]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/hyperv/hv_init.c
riscv: select ARCH_HAS_STRICT_KERNEL_RWX only if MMU
[thirdparty/linux.git] / arch / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * X86 specific Hyper-V initialization code.
4 *
5 * Copyright (C) 2016, Microsoft, Inc.
6 *
7 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/efi.h>
12 #include <linux/types.h>
13 #include <asm/apic.h>
14 #include <asm/desc.h>
15 #include <asm/hypervisor.h>
16 #include <asm/hyperv-tlfs.h>
17 #include <asm/mshyperv.h>
18 #include <linux/version.h>
19 #include <linux/vmalloc.h>
20 #include <linux/mm.h>
21 #include <linux/hyperv.h>
22 #include <linux/slab.h>
23 #include <linux/kernel.h>
24 #include <linux/cpuhotplug.h>
25 #include <linux/syscore_ops.h>
26 #include <clocksource/hyperv_timer.h>
27
28 void *hv_hypercall_pg;
29 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
30
31 /* Storage to save the hypercall page temporarily for hibernation */
32 static void *hv_hypercall_pg_saved;
33
34 u32 *hv_vp_index;
35 EXPORT_SYMBOL_GPL(hv_vp_index);
36
37 struct hv_vp_assist_page **hv_vp_assist_page;
38 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
39
40 void __percpu **hyperv_pcpu_input_arg;
41 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
42
43 u32 hv_max_vp_index;
44 EXPORT_SYMBOL_GPL(hv_max_vp_index);
45
46 void *hv_alloc_hyperv_page(void)
47 {
48 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
49
50 return (void *)__get_free_page(GFP_KERNEL);
51 }
52 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
53
54 void *hv_alloc_hyperv_zeroed_page(void)
55 {
56 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
57
58 return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
59 }
60 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
61
62 void hv_free_hyperv_page(unsigned long addr)
63 {
64 free_page(addr);
65 }
66 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
67
68 static int hv_cpu_init(unsigned int cpu)
69 {
70 u64 msr_vp_index;
71 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
72 void **input_arg;
73 struct page *pg;
74
75 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
76 pg = alloc_page(GFP_KERNEL);
77 if (unlikely(!pg))
78 return -ENOMEM;
79 *input_arg = page_address(pg);
80
81 hv_get_vp_index(msr_vp_index);
82
83 hv_vp_index[smp_processor_id()] = msr_vp_index;
84
85 if (msr_vp_index > hv_max_vp_index)
86 hv_max_vp_index = msr_vp_index;
87
88 if (!hv_vp_assist_page)
89 return 0;
90
91 /*
92 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section
93 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure
94 * we always write the EOI MSR in hv_apic_eoi_write() *after* the
95 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may
96 * not be stopped in the case of CPU offlining and the VM will hang.
97 */
98 if (!*hvp) {
99 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO,
100 PAGE_KERNEL);
101 }
102
103 if (*hvp) {
104 u64 val;
105
106 val = vmalloc_to_pfn(*hvp);
107 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
108 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
109
110 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
111 }
112
113 return 0;
114 }
115
116 static void (*hv_reenlightenment_cb)(void);
117
118 static void hv_reenlightenment_notify(struct work_struct *dummy)
119 {
120 struct hv_tsc_emulation_status emu_status;
121
122 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
123
124 /* Don't issue the callback if TSC accesses are not emulated */
125 if (hv_reenlightenment_cb && emu_status.inprogress)
126 hv_reenlightenment_cb();
127 }
128 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
129
130 void hyperv_stop_tsc_emulation(void)
131 {
132 u64 freq;
133 struct hv_tsc_emulation_status emu_status;
134
135 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
136 emu_status.inprogress = 0;
137 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
138
139 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
140 tsc_khz = div64_u64(freq, 1000);
141 }
142 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
143
144 static inline bool hv_reenlightenment_available(void)
145 {
146 /*
147 * Check for required features and priviliges to make TSC frequency
148 * change notifications work.
