]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/include/asm/processor.h
267a8da7c694f36b264f94b6428f082e6f9436c1
[thirdparty/kernel/stable.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct vm86;
11
12 #include <asm/math_emu.h>
13 #include <asm/segment.h>
14 #include <asm/types.h>
15 #include <uapi/asm/sigcontext.h>
16 #include <asm/current.h>
17 #include <asm/cpufeatures.h>
18 #include <asm/page.h>
19 #include <asm/pgtable_types.h>
20 #include <asm/percpu.h>
21 #include <asm/msr.h>
22 #include <asm/desc_defs.h>
23 #include <asm/nops.h>
24 #include <asm/special_insns.h>
25 #include <asm/fpu/types.h>
26 #include <asm/unwind_hints.h>
27
28 #include <linux/personality.h>
29 #include <linux/cache.h>
30 #include <linux/threads.h>
31 #include <linux/math64.h>
32 #include <linux/err.h>
33 #include <linux/irqflags.h>
34 #include <linux/mem_encrypt.h>
35
36 /*
37 * We handle most unaligned accesses in hardware. On the other hand
38 * unaligned DMA can be quite expensive on some Nehalem processors.
39 *
40 * Based on this we disable the IP header alignment in network drivers.
41 */
42 #define NET_IP_ALIGN 0
43
44 #define HBP_NUM 4
45 /*
46 * Default implementation of macro that returns current
47 * instruction pointer ("program counter").
48 */
49 static inline void *current_text_addr(void)
50 {
51 void *pc;
52
53 asm volatile("mov $1f, %0; 1:":"=r" (pc));
54
55 return pc;
56 }
57
58 /*
59 * These alignment constraints are for performance in the vSMP case,
60 * but in the task_struct case we must also meet hardware imposed
61 * alignment requirements of the FPU state:
62 */
63 #ifdef CONFIG_X86_VSMP
64 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
65 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
66 #else
67 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
68 # define ARCH_MIN_MMSTRUCT_ALIGN 0
69 #endif
70
71 enum tlb_infos {
72 ENTRIES,
73 NR_INFO
74 };
75
76 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
77 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
78 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
79 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
80 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
81 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
82 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
83
84 /*
85 * CPU type and hardware bug flags. Kept separately for each CPU.
86 * Members of this structure are referenced in head_32.S, so think twice
87 * before touching them. [mj]
88 */
89
90 struct cpuinfo_x86 {
91 __u8 x86; /* CPU family */
92 __u8 x86_vendor; /* CPU vendor */
93 __u8 x86_model;
94 __u8 x86_stepping;
95 #ifdef CONFIG_X86_64
96 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
97 int x86_tlbsize;
98 #endif
99 __u8 x86_virt_bits;
100 __u8 x86_phys_bits;
101 /* CPUID returned core id bits: */
102 __u8 x86_coreid_bits;
103 __u8 cu_id;
104 /* Max extended CPUID function supported: */
105 __u32 extended_cpuid_level;
106 /* Maximum supported CPUID level, -1=no CPUID: */
107 int cpuid_level;
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 char x86_vendor_id[16];
110 char x86_model_id[64];
111 /* in KB - valid for CPUS which support this call: */
112 unsigned int x86_cache_size;
113 int x86_cache_alignment; /* In bytes */
