]> git.ipfire.org Git - thirdparty/kernel/linux.git/blob - arch/x86/include/asm/mshyperv.h
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[thirdparty/kernel/linux.git] / arch / x86 / include / asm / mshyperv.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv.h>
10
11 /*
12 * The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
13 * is set by CPUID(HVCPUID_VERSION_FEATURES).
14 */
15 enum hv_cpuid_function {
16 HVCPUID_VERSION_FEATURES = 0x00000001,
17 HVCPUID_VENDOR_MAXFUNCTION = 0x40000000,
18 HVCPUID_INTERFACE = 0x40000001,
19
20 /*
21 * The remaining functions depend on the value of
22 * HVCPUID_INTERFACE
23 */
24 HVCPUID_VERSION = 0x40000002,
25 HVCPUID_FEATURES = 0x40000003,
26 HVCPUID_ENLIGHTENMENT_INFO = 0x40000004,
27 HVCPUID_IMPLEMENTATION_LIMITS = 0x40000005,
28 };
29
30 struct ms_hyperv_info {
31 u32 features;
32 u32 misc_features;
33 u32 hints;
34 u32 max_vp_index;
35 u32 max_lp_index;
36 };
37
38 extern struct ms_hyperv_info ms_hyperv;
39
40 /*
41 * Declare the MSR used to setup pages used to communicate with the hypervisor.
42 */
43 union hv_x64_msr_hypercall_contents {
44 u64 as_uint64;
45 struct {
46 u64 enable:1;
47 u64 reserved:11;
48 u64 guest_physical_address:52;
49 };
50 };
51
52 /*
53 * TSC page layout.
54 */
55
56 struct ms_hyperv_tsc_page {
57 volatile u32 tsc_sequence;
58 u32 reserved1;
59 volatile u64 tsc_scale;
60 volatile s64 tsc_offset;
61 u64 reserved2[509];
62 };
63
64 /*
65 * The guest OS needs to register the guest ID with the hypervisor.
66 * The guest ID is a 64 bit entity and the structure of this ID is
67 * specified in the Hyper-V specification:
68 *
69 * msdn.microsoft.com/en-us/library/windows/hardware/ff542653%28v=vs.85%29.aspx
70 *
71 * While the current guideline does not specify how Linux guest ID(s)
72 * need to be generated, our plan is to publish the guidelines for
73 * Linux and other guest operating systems that currently are hosted
74 * on Hyper-V. The implementation here conforms to this yet
75 * unpublished guidelines.
76 *
77 *
78 * Bit(s)
79 * 63 - Indicates if the OS is Open Source or not; 1 is Open Source
80 * 62:56 - Os Type; Linux is 0x100
81 * 55:48 - Distro specific identification
82 * 47:16 - Linux kernel version number
83 * 15:0 - Distro specific identification
84 *
85 *
86 */
87
88 #define HV_LINUX_VENDOR_ID 0x8100
89
90 /*
91 * Generate the guest ID based on the guideline described above.
92 */
93
94 static inline __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
95 __u64 d_info2)
96 {
97 __u64 guest_id = 0;
98
99 guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
100 guest_id |= (d_info1 << 48);
101 guest_id |= (kernel_version << 16);
102 guest_id |= d_info2;
103
104 return guest_id;
105 }
106
107
108 /* Free the message slot and signal end-of-message if required */
109 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
110 {
111 /*
112 * On crash we're reading some other CPU's message page and we need
113 * to be careful: this other CPU may already had cleared the header
114 * and the host may already had delivered some other message there.
115 * In case we blindly write msg->header.message_type we're going
116 * to lose it. We can still lose a message of the same type but
117 * we count on the fact that there can only be one
118 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
119 * on crash.