149 */
150 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
151 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
152 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
153 }
154
155 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
156 {
157 entering_ack_irq();
158
159 inc_irq_stat(irq_hv_reenlightenment_count);
160
161 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
162
163 exiting_irq();
164 }
165
166 void set_hv_tscchange_cb(void (*cb)(void))
167 {
168 struct hv_reenlightenment_control re_ctrl = {
169 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
170 .enabled = 1,
171 .target_vp = hv_vp_index[smp_processor_id()]
172 };
173 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
174
175 if (!hv_reenlightenment_available()) {
176 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
177 return;
178 }
179
180 hv_reenlightenment_cb = cb;
181
182 /* Make sure callback is registered before we write to MSRs */
183 wmb();
184
185 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
186 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
187 }
188 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
189
190 void clear_hv_tscchange_cb(void)
191 {
192 struct hv_reenlightenment_control re_ctrl;
193
194 if (!hv_reenlightenment_available())
195 return;
196
197 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
198 re_ctrl.enabled = 0;
199 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
200
201 hv_reenlightenment_cb = NULL;
202 }
203 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
204
205 static int hv_cpu_die(unsigned int cpu)
206 {
207 struct hv_reenlightenment_control re_ctrl;
208 unsigned int new_cpu;
209 unsigned long flags;
210 void **input_arg;
211 void *input_pg = NULL;
212
213 local_irq_save(flags);
214 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
215 input_pg = *input_arg;
216 *input_arg = NULL;
217 local_irq_restore(flags);
218 free_page((unsigned long)input_pg);
219
220 if (hv_vp_assist_page && hv_vp_assist_page[cpu])
221 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
222
223 if (hv_reenlightenment_cb == NULL)
224 return 0;
225
226 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
227 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
228 /* Reassign to some other online CPU */
229 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
230
231 re_ctrl.target_vp = hv_vp_index[new_cpu];
232 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
233 }
234
235 return 0;
236 }
237
238 static int __init hv_pci_init(void)
239 {
240 int gen2vm = efi_enabled(EFI_BOOT);
241
242 /*
243 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
244 * The purpose is to suppress the harmless warning:
245 * "PCI: Fatal: No config space access function found"
246 */
247 if (gen2vm)
248 return 0;
249
250 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
251 return 1;
252 }
253
254 static int hv_suspend(void)
255 {
256 union hv_x64_msr_hypercall_contents hypercall_msr;
257
258 /*
259 * Reset the hypercall page as it is going to be invalidated
260 * accross hibernation. Setting hv_hypercall_pg to NULL ensures
261 * that any subsequent hypercall operation fails safely instead of
262 * crashing due to an access of an invalid page. The hypercall page
263 * pointer is restored on resume.
264 */
265 hv_hypercall_pg_saved = hv_hypercall_pg;
266 hv_hypercall_pg = NULL;
267
268 /* Disable the hypercall page in the hypervisor */
269 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
270 hypercall_msr.enable = 0;
271 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
272
273 return 0;
274 }
275
276 static void hv_resume(void)
277 {
278 union hv_x64_msr_hypercall_contents hypercall_msr;
279
280 /* Re-enable the hypercall page */
281 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
282 hypercall_msr.enable = 1;
283 hypercall_msr.guest_physical_address =
284 vmalloc_to_pfn(hv_hypercall_pg_saved);
285 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
286
287 hv_hypercall_pg = hv_hypercall_pg_saved;
288 hv_hypercall_pg_saved = NULL;
289 }
290
291 static struct syscore_ops hv_syscore_ops = {
292 .suspend = hv_suspend,
293 .resume = hv_resume,
294 };
295
296 /*
297 * This function is to be invoked early in the boot sequence after the
298 * hypervisor has been detected.
299 *
300 * 1. Setup the hypercall page.
301 * 2. Register Hyper-V specific clocksource.
302 * 3. Setup Hyper-V specific APIC entry points.
303 */
304 void __init hyperv_init(void)
305 {
306 u64 guest_id, required_msrs;
307 union hv_x64_msr_hypercall_contents hypercall_msr;
308 int cpuhp, i;
309
310 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
311 return;
312
313 /* Absolutely required MSRs */
314 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
315 HV_X64_MSR_VP_INDEX_AVAILABLE;
316
317 if ((ms_hyperv.features & required_msrs) != required_msrs)
318 return;
319
320 /*
321 * Allocate the per-CPU state for the hypercall input arg.
322 * If this allocation fails, we will not be able to setup
323 * (per-CPU) hypercall input page and thus this failure is
324 * fatal on Hyper-V.
325 */
326 hyperv_pcpu_input_arg = alloc_percpu(void *);
327
328 BUG_ON(hyperv_pcpu_input_arg == NULL);
329
330 /* Allocate percpu VP index */
331 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
332 GFP_KERNEL);
333 if (!hv_vp_index)
334 return;
335
336 for (i = 0; i < num_possible_cpus(); i++)
337 hv_vp_index[i] = VP_INVAL;
338
339 hv_vp_assist_page = kcalloc(num_possible_cpus(),
340 sizeof(*hv_vp_assist_page), GFP_KERNEL);
341 if (!hv_vp_assist_page) {
342 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
343 goto free_vp_index;
344 }
345
346 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
347 hv_cpu_init, hv_cpu_die);
348 if (cpuhp < 0)
349 goto free_vp_assist_page;
350
351 /*
352 * Setup the hypercall page and enable hypercalls.