114 /* Cache QoS architectural values: */
115 int x86_cache_max_rmid; /* max index */
116 int x86_cache_occ_scale; /* scale to bytes */
117 int x86_power;
118 unsigned long loops_per_jiffy;
119 /* cpuid returned max cores value: */
120 u16 x86_max_cores;
121 u16 apicid;
122 u16 initial_apicid;
123 u16 x86_clflush_size;
124 /* number of cores as seen by the OS: */
125 u16 booted_cores;
126 /* Physical processor id: */
127 u16 phys_proc_id;
128 /* Logical processor id: */
129 u16 logical_proc_id;
130 /* Core id: */
131 u16 cpu_core_id;
132 /* Index into per_cpu list: */
133 u16 cpu_index;
134 u32 microcode;
135 } __randomize_layout;
136
137 struct cpuid_regs {
138 u32 eax, ebx, ecx, edx;
139 };
140
141 enum cpuid_regs_idx {
142 CPUID_EAX = 0,
143 CPUID_EBX,
144 CPUID_ECX,
145 CPUID_EDX,
146 };
147
148 #define X86_VENDOR_INTEL 0
149 #define X86_VENDOR_CYRIX 1
150 #define X86_VENDOR_AMD 2
151 #define X86_VENDOR_UMC 3
152 #define X86_VENDOR_CENTAUR 5
153 #define X86_VENDOR_TRANSMETA 7
154 #define X86_VENDOR_NSC 8
155 #define X86_VENDOR_NUM 9
156
157 #define X86_VENDOR_UNKNOWN 0xff
158
159 /*
160 * capabilities of CPUs
161 */
162 extern struct cpuinfo_x86 boot_cpu_data;
163 extern struct cpuinfo_x86 new_cpu_data;
164
165 extern struct x86_hw_tss doublefault_tss;
166 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
167 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
168
169 #ifdef CONFIG_SMP
170 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
171 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
172 #else
173 #define cpu_info boot_cpu_data
174 #define cpu_data(cpu) boot_cpu_data
175 #endif
176
177 extern const struct seq_operations cpuinfo_op;
178
179 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
180
181 extern void cpu_detect(struct cpuinfo_x86 *c);
182
183 static inline unsigned long l1tf_pfn_limit(void)
184 {
185 return BIT(boot_cpu_data.x86_phys_bits - 1 - PAGE_SHIFT) - 1;
186 }
187
188 extern void early_cpu_init(void);
189 extern void identify_boot_cpu(void);
190 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
191 extern void print_cpu_info(struct cpuinfo_x86 *);
192 void print_cpu_msr(struct cpuinfo_x86 *);
193 extern void init_scattered_cpuid_features(struct cpuinfo_x86 *c);
194 extern u32 get_scattered_cpuid_leaf(unsigned int level,
195 unsigned int sub_leaf,
196 enum cpuid_regs_idx reg);
197 extern unsigned int init_intel_cacheinfo(struct cpuinfo_x86 *c);
198 extern void init_amd_cacheinfo(struct cpuinfo_x86 *c);
199
200 extern void detect_extended_topology(struct cpuinfo_x86 *c);
201 extern void detect_ht(struct cpuinfo_x86 *c);
202
203 #ifdef CONFIG_X86_32
204 extern int have_cpuid_p(void);
205 #else
206 static inline int have_cpuid_p(void)
207 {
208 return 1;
209 }
210 #endif
211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213 {
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222 }
223
224 #define native_cpuid_reg(reg) \
225 static inline unsigned int native_cpuid_##reg(unsigned int op) \
226 { \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232 }
233
234 /*
235 * Native CPUID functions returning a single datum.
236 */
237 native_cpuid_reg(eax)
238 native_cpuid_reg(ebx)
239 native_cpuid_reg(ecx)
240 native_cpuid_reg(edx)
241
242 /*
243 * Friendlier CR3 helpers.
