]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/include/asm/processor.h
Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[thirdparty/linux.git] / arch / x86 / include / asm / processor.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_PROCESSOR_H
3 #define _ASM_X86_PROCESSOR_H
4
5 #include <asm/processor-flags.h>
6
7 /* Forward declaration, a strange C thing */
8 struct task_struct;
9 struct mm_struct;
10 struct io_bitmap;
11 struct vm86;
12
13 #include <asm/math_emu.h>
14 #include <asm/segment.h>
15 #include <asm/types.h>
16 #include <uapi/asm/sigcontext.h>
17 #include <asm/current.h>
18 #include <asm/cpufeatures.h>
19 #include <asm/page.h>
20 #include <asm/pgtable_types.h>
21 #include <asm/percpu.h>
22 #include <asm/msr.h>
23 #include <asm/desc_defs.h>
24 #include <asm/nops.h>
25 #include <asm/special_insns.h>
26 #include <asm/fpu/types.h>
27 #include <asm/unwind_hints.h>
28 #include <asm/vmxfeatures.h>
29 #include <asm/vdso/processor.h>
30
31 #include <linux/personality.h>
32 #include <linux/cache.h>
33 #include <linux/threads.h>
34 #include <linux/math64.h>
35 #include <linux/err.h>
36 #include <linux/irqflags.h>
37 #include <linux/mem_encrypt.h>
38
39 /*
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
42 *
43 * Based on this we disable the IP header alignment in network drivers.
44 */
45 #define NET_IP_ALIGN 0
46
47 #define HBP_NUM 4
48
49 /*
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
53 */
54 #ifdef CONFIG_X86_VSMP
55 # define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56 # define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
57 #else
58 # define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59 # define ARCH_MIN_MMSTRUCT_ALIGN 0
60 #endif
61
62 enum tlb_infos {
63 ENTRIES,
64 NR_INFO
65 };
66
67 extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68 extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69 extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70 extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71 extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72 extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73 extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74
75 /*
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
79 */
80
81 struct cpuinfo_x86 {
82 __u8 x86; /* CPU family */
83 __u8 x86_vendor; /* CPU vendor */
84 __u8 x86_model;
85 __u8 x86_stepping;
86 #ifdef CONFIG_X86_64
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 int x86_tlbsize;
89 #endif
90 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability[NVMXINTS];
92 #endif
93 __u8 x86_virt_bits;
94 __u8 x86_phys_bits;
95 /* CPUID returned core id bits: */
96 __u8 x86_coreid_bits;
97 __u8 cu_id;
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level;
100 /* Maximum supported CPUID level, -1=no CPUID: */
101 int cpuid_level;
102 /*
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
106 */
107 union {
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 unsigned long x86_capability_alignment;
110 };
111 char x86_vendor_id[16];
112 char x86_model_id[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size;
115 int x86_cache_alignment; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid; /* max index */
118 int x86_cache_occ_scale; /* scale to bytes */
119 int x86_cache_mbm_width_offset;
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 u16 cpu_die_id;
136 u16 logical_die_id;
137 /* Index into per_cpu list: */
138 u16 cpu_index;
139 u32 microcode;
140 /* Address space bits used by the cache internally */
141 u8 x86_cache_bits;
142 unsigned initialized : 1;
143 } __randomize_layout;
144
145 struct cpuid_regs {
146 u32 eax, ebx, ecx, edx;
147 };
148
149 enum cpuid_regs_idx {
150 CPUID_EAX = 0,
151 CPUID_EBX,
152 CPUID_ECX,
153 CPUID_EDX,
154 };
155
156 #define X86_VENDOR_INTEL 0
157 #define X86_VENDOR_CYRIX 1
158 #define X86_VENDOR_AMD 2
159 #define X86_VENDOR_UMC 3
160 #define X86_VENDOR_CENTAUR 5
161 #define X86_VENDOR_TRANSMETA 7
162 #define X86_VENDOR_NSC 8
163 #define X86_VENDOR_HYGON 9
164 #define X86_VENDOR_ZHAOXIN 10
165 #define X86_VENDOR_NUM 11
166
167 #define X86_VENDOR_UNKNOWN 0xff
168
169 /*
170 * capabilities of CPUs
171 */
172 extern struct cpuinfo_x86 boot_cpu_data;
173 extern struct cpuinfo_x86 new_cpu_data;
174
175 extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
176 extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
177
178 #ifdef CONFIG_SMP
179 DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180 #define cpu_data(cpu) per_cpu(cpu_info, cpu)
181 #else
182 #define cpu_info boot_cpu_data
183 #define cpu_data(cpu) boot_cpu_data
184 #endif
185
186 extern const struct seq_operations cpuinfo_op;
187
188 #define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189
190 extern void cpu_detect(struct cpuinfo_x86 *c);
191
192 static inline unsigned long long l1tf_pfn_limit(void)
193 {
194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195 }
196
197 extern void early_cpu_init(void);
198 extern void identify_boot_cpu(void);
199 extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200 extern void print_cpu_info(struct cpuinfo_x86 *);
201 void print_cpu_msr(struct cpuinfo_x86 *);
202
203 #ifdef CONFIG_X86_32
204 extern int have_cpuid_p(void);
205 #else
206 static inline int have_cpuid_p(void)
207 {
208 return 1;
209 }
210 #endif
211 static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213 {
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222 }
223
224 #define native_cpuid_reg(reg) \
225 static inline unsigned int native_cpuid_##reg(unsigned int op) \
226 { \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232 }
233
234 /*
235 * Native CPUID functions returning a single datum.
