]> git.ipfire.org Git - thirdparty/kernel/stable.git/blob - arch/x86/kernel/cpu/bugs.c
Merge tag 'kvm-x86-docs-6.7' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34
35 #include "cpu.h"
36
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64 static DEFINE_MUTEX(spec_ctrl_mutex);
65
66 void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
67
68 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
69 static void update_spec_ctrl(u64 val)
70 {
71 this_cpu_write(x86_spec_ctrl_current, val);
72 wrmsrl(MSR_IA32_SPEC_CTRL, val);
73 }
74
75 /*
76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78 */
79 void update_spec_ctrl_cond(u64 val)
80 {
81 if (this_cpu_read(x86_spec_ctrl_current) == val)
82 return;
83
84 this_cpu_write(x86_spec_ctrl_current, val);
85
86 /*
87 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 * forced the update can be delayed until that time.
89 */
90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 wrmsrl(MSR_IA32_SPEC_CTRL, val);
92 }
93
94 noinstr u64 spec_ctrl_current(void)
95 {
96 return this_cpu_read(x86_spec_ctrl_current);
97 }
98 EXPORT_SYMBOL_GPL(spec_ctrl_current);
99
100 /*
101 * AMD specific MSR info for Speculative Store Bypass control.
102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103 */
104 u64 __ro_after_init x86_amd_ls_cfg_base;
105 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106
107 /* Control conditional STIBP in switch_to() */
108 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109 /* Control conditional IBPB in switch_mm() */
110 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111 /* Control unconditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113
114 /* Control MDS CPU buffer clear before returning to user space */
115 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
116 EXPORT_SYMBOL_GPL(mds_user_clear);
117 /* Control MDS CPU buffer clear before idling (halt, mwait) */
118 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
119 EXPORT_SYMBOL_GPL(mds_idle_clear);
120
121 /*
122 * Controls whether l1d flush based mitigations are enabled,
123 * based on hw features and admin setting via boot parameter
124 * defaults to false
125 */
126 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
127
128 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
129 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
130 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
131
132 void __init cpu_select_mitigations(void)
133 {
134 /*
135 * Read the SPEC_CTRL MSR to account for reserved bits which may
136 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
137 * init code as it is not enumerated and depends on the family.
138 */
139 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
140 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
141
142 /*
143 * Previously running kernel (kexec), may have some controls
144 * turned ON. Clear them and let the mitigations setup below
145 * rediscover them based on configuration.
146 */
147 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
148 }
149
150 /* Select the proper CPU mitigations before patching alternatives: */
151 spectre_v1_select_mitigation();
152 spectre_v2_select_mitigation();
153 /*
154 * retbleed_select_mitigation() relies on the state set by
155 * spectre_v2_select_mitigation(); specifically it wants to know about
156 * spectre_v2=ibrs.
157 */
158 retbleed_select_mitigation();
159 /*
160 * spectre_v2_user_select_mitigation() relies on the state set by
161 * retbleed_select_mitigation(); specifically the STIBP selection is
162 * forced for UNRET or IBPB.
163 */
164 spectre_v2_user_select_mitigation();
165 ssb_select_mitigation();
166 l1tf_select_mitigation();
167 md_clear_select_mitigation();
168 srbds_select_mitigation();
169 l1d_flush_select_mitigation();
170
171 /*
172 * srso_select_mitigation() depends and must run after
173 * retbleed_select_mitigation().
174 */
175 srso_select_mitigation();
176 gds_select_mitigation();
177 }
178
179 /*
180 * NOTE: This function is *only* called for SVM, since Intel uses
181 * MSR_IA32_SPEC_CTRL for SSBD.
182 */
183 void
184 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
185 {
186 u64 guestval, hostval;
187 struct thread_info *ti = current_thread_info();
188
189 /*
190 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
191 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
192 */
193 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
194 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
195 return;
196
197 /*
198 * If the host has SSBD mitigation enabled, force it in the host's
199 * virtual MSR value. If its not permanently enabled, evaluate
200 * current's TIF_SSBD thread flag.
201 */
202 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
203 hostval = SPEC_CTRL_SSBD;
204 else
205 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
206
207 /* Sanitize the guest value */
208 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
209
210 if (hostval != guestval) {
211 unsigned long tif;
212
213 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
214 ssbd_spec_ctrl_to_tif(hostval);
215
216 speculation_ctrl_update(tif);
217 }
218 }
219 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
220
221 static void x86_amd_ssb_disable(void)
222 {
223 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
224
225 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
226 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
227 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
228 wrmsrl(MSR_AMD64_LS_CFG, msrval);
229 }
230
231 #undef pr_fmt
232 #define pr_fmt(fmt) "MDS: " fmt
233
234 /* Default mitigation for MDS-affected CPUs */
235 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
236 static bool mds_nosmt __ro_after_init = false;
237
238 static const char * const mds_strings[] = {
239 [MDS_MITIGATION_OFF] = "Vulnerable",
240 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
241 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
242 };
243
244 static void __init mds_select_mitigation(void)
245 {
246 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
247 mds_mitigation = MDS_MITIGATION_OFF;
248 return;
249 }
250
251 if (mds_mitigation == MDS_MITIGATION_FULL) {
252 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
253 mds_mitigation = MDS_MITIGATION_VMWERV;
254
255 static_branch_enable(&mds_user_clear);
256
257 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
258 (mds_nosmt || cpu_mitigations_auto_nosmt()))
259 cpu_smt_disable(false);
260 }
261 }
262
263 static int __init mds_cmdline(char *str)
264 {
265 if (!boot_cpu_has_bug(X86_BUG_MDS))
266 return 0;
267
268 if (!str)
269 return -EINVAL;
270
271 if (!strcmp(str, "off"))
272 mds_mitigation = MDS_MITIGATION_OFF;
273 else if (!strcmp(str, "full"))
274 mds_mitigation = MDS_MITIGATION_FULL;
275 else if (!strcmp(str, "full,nosmt")) {
276 mds_mitigation = MDS_MITIGATION_FULL;
277 mds_nosmt = true;
278 }
279
280 return 0;
281 }
282 early_param("mds", mds_cmdline);
283
284 #undef pr_fmt
285 #define pr_fmt(fmt) "TAA: " fmt
286
287 enum taa_mitigations {
288 TAA_MITIGATION_OFF,
289 TAA_MITIGATION_UCODE_NEEDED,
290 TAA_MITIGATION_VERW,
291 TAA_MITIGATION_TSX_DISABLED,
292 };
293
294 /* Default mitigation for TAA-affected CPUs */
295 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
296 static bool taa_nosmt __ro_after_init;
297
298 static const char * const taa_strings[] = {
299 [TAA_MITIGATION_OFF] = "Vulnerable",
300 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
301 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
302 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
303 };
304
305 static void __init taa_select_mitigation(void)
306 {
307 u64 ia32_cap;
308
309 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
310 taa_mitigation = TAA_MITIGATION_OFF;
311 return;
312 }
313
314 /* TSX previously disabled by tsx=off */
315 if (!boot_cpu_has(X86_FEATURE_RTM)) {
316 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
317 return;
318 }
319
320 if (cpu_mitigations_off()) {
321 taa_mitigation = TAA_MITIGATION_OFF;
322 return;
323 }
324
325 /*
326 * TAA mitigation via VERW is turned off if both
327 * tsx_async_abort=off and mds=off are specified.