244 */
245 static inline unsigned long read_cr3_pa(void)
246 {
247 return __read_cr3() & CR3_ADDR_MASK;
248 }
249
250 static inline unsigned long native_read_cr3_pa(void)
251 {
252 return __native_read_cr3() & CR3_ADDR_MASK;
253 }
254
255 static inline void load_cr3(pgd_t *pgdir)
256 {
257 write_cr3(__sme_pa(pgdir));
258 }
259
260 /*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265 #ifdef CONFIG_X86_32
266 /* This is the TSS defined by the hardware. */
267 struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312 } __attribute__((packed));
313 #else
314 struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317
318 /*
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 */
322 u64 sp1;
323
324 u64 sp2;
325 u64 reserved2;
326 u64 ist[7];
327 u32 reserved3;
328 u32 reserved4;
329 u16 reserved5;
330 u16 io_bitmap_base;
331
332 } __attribute__((packed));
333 #endif
334
335 /*
336 * IO-bitmap sizes:
337 */
338 #define IO_BITMAP_BITS 65536
339 #define IO_BITMAP_BYTES (IO_BITMAP_BITS/8)
340 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES/sizeof(long))
341 #define IO_BITMAP_OFFSET (offsetof(struct tss_struct, io_bitmap) - offsetof(struct tss_struct, x86_tss))
342 #define INVALID_IO_BITMAP_OFFSET 0x8000
343
344 struct entry_stack {
345 unsigned long words[64];
346 };
347
348 struct entry_stack_page {
349 struct entry_stack stack;
350 } __aligned(PAGE_SIZE);
351
352 struct tss_struct {
353 /*
354 * The fixed hardware portion. This must not cross a page boundary
355 * at risk of violating the SDM's advice and potentially triggering
356 * errata.
357 */
358 struct x86_hw_tss x86_tss;
359
360 /*
361 * The extra 1 is there because the CPU will access an
362 * additional byte beyond the end of the IO permission
363 * bitmap. The extra byte must be all 1 bits, and must
364 * be within the limit.
365 */
366 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
367 } __aligned(PAGE_SIZE);
368
369 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
370
371 /*
372 * sizeof(unsigned long) coming from an extra "long" at the end
373 * of the iobitmap.
374 *
375 * -1? seg base+limit should be pointing to the address of the
376 * last valid byte
377 */
378 #define __KERNEL_TSS_LIMIT \
379 (IO_BITMAP_OFFSET + IO_BITMAP_BYTES + sizeof(unsigned long) - 1)
380
381 #ifdef CONFIG_X86_32
382 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
383 #else
384 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
385 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
386 #endif
387
388 /*
389 * Save the original ist values for checking stack pointers during debugging
390 */
391 struct orig_ist {
392 unsigned long ist[7];
393 };
394
395 #ifdef CONFIG_X86_64
396 DECLARE_PER_CPU(struct orig_ist, orig_ist);
397
398 union irq_stack_union {
399 char irq_stack[IRQ_STACK_SIZE];
400 /*
401 * GCC hardcodes the stack canary as %gs:40. Since the
402 * irq_stack is the object at %gs:0, we reserve the bottom
403 * 48 bytes of the irq stack for the canary.
404 */
405 struct {
406 char gs_base[40];
407 unsigned long stack_canary;
408 };
409 };
410
411 DECLARE_PER_CPU_FIRST(union irq_stack_union, irq_stack_union) __visible;
412 DECLARE_INIT_PER_CPU(irq_stack_union);
413
414 DECLARE_PER_CPU(char *, irq_stack_ptr);
415 DECLARE_PER_CPU(unsigned int, irq_count);
416 extern asmlinkage void ignore_sysret(void);
417 #else /* X86_64 */
418 #ifdef CONFIG_CC_STACKPROTECTOR
419 /*
420 * Make sure stack canary segment base is cached-aligned:
421 * "For Intel Atom processors, avoid non zero segment base address
422 * that is not aligned to cache line boundary at all cost."
423 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
424 */
425 struct stack_canary {
426 char __pad[20]; /* canary at %gs:20 */
427 unsigned long canary;
428 };
429 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
430 #endif
431 /*
432 * per-CPU IRQ handling stacks
433 */
434 struct irq_stack {
435 u32 stack[THREAD_SIZE/sizeof(u32)];
436 } __aligned(THREAD_SIZE);
437
438 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack);
439 DECLARE_PER_CPU(struct irq_stack *, softirq_stack);
440 #endif /* X86_64 */
441
442 extern unsigned int fpu_kernel_xstate_size;
443 extern unsigned int fpu_user_xstate_size;
444
445 struct perf_event;
446
447 typedef struct {
448 unsigned long seg;
449 } mm_segment_t;
450
451 struct thread_struct {
452 /* Cached TLS descriptors: */
453 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
454 #ifdef CONFIG_X86_32
455 unsigned long sp0;
456 #endif
457 unsigned long sp;
458 #ifdef CONFIG_X86_32
459 unsigned long sysenter_cs;
460 #else
461 unsigned short es;
462 unsigned short ds;
463 unsigned short fsindex;
464 unsigned short gsindex;
465 #endif
466
467 #ifdef CONFIG_X86_64
468 unsigned long fsbase;
469 unsigned long gsbase;
470 #else
471 /*
472 * XXX: this could presumably be unsigned short. Alternatively,
473 * 32-bit kernels could be taught to use fsindex instead.