236 */
237 native_cpuid_reg(eax)
238 native_cpuid_reg(ebx)
239 native_cpuid_reg(ecx)
240 native_cpuid_reg(edx)
241
242 /*
243 * Friendlier CR3 helpers.
244 */
245 static inline unsigned long read_cr3_pa(void)
246 {
247 return __read_cr3() & CR3_ADDR_MASK;
248 }
249
250 static inline unsigned long native_read_cr3_pa(void)
251 {
252 return __native_read_cr3() & CR3_ADDR_MASK;
253 }
254
255 static inline void load_cr3(pgd_t *pgdir)
256 {
257 write_cr3(__sme_pa(pgdir));
258 }
259
260 /*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265 #ifdef CONFIG_X86_32
266 /* This is the TSS defined by the hardware. */
267 struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312 } __attribute__((packed));
313 #else
314 struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317
318 /*
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 */
322 u64 sp1;
323
324 /*
325 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
327 * the user RSP value.
328 */
329 u64 sp2;
330
331 u64 reserved2;
332 u64 ist[7];
333 u32 reserved3;
334 u32 reserved4;
335 u16 reserved5;
336 u16 io_bitmap_base;
337
338 } __attribute__((packed));
339 #endif
340
341 /*
342 * IO-bitmap sizes:
343 */
344 #define IO_BITMAP_BITS 65536
345 #define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
346 #define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
347
348 #define IO_BITMAP_OFFSET_VALID_MAP \
349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
350 offsetof(struct tss_struct, x86_tss))
351
352 #define IO_BITMAP_OFFSET_VALID_ALL \
353 (offsetof(struct tss_struct, io_bitmap.mapall) - \
354 offsetof(struct tss_struct, x86_tss))
355
356 #ifdef CONFIG_X86_IOPL_IOPERM
357 /*
358 * sizeof(unsigned long) coming from an extra "long" at the end of the
359 * iobitmap. The limit is inclusive, i.e. the last valid byte.
360 */
361 # define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 sizeof(unsigned long) - 1)
364 #else
365 # define __KERNEL_TSS_LIMIT \
366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
367 #endif
368
369 /* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370 #define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
371
372 struct entry_stack {
373 unsigned long words[64];
374 };
375
376 struct entry_stack_page {
377 struct entry_stack stack;
378 } __aligned(PAGE_SIZE);
379
380 /*
381 * All IO bitmap related data stored in the TSS:
382 */
383 struct x86_io_bitmap {
384 /* The sequence number of the last active bitmap. */
385 u64 prev_sequence;
386
387 /*
388 * Store the dirty size of the last io bitmap offender. The next
389 * one will have to do the cleanup as the switch out to a non io
390 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 * outside of the TSS limit. So for sane tasks there is no need to
392 * actually touch the io_bitmap at all.
393 */
394 unsigned int prev_max;
395
396 /*
397 * The extra 1 is there because the CPU will access an
398 * additional byte beyond the end of the IO permission
399 * bitmap. The extra byte must be all 1 bits, and must
400 * be within the limit.
401 */
402 unsigned long bitmap[IO_BITMAP_LONGS + 1];
403
404 /*
405 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 * except the additional byte at the end.
407 */
408 unsigned long mapall[IO_BITMAP_LONGS + 1];
409 };
410
411 struct tss_struct {
412 /*
413 * The fixed hardware portion. This must not cross a page boundary
414 * at risk of violating the SDM's advice and potentially triggering
415 * errata.