328 */
329 if (taa_mitigation == TAA_MITIGATION_OFF &&
330 mds_mitigation == MDS_MITIGATION_OFF)
331 return;
332
333 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
334 taa_mitigation = TAA_MITIGATION_VERW;
335 else
336 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
337
338 /*
339 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
340 * A microcode update fixes this behavior to clear CPU buffers. It also
341 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
342 * ARCH_CAP_TSX_CTRL_MSR bit.
343 *
344 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
345 * update is required.
346 */
347 ia32_cap = x86_read_arch_cap_msr();
348 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
349 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
350 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
351
352 /*
353 * TSX is enabled, select alternate mitigation for TAA which is
354 * the same as MDS. Enable MDS static branch to clear CPU buffers.
355 *
356 * For guests that can't determine whether the correct microcode is
357 * present on host, enable the mitigation for UCODE_NEEDED as well.
358 */
359 static_branch_enable(&mds_user_clear);
360
361 if (taa_nosmt || cpu_mitigations_auto_nosmt())
362 cpu_smt_disable(false);
363 }
364
365 static int __init tsx_async_abort_parse_cmdline(char *str)
366 {
367 if (!boot_cpu_has_bug(X86_BUG_TAA))
368 return 0;
369
370 if (!str)
371 return -EINVAL;
372
373 if (!strcmp(str, "off")) {
374 taa_mitigation = TAA_MITIGATION_OFF;
375 } else if (!strcmp(str, "full")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 } else if (!strcmp(str, "full,nosmt")) {
378 taa_mitigation = TAA_MITIGATION_VERW;
379 taa_nosmt = true;
380 }
381
382 return 0;
383 }
384 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
385
386 #undef pr_fmt
387 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
388
389 enum mmio_mitigations {
390 MMIO_MITIGATION_OFF,
391 MMIO_MITIGATION_UCODE_NEEDED,
392 MMIO_MITIGATION_VERW,
393 };
394
395 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
396 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
397 static bool mmio_nosmt __ro_after_init = false;
398
399 static const char * const mmio_strings[] = {
400 [MMIO_MITIGATION_OFF] = "Vulnerable",
401 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
402 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
403 };
404
405 static void __init mmio_select_mitigation(void)
406 {
407 u64 ia32_cap;
408
409 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
410 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
411 cpu_mitigations_off()) {
412 mmio_mitigation = MMIO_MITIGATION_OFF;
413 return;
414 }
415
416 if (mmio_mitigation == MMIO_MITIGATION_OFF)
417 return;
418
419 ia32_cap = x86_read_arch_cap_msr();
420
421 /*
422 * Enable CPU buffer clear mitigation for host and VMM, if also affected
423 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
424 */
425 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
426 boot_cpu_has(X86_FEATURE_RTM)))
427 static_branch_enable(&mds_user_clear);
428 else
429 static_branch_enable(&mmio_stale_data_clear);
430
431 /*
432 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
433 * be propagated to uncore buffers, clearing the Fill buffers on idle
434 * is required irrespective of SMT state.
435 */
436 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
437 static_branch_enable(&mds_idle_clear);
438
439 /*
440 * Check if the system has the right microcode.
441 *
442 * CPU Fill buffer clear mitigation is enumerated by either an explicit
443 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
444 * affected systems.
445 */
446 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
447 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
448 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
449 !(ia32_cap & ARCH_CAP_MDS_NO)))
450 mmio_mitigation = MMIO_MITIGATION_VERW;
451 else
452 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
453
454 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
455 cpu_smt_disable(false);
456 }
457
458 static int __init mmio_stale_data_parse_cmdline(char *str)
459 {
460 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
461 return 0;
462
463 if (!str)
464 return -EINVAL;
465
466 if (!strcmp(str, "off")) {
467 mmio_mitigation = MMIO_MITIGATION_OFF;
468 } else if (!strcmp(str, "full")) {
469 mmio_mitigation = MMIO_MITIGATION_VERW;
470 } else if (!strcmp(str, "full,nosmt")) {
471 mmio_mitigation = MMIO_MITIGATION_VERW;
472 mmio_nosmt = true;
473 }
474
475 return 0;
476 }
477 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
478
479 #undef pr_fmt
480 #define pr_fmt(fmt) "" fmt
481
482 static void __init md_clear_update_mitigation(void)
483 {
484 if (cpu_mitigations_off())
485 return;
486
487 if (!static_key_enabled(&mds_user_clear))
488 goto out;
489
490 /*
491 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
492 * mitigation, if necessary.
493 */
494 if (mds_mitigation == MDS_MITIGATION_OFF &&
495 boot_cpu_has_bug(X86_BUG_MDS)) {
496 mds_mitigation = MDS_MITIGATION_FULL;
497 mds_select_mitigation();
498 }
499 if (taa_mitigation == TAA_MITIGATION_OFF &&
500 boot_cpu_has_bug(X86_BUG_TAA)) {
501 taa_mitigation = TAA_MITIGATION_VERW;
502 taa_select_mitigation();
503 }
504 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
505 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
506 mmio_mitigation = MMIO_MITIGATION_VERW;
507 mmio_select_mitigation();
508 }
509 out:
510 if (boot_cpu_has_bug(X86_BUG_MDS))
511 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
512 if (boot_cpu_has_bug(X86_BUG_TAA))
513 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
514 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
515 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
516 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
517 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
518 }
519
520 static void __init md_clear_select_mitigation(void)
521 {
522 mds_select_mitigation();
523 taa_select_mitigation();
524 mmio_select_mitigation();
525
526 /*
527 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
528 * and print their mitigation after MDS, TAA and MMIO Stale Data
529 * mitigation selection is done.