474 */
475 unsigned long fs;
476 unsigned long gs;
477 #endif
478
479 /* Save middle states of ptrace breakpoints */
480 struct perf_event *ptrace_bps[HBP_NUM];
481 /* Debug status used for traps, single steps, etc... */
482 unsigned long debugreg6;
483 /* Keep track of the exact dr7 value set by the user */
484 unsigned long ptrace_dr7;
485 /* Fault info: */
486 unsigned long cr2;
487 unsigned long trap_nr;
488 unsigned long error_code;
489 #ifdef CONFIG_VM86
490 /* Virtual 86 mode info */
491 struct vm86 *vm86;
492 #endif
493 /* IO permissions: */
494 unsigned long *io_bitmap_ptr;
495 unsigned long iopl;
496 /* Max allowed port in the bitmap, in bytes: */
497 unsigned io_bitmap_max;
498
499 mm_segment_t addr_limit;
500
501 unsigned int sig_on_uaccess_err:1;
502 unsigned int uaccess_err:1; /* uaccess failed */
503
504 /* Floating point and extended processor state */
505 struct fpu fpu;
506 /*
507 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
508 * the end.
509 */
510 };
511
512 /*
513 * Thread-synchronous status.
514 *
515 * This is different from the flags in that nobody else
516 * ever touches our thread-synchronous status, so we don't
517 * have to worry about atomic accesses.
518 */
519 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
520
521 /*
522 * Set IOPL bits in EFLAGS from given mask
523 */
524 static inline void native_set_iopl_mask(unsigned mask)
525 {
526 #ifdef CONFIG_X86_32
527 unsigned int reg;
528
529 asm volatile ("pushfl;"
530 "popl %0;"
531 "andl %1, %0;"
532 "orl %2, %0;"
533 "pushl %0;"
534 "popfl"
535 : "=&r" (reg)
536 : "i" (~X86_EFLAGS_IOPL), "r" (mask));
537 #endif
538 }
539
540 static inline void
541 native_load_sp0(unsigned long sp0)
542 {
543 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
544 }
545
546 static inline void native_swapgs(void)
547 {
548 #ifdef CONFIG_X86_64
549 asm volatile("swapgs" ::: "memory");
550 #endif
551 }
552
553 static inline unsigned long current_top_of_stack(void)
554 {
555 /*
556 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
557 * and around vm86 mode and sp0 on x86_64 is special because of the
558 * entry trampoline.
559 */
560 return this_cpu_read_stable(cpu_current_top_of_stack);
561 }
562
563 static inline bool on_thread_stack(void)
564 {
565 return (unsigned long)(current_top_of_stack() -
566 current_stack_pointer) < THREAD_SIZE;
567 }
568
569 #ifdef CONFIG_PARAVIRT
570 #include <asm/paravirt.h>
571 #else
572 #define __cpuid native_cpuid
573
574 static inline void load_sp0(unsigned long sp0)
575 {
576 native_load_sp0(sp0);
577 }
578
579 #define set_iopl_mask native_set_iopl_mask
580 #endif /* CONFIG_PARAVIRT */
581
582 /* Free all resources held by a thread. */
583 extern void release_thread(struct task_struct *);
584
585 unsigned long get_wchan(struct task_struct *p);
586
587 /*
588 * Generic CPUID function
589 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
590 * resulting in stale register contents being returned.