416 */
417 struct x86_hw_tss x86_tss;
418
419 struct x86_io_bitmap io_bitmap;
420 } __aligned(PAGE_SIZE);
421
422 DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
423
424 /* Per CPU interrupt stacks */
425 struct irq_stack {
426 char stack[IRQ_STACK_SIZE];
427 } __aligned(IRQ_STACK_SIZE);
428
429 DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
430
431 #ifdef CONFIG_X86_32
432 DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
433 #else
434 /* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
435 #define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
436 #endif
437
438 #ifdef CONFIG_X86_64
439 struct fixed_percpu_data {
440 /*
441 * GCC hardcodes the stack canary as %gs:40. Since the
442 * irq_stack is the object at %gs:0, we reserve the bottom
443 * 48 bytes of the irq stack for the canary.
444 */
445 char gs_base[40];
446 unsigned long stack_canary;
447 };
448
449 DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
450 DECLARE_INIT_PER_CPU(fixed_percpu_data);
451
452 static inline unsigned long cpu_kernelmode_gs_base(int cpu)
453 {
454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
455 }
456
457 DECLARE_PER_CPU(unsigned int, irq_count);
458 extern asmlinkage void ignore_sysret(void);
459
460 #if IS_ENABLED(CONFIG_KVM)
461 /* Save actual FS/GS selectors and bases to current->thread */
462 void save_fsgs_for_kvm(void);
463 #endif
464 #else /* X86_64 */
465 #ifdef CONFIG_STACKPROTECTOR
466 /*
467 * Make sure stack canary segment base is cached-aligned:
468 * "For Intel Atom processors, avoid non zero segment base address
469 * that is not aligned to cache line boundary at all cost."
470 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
471 */
472 struct stack_canary {
473 char __pad[20]; /* canary at %gs:20 */
474 unsigned long canary;
475 };
476 DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
477 #endif
478 /* Per CPU softirq stack pointer */
479 DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
480 #endif /* X86_64 */
481
482 extern unsigned int fpu_kernel_xstate_size;
483 extern unsigned int fpu_user_xstate_size;
484
485 struct perf_event;
486
487 typedef struct {
488 unsigned long seg;
489 } mm_segment_t;
490
491 struct thread_struct {
492 /* Cached TLS descriptors: */
493 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
494 #ifdef CONFIG_X86_32
495 unsigned long sp0;
496 #endif
497 unsigned long sp;
498 #ifdef CONFIG_X86_32
499 unsigned long sysenter_cs;
500 #else
501 unsigned short es;
502 unsigned short ds;
503 unsigned short fsindex;
504 unsigned short gsindex;
505 #endif
506
507 #ifdef CONFIG_X86_64
508 unsigned long fsbase;
509 unsigned long gsbase;
510 #else
511 /*
512 * XXX: this could presumably be unsigned short. Alternatively,
513 * 32-bit kernels could be taught to use fsindex instead.
514 */
515 unsigned long fs;
516 unsigned long gs;
517 #endif
518
519 /* Save middle states of ptrace breakpoints */
520 struct perf_event *ptrace_bps[HBP_NUM];
521 /* Debug status used for traps, single steps, etc... */
522 unsigned long debugreg6;
523 /* Keep track of the exact dr7 value set by the user */
524 unsigned long ptrace_dr7;
525 /* Fault info: */
526 unsigned long cr2;
527 unsigned long trap_nr;
528 unsigned long error_code;
529 #ifdef CONFIG_VM86
530 /* Virtual 86 mode info */
531 struct vm86 *vm86;
532 #endif
533 /* IO permissions: */
534 struct io_bitmap *io_bitmap;
535
536 /*
537 * IOPL. Priviledge level dependent I/O permission which is
538 * emulated via the I/O bitmap to prevent user space from disabling
539 * interrupts.
540 */
541 unsigned long iopl_emul;
542
543 mm_segment_t addr_limit;
544
545 unsigned int sig_on_uaccess_err:1;
546
547 /* Floating point and extended processor state */
548 struct fpu fpu;
549 /*
550 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
551 * the end.
552 */
553 };
554
555 /* Whitelist the FPU state from the task_struct for hardened usercopy. */
556 static inline void arch_thread_struct_whitelist(unsigned long *offset,
557 unsigned long *size)
558 {
559 *offset = offsetof(struct thread_struct, fpu.state);
560 *size = fpu_kernel_xstate_size;
561 }
562
563 /*
564 * Thread-synchronous status.