353 * 1. Register the guest ID
354 * 2. Enable the hypercall and register the hypercall page
355 */
356 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
357 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
358
359 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
360 if (hv_hypercall_pg == NULL) {
361 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
362 goto remove_cpuhp_state;
363 }
364
365 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
366 hypercall_msr.enable = 1;
367 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
368 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
369
370 /*
371 * Ignore any errors in setting up stimer clockevents
372 * as we can run with the LAPIC timer as a fallback.
373 */
374 (void)hv_stimer_alloc();
375
376 hv_apic_init();
377
378 x86_init.pci.arch_init = hv_pci_init;
379
380 register_syscore_ops(&hv_syscore_ops);
381
382 return;
383
384 remove_cpuhp_state:
385 cpuhp_remove_state(cpuhp);
386 free_vp_assist_page:
387 kfree(hv_vp_assist_page);
388 hv_vp_assist_page = NULL;
389 free_vp_index:
390 kfree(hv_vp_index);
391 hv_vp_index = NULL;
392 }
393
394 /*
395 * This routine is called before kexec/kdump, it does the required cleanup.
396 */
397 void hyperv_cleanup(void)
398 {
399 union hv_x64_msr_hypercall_contents hypercall_msr;
400
401 unregister_syscore_ops(&hv_syscore_ops);
402
403 /* Reset our OS id */
404 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
405
406 /*
407 * Reset hypercall page reference before reset the page,
408 * let hypercall operations fail safely rather than
409 * panic the kernel for using invalid hypercall page
410 */
411 hv_hypercall_pg = NULL;
412
413 /* Reset the hypercall page */
414 hypercall_msr.as_uint64 = 0;
415 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
416
417 /* Reset the TSC page */
418 hypercall_msr.as_uint64 = 0;
419 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
420 }
421 EXPORT_SYMBOL_GPL(hyperv_cleanup);
422
423 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
424 {
425 static bool panic_reported;
426 u64 guest_id;
427
428 if (in_die && !panic_on_oops)
429 return;
430
431 /*
432 * We prefer to report panic on 'die' chain as we have proper
433 * registers to report, but if we miss it (e.g. on BUG()) we need
434 * to report it on 'panic'.
435 */
436 if (panic_reported)
437 return;
438 panic_reported = true;
439
440 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
441
442 wrmsrl(HV_X64_MSR_CRASH_P0, err);
443 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
444 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
445 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
446 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
447
448 /*
449 * Let Hyper-V know there is crash data available
450 */
451 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
452 }
453 EXPORT_SYMBOL_GPL(hyperv_report_panic);
454
455 /**
456 * hyperv_report_panic_msg - report panic message to Hyper-V
457 * @pa: physical address of the panic page containing the message
458 * @size: size of the message in the page
459 */
460 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
461 {
462 /*
463 * P3 to contain the physical address of the panic page & P4 to
464 * contain the size of the panic data in that page. Rest of the
465 * registers are no-op when the NOTIFY_MSG flag is set.
466 */
467 wrmsrl(HV_X64_MSR_CRASH_P0, 0);
468 wrmsrl(HV_X64_MSR_CRASH_P1, 0);
469 wrmsrl(HV_X64_MSR_CRASH_P2, 0);
470 wrmsrl(HV_X64_MSR_CRASH_P3, pa);
471 wrmsrl(HV_X64_MSR_CRASH_P4, size);
472
473 /*
474 * Let Hyper-V know there is crash data available along with
475 * the panic message.
476 */
477 wrmsrl(HV_X64_MSR_CRASH_CTL,
478 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
479 }
480 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
481
482 bool hv_is_hyperv_initialized(void)
483 {
484 union hv_x64_msr_hypercall_contents hypercall_msr;
485
486 /*
487 * Ensure that we're really on Hyper-V, and not a KVM or Xen
488 * emulation of Hyper-V
489 */
490 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
491 return false;
492
493 /*
494 * Verify that earlier initialization succeeded by checking
495 * that the hypercall page is setup
496 */
497 hypercall_msr.as_uint64 = 0;
498 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
499
500 return hypercall_msr.enable;
501 }
502 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
503
504 bool hv_is_hibernation_supported(void)
505 {
506 return acpi_sleep_state_supported(ACPI_STATE_S4);
507 }
508 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);