120 */
121 if (cmpxchg(&msg->header.message_type, old_msg_type,
122 HVMSG_NONE) != old_msg_type)
123 return;
124
125 /*
126 * Make sure the write to MessageType (ie set to
127 * HVMSG_NONE) happens before we read the
128 * MessagePending and EOMing. Otherwise, the EOMing
129 * will not deliver any more messages since there is
130 * no empty slot
131 */
132 mb();
133
134 if (msg->header.message_flags.msg_pending) {
135 /*
136 * This will cause message queue rescan to
137 * possibly deliver another msg from the
138 * hypervisor
139 */
140 wrmsrl(HV_X64_MSR_EOM, 0);
141 }
142 }
143
144 #define hv_init_timer(timer, tick) wrmsrl(timer, tick)
145 #define hv_init_timer_config(config, val) wrmsrl(config, val)
146
147 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
148 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
149
150 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
151 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
152
153 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
154 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
155
156 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
157
158 #define hv_get_synint_state(int_num, val) rdmsrl(int_num, val)
159 #define hv_set_synint_state(int_num, val) wrmsrl(int_num, val)
160
161 void hyperv_callback_vector(void);
162 #ifdef CONFIG_TRACING
163 #define trace_hyperv_callback_vector hyperv_callback_vector
164 #endif
165 void hyperv_vector_handler(struct pt_regs *regs);
166 void hv_setup_vmbus_irq(void (*handler)(void));
167 void hv_remove_vmbus_irq(void);
168
169 void hv_setup_kexec_handler(void (*handler)(void));
170 void hv_remove_kexec_handler(void);
171 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
172 void hv_remove_crash_handler(void);
173
174 #if IS_ENABLED(CONFIG_HYPERV)
175 extern struct clocksource *hyperv_cs;
176 extern void *hv_hypercall_pg;
177
178 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
179 {
180 u64 input_address = input ? virt_to_phys(input) : 0;
181 u64 output_address = output ? virt_to_phys(output) : 0;
182 u64 hv_status;
183
184 #ifdef CONFIG_X86_64
185 if (!hv_hypercall_pg)
186 return U64_MAX;
187
188 __asm__ __volatile__("mov %4, %%r8\n"
189 "call *%5"
190 : "=a" (hv_status), ASM_CALL_CONSTRAINT,
191 "+c" (control), "+d" (input_address)
192 : "r" (output_address), "m" (hv_hypercall_pg)
193 : "cc", "memory", "r8", "r9", "r10", "r11");
194 #else
195 u32 input_address_hi = upper_32_bits(input_address);
196 u32 input_address_lo = lower_32_bits(input_address);
197 u32 output_address_hi = upper_32_bits(output_address);
198 u32 output_address_lo = lower_32_bits(output_address);
199
200 if (!hv_hypercall_pg)
201 return U64_MAX;
202
203 __asm__ __volatile__("call *%7"
204 : "=A" (hv_status),
205 "+c" (input_address_lo), ASM_CALL_CONSTRAINT
206 : "A" (control),
207 "b" (input_address_hi),
208 "D"(output_address_hi), "S"(output_address_lo),
209 "m" (hv_hypercall_pg)
210 : "cc", "memory");
211 #endif /* !x86_64 */
212 return hv_status;
213 }
214
215 #define HV_HYPERCALL_RESULT_MASK GENMASK_ULL(15, 0)
216 #define HV_HYPERCALL_FAST_BIT BIT(16)
217 #define HV_HYPERCALL_VARHEAD_OFFSET 17
218 #define HV_HYPERCALL_REP_COMP_OFFSET 32
219 #define HV_HYPERCALL_REP_COMP_MASK GENMASK_ULL(43, 32)
220 #define HV_HYPERCALL_REP_START_OFFSET 48
221 #define HV_HYPERCALL_REP_START_MASK GENMASK_ULL(59, 48)
222
223 /* Fast hypercall with 8 bytes of input and no output */
224 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
225 {
226 u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
227
228 #ifdef CONFIG_X86_64
229 {
230 __asm__ __volatile__("call *%4"
231 : "=a" (hv_status), ASM_CALL_CONSTRAINT,
232 "+c" (control), "+d" (input1)
233 : "m" (hv_hypercall_pg)
234 : "cc", "r8", "r9", "r10", "r11");
235 }
236 #else
237 {
238 u32 input1_hi = upper_32_bits(input1);
239 u32 input1_lo = lower_32_bits(input1);
240
241 __asm__ __volatile__ ("call *%5"
242 : "=A"(hv_status),
243 "+c"(input1_lo),
244 ASM_CALL_CONSTRAINT
245 : "A" (control),
246 "b" (input1_hi),
247 "m" (hv_hypercall_pg)
248 : "cc", "edi", "esi");
249 }
250 #endif
251 return hv_status;
252 }
253
254 /*
255 * Rep hypercalls. Callers of this functions are supposed to ensure that
256 * rep_count and varhead_size comply with Hyper-V hypercall definition.