591 */
592 static inline void cpuid(unsigned int op,
593 unsigned int *eax, unsigned int *ebx,
594 unsigned int *ecx, unsigned int *edx)
595 {
596 *eax = op;
597 *ecx = 0;
598 __cpuid(eax, ebx, ecx, edx);
599 }
600
601 /* Some CPUID calls want 'count' to be placed in ecx */
602 static inline void cpuid_count(unsigned int op, int count,
603 unsigned int *eax, unsigned int *ebx,
604 unsigned int *ecx, unsigned int *edx)
605 {
606 *eax = op;
607 *ecx = count;
608 __cpuid(eax, ebx, ecx, edx);
609 }
610
611 /*
612 * CPUID functions returning a single datum
613 */
614 static inline unsigned int cpuid_eax(unsigned int op)
615 {
616 unsigned int eax, ebx, ecx, edx;
617
618 cpuid(op, &eax, &ebx, &ecx, &edx);
619
620 return eax;
621 }
622
623 static inline unsigned int cpuid_ebx(unsigned int op)
624 {
625 unsigned int eax, ebx, ecx, edx;
626
627 cpuid(op, &eax, &ebx, &ecx, &edx);
628
629 return ebx;
630 }
631
632 static inline unsigned int cpuid_ecx(unsigned int op)
633 {
634 unsigned int eax, ebx, ecx, edx;
635
636 cpuid(op, &eax, &ebx, &ecx, &edx);
637
638 return ecx;
639 }
640
641 static inline unsigned int cpuid_edx(unsigned int op)
642 {
643 unsigned int eax, ebx, ecx, edx;
644
645 cpuid(op, &eax, &ebx, &ecx, &edx);
646
647 return edx;
648 }
649
650 /* REP NOP (PAUSE) is a good thing to insert into busy-wait loops. */
651 static __always_inline void rep_nop(void)
652 {
653 asm volatile("rep; nop" ::: "memory");
654 }
655
656 static __always_inline void cpu_relax(void)
657 {
658 rep_nop();
659 }
660
661 /*
662 * This function forces the icache and prefetched instruction stream to
663 * catch up with reality in two very specific cases:
664 *
665 * a) Text was modified using one virtual address and is about to be executed
666 * from the same physical page at a different virtual address.
667 *
668 * b) Text was modified on a different CPU, may subsequently be
669 * executed on this CPU, and you want to make sure the new version
670 * gets executed. This generally means you're calling this in a IPI.
671 *
672 * If you're calling this for a different reason, you're probably doing
673 * it wrong.
674 */
675 static inline void sync_core(void)
676 {
677 /*
678 * There are quite a few ways to do this. IRET-to-self is nice
679 * because it works on every CPU, at any CPL (so it's compatible
680 * with paravirtualization), and it never exits to a hypervisor.
681 * The only down sides are that it's a bit slow (it seems to be
682 * a bit more than 2x slower than the fastest options) and that
683 * it unmasks NMIs. The "push %cs" is needed because, in
684 * paravirtual environments, __KERNEL_CS may not be a valid CS
685 * value when we do IRET directly.
686 *
687 * In case NMI unmasking or performance ever becomes a problem,
688 * the next best option appears to be MOV-to-CR2 and an
689 * unconditional jump. That sequence also works on all CPUs,
690 * but it will fault at CPL3 (i.e. Xen PV).
691 *
692 * CPUID is the conventional way, but it's nasty: it doesn't
693 * exist on some 486-like CPUs, and it usually exits to a
694 * hypervisor.
695 *
696 * Like all of Linux's memory ordering operations, this is a
697 * compiler barrier as well.
