]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/hyperv/hv_init.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / arch / x86 / hyperv / hv_init.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * X86 specific Hyper-V initialization code.
4 *
5 * Copyright (C) 2016, Microsoft, Inc.
6 *
7 * Author : K. Y. Srinivasan <kys@microsoft.com>
8 */
9
10 #include <linux/acpi.h>
11 #include <linux/efi.h>
12 #include <linux/types.h>
13 #include <asm/apic.h>
14 #include <asm/desc.h>
15 #include <asm/hypervisor.h>
16 #include <asm/hyperv-tlfs.h>
17 #include <asm/mshyperv.h>
18 #include <linux/version.h>
19 #include <linux/vmalloc.h>
20 #include <linux/mm.h>
21 #include <linux/hyperv.h>
22 #include <linux/slab.h>
23 #include <linux/kernel.h>
24 #include <linux/cpuhotplug.h>
25 #include <linux/syscore_ops.h>
26 #include <clocksource/hyperv_timer.h>
27
28 void *hv_hypercall_pg;
29 EXPORT_SYMBOL_GPL(hv_hypercall_pg);
30
31 /* Storage to save the hypercall page temporarily for hibernation */
32 static void *hv_hypercall_pg_saved;
33
34 u32 *hv_vp_index;
35 EXPORT_SYMBOL_GPL(hv_vp_index);
36
37 struct hv_vp_assist_page **hv_vp_assist_page;
38 EXPORT_SYMBOL_GPL(hv_vp_assist_page);
39
40 void __percpu **hyperv_pcpu_input_arg;
41 EXPORT_SYMBOL_GPL(hyperv_pcpu_input_arg);
42
43 u32 hv_max_vp_index;
44 EXPORT_SYMBOL_GPL(hv_max_vp_index);
45
46 void *hv_alloc_hyperv_page(void)
47 {
48 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
49
50 return (void *)__get_free_page(GFP_KERNEL);
51 }
52 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_page);
53
54 void *hv_alloc_hyperv_zeroed_page(void)
55 {
56 BUILD_BUG_ON(PAGE_SIZE != HV_HYP_PAGE_SIZE);
57
58 return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
59 }
60 EXPORT_SYMBOL_GPL(hv_alloc_hyperv_zeroed_page);
61
62 void hv_free_hyperv_page(unsigned long addr)
63 {
64 free_page(addr);
65 }
66 EXPORT_SYMBOL_GPL(hv_free_hyperv_page);
67
68 static int hv_cpu_init(unsigned int cpu)
69 {
70 u64 msr_vp_index;
71 struct hv_vp_assist_page **hvp = &hv_vp_assist_page[smp_processor_id()];
72 void **input_arg;
73 struct page *pg;
74
75 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
76 /* hv_cpu_init() can be called with IRQs disabled from hv_resume() */
77 pg = alloc_page(irqs_disabled() ? GFP_ATOMIC : GFP_KERNEL);
78 if (unlikely(!pg))
79 return -ENOMEM;
80 *input_arg = page_address(pg);
81
82 hv_get_vp_index(msr_vp_index);
83
84 hv_vp_index[smp_processor_id()] = msr_vp_index;
85
86 if (msr_vp_index > hv_max_vp_index)
87 hv_max_vp_index = msr_vp_index;
88
89 if (!hv_vp_assist_page)
90 return 0;
91
92 /*
93 * The VP ASSIST PAGE is an "overlay" page (see Hyper-V TLFS's Section
94 * 5.2.1 "GPA Overlay Pages"). Here it must be zeroed out to make sure
95 * we always write the EOI MSR in hv_apic_eoi_write() *after* the
96 * EOI optimization is disabled in hv_cpu_die(), otherwise a CPU may
97 * not be stopped in the case of CPU offlining and the VM will hang.
98 */
99 if (!*hvp) {
100 *hvp = __vmalloc(PAGE_SIZE, GFP_KERNEL | __GFP_ZERO,
101 PAGE_KERNEL);
102 }
103
104 if (*hvp) {
105 u64 val;
106
107 val = vmalloc_to_pfn(*hvp);
108 val = (val << HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT) |
109 HV_X64_MSR_VP_ASSIST_PAGE_ENABLE;
110
111 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, val);
112 }
113
114 return 0;
115 }
116
117 static void (*hv_reenlightenment_cb)(void);
118
119 static void hv_reenlightenment_notify(struct work_struct *dummy)
120 {
121 struct hv_tsc_emulation_status emu_status;
122
123 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
124
125 /* Don't issue the callback if TSC accesses are not emulated */
126 if (hv_reenlightenment_cb && emu_status.inprogress)
127 hv_reenlightenment_cb();
128 }
129 static DECLARE_DELAYED_WORK(hv_reenlightenment_work, hv_reenlightenment_notify);
130
131 void hyperv_stop_tsc_emulation(void)
132 {
133 u64 freq;
134 struct hv_tsc_emulation_status emu_status;
135
136 rdmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
137 emu_status.inprogress = 0;
138 wrmsrl(HV_X64_MSR_TSC_EMULATION_STATUS, *(u64 *)&emu_status);
139
140 rdmsrl(HV_X64_MSR_TSC_FREQUENCY, freq);
141 tsc_khz = div64_u64(freq, 1000);
142 }
143 EXPORT_SYMBOL_GPL(hyperv_stop_tsc_emulation);
144
145 static inline bool hv_reenlightenment_available(void)
146 {
147 /*
148 * Check for required features and priviliges to make TSC frequency
149 * change notifications work.