257 */
258 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
259 void *input, void *output)
260 {
261 u64 control = code;
262 u64 status;
263 u16 rep_comp;
264
265 control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
266 control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
267
268 do {
269 status = hv_do_hypercall(control, input, output);
270 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
271 return status;
272
273 /* Bits 32-43 of status have 'Reps completed' data. */
274 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
275 HV_HYPERCALL_REP_COMP_OFFSET;
276
277 control &= ~HV_HYPERCALL_REP_START_MASK;
278 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
279
280 touch_nmi_watchdog();
281 } while (rep_comp < rep_count);
282
283 return status;
284 }
285
286 /*
287 * Hypervisor's notion of virtual processor ID is different from
288 * Linux' notion of CPU ID. This information can only be retrieved
289 * in the context of the calling CPU. Setup a map for easy access
290 * to this information.
291 */
292 extern u32 *hv_vp_index;
293 extern u32 hv_max_vp_index;
294
295 /**
296 * hv_cpu_number_to_vp_number() - Map CPU to VP.
297 * @cpu_number: CPU number in Linux terms
298 *
299 * This function returns the mapping between the Linux processor
300 * number and the hypervisor's virtual processor number, useful
301 * in making hypercalls and such that talk about specific
302 * processors.
303 *
304 * Return: Virtual processor number in Hyper-V terms
305 */
306 static inline int hv_cpu_number_to_vp_number(int cpu_number)
307 {
308 return hv_vp_index[cpu_number];
309 }
310
311 void hyperv_init(void);
312 void hyperv_setup_mmu_ops(void);
313 void hyper_alloc_mmu(void);
314 void hyperv_report_panic(struct pt_regs *regs);
315 bool hv_is_hypercall_page_setup(void);
316 void hyperv_cleanup(void);
317 #else /* CONFIG_HYPERV */
318 static inline void hyperv_init(void) {}
319 static inline bool hv_is_hypercall_page_setup(void) { return false; }
320 static inline void hyperv_cleanup(void) {}
321 static inline void hyperv_setup_mmu_ops(void) {}
322 #endif /* CONFIG_HYPERV */
323
324 #ifdef CONFIG_HYPERV_TSCPAGE
325 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
326 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
327 {
328 u64 scale, offset, cur_tsc;
329 u32 sequence;
330
331 /*
332 * The protocol for reading Hyper-V TSC page is specified in Hypervisor
333 * Top-Level Functional Specification ver. 3.0 and above. To get the
334 * reference time we must do the following:
335 * - READ ReferenceTscSequence
336 * A special '0' value indicates the time source is unreliable and we
337 * need to use something else. The currently published specification
338 * versions (up to 4.0b) contain a mistake and wrongly claim '-1'
339 * instead of '0' as the special value, see commit c35b82ef0294.
340 * - ReferenceTime =
341 * ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
342 * - READ ReferenceTscSequence again. In case its value has changed
343 * since our first reading we need to discard ReferenceTime and repeat
344 * the whole sequence as the hypervisor was updating the page in
345 * between.
346 */
347 do {
348 sequence = READ_ONCE(tsc_pg->tsc_sequence);
349 if (!sequence)
350 return U64_MAX;
351 /*
352 * Make sure we read sequence before we read other values from
353 * TSC page.
354 */
355 smp_rmb();
356
357 scale = READ_ONCE(tsc_pg->tsc_scale);
358 offset = READ_ONCE(tsc_pg->tsc_offset);
359 cur_tsc = rdtsc_ordered();
360
361 /*
362 * Make sure we read sequence after we read all other values
363 * from TSC page.
364 */
365 smp_rmb();
366
367 } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
368
369 return mul_u64_u64_shr(cur_tsc, scale, 64) + offset;
370 }
371
372 #else
373 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
374 {
375 return NULL;
376 }
377 #endif
378 #endif