]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/include/asm/bitops.h
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / x86 / include / asm / bitops.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_BITOPS_H
3 #define _ASM_X86_BITOPS_H
4
5 /*
6 * Copyright 1992, Linus Torvalds.
7 *
8 * Note: inlines with more than a single statement should be marked
9 * __always_inline to avoid problems with older gcc's inlining heuristics.
10 */
11
12 #ifndef _LINUX_BITOPS_H
13 #error only <linux/bitops.h> can be included directly
14 #endif
15
16 #include <linux/compiler.h>
17 #include <asm/alternative.h>
18 #include <asm/rmwcc.h>
19 #include <asm/barrier.h>
20
21 #if BITS_PER_LONG == 32
22 # define _BITOPS_LONG_SHIFT 5
23 #elif BITS_PER_LONG == 64
24 # define _BITOPS_LONG_SHIFT 6
25 #else
26 # error "Unexpected BITS_PER_LONG"
27 #endif
28
29 #define BIT_64(n) (U64_C(1) << (n))
30
31 /*
32 * These have to be done with inline assembly: that way the bit-setting
33 * is guaranteed to be atomic. All bit operations return 0 if the bit
34 * was cleared before the operation and != 0 if it was not.
35 *
36 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
37 */
38
39 #define RLONG_ADDR(x) "m" (*(volatile long *) (x))
40 #define WBYTE_ADDR(x) "+m" (*(volatile char *) (x))
41
42 #define ADDR RLONG_ADDR(addr)
43
44 /*
45 * We do the locked ops that don't return the old value as
46 * a mask operation on a byte.
47 */
48 #define CONST_MASK_ADDR(nr, addr) WBYTE_ADDR((void *)(addr) + ((nr)>>3))
49 #define CONST_MASK(nr) (1 << ((nr) & 7))
50
51 static __always_inline void
52 arch_set_bit(long nr, volatile unsigned long *addr)
53 {
54 if (__builtin_constant_p(nr)) {
55 asm volatile(LOCK_PREFIX "orb %b1,%0"
56 : CONST_MASK_ADDR(nr, addr)
57 : "iq" (CONST_MASK(nr))
58 : "memory");
59 } else {
60 asm volatile(LOCK_PREFIX __ASM_SIZE(bts) " %1,%0"
61 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
62 }
63 }
64
65 static __always_inline void
66 arch___set_bit(long nr, volatile unsigned long *addr)
67 {
68 asm volatile(__ASM_SIZE(bts) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
69 }
70
71 static __always_inline void
72 arch_clear_bit(long nr, volatile unsigned long *addr)
73 {
74 if (__builtin_constant_p(nr)) {
75 asm volatile(LOCK_PREFIX "andb %b1,%0"
76 : CONST_MASK_ADDR(nr, addr)
77 : "iq" (~CONST_MASK(nr)));
78 } else {
79 asm volatile(LOCK_PREFIX __ASM_SIZE(btr) " %1,%0"
80 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
81 }
82 }
83
84 static __always_inline void
85 arch_clear_bit_unlock(long nr, volatile unsigned long *addr)
86 {
87 barrier();
88 arch_clear_bit(nr, addr);
89 }
90
91 static __always_inline void
92 arch___clear_bit(long nr, volatile unsigned long *addr)
93 {
94 asm volatile(__ASM_SIZE(btr) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
95 }
96
97 static __always_inline bool
98 arch_clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
99 {
100 bool negative;
101 asm volatile(LOCK_PREFIX "andb %2,%1"
102 CC_SET(s)
103 : CC_OUT(s) (negative), WBYTE_ADDR(addr)
104 : "ir" ((char) ~(1 << nr)) : "memory");
105 return negative;
106 }
107 #define arch_clear_bit_unlock_is_negative_byte \
108 arch_clear_bit_unlock_is_negative_byte
109
110 static __always_inline void
111 arch___clear_bit_unlock(long nr, volatile unsigned long *addr)
112 {
113 arch___clear_bit(nr, addr);
114 }
115
116 static __always_inline void
117 arch___change_bit(long nr, volatile unsigned long *addr)
118 {
119 asm volatile(__ASM_SIZE(btc) " %1,%0" : : ADDR, "Ir" (nr) : "memory");
120 }
121
122 static __always_inline void
123 arch_change_bit(long nr, volatile unsigned long *addr)
124 {