565 *
566 * This is different from the flags in that nobody else
567 * ever touches our thread-synchronous status, so we don't
568 * have to worry about atomic accesses.
569 */
570 #define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
571
572 static inline void
573 native_load_sp0(unsigned long sp0)
574 {
575 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
576 }
577
578 static inline void native_swapgs(void)
579 {
580 #ifdef CONFIG_X86_64
581 asm volatile("swapgs" ::: "memory");
582 #endif
583 }
584
585 static inline unsigned long current_top_of_stack(void)
586 {
587 /*
588 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
589 * and around vm86 mode and sp0 on x86_64 is special because of the
590 * entry trampoline.
591 */
592 return this_cpu_read_stable(cpu_current_top_of_stack);
593 }
594
595 static inline bool on_thread_stack(void)
596 {
597 return (unsigned long)(current_top_of_stack() -
598 current_stack_pointer) < THREAD_SIZE;
599 }
600
601 #ifdef CONFIG_PARAVIRT_XXL
602 #include <asm/paravirt.h>
603 #else
604 #define __cpuid native_cpuid
605
606 static inline void load_sp0(unsigned long sp0)
607 {
608 native_load_sp0(sp0);
609 }
610
611 #endif /* CONFIG_PARAVIRT_XXL */
612
613 /* Free all resources held by a thread. */
614 extern void release_thread(struct task_struct *);
615
616 unsigned long get_wchan(struct task_struct *p);
617
618 /*
619 * Generic CPUID function
620 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
621 * resulting in stale register contents being returned.
622 */
623 static inline void cpuid(unsigned int op,
624 unsigned int *eax, unsigned int *ebx,
625 unsigned int *ecx, unsigned int *edx)
626 {
627 *eax = op;
628 *ecx = 0;
629 __cpuid(eax, ebx, ecx, edx);
630 }
631
632 /* Some CPUID calls want 'count' to be placed in ecx */
633 static inline void cpuid_count(unsigned int op, int count,
634 unsigned int *eax, unsigned int *ebx,
635 unsigned int *ecx, unsigned int *edx)
636 {
637 *eax = op;
638 *ecx = count;
639 __cpuid(eax, ebx, ecx, edx);
640 }
641
642 /*
643 * CPUID functions returning a single datum
644 */
645 static inline unsigned int cpuid_eax(unsigned int op)
646 {
647 unsigned int eax, ebx, ecx, edx;
648
649 cpuid(op, &eax, &ebx, &ecx, &edx);
650
651 return eax;
652 }
653
654 static inline unsigned int cpuid_ebx(unsigned int op)
655 {
656 unsigned int eax, ebx, ecx, edx;
657
658 cpuid(op, &eax, &ebx, &ecx, &edx);
659
660 return ebx;
661 }
662
663 static inline unsigned int cpuid_ecx(unsigned int op)
664 {
665 unsigned int eax, ebx, ecx, edx;
666
667 cpuid(op, &eax, &ebx, &ecx, &edx);
668
669 return ecx;
670 }
671
672 static inline unsigned int cpuid_edx(unsigned int op)
673 {
674 unsigned int eax, ebx, ecx, edx;
675
676 cpuid(op, &eax, &ebx, &ecx, &edx);
677
678 return edx;
679 }
680
681 /*
682 * This function forces the icache and prefetched instruction stream to
683 * catch up with reality in two very specific cases:
684 *
685 * a) Text was modified using one virtual address and is about to be executed
686 * from the same physical page at a different virtual address.
687 *
688 * b) Text was modified on a different CPU, may subsequently be
689 * executed on this CPU, and you want to make sure the new version
690 * gets executed. This generally means you're calling this in a IPI.
691 *
692 * If you're calling this for a different reason, you're probably doing
693 * it wrong.
694 */
695 static inline void sync_core(void)
696 {
697 /*
698 * There are quite a few ways to do this. IRET-to-self is nice
699 * because it works on every CPU, at any CPL (so it's compatible
700 * with paravirtualization), and it never exits to a hypervisor.
701 * The only down sides are that it's a bit slow (it seems to be
702 * a bit more than 2x slower than the fastest options) and that
703 * it unmasks NMIs. The "push %cs" is needed because, in
704 * paravirtual environments, __KERNEL_CS may not be a valid CS
705 * value when we do IRET directly.
706 *
707 * In case NMI unmasking or performance ever becomes a problem,
708 * the next best option appears to be MOV-to-CR2 and an
709 * unconditional jump. That sequence also works on all CPUs,
710 * but it will fault at CPL3 (i.e. Xen PV).