150 */
151 return ms_hyperv.features & HV_X64_ACCESS_FREQUENCY_MSRS &&
152 ms_hyperv.misc_features & HV_FEATURE_FREQUENCY_MSRS_AVAILABLE &&
153 ms_hyperv.features & HV_X64_ACCESS_REENLIGHTENMENT;
154 }
155
156 __visible void __irq_entry hyperv_reenlightenment_intr(struct pt_regs *regs)
157 {
158 entering_ack_irq();
159
160 inc_irq_stat(irq_hv_reenlightenment_count);
161
162 schedule_delayed_work(&hv_reenlightenment_work, HZ/10);
163
164 exiting_irq();
165 }
166
167 void set_hv_tscchange_cb(void (*cb)(void))
168 {
169 struct hv_reenlightenment_control re_ctrl = {
170 .vector = HYPERV_REENLIGHTENMENT_VECTOR,
171 .enabled = 1,
172 .target_vp = hv_vp_index[smp_processor_id()]
173 };
174 struct hv_tsc_emulation_control emu_ctrl = {.enabled = 1};
175
176 if (!hv_reenlightenment_available()) {
177 pr_warn("Hyper-V: reenlightenment support is unavailable\n");
178 return;
179 }
180
181 hv_reenlightenment_cb = cb;
182
183 /* Make sure callback is registered before we write to MSRs */
184 wmb();
185
186 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
187 wrmsrl(HV_X64_MSR_TSC_EMULATION_CONTROL, *((u64 *)&emu_ctrl));
188 }
189 EXPORT_SYMBOL_GPL(set_hv_tscchange_cb);
190
191 void clear_hv_tscchange_cb(void)
192 {
193 struct hv_reenlightenment_control re_ctrl;
194
195 if (!hv_reenlightenment_available())
196 return;
197
198 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
199 re_ctrl.enabled = 0;
200 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *(u64 *)&re_ctrl);
201
202 hv_reenlightenment_cb = NULL;
203 }
204 EXPORT_SYMBOL_GPL(clear_hv_tscchange_cb);
205
206 static int hv_cpu_die(unsigned int cpu)
207 {
208 struct hv_reenlightenment_control re_ctrl;
209 unsigned int new_cpu;
210 unsigned long flags;
211 void **input_arg;
212 void *input_pg = NULL;
213
214 local_irq_save(flags);
215 input_arg = (void **)this_cpu_ptr(hyperv_pcpu_input_arg);
216 input_pg = *input_arg;
217 *input_arg = NULL;
218 local_irq_restore(flags);
219 free_page((unsigned long)input_pg);
220
221 if (hv_vp_assist_page && hv_vp_assist_page[cpu])
222 wrmsrl(HV_X64_MSR_VP_ASSIST_PAGE, 0);
223
224 if (hv_reenlightenment_cb == NULL)
225 return 0;
226
227 rdmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
228 if (re_ctrl.target_vp == hv_vp_index[cpu]) {
229 /*
230 * Reassign reenlightenment notifications to some other online
231 * CPU or just disable the feature if there are no online CPUs
232 * left (happens on hibernation).
233 */
234 new_cpu = cpumask_any_but(cpu_online_mask, cpu);
235
236 if (new_cpu < nr_cpu_ids)
237 re_ctrl.target_vp = hv_vp_index[new_cpu];
238 else
239 re_ctrl.enabled = 0;
240
241 wrmsrl(HV_X64_MSR_REENLIGHTENMENT_CONTROL, *((u64 *)&re_ctrl));
242 }
243
244 return 0;
245 }
246
247 static int __init hv_pci_init(void)
248 {
249 int gen2vm = efi_enabled(EFI_BOOT);
250
251 /*
252 * For Generation-2 VM, we exit from pci_arch_init() by returning 0.