698 */
699 #ifdef CONFIG_X86_32
700 asm volatile (
701 "pushfl\n\t"
702 "pushl %%cs\n\t"
703 "pushl $1f\n\t"
704 "iret\n\t"
705 "1:"
706 : ASM_CALL_CONSTRAINT : : "memory");
707 #else
708 unsigned int tmp;
709
710 asm volatile (
711 UNWIND_HINT_SAVE
712 "mov %%ss, %0\n\t"
713 "pushq %q0\n\t"
714 "pushq %%rsp\n\t"
715 "addq $8, (%%rsp)\n\t"
716 "pushfq\n\t"
717 "mov %%cs, %0\n\t"
718 "pushq %q0\n\t"
719 "pushq $1f\n\t"
720 "iretq\n\t"
721 UNWIND_HINT_RESTORE
722 "1:"
723 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
724 #endif
725 }
726
727 extern void select_idle_routine(const struct cpuinfo_x86 *c);
728 extern void amd_e400_c1e_apic_setup(void);
729
730 extern unsigned long boot_option_idle_override;
731
732 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
733 IDLE_POLL};
734
735 extern void enable_sep_cpu(void);
736 extern int sysenter_setup(void);
737
738 extern void early_trap_init(void);
739 void early_trap_pf_init(void);
740
741 /* Defined in head.S */
742 extern struct desc_ptr early_gdt_descr;
743
744 extern void cpu_set_gdt(int);
745 extern void switch_to_new_gdt(int);
746 extern void load_direct_gdt(int);
747 extern void load_fixmap_gdt(int);
748 extern void load_percpu_segment(int);
749 extern void cpu_init(void);
750
751 static inline unsigned long get_debugctlmsr(void)
752 {
753 unsigned long debugctlmsr = 0;
754
755 #ifndef CONFIG_X86_DEBUGCTLMSR
756 if (boot_cpu_data.x86 < 6)
757 return 0;
758 #endif
759 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
760
761 return debugctlmsr;
762 }
763
764 static inline void update_debugctlmsr(unsigned long debugctlmsr)
765 {
766 #ifndef CONFIG_X86_DEBUGCTLMSR
767 if (boot_cpu_data.x86 < 6)
768 return;
769 #endif
770 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
771 }
772
773 extern void set_task_blockstep(struct task_struct *task, bool on);
774
775 /* Boot loader type from the setup header: */
776 extern int bootloader_type;
777 extern int bootloader_version;
778
779 extern char ignore_fpu_irq;
780
781 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
782 #define ARCH_HAS_PREFETCHW
783 #define ARCH_HAS_SPINLOCK_PREFETCH
784
785 #ifdef CONFIG_X86_32
786 # define BASE_PREFETCH ""
787 # define ARCH_HAS_PREFETCH
788 #else
789 # define BASE_PREFETCH "prefetcht0 %P1"
790 #endif
791
792 /*
793 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
794 *
795 * It's not worth to care about 3dnow prefetches for the K6
796 * because they are microcoded there and very slow.
797 */
798 static inline void prefetch(const void *x)
799 {
800 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
801 X86_FEATURE_XMM,
802 "m" (*(const char *)x));
803 }
804
805 /*
806 * 3dnow prefetch to get an exclusive cache line.
807 * Useful for spinlocks to avoid one state transition in the
808 * cache coherency protocol:
809 */
810 static inline void prefetchw(const void *x)
811 {
812 alternative_input(BASE_PREFETCH, "prefetchw %P1",
813 X86_FEATURE_3DNOWPREFETCH,
814 "m" (*(const char *)x));
815 }
816
817 static inline void spin_lock_prefetch(const void *x)
818 {
819 prefetchw(x);
820 }
821
822 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
823 TOP_OF_KERNEL_STACK_PADDING)
824
825 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
826
827 #define task_pt_regs(task) \
828 ({ \
829 unsigned long __ptr = (unsigned long)task_stack_page(task); \
830 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
831 ((struct pt_regs *)__ptr) - 1; \
832 })
833
834 #ifdef CONFIG_X86_32
835 /*
836 * User space process size: 3GB (default).