530 */
531 md_clear_update_mitigation();
532 }
533
534 #undef pr_fmt
535 #define pr_fmt(fmt) "SRBDS: " fmt
536
537 enum srbds_mitigations {
538 SRBDS_MITIGATION_OFF,
539 SRBDS_MITIGATION_UCODE_NEEDED,
540 SRBDS_MITIGATION_FULL,
541 SRBDS_MITIGATION_TSX_OFF,
542 SRBDS_MITIGATION_HYPERVISOR,
543 };
544
545 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
546
547 static const char * const srbds_strings[] = {
548 [SRBDS_MITIGATION_OFF] = "Vulnerable",
549 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
550 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
551 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
552 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
553 };
554
555 static bool srbds_off;
556
557 void update_srbds_msr(void)
558 {
559 u64 mcu_ctrl;
560
561 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
562 return;
563
564 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
565 return;
566
567 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
568 return;
569
570 /*
571 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
572 * being disabled and it hasn't received the SRBDS MSR microcode.
573 */
574 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
575 return;
576
577 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
578
579 switch (srbds_mitigation) {
580 case SRBDS_MITIGATION_OFF:
581 case SRBDS_MITIGATION_TSX_OFF:
582 mcu_ctrl |= RNGDS_MITG_DIS;
583 break;
584 case SRBDS_MITIGATION_FULL:
585 mcu_ctrl &= ~RNGDS_MITG_DIS;
586 break;
587 default:
588 break;
589 }
590
591 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
592 }
593
594 static void __init srbds_select_mitigation(void)
595 {
596 u64 ia32_cap;
597
598 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
599 return;
600
601 /*
602 * Check to see if this is one of the MDS_NO systems supporting TSX that
603 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
604 * by Processor MMIO Stale Data vulnerability.
605 */
606 ia32_cap = x86_read_arch_cap_msr();
607 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
608 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
609 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
610 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
611 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
612 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
613 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
614 else if (cpu_mitigations_off() || srbds_off)
615 srbds_mitigation = SRBDS_MITIGATION_OFF;
616
617 update_srbds_msr();
618 pr_info("%s\n", srbds_strings[srbds_mitigation]);
619 }
620
621 static int __init srbds_parse_cmdline(char *str)
622 {
623 if (!str)
624 return -EINVAL;
625
626 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
627 return 0;
628
629 srbds_off = !strcmp(str, "off");
630 return 0;
631 }
632 early_param("srbds", srbds_parse_cmdline);
633
634 #undef pr_fmt
635 #define pr_fmt(fmt) "L1D Flush : " fmt
636
637 enum l1d_flush_mitigations {
638 L1D_FLUSH_OFF = 0,
639 L1D_FLUSH_ON,
640 };
641
642 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
643
644 static void __init l1d_flush_select_mitigation(void)
645 {
646 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
647 return;
648
649 static_branch_enable(&switch_mm_cond_l1d_flush);
650 pr_info("Conditional flush on switch_mm() enabled\n");
651 }
652
653 static int __init l1d_flush_parse_cmdline(char *str)
654 {
655 if (!strcmp(str, "on"))
656 l1d_flush_mitigation = L1D_FLUSH_ON;
657
658 return 0;
659 }
660 early_param("l1d_flush", l1d_flush_parse_cmdline);
661
662 #undef pr_fmt
663 #define pr_fmt(fmt) "GDS: " fmt
664
665 enum gds_mitigations {
666 GDS_MITIGATION_OFF,
667 GDS_MITIGATION_UCODE_NEEDED,
668 GDS_MITIGATION_FORCE,
669 GDS_MITIGATION_FULL,
670 GDS_MITIGATION_FULL_LOCKED,
671 GDS_MITIGATION_HYPERVISOR,
672 };
673
674 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
675 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
676 #else
677 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
678 #endif
679
680 static const char * const gds_strings[] = {
681 [GDS_MITIGATION_OFF] = "Vulnerable",
682 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
683 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
684 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
685 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
686 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
687 };
688
689 bool gds_ucode_mitigated(void)
690 {
691 return (gds_mitigation == GDS_MITIGATION_FULL ||
692 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
693 }
694 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
695
696 void update_gds_msr(void)
697 {
698 u64 mcu_ctrl_after;
699 u64 mcu_ctrl;
700
701 switch (gds_mitigation) {
702 case GDS_MITIGATION_OFF:
703 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
704 mcu_ctrl |= GDS_MITG_DIS;
705 break;
706 case GDS_MITIGATION_FULL_LOCKED:
707 /*
708 * The LOCKED state comes from the boot CPU. APs might not have
709 * the same state. Make sure the mitigation is enabled on all
710 * CPUs.
711 */
712 case GDS_MITIGATION_FULL:
713 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
714 mcu_ctrl &= ~GDS_MITG_DIS;
715 break;
716 case GDS_MITIGATION_FORCE:
717 case GDS_MITIGATION_UCODE_NEEDED:
718 case GDS_MITIGATION_HYPERVISOR:
719 return;
720 };
721
722 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
723
724 /*
725 * Check to make sure that the WRMSR value was not ignored. Writes to
726 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
727 * processor was not.
728 */
729 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
730 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
731 }
732
733 static void __init gds_select_mitigation(void)
734 {
735 u64 mcu_ctrl;
736
737 if (!boot_cpu_has_bug(X86_BUG_GDS))
738 return;
739
740 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
741 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
742 goto out;
743 }
744
745 if (cpu_mitigations_off())
746 gds_mitigation = GDS_MITIGATION_OFF;
747 /* Will verify below that mitigation _can_ be disabled */
748
749 /* No microcode */
750 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
751 if (gds_mitigation == GDS_MITIGATION_FORCE) {
752 /*
753 * This only needs to be done on the boot CPU so do it
754 * here rather than in update_gds_msr()
755 */
756 setup_clear_cpu_cap(X86_FEATURE_AVX);
757 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
758 } else {
759 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
760 }
761 goto out;
762 }
763
764 /* Microcode has mitigation, use it */
765 if (gds_mitigation == GDS_MITIGATION_FORCE)
766 gds_mitigation = GDS_MITIGATION_FULL;
767
768 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
769 if (mcu_ctrl & GDS_MITG_LOCKED) {
770 if (gds_mitigation == GDS_MITIGATION_OFF)
771 pr_warn("Mitigation locked. Disable failed.\n");
772
773 /*
774 * The mitigation is selected from the boot CPU. All other CPUs
775 * _should_ have the same state. If the boot CPU isn't locked
776 * but others are then update_gds_msr() will WARN() of the state
777 * mismatch. If the boot CPU is locked update_gds_msr() will
778 * ensure the other CPUs have the mitigation enabled.