711 *
712 * CPUID is the conventional way, but it's nasty: it doesn't
713 * exist on some 486-like CPUs, and it usually exits to a
714 * hypervisor.
715 *
716 * Like all of Linux's memory ordering operations, this is a
717 * compiler barrier as well.
718 */
719 #ifdef CONFIG_X86_32
720 asm volatile (
721 "pushfl\n\t"
722 "pushl %%cs\n\t"
723 "pushl $1f\n\t"
724 "iret\n\t"
725 "1:"
726 : ASM_CALL_CONSTRAINT : : "memory");
727 #else
728 unsigned int tmp;
729
730 asm volatile (
731 "mov %%ss, %0\n\t"
732 "pushq %q0\n\t"
733 "pushq %%rsp\n\t"
734 "addq $8, (%%rsp)\n\t"
735 "pushfq\n\t"
736 "mov %%cs, %0\n\t"
737 "pushq %q0\n\t"
738 "pushq $1f\n\t"
739 "iretq\n\t"
740 "1:"
741 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
742 #endif
743 }
744
745 extern void select_idle_routine(const struct cpuinfo_x86 *c);
746 extern void amd_e400_c1e_apic_setup(void);
747
748 extern unsigned long boot_option_idle_override;
749
750 enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
751 IDLE_POLL};
752
753 extern void enable_sep_cpu(void);
754 extern int sysenter_setup(void);
755
756
757 /* Defined in head.S */
758 extern struct desc_ptr early_gdt_descr;
759
760 extern void switch_to_new_gdt(int);
761 extern void load_direct_gdt(int);
762 extern void load_fixmap_gdt(int);
763 extern void load_percpu_segment(int);
764 extern void cpu_init(void);
765 extern void cr4_init(void);
766
767 static inline unsigned long get_debugctlmsr(void)
768 {
769 unsigned long debugctlmsr = 0;
770
771 #ifndef CONFIG_X86_DEBUGCTLMSR
772 if (boot_cpu_data.x86 < 6)
773 return 0;
774 #endif
775 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
776
777 return debugctlmsr;
778 }
779
780 static inline void update_debugctlmsr(unsigned long debugctlmsr)
781 {
782 #ifndef CONFIG_X86_DEBUGCTLMSR
783 if (boot_cpu_data.x86 < 6)
784 return;
785 #endif
786 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
787 }
788
789 extern void set_task_blockstep(struct task_struct *task, bool on);
790
791 /* Boot loader type from the setup header: */
792 extern int bootloader_type;
793 extern int bootloader_version;
794
795 extern char ignore_fpu_irq;
796
797 #define HAVE_ARCH_PICK_MMAP_LAYOUT 1
798 #define ARCH_HAS_PREFETCHW
799 #define ARCH_HAS_SPINLOCK_PREFETCH
800
801 #ifdef CONFIG_X86_32
802 # define BASE_PREFETCH ""
803 # define ARCH_HAS_PREFETCH
804 #else
805 # define BASE_PREFETCH "prefetcht0 %P1"
806 #endif
807
808 /*
809 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
810 *
811 * It's not worth to care about 3dnow prefetches for the K6
812 * because they are microcoded there and very slow.
813 */
814 static inline void prefetch(const void *x)
815 {
816 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
817 X86_FEATURE_XMM,
818 "m" (*(const char *)x));
819 }
820
821 /*
822 * 3dnow prefetch to get an exclusive cache line.
823 * Useful for spinlocks to avoid one state transition in the
824 * cache coherency protocol:
825 */
826 static inline void prefetchw(const void *x)
827 {
828 alternative_input(BASE_PREFETCH, "prefetchw %P1",
829 X86_FEATURE_3DNOWPREFETCH,
830 "m" (*(const char *)x));
831 }
832
833 static inline void spin_lock_prefetch(const void *x)
834 {
835 prefetchw(x);
836 }
837
838 #define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
839 TOP_OF_KERNEL_STACK_PADDING)
840
841 #define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
842
843 #define task_pt_regs(task) \
844 ({ \
845 unsigned long __ptr = (unsigned long)task_stack_page(task); \
846 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
847 ((struct pt_regs *)__ptr) - 1; \
848 })
849
850 #ifdef CONFIG_X86_32
851 /*
852 * User space process size: 3GB (default).