125 if (__builtin_constant_p(nr)) {
126 asm volatile(LOCK_PREFIX "xorb %b1,%0"
127 : CONST_MASK_ADDR(nr, addr)
128 : "iq" (CONST_MASK(nr)));
129 } else {
130 asm volatile(LOCK_PREFIX __ASM_SIZE(btc) " %1,%0"
131 : : RLONG_ADDR(addr), "Ir" (nr) : "memory");
132 }
133 }
134
135 static __always_inline bool
136 arch_test_and_set_bit(long nr, volatile unsigned long *addr)
137 {
138 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(bts), *addr, c, "Ir", nr);
139 }
140
141 static __always_inline bool
142 arch_test_and_set_bit_lock(long nr, volatile unsigned long *addr)
143 {
144 return arch_test_and_set_bit(nr, addr);
145 }
146
147 static __always_inline bool
148 arch___test_and_set_bit(long nr, volatile unsigned long *addr)
149 {
150 bool oldbit;
151
152 asm(__ASM_SIZE(bts) " %2,%1"
153 CC_SET(c)
154 : CC_OUT(c) (oldbit)
155 : ADDR, "Ir" (nr) : "memory");
156 return oldbit;
157 }
158
159 static __always_inline bool
160 arch_test_and_clear_bit(long nr, volatile unsigned long *addr)
161 {
162 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btr), *addr, c, "Ir", nr);
163 }
164
165 /*
166 * Note: the operation is performed atomically with respect to
167 * the local CPU, but not other CPUs. Portable code should not
168 * rely on this behaviour.
169 * KVM relies on this behaviour on x86 for modifying memory that is also
170 * accessed from a hypervisor on the same CPU if running in a VM: don't change
171 * this without also updating arch/x86/kernel/kvm.c
172 */
173 static __always_inline bool
174 arch___test_and_clear_bit(long nr, volatile unsigned long *addr)
175 {
176 bool oldbit;
177
178 asm volatile(__ASM_SIZE(btr) " %2,%1"
179 CC_SET(c)
180 : CC_OUT(c) (oldbit)
181 : ADDR, "Ir" (nr) : "memory");
182 return oldbit;
183 }
184
185 static __always_inline bool
186 arch___test_and_change_bit(long nr, volatile unsigned long *addr)
187 {
188 bool oldbit;
189
190 asm volatile(__ASM_SIZE(btc) " %2,%1"
191 CC_SET(c)
192 : CC_OUT(c) (oldbit)
193 : ADDR, "Ir" (nr) : "memory");
194
195 return oldbit;
196 }
197
198 static __always_inline bool
199 arch_test_and_change_bit(long nr, volatile unsigned long *addr)
200 {
201 return GEN_BINARY_RMWcc(LOCK_PREFIX __ASM_SIZE(btc), *addr, c, "Ir", nr);
202 }
203
204 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
205 {
206 return ((1UL << (nr & (BITS_PER_LONG-1))) &
207 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
208 }
209
210 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
211 {
212 bool oldbit;
213
214 asm volatile(__ASM_SIZE(bt) " %2,%1"
215 CC_SET(c)
216 : CC_OUT(c) (oldbit)
217 : "m" (*(unsigned long *)addr), "Ir" (nr) : "memory");
218
219 return oldbit;
220 }
221
222 #define arch_test_bit(nr, addr) \
223 (__builtin_constant_p((nr)) \
224 ? constant_test_bit((nr), (addr)) \
225 : variable_test_bit((nr), (addr)))
226
227 /**
228 * __ffs - find first set bit in word
229 * @word: The word to search
230 *
231 * Undefined if no bit exists, so code should check against 0 first.
232 */
233 static __always_inline unsigned long __ffs(unsigned long word)
234 {
235 asm("rep; bsf %1,%0"
236 : "=r" (word)
237 : "rm" (word));
238 return word;
239 }
240
241 /**
242 * ffz - find first zero bit in word
243 * @word: The word to search
244 *
245 * Undefined if no zero exists, so code should check against ~0UL first.
246 */
247 static __always_inline unsigned long ffz(unsigned long word)
248 {
249 asm("rep; bsf %1,%0"
250 : "=r" (word)
251 : "r" (~word));
252 return word;
253 }
254
255 /*
256 * __fls: find last set bit in word
257 * @word: The word to search
258 *
259 * Undefined if no set bit exists, so code should check against 0 first.