779 */
780 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
781 }
782
783 update_gds_msr();
784 out:
785 pr_info("%s\n", gds_strings[gds_mitigation]);
786 }
787
788 static int __init gds_parse_cmdline(char *str)
789 {
790 if (!str)
791 return -EINVAL;
792
793 if (!boot_cpu_has_bug(X86_BUG_GDS))
794 return 0;
795
796 if (!strcmp(str, "off"))
797 gds_mitigation = GDS_MITIGATION_OFF;
798 else if (!strcmp(str, "force"))
799 gds_mitigation = GDS_MITIGATION_FORCE;
800
801 return 0;
802 }
803 early_param("gather_data_sampling", gds_parse_cmdline);
804
805 #undef pr_fmt
806 #define pr_fmt(fmt) "Spectre V1 : " fmt
807
808 enum spectre_v1_mitigation {
809 SPECTRE_V1_MITIGATION_NONE,
810 SPECTRE_V1_MITIGATION_AUTO,
811 };
812
813 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
814 SPECTRE_V1_MITIGATION_AUTO;
815
816 static const char * const spectre_v1_strings[] = {
817 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
818 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
819 };
820
821 /*
822 * Does SMAP provide full mitigation against speculative kernel access to
823 * userspace?
824 */
825 static bool smap_works_speculatively(void)
826 {
827 if (!boot_cpu_has(X86_FEATURE_SMAP))
828 return false;
829
830 /*
831 * On CPUs which are vulnerable to Meltdown, SMAP does not
832 * prevent speculative access to user data in the L1 cache.
833 * Consider SMAP to be non-functional as a mitigation on these
834 * CPUs.
835 */
836 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
837 return false;
838
839 return true;
840 }
841
842 static void __init spectre_v1_select_mitigation(void)
843 {
844 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
845 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
846 return;
847 }
848
849 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
850 /*
851 * With Spectre v1, a user can speculatively control either
852 * path of a conditional swapgs with a user-controlled GS
853 * value. The mitigation is to add lfences to both code paths.
854 *
855 * If FSGSBASE is enabled, the user can put a kernel address in
856 * GS, in which case SMAP provides no protection.
857 *
858 * If FSGSBASE is disabled, the user can only put a user space
859 * address in GS. That makes an attack harder, but still
860 * possible if there's no SMAP protection.
861 */
862 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
863 !smap_works_speculatively()) {
864 /*
865 * Mitigation can be provided from SWAPGS itself or
866 * PTI as the CR3 write in the Meltdown mitigation
867 * is serializing.
868 *
869 * If neither is there, mitigate with an LFENCE to
870 * stop speculation through swapgs.
871 */
872 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
873 !boot_cpu_has(X86_FEATURE_PTI))
874 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
875
876 /*
877 * Enable lfences in the kernel entry (non-swapgs)
878 * paths, to prevent user entry from speculatively
879 * skipping swapgs.
880 */
881 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
882 }
883 }
884
885 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
886 }
887
888 static int __init nospectre_v1_cmdline(char *str)
889 {
890 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
891 return 0;
892 }
893 early_param("nospectre_v1", nospectre_v1_cmdline);
894
895 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
896
897 #undef pr_fmt
898 #define pr_fmt(fmt) "RETBleed: " fmt
899
900 enum retbleed_mitigation {
901 RETBLEED_MITIGATION_NONE,
902 RETBLEED_MITIGATION_UNRET,
903 RETBLEED_MITIGATION_IBPB,
904 RETBLEED_MITIGATION_IBRS,
905 RETBLEED_MITIGATION_EIBRS,
906 RETBLEED_MITIGATION_STUFF,
907 };
908
909 enum retbleed_mitigation_cmd {
910 RETBLEED_CMD_OFF,
911 RETBLEED_CMD_AUTO,
912 RETBLEED_CMD_UNRET,
913 RETBLEED_CMD_IBPB,
914 RETBLEED_CMD_STUFF,
915 };
916
917 static const char * const retbleed_strings[] = {
918 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
919 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
920 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
921 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
922 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
923 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
924 };
925
926 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
927 RETBLEED_MITIGATION_NONE;
928 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
929 RETBLEED_CMD_AUTO;
930
931 static int __ro_after_init retbleed_nosmt = false;
932
933 static int __init retbleed_parse_cmdline(char *str)
934 {
935 if (!str)
936 return -EINVAL;
937
938 while (str) {
939 char *next = strchr(str, ',');
940 if (next) {
941 *next = 0;
942 next++;
943 }
944
945 if (!strcmp(str, "off")) {
946 retbleed_cmd = RETBLEED_CMD_OFF;
947 } else if (!strcmp(str, "auto")) {
948 retbleed_cmd = RETBLEED_CMD_AUTO;
949 } else if (!strcmp(str, "unret")) {
950 retbleed_cmd = RETBLEED_CMD_UNRET;
951 } else if (!strcmp(str, "ibpb")) {
952 retbleed_cmd = RETBLEED_CMD_IBPB;
953 } else if (!strcmp(str, "stuff")) {
954 retbleed_cmd = RETBLEED_CMD_STUFF;
955 } else if (!strcmp(str, "nosmt")) {
956 retbleed_nosmt = true;
957 } else if (!strcmp(str, "force")) {
958 setup_force_cpu_bug(X86_BUG_RETBLEED);
959 } else {
960 pr_err("Ignoring unknown retbleed option (%s).", str);
961 }
962
963 str = next;
964 }
965
966 return 0;
967 }
968 early_param("retbleed", retbleed_parse_cmdline);
969
970 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
971 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
972
973 static void __init retbleed_select_mitigation(void)
974 {
975 bool mitigate_smt = false;
976
977 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
978 return;
979
980 switch (retbleed_cmd) {
981 case RETBLEED_CMD_OFF:
982 return;
983
984 case RETBLEED_CMD_UNRET:
985 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
986 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
987 } else {
988 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
989 goto do_cmd_auto;
990 }
991 break;
992
993 case RETBLEED_CMD_IBPB:
994 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
995 pr_err("WARNING: CPU does not support IBPB.\n");
996 goto do_cmd_auto;
997 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
998 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
999 } else {
1000 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1001 goto do_cmd_auto;
1002 }
1003 break;
1004
1005 case RETBLEED_CMD_STUFF:
1006 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1007 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1008 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1009
1010 } else {
1011 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1012 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1013 else
1014 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1015
1016 goto do_cmd_auto;
1017 }
1018 break;
1019
1020 do_cmd_auto:
1021 case RETBLEED_CMD_AUTO:
1022 default:
1023 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1024 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1025 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1026 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1027 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1028 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1029 }
1030
1031 /*
1032 * The Intel mitigation (IBRS or eIBRS) was already selected in
1033 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1034 * be set accordingly below.