253 * The purpose is to suppress the harmless warning:
254 * "PCI: Fatal: No config space access function found"
255 */
256 if (gen2vm)
257 return 0;
258
259 /* For Generation-1 VM, we'll proceed in pci_arch_init(). */
260 return 1;
261 }
262
263 static int hv_suspend(void)
264 {
265 union hv_x64_msr_hypercall_contents hypercall_msr;
266 int ret;
267
268 /*
269 * Reset the hypercall page as it is going to be invalidated
270 * accross hibernation. Setting hv_hypercall_pg to NULL ensures
271 * that any subsequent hypercall operation fails safely instead of
272 * crashing due to an access of an invalid page. The hypercall page
273 * pointer is restored on resume.
274 */
275 hv_hypercall_pg_saved = hv_hypercall_pg;
276 hv_hypercall_pg = NULL;
277
278 /* Disable the hypercall page in the hypervisor */
279 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
280 hypercall_msr.enable = 0;
281 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
282
283 ret = hv_cpu_die(0);
284 return ret;
285 }
286
287 static void hv_resume(void)
288 {
289 union hv_x64_msr_hypercall_contents hypercall_msr;
290 int ret;
291
292 ret = hv_cpu_init(0);
293 WARN_ON(ret);
294
295 /* Re-enable the hypercall page */
296 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
297 hypercall_msr.enable = 1;
298 hypercall_msr.guest_physical_address =
299 vmalloc_to_pfn(hv_hypercall_pg_saved);
300 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
301
302 hv_hypercall_pg = hv_hypercall_pg_saved;
303 hv_hypercall_pg_saved = NULL;
304
305 /*
306 * Reenlightenment notifications are disabled by hv_cpu_die(0),
307 * reenable them here if hv_reenlightenment_cb was previously set.
308 */
309 if (hv_reenlightenment_cb)
310 set_hv_tscchange_cb(hv_reenlightenment_cb);
311 }
312
313 /* Note: when the ops are called, only CPU0 is online and IRQs are disabled. */
314 static struct syscore_ops hv_syscore_ops = {
315 .suspend = hv_suspend,
316 .resume = hv_resume,
317 };
318
319 /*
320 * This function is to be invoked early in the boot sequence after the
321 * hypervisor has been detected.
322 *
323 * 1. Setup the hypercall page.
324 * 2. Register Hyper-V specific clocksource.
325 * 3. Setup Hyper-V specific APIC entry points.
326 */
327 void __init hyperv_init(void)
328 {
329 u64 guest_id, required_msrs;
330 union hv_x64_msr_hypercall_contents hypercall_msr;
331 int cpuhp, i;
332
333 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
334 return;
335
336 /* Absolutely required MSRs */
337 required_msrs = HV_X64_MSR_HYPERCALL_AVAILABLE |
338 HV_X64_MSR_VP_INDEX_AVAILABLE;
339
340 if ((ms_hyperv.features & required_msrs) != required_msrs)
341 return;
342
343 /*
344 * Allocate the per-CPU state for the hypercall input arg.
345 * If this allocation fails, we will not be able to setup
346 * (per-CPU) hypercall input page and thus this failure is
347 * fatal on Hyper-V.
348 */
349 hyperv_pcpu_input_arg = alloc_percpu(void *);
350
351 BUG_ON(hyperv_pcpu_input_arg == NULL);
352
353 /* Allocate percpu VP index */
354 hv_vp_index = kmalloc_array(num_possible_cpus(), sizeof(*hv_vp_index),
355 GFP_KERNEL);
356 if (!hv_vp_index)
357 return;
358
359 for (i = 0; i < num_possible_cpus(); i++)
360 hv_vp_index[i] = VP_INVAL;
361
362 hv_vp_assist_page = kcalloc(num_possible_cpus(),
363 sizeof(*hv_vp_assist_page), GFP_KERNEL);
364 if (!hv_vp_assist_page) {
365 ms_hyperv.hints &= ~HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
366 goto free_vp_index;
367 }
368
369 cpuhp = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/hyperv_init:online",
370 hv_cpu_init, hv_cpu_die);
371 if (cpuhp < 0)
372 goto free_vp_assist_page;
373
374 /*
375 * Setup the hypercall page and enable hypercalls.
376 * 1. Register the guest ID
377 * 2. Enable the hypercall and register the hypercall page
378 */
379 guest_id = generate_guest_id(0, LINUX_VERSION_CODE, 0);
380 wrmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
381
382 hv_hypercall_pg = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_RX);
383 if (hv_hypercall_pg == NULL) {
384 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
385 goto remove_cpuhp_state;
386 }
387
388 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
389 hypercall_msr.enable = 1;
390 hypercall_msr.guest_physical_address = vmalloc_to_pfn(hv_hypercall_pg);
391 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
392
393 /*
394 * Ignore any errors in setting up stimer clockevents
395 * as we can run with the LAPIC timer as a fallback.