853 */
854 #define IA32_PAGE_OFFSET PAGE_OFFSET
855 #define TASK_SIZE PAGE_OFFSET
856 #define TASK_SIZE_LOW TASK_SIZE
857 #define TASK_SIZE_MAX TASK_SIZE
858 #define DEFAULT_MAP_WINDOW TASK_SIZE
859 #define STACK_TOP TASK_SIZE
860 #define STACK_TOP_MAX STACK_TOP
861
862 #define INIT_THREAD { \
863 .sp0 = TOP_OF_INIT_STACK, \
864 .sysenter_cs = __KERNEL_CS, \
865 .addr_limit = KERNEL_DS, \
866 }
867
868 #define KSTK_ESP(task) (task_pt_regs(task)->sp)
869
870 #else
871 /*
872 * User space process size. This is the first address outside the user range.
873 * There are a few constraints that determine this:
874 *
875 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
876 * address, then that syscall will enter the kernel with a
877 * non-canonical return address, and SYSRET will explode dangerously.
878 * We avoid this particular problem by preventing anything executable
879 * from being mapped at the maximum canonical address.
880 *
881 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
882 * CPUs malfunction if they execute code from the highest canonical page.
883 * They'll speculate right off the end of the canonical space, and
884 * bad things happen. This is worked around in the same way as the
885 * Intel problem.
886 *
887 * With page table isolation enabled, we map the LDT in ... [stay tuned]
888 */
889 #define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
890
891 #define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
892
893 /* This decides where the kernel will search for a free chunk of vm
894 * space during mmap's.
895 */
896 #define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
897 0xc0000000 : 0xFFFFe000)
898
899 #define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
900 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
901 #define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
902 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
903 #define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
904 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
905
906 #define STACK_TOP TASK_SIZE_LOW
907 #define STACK_TOP_MAX TASK_SIZE_MAX
908
909 #define INIT_THREAD { \
910 .addr_limit = KERNEL_DS, \
911 }
912
913 extern unsigned long KSTK_ESP(struct task_struct *task);
914
915 #endif /* CONFIG_X86_64 */
916
917 extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
918 unsigned long new_sp);
919
920 /*
921 * This decides where the kernel will search for a free chunk of vm
922 * space during mmap's.
923 */
924 #define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
925 #define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
926
927 #define KSTK_EIP(task) (task_pt_regs(task)->ip)
928
929 /* Get/set a process' ability to use the timestamp counter instruction */
930 #define GET_TSC_CTL(adr) get_tsc_mode((adr))
931 #define SET_TSC_CTL(val) set_tsc_mode((val))
932
933 extern int get_tsc_mode(unsigned long adr);
934 extern int set_tsc_mode(unsigned int val);
935
936 DECLARE_PER_CPU(u64, msr_misc_features_shadow);
937
938 #ifdef CONFIG_CPU_SUP_AMD
939 extern u16 amd_get_nb_id(int cpu);
940 extern u32 amd_get_nodes_per_socket(void);
941 #else
942 static inline u16 amd_get_nb_id(int cpu) { return 0; }
943 static inline u32 amd_get_nodes_per_socket(void) { return 0; }
944 #endif
945
946 static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
947 {
948 uint32_t base, eax, signature[3];
949
950 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
951 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
952
953 if (!memcmp(sig, signature, 12) &&
954 (leaves == 0 || ((eax - base) >= leaves)))
955 return base;
956 }
957
958 return 0;
959 }
960
961 extern unsigned long arch_align_stack(unsigned long sp);
962 void free_init_pages(const char *what, unsigned long begin, unsigned long end);
963 extern void free_kernel_image_pages(const char *what, void *begin, void *end);
964
965 void default_idle(void);
966 #ifdef CONFIG_XEN
967 bool xen_set_default_idle(void);
968 #else
969 #define xen_set_default_idle 0
970 #endif
971
972 void stop_this_cpu(void *dummy);
973 void microcode_check(void);
974
975 enum l1tf_mitigations {
976 L1TF_MITIGATION_OFF,
977 L1TF_MITIGATION_FLUSH_NOWARN,
978 L1TF_MITIGATION_FLUSH,
979 L1TF_MITIGATION_FLUSH_NOSMT,
980 L1TF_MITIGATION_FULL,
981 L1TF_MITIGATION_FULL_FORCE
982 };
983
984 extern enum l1tf_mitigations l1tf_mitigation;
985
986 enum mds_mitigations {
987 MDS_MITIGATION_OFF,
988 MDS_MITIGATION_FULL,
989 MDS_MITIGATION_VMWERV,
990 };
991
992 #endif /* _ASM_X86_PROCESSOR_H */