1035 */
1036
1037 break;
1038 }
1039
1040 switch (retbleed_mitigation) {
1041 case RETBLEED_MITIGATION_UNRET:
1042 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1043 setup_force_cpu_cap(X86_FEATURE_UNRET);
1044
1045 if (IS_ENABLED(CONFIG_RETHUNK))
1046 x86_return_thunk = retbleed_return_thunk;
1047
1048 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1049 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1050 pr_err(RETBLEED_UNTRAIN_MSG);
1051
1052 mitigate_smt = true;
1053 break;
1054
1055 case RETBLEED_MITIGATION_IBPB:
1056 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1057 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1058 mitigate_smt = true;
1059 break;
1060
1061 case RETBLEED_MITIGATION_STUFF:
1062 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1063 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1064 x86_set_skl_return_thunk();
1065 break;
1066
1067 default:
1068 break;
1069 }
1070
1071 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1072 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1073 cpu_smt_disable(false);
1074
1075 /*
1076 * Let IBRS trump all on Intel without affecting the effects of the
1077 * retbleed= cmdline option except for call depth based stuffing
1078 */
1079 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1080 switch (spectre_v2_enabled) {
1081 case SPECTRE_V2_IBRS:
1082 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1083 break;
1084 case SPECTRE_V2_EIBRS:
1085 case SPECTRE_V2_EIBRS_RETPOLINE:
1086 case SPECTRE_V2_EIBRS_LFENCE:
1087 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1088 break;
1089 default:
1090 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1091 pr_err(RETBLEED_INTEL_MSG);
1092 }
1093 }
1094
1095 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1096 }
1097
1098 #undef pr_fmt
1099 #define pr_fmt(fmt) "Spectre V2 : " fmt
1100
1101 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1102 SPECTRE_V2_USER_NONE;
1103 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1104 SPECTRE_V2_USER_NONE;
1105
1106 #ifdef CONFIG_RETPOLINE
1107 static bool spectre_v2_bad_module;
1108
1109 bool retpoline_module_ok(bool has_retpoline)
1110 {
1111 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1112 return true;
1113
1114 pr_err("System may be vulnerable to spectre v2\n");
1115 spectre_v2_bad_module = true;
1116 return false;
1117 }
1118
1119 static inline const char *spectre_v2_module_string(void)
1120 {
1121 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1122 }
1123 #else
1124 static inline const char *spectre_v2_module_string(void) { return ""; }
1125 #endif
1126
1127 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1128 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1129 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1130 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1131
1132 #ifdef CONFIG_BPF_SYSCALL
1133 void unpriv_ebpf_notify(int new_state)
1134 {
1135 if (new_state)
1136 return;
1137
1138 /* Unprivileged eBPF is enabled */
1139
1140 switch (spectre_v2_enabled) {
1141 case SPECTRE_V2_EIBRS:
1142 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1143 break;
1144 case SPECTRE_V2_EIBRS_LFENCE:
1145 if (sched_smt_active())
1146 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1147 break;
1148 default:
1149 break;
1150 }
1151 }
1152 #endif
1153
1154 static inline bool match_option(const char *arg, int arglen, const char *opt)
1155 {
1156 int len = strlen(opt);
1157
1158 return len == arglen && !strncmp(arg, opt, len);
1159 }
1160
1161 /* The kernel command line selection for spectre v2 */
1162 enum spectre_v2_mitigation_cmd {
1163 SPECTRE_V2_CMD_NONE,
1164 SPECTRE_V2_CMD_AUTO,
1165 SPECTRE_V2_CMD_FORCE,
1166 SPECTRE_V2_CMD_RETPOLINE,
1167 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1168 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1169 SPECTRE_V2_CMD_EIBRS,
1170 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1171 SPECTRE_V2_CMD_EIBRS_LFENCE,
1172 SPECTRE_V2_CMD_IBRS,
1173 };
1174
1175 enum spectre_v2_user_cmd {
1176 SPECTRE_V2_USER_CMD_NONE,
1177 SPECTRE_V2_USER_CMD_AUTO,
1178 SPECTRE_V2_USER_CMD_FORCE,
1179 SPECTRE_V2_USER_CMD_PRCTL,
1180 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1181 SPECTRE_V2_USER_CMD_SECCOMP,
1182 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1183 };
1184
1185 static const char * const spectre_v2_user_strings[] = {
1186 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1187 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1188 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1189 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1190 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1191 };
1192
1193 static const struct {
1194 const char *option;
1195 enum spectre_v2_user_cmd cmd;
1196 bool secure;
1197 } v2_user_options[] __initconst = {
1198 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1199 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1200 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1201 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1202 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1203 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1204 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1205 };
1206
1207 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1208 {
1209 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1210 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1211 }
1212
1213 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1214
1215 static enum spectre_v2_user_cmd __init
1216 spectre_v2_parse_user_cmdline(void)
1217 {
1218 char arg[20];
1219 int ret, i;
1220
1221 switch (spectre_v2_cmd) {
1222 case SPECTRE_V2_CMD_NONE:
1223 return SPECTRE_V2_USER_CMD_NONE;
1224 case SPECTRE_V2_CMD_FORCE:
1225 return SPECTRE_V2_USER_CMD_FORCE;
1226 default:
1227 break;
1228 }
1229
1230 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1231 arg, sizeof(arg));
1232 if (ret < 0)
1233 return SPECTRE_V2_USER_CMD_AUTO;
1234
1235 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1236 if (match_option(arg, ret, v2_user_options[i].option)) {
1237 spec_v2_user_print_cond(v2_user_options[i].option,
1238 v2_user_options[i].secure);
1239 return v2_user_options[i].cmd;
1240 }
1241 }
1242
1243 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1244 return SPECTRE_V2_USER_CMD_AUTO;
1245 }
1246
1247 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1248 {
1249 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1250 }
1251
1252 static void __init
1253 spectre_v2_user_select_mitigation(void)
1254 {
1255 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1256 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1257 enum spectre_v2_user_cmd cmd;
1258
1259 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1260 return;
1261
1262 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1263 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1264 smt_possible = false;
1265
1266 cmd = spectre_v2_parse_user_cmdline();
1267 switch (cmd) {
1268 case SPECTRE_V2_USER_CMD_NONE:
1269 goto set_mode;
1270 case SPECTRE_V2_USER_CMD_FORCE:
1271 mode = SPECTRE_V2_USER_STRICT;
1272 break;
1273 case SPECTRE_V2_USER_CMD_AUTO:
1274 case SPECTRE_V2_USER_CMD_PRCTL:
1275 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1276 mode = SPECTRE_V2_USER_PRCTL;
1277 break;
1278 case SPECTRE_V2_USER_CMD_SECCOMP:
1279 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1280 if (IS_ENABLED(CONFIG_SECCOMP))
1281 mode = SPECTRE_V2_USER_SECCOMP;
1282 else
1283 mode = SPECTRE_V2_USER_PRCTL;
1284 break;
1285 }
1286
1287 /* Initialize Indirect Branch Prediction Barrier */