260 */
261 static __always_inline unsigned long __fls(unsigned long word)
262 {
263 asm("bsr %1,%0"
264 : "=r" (word)
265 : "rm" (word));
266 return word;
267 }
268
269 #undef ADDR
270
271 #ifdef __KERNEL__
272 /**
273 * ffs - find first set bit in word
274 * @x: the word to search
275 *
276 * This is defined the same way as the libc and compiler builtin ffs
277 * routines, therefore differs in spirit from the other bitops.
278 *
279 * ffs(value) returns 0 if value is 0 or the position of the first
280 * set bit if value is nonzero. The first (least significant) bit
281 * is at position 1.
282 */
283 static __always_inline int ffs(int x)
284 {
285 int r;
286
287 #ifdef CONFIG_X86_64
288 /*
289 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
290 * dest reg is undefined if x==0, but their CPU architect says its
291 * value is written to set it to the same as before, except that the
292 * top 32 bits will be cleared.
293 *
294 * We cannot do this on 32 bits because at the very least some
295 * 486 CPUs did not behave this way.
296 */
297 asm("bsfl %1,%0"
298 : "=r" (r)
299 : "rm" (x), "0" (-1));
300 #elif defined(CONFIG_X86_CMOV)
301 asm("bsfl %1,%0\n\t"
302 "cmovzl %2,%0"
303 : "=&r" (r) : "rm" (x), "r" (-1));
304 #else
305 asm("bsfl %1,%0\n\t"
306 "jnz 1f\n\t"
307 "movl $-1,%0\n"
308 "1:" : "=r" (r) : "rm" (x));
309 #endif
310 return r + 1;
311 }
312
313 /**
314 * fls - find last set bit in word
315 * @x: the word to search
316 *
317 * This is defined in a similar way as the libc and compiler builtin
318 * ffs, but returns the position of the most significant set bit.
319 *
320 * fls(value) returns 0 if value is 0 or the position of the last
321 * set bit if value is nonzero. The last (most significant) bit is
322 * at position 32.
323 */
324 static __always_inline int fls(unsigned int x)
325 {
326 int r;
327
328 #ifdef CONFIG_X86_64
329 /*
330 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
331 * dest reg is undefined if x==0, but their CPU architect says its
332 * value is written to set it to the same as before, except that the
333 * top 32 bits will be cleared.
334 *
335 * We cannot do this on 32 bits because at the very least some
336 * 486 CPUs did not behave this way.
337 */
338 asm("bsrl %1,%0"
339 : "=r" (r)
340 : "rm" (x), "0" (-1));
341 #elif defined(CONFIG_X86_CMOV)
342 asm("bsrl %1,%0\n\t"
343 "cmovzl %2,%0"
344 : "=&r" (r) : "rm" (x), "rm" (-1));
345 #else
346 asm("bsrl %1,%0\n\t"
347 "jnz 1f\n\t"
348 "movl $-1,%0\n"
349 "1:" : "=r" (r) : "rm" (x));
350 #endif
351 return r + 1;
352 }
353
354 /**
355 * fls64 - find last set bit in a 64-bit word
356 * @x: the word to search
357 *
358 * This is defined in a similar way as the libc and compiler builtin
359 * ffsll, but returns the position of the most significant set bit.
360 *
361 * fls64(value) returns 0 if value is 0 or the position of the last
362 * set bit if value is nonzero. The last (most significant) bit is
363 * at position 64.
364 */
365 #ifdef CONFIG_X86_64
366 static __always_inline int fls64(__u64 x)
367 {
368 int bitpos = -1;
369 /*
370 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
371 * dest reg is undefined if x==0, but their CPU architect says its
372 * value is written to set it to the same as before.
373 */
374 asm("bsrq %1,%q0"
375 : "+r" (bitpos)
376 : "rm" (x));
377 return bitpos + 1;
378 }
379 #else
380 #include <asm-generic/bitops/fls64.h>
381 #endif
382
383 #include <asm-generic/bitops/find.h>
384
385 #include <asm-generic/bitops/sched.h>
386
387 #include <asm/arch_hweight.h>
388
389 #include <asm-generic/bitops/const_hweight.h>
390
391 #include <asm-generic/bitops/instrumented-atomic.h>
392 #include <asm-generic/bitops/instrumented-non-atomic.h>
393 #include <asm-generic/bitops/instrumented-lock.h>
394
395 #include <asm-generic/bitops/le.h>
396
397 #include <asm-generic/bitops/ext2-atomic-setbit.h>
398
399 #endif /* __KERNEL__ */
400 #endif /* _ASM_X86_BITOPS_H */