;
2582 }
2583
2584 if (regs->flags & PERF_EFLAGS_EXACT)
2585 misc |= PERF_RECORD_MISC_EXACT_IP;
2586
2587 return misc;
2588 }
2589
2590 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2591 {
2592 cap->version = x86_pmu.version;
2593 cap->num_counters_gp = x86_pmu.num_counters;
2594 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2595 cap->bit_width_gp = x86_pmu.cntval_bits;
2596 cap->bit_width_fixed = x86_pmu.cntval_bits;
2597 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2598 cap->events_mask_len = x86_pmu.events_mask_len;
2599 }
2600 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);