1288 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1289 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1290
1291 spectre_v2_user_ibpb = mode;
1292 switch (cmd) {
1293 case SPECTRE_V2_USER_CMD_FORCE:
1294 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1295 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1296 static_branch_enable(&switch_mm_always_ibpb);
1297 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1298 break;
1299 case SPECTRE_V2_USER_CMD_PRCTL:
1300 case SPECTRE_V2_USER_CMD_AUTO:
1301 case SPECTRE_V2_USER_CMD_SECCOMP:
1302 static_branch_enable(&switch_mm_cond_ibpb);
1303 break;
1304 default:
1305 break;
1306 }
1307
1308 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1309 static_key_enabled(&switch_mm_always_ibpb) ?
1310 "always-on" : "conditional");
1311 }
1312
1313 /*
1314 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1315 * is not required.
1316 *
1317 * Intel's Enhanced IBRS also protects against cross-thread branch target
1318 * injection in user-mode as the IBRS bit remains always set which
1319 * implicitly enables cross-thread protections. However, in legacy IBRS
1320 * mode, the IBRS bit is set only on kernel entry and cleared on return
1321 * to userspace. AMD Automatic IBRS also does not protect userspace.
1322 * These modes therefore disable the implicit cross-thread protection,
1323 * so allow for STIBP to be selected in those cases.
1324 */
1325 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1326 !smt_possible ||
1327 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1328 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1329 return;
1330
1331 /*
1332 * At this point, an STIBP mode other than "off" has been set.
1333 * If STIBP support is not being forced, check if STIBP always-on
1334 * is preferred.
1335 */
1336 if (mode != SPECTRE_V2_USER_STRICT &&
1337 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1338 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1339
1340 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1341 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1342 if (mode != SPECTRE_V2_USER_STRICT &&
1343 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1344 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1345 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1346 }
1347
1348 spectre_v2_user_stibp = mode;
1349
1350 set_mode:
1351 pr_info("%s\n", spectre_v2_user_strings[mode]);
1352 }
1353
1354 static const char * const spectre_v2_strings[] = {
1355 [SPECTRE_V2_NONE] = "Vulnerable",
1356 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1357 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1358 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1359 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1360 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1361 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1362 };
1363
1364 static const struct {
1365 const char *option;
1366 enum spectre_v2_mitigation_cmd cmd;
1367 bool secure;
1368 } mitigation_options[] __initconst = {
1369 { "off", SPECTRE_V2_CMD_NONE, false },
1370 { "on", SPECTRE_V2_CMD_FORCE, true },
1371 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1372 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1373 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1374 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1375 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1376 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1377 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1378 { "auto", SPECTRE_V2_CMD_AUTO, false },
1379 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1380 };
1381
1382 static void __init spec_v2_print_cond(const char *reason, bool secure)
1383 {
1384 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1385 pr_info("%s selected on command line.\n", reason);
1386 }
1387
1388 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1389 {
1390 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1391 char arg[20];
1392 int ret, i;
1393
1394 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1395 cpu_mitigations_off())
1396 return SPECTRE_V2_CMD_NONE;
1397
1398 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1399 if (ret < 0)
1400 return SPECTRE_V2_CMD_AUTO;
1401
1402 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1403 if (!match_option(arg, ret, mitigation_options[i].option))
1404 continue;
1405 cmd = mitigation_options[i].cmd;
1406 break;
1407 }
1408
1409 if (i >= ARRAY_SIZE(mitigation_options)) {
1410 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1411 return SPECTRE_V2_CMD_AUTO;
1412 }
1413
1414 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1415 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1416 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1417 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1418 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1419 !IS_ENABLED(CONFIG_RETPOLINE)) {
1420 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1421 mitigation_options[i].option);
1422 return SPECTRE_V2_CMD_AUTO;
1423 }
1424
1425 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1426 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1427 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1428 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1429 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1430 mitigation_options[i].option);
1431 return SPECTRE_V2_CMD_AUTO;
1432 }
1433
1434 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1435 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1436 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1437 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1438 mitigation_options[i].option);
1439 return SPECTRE_V2_CMD_AUTO;
1440 }
1441
1442 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1443 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1444 mitigation_options[i].option);
1445 return SPECTRE_V2_CMD_AUTO;
1446 }
1447
1448 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1449 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1450 mitigation_options[i].option);
1451 return SPECTRE_V2_CMD_AUTO;
1452 }
1453
1454 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1455 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1456 mitigation_options[i].option);
1457 return SPECTRE_V2_CMD_AUTO;
1458 }
1459
1460 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1461 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1462 mitigation_options[i].option);
1463 return SPECTRE_V2_CMD_AUTO;
1464 }
1465
1466 spec_v2_print_cond(mitigation_options[i].option,
1467 mitigation_options[i].secure);
1468 return cmd;
1469 }
1470
1471 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1472 {
1473 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1474 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1475 return SPECTRE_V2_NONE;
1476 }
1477
1478 return SPECTRE_V2_RETPOLINE;
1479 }
1480
1481 /* Disable in-kernel use of non-RSB RET predictors */
1482 static void __init spec_ctrl_disable_kernel_rrsba(void)
1483 {
1484 u64 ia32_cap;
1485
1486 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1487 return;
1488
1489 ia32_cap = x86_read_arch_cap_msr();
1490
1491 if (ia32_cap & ARCH_CAP_RRSBA) {
1492 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1493 update_spec_ctrl(x86_spec_ctrl_base);
1494 }
1495 }
1496
1497 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1498 {
1499 /*
1500 * Similar to context switches, there are two types of RSB attacks
1501 * after VM exit:
1502 *
1503 * 1) RSB underflow
1504 *
1505 * 2) Poisoned RSB entry
1506 *
1507 * When retpoline is enabled, both are mitigated by filling/clearing
1508 * the RSB.