837 */
838 #define IA32_PAGE_OFFSET PAGE_OFFSET
839 #define TASK_SIZE PAGE_OFFSET
840 #define TASK_SIZE_LOW TASK_SIZE
841 #define TASK_SIZE_MAX TASK_SIZE
842 #define DEFAULT_MAP_WINDOW TASK_SIZE
843 #define STACK_TOP TASK_SIZE
844 #define STACK_TOP_MAX STACK_TOP
845
846 #define INIT_THREAD { \
847 .sp0 = TOP_OF_INIT_STACK, \
848 .sysenter_cs = __KERNEL_CS, \
849 .io_bitmap_ptr = NULL, \
850 .addr_limit = KERNEL_DS, \
851 }
852
853 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
854
855 #else
856 /*
857 * User space process size. This is the first address outside the user range.
858 * There are a few constraints that determine this:
859 *
860 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
861 * address, then that syscall will enter the kernel with a
862 * non-canonical return address, and SYSRET will explode dangerously.
863 * We avoid this particular problem by preventing anything executable
864 * from being mapped at the maximum canonical address.
865 *
866 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
867 * CPUs malfunction if they execute code from the highest canonical page.
868 * They'll speculate right off the end of the canonical space, and
869 * bad things happen. This is worked around in the same way as the
870 * Intel problem.
871 *
872 * With page table isolation enabled, we map the LDT in ... [stay tuned]
873 */
874 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
875
876 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
877
878 /* This decides where the kernel will search for a free chunk of vm
879 * space during mmap's.
880 */
881 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
882 0xc0000000 : 0xFFFFe000)
883
884 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
885 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
886 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
887 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
888 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
889 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
890
891 #define STACK_TOP TASK_SIZE_LOW
892 #define STACK_TOP_MAX TASK_SIZE_MAX
893
894 #define INIT_THREAD { \
895 .addr_limit = KERNEL_DS, \
896 }
897
898 extern unsigned long KSTK_ESP(struct task_struct *task);
899
900 #endif /* CONFIG_X86_64 */
901
902 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
903 unsigned long new_sp);
904
905 /*
906 * This decides where the kernel will search for a free chunk of vm
907 * space during mmap's.
908 */
909 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
910 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
911
912 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
913
914 /* Get/set a process' ability to use the timestamp counter instruction */
915 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
916 #define SET_TSC_CTL(val) set_tsc_mode((val))
917
918 extern int get_tsc_mode(unsigned long adr);
919 extern int set_tsc_mode(unsigned int val);
920
921 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
922
923 /* Register/unregister a process' MPX related resource */
924 #define MPX_ENABLE_MANAGEMENT() mpx_enable_management()
925 #define MPX_DISABLE_MANAGEMENT() mpx_disable_management()
926
927 #ifdef CONFIG_X86_INTEL_MPX
928 extern int mpx_enable_management(void);
929 extern int mpx_disable_management(void);
930 #else
931 static inline int mpx_enable_management(void)
932 {
933 return -EINVAL;
934 }
935 static inline int mpx_disable_management(void)
936 {
937 return -EINVAL;
938 }
939 #endif /* CONFIG_X86_INTEL_MPX */
940
941 #ifdef CONFIG_CPU_SUP_AMD
942 extern u16 amd_get_nb_id(int cpu);
943 extern u32 amd_get_nodes_per_socket(void);
944 #else
945 static inline u16 amd_get_nb_id(int cpu) { return 0; }
946 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
947 #endif
948
949 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
950 {
951 uint32_t base, eax, signature[3];
952
953 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
954 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
955
956 if (!memcmp(sig, signature, 12) &&
957 (leaves == 0 || ((eax - base) >= leaves)))
958 return base;
959 }
960
961 return 0;
962 }
963
964 extern unsigned long arch_align_stack(unsigned long sp);
965 extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
966
967 void default_idle(void);
968 #ifdef CONFIG_XEN
969 bool xen_set_default_idle(void);
970 #else
971 #define xen_set_default_idle 0
972 #endif
973
974 void stop_this_cpu(void *dummy);
975 void df_debug(struct pt_regs *regs, long error_code);
976 void microcode_check(void);
977 #endif /* _ASM_X86_PROCESSOR_H */