396 */
397 (void)hv_stimer_alloc();
398
399 hv_apic_init();
400
401 x86_init.pci.arch_init = hv_pci_init;
402
403 register_syscore_ops(&hv_syscore_ops);
404
405 return;
406
407 remove_cpuhp_state:
408 cpuhp_remove_state(cpuhp);
409 free_vp_assist_page:
410 kfree(hv_vp_assist_page);
411 hv_vp_assist_page = NULL;
412 free_vp_index:
413 kfree(hv_vp_index);
414 hv_vp_index = NULL;
415 }
416
417 /*
418 * This routine is called before kexec/kdump, it does the required cleanup.
419 */
420 void hyperv_cleanup(void)
421 {
422 union hv_x64_msr_hypercall_contents hypercall_msr;
423
424 unregister_syscore_ops(&hv_syscore_ops);
425
426 /* Reset our OS id */
427 wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
428
429 /*
430 * Reset hypercall page reference before reset the page,
431 * let hypercall operations fail safely rather than
432 * panic the kernel for using invalid hypercall page
433 */
434 hv_hypercall_pg = NULL;
435
436 /* Reset the hypercall page */
437 hypercall_msr.as_uint64 = 0;
438 wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
439
440 /* Reset the TSC page */
441 hypercall_msr.as_uint64 = 0;
442 wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
443 }
444 EXPORT_SYMBOL_GPL(hyperv_cleanup);
445
446 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die)
447 {
448 static bool panic_reported;
449 u64 guest_id;
450
451 if (in_die && !panic_on_oops)
452 return;
453
454 /*
455 * We prefer to report panic on 'die' chain as we have proper
456 * registers to report, but if we miss it (e.g. on BUG()) we need
457 * to report it on 'panic'.
458 */
459 if (panic_reported)
460 return;
461 panic_reported = true;
462
463 rdmsrl(HV_X64_MSR_GUEST_OS_ID, guest_id);
464
465 wrmsrl(HV_X64_MSR_CRASH_P0, err);
466 wrmsrl(HV_X64_MSR_CRASH_P1, guest_id);
467 wrmsrl(HV_X64_MSR_CRASH_P2, regs->ip);
468 wrmsrl(HV_X64_MSR_CRASH_P3, regs->ax);
469 wrmsrl(HV_X64_MSR_CRASH_P4, regs->sp);
470
471 /*
472 * Let Hyper-V know there is crash data available
473 */
474 wrmsrl(HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_CRASH_NOTIFY);
475 }
476 EXPORT_SYMBOL_GPL(hyperv_report_panic);
477
478 /**
479 * hyperv_report_panic_msg - report panic message to Hyper-V
480 * @pa: physical address of the panic page containing the message
481 * @size: size of the message in the page
482 */
483 void hyperv_report_panic_msg(phys_addr_t pa, size_t size)
484 {
485 /*
486 * P3 to contain the physical address of the panic page & P4 to
487 * contain the size of the panic data in that page. Rest of the
488 * registers are no-op when the NOTIFY_MSG flag is set.
489 */
490 wrmsrl(HV_X64_MSR_CRASH_P0, 0);
491 wrmsrl(HV_X64_MSR_CRASH_P1, 0);
492 wrmsrl(HV_X64_MSR_CRASH_P2, 0);
493 wrmsrl(HV_X64_MSR_CRASH_P3, pa);
494 wrmsrl(HV_X64_MSR_CRASH_P4, size);
495
496 /*
497 * Let Hyper-V know there is crash data available along with
498 * the panic message.
499 */
500 wrmsrl(HV_X64_MSR_CRASH_CTL,
501 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
502 }
503 EXPORT_SYMBOL_GPL(hyperv_report_panic_msg);
504
505 bool hv_is_hyperv_initialized(void)
506 {
507 union hv_x64_msr_hypercall_contents hypercall_msr;
508
509 /*
510 * Ensure that we're really on Hyper-V, and not a KVM or Xen
511 * emulation of Hyper-V
512 */
513 if (x86_hyper_type != X86_HYPER_MS_HYPERV)
514 return false;
515
516 /*
517 * Verify that earlier initialization succeeded by checking
518 * that the hypercall page is setup
519 */
520 hypercall_msr.as_uint64 = 0;
521 rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
522
523 return hypercall_msr.enable;
524 }
525 EXPORT_SYMBOL_GPL(hv_is_hyperv_initialized);
526
527 bool hv_is_hibernation_supported(void)
528 {
529 return acpi_sleep_state_supported(ACPI_STATE_S4);
530 }
531 EXPORT_SYMBOL_GPL(hv_is_hibernation_supported);