1509 *
1510 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1511 * prediction isolation protections, RSB still needs to be cleared
1512 * because of #2. Note that SMEP provides no protection here, unlike
1513 * user-space-poisoned RSB entries.
1514 *
1515 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1516 * bug is present then a LITE version of RSB protection is required,
1517 * just a single call needs to retire before a RET is executed.
1518 */
1519 switch (mode) {
1520 case SPECTRE_V2_NONE:
1521 return;
1522
1523 case SPECTRE_V2_EIBRS_LFENCE:
1524 case SPECTRE_V2_EIBRS:
1525 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1526 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1527 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1528 }
1529 return;
1530
1531 case SPECTRE_V2_EIBRS_RETPOLINE:
1532 case SPECTRE_V2_RETPOLINE:
1533 case SPECTRE_V2_LFENCE:
1534 case SPECTRE_V2_IBRS:
1535 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1536 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1537 return;
1538 }
1539
1540 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1541 dump_stack();
1542 }
1543
1544 static void __init spectre_v2_select_mitigation(void)
1545 {
1546 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1547 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1548
1549 /*
1550 * If the CPU is not affected and the command line mode is NONE or AUTO
1551 * then nothing to do.
1552 */
1553 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1554 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1555 return;
1556
1557 switch (cmd) {
1558 case SPECTRE_V2_CMD_NONE:
1559 return;
1560
1561 case SPECTRE_V2_CMD_FORCE:
1562 case SPECTRE_V2_CMD_AUTO:
1563 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1564 mode = SPECTRE_V2_EIBRS;
1565 break;
1566 }
1567
1568 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1569 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1570 retbleed_cmd != RETBLEED_CMD_OFF &&
1571 retbleed_cmd != RETBLEED_CMD_STUFF &&
1572 boot_cpu_has(X86_FEATURE_IBRS) &&
1573 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1574 mode = SPECTRE_V2_IBRS;
1575 break;
1576 }
1577
1578 mode = spectre_v2_select_retpoline();
1579 break;
1580
1581 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1582 pr_err(SPECTRE_V2_LFENCE_MSG);
1583 mode = SPECTRE_V2_LFENCE;
1584 break;
1585
1586 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1587 mode = SPECTRE_V2_RETPOLINE;
1588 break;
1589
1590 case SPECTRE_V2_CMD_RETPOLINE:
1591 mode = spectre_v2_select_retpoline();
1592 break;
1593
1594 case SPECTRE_V2_CMD_IBRS:
1595 mode = SPECTRE_V2_IBRS;
1596 break;
1597
1598 case SPECTRE_V2_CMD_EIBRS:
1599 mode = SPECTRE_V2_EIBRS;
1600 break;
1601
1602 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1603 mode = SPECTRE_V2_EIBRS_LFENCE;
1604 break;
1605
1606 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1607 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1608 break;
1609 }
1610
1611 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1612 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1613
1614 if (spectre_v2_in_ibrs_mode(mode)) {
1615 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1616 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1617 } else {
1618 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1619 update_spec_ctrl(x86_spec_ctrl_base);
1620 }
1621 }
1622
1623 switch (mode) {
1624 case SPECTRE_V2_NONE:
1625 case SPECTRE_V2_EIBRS:
1626 break;
1627
1628 case SPECTRE_V2_IBRS:
1629 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1630 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1631 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1632 break;
1633
1634 case SPECTRE_V2_LFENCE:
1635 case SPECTRE_V2_EIBRS_LFENCE:
1636 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1637 fallthrough;
1638
1639 case SPECTRE_V2_RETPOLINE:
1640 case SPECTRE_V2_EIBRS_RETPOLINE:
1641 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1642 break;
1643 }
1644
1645 /*
1646 * Disable alternate RSB predictions in kernel when indirect CALLs and
1647 * JMPs gets protection against BHI and Intramode-BTI, but RET
1648 * prediction from a non-RSB predictor is still a risk.
1649 */
1650 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1651 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1652 mode == SPECTRE_V2_RETPOLINE)
1653 spec_ctrl_disable_kernel_rrsba();
1654
1655 spectre_v2_enabled = mode;
1656 pr_info("%s\n", spectre_v2_strings[mode]);
1657
1658 /*
1659 * If Spectre v2 protection has been enabled, fill the RSB during a
1660 * context switch. In general there are two types of RSB attacks
1661 * across context switches, for which the CALLs/RETs may be unbalanced.
1662 *
1663 * 1) RSB underflow
1664 *
1665 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1666 * speculated return targets may come from the branch predictor,
1667 * which could have a user-poisoned BTB or BHB entry.
1668 *
1669 * AMD has it even worse: *all* returns are speculated from the BTB,
1670 * regardless of the state of the RSB.
1671 *
1672 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1673 * scenario is mitigated by the IBRS branch prediction isolation
1674 * properties, so the RSB buffer filling wouldn't be necessary to
1675 * protect against this type of attack.
1676 *
1677 * The "user -> user" attack scenario is mitigated by RSB filling.
1678 *
1679 * 2) Poisoned RSB entry
1680 *
1681 * If the 'next' in-kernel return stack is shorter than 'prev',
1682 * 'next' could be tricked into speculating with a user-poisoned RSB
1683 * entry.
1684 *
1685 * The "user -> kernel" attack scenario is mitigated by SMEP and
1686 * eIBRS.
1687 *
1688 * The "user -> user" scenario, also known as SpectreBHB, requires
1689 * RSB clearing.
1690 *
1691 * So to mitigate all cases, unconditionally fill RSB on context
1692 * switches.
1693 *
1694 * FIXME: Is this pointless for retbleed-affected AMD?
1695 */
1696 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1697 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1698
1699 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1700
1701 /*
1702 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1703 * and Enhanced IBRS protect firmware too, so enable IBRS around
1704 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1705 * otherwise enabled.
1706 *
1707 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1708 * the user might select retpoline on the kernel command line and if
1709 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1710 * enable IBRS around firmware calls.
1711 */
1712 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1713 boot_cpu_has(X86_FEATURE_IBPB) &&
1714 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1715 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1716
1717 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1718 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1719 pr_info("Enabling Speculation Barrier for firmware calls\n");
1720 }
1721
1722 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1723 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1724 pr_info("Enabling Restricted Speculation for firmware calls\n");
1725 }
1726
1727 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1728 spectre_v2_cmd = cmd;
1729 }
1730
1731 static void update_stibp_msr(void * __unused)
1732 {
1733 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1734 update_spec_ctrl(val);
1735 }
1736
1737 /* Update x86_spec_ctrl_base in case SMT state changed. */
1738 static void update_stibp_strict(void)
1739 {
1740 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1741
1742 if (sched_smt_active())
1743 mask |= SPEC_CTRL_STIBP;
1744
1745 if (mask == x86_spec_ctrl_base)
1746 return;
1747
1748 pr_info("Update user space SMT mitigation: STIBP %s\n",
1749 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1750 x86_spec_ctrl_base = mask;
1751 on_each_cpu(update_stibp_msr, NULL, 1);
1752 }
1753
1754 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1755 static void update_indir_branch_cond(void)
1756 {
1757 if (sched_smt_active())
1758 static_branch_enable(&switch_to_cond_stibp);
1759 else
1760 static_branch_disable(&switch_to_cond_stibp);
1761 }
1762
1763 #undef pr_fmt
1764 #define pr_fmt(fmt) fmt
1765
1766 /* Update the static key controlling the MDS CPU buffer clear in idle */
1767 static void update_mds_branch_idle(void)
1768 {
1769 u64 ia32_cap = x86_read_arch_cap_msr();
1770
1771 /*
1772 * Enable the idle clearing if SMT is active on CPUs which are
1773 * affected only by MSBDS and not any other MDS variant.
1774 *
1775 * The other variants cannot be mitigated when SMT is enabled, so
1776 * clearing the buffers on idle just to prevent the Store Buffer
1777 * repartitioning leak would be a window dressing exercise.
1778 */
1779 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1780 return;
1781
1782 if (sched_smt_active()) {
1783 static_branch_enable(&mds_idle_clear);
1784 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1785 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1786 static_branch_disable(&mds_idle_clear);
1787 }
1788 }
1789
1790 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1791 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1792 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1793
1794 void cpu_bugs_smt_update(void)
1795 {
1796 mutex_lock(&spec_ctrl_mutex);
1797
1798 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1799 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1800 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1801
1802 switch (spectre_v2_user_stibp) {
1803 case SPECTRE_V2_USER_NONE:
1804 break;
1805 case SPECTRE_V2_USER_STRICT:
1806 case SPECTRE_V2_USER_STRICT_PREFERRED:
1807 update_stibp_strict();
1808 break;
1809 case SPECTRE_V2_USER_PRCTL:
1810 case SPECTRE_V2_USER_SECCOMP:
1811 update_indir_branch_cond();
1812 break;
1813 }
1814
1815 switch (mds_mitigation) {
1816 case MDS_MITIGATION_FULL:
1817 case MDS_MITIGATION_VMWERV:
1818 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1819 pr_warn_once(MDS_MSG_SMT);
1820 update_mds_branch_idle();
1821 break;
1822 case MDS_MITIGATION_OFF:
1823 break;
1824 }
1825
1826 switch (taa_mitigation) {
1827 case TAA_MITIGATION_VERW:
1828 case TAA_MITIGATION_UCODE_NEEDED:
1829 if (sched_smt_active())
1830 pr_warn_once(TAA_MSG_SMT);
1831 break;
1832 case TAA_MITIGATION_TSX_DISABLED:
1833 case TAA_MITIGATION_OFF:
1834 break;
1835 }
1836
1837 switch (mmio_mitigation) {
1838 case MMIO_MITIGATION_VERW:
1839 case MMIO_MITIGATION_UCODE_NEEDED:
1840 if (sched_smt_active())
1841 pr_warn_once(MMIO_MSG_SMT);
1842 break;
1843 case MMIO_MITIGATION_OFF:
1844 break;
1845 }
1846
1847 mutex_unlock(&spec_ctrl_mutex);
1848 }
1849
1850 #undef pr_fmt
1851 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1852
1853 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1854
1855 /* The kernel command line selection */
1856 enum ssb_mitigation_cmd {
1857 SPEC_STORE_BYPASS_CMD_NONE,
1858 SPEC_STORE_BYPASS_CMD_AUTO,
1859 SPEC_STORE_BYPASS_CMD_ON,
1860 SPEC_STORE_BYPASS_CMD_PRCTL,
1861 SPEC_STORE_BYPASS_CMD_SECCOMP,
1862 };
1863
1864 static const char * const ssb_strings[] = {
1865 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1866 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1867 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1868 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1869 };
1870
1871 static const struct {
1872 const char *option;
1873 enum ssb_mitigation_cmd cmd;
1874 } ssb_mitigation_options[] __initconst = {
1875 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1876 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1877 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1878 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1879 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1880 };
1881
1882 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1883 {
1884 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1885 char arg[20];
1886 int ret, i;
1887
1888 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1889 cpu_mitigations_off()) {
1890 return SPEC_STORE_BYPASS_CMD_NONE;
1891 } else {
1892 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1893 arg, sizeof(arg));
1894 if (ret < 0)
1895 return SPEC_STORE_BYPASS_CMD_AUTO;
1896
1897 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1898 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1899 continue;
1900
1901 cmd = ssb_mitigation_options[i].cmd;
1902 break;
1903 }
1904
1905 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1906 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1907 return SPEC_STORE_BYPASS_CMD_AUTO;
1908 }
1909 }
1910
1911 return cmd;
1912 }
1913
1914 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1915 {
1916 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1917 enum ssb_mitigation_cmd cmd;
1918
1919 if (!boot_cpu_has(X86_FEATURE_SSBD))
1920 return mode;
1921
1922 cmd = ssb_parse_cmdline();
1923 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1924 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1925 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1926 return mode;
1927
1928 switch (cmd) {
1929 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1930 /*
1931 * Choose prctl+seccomp as the default mode if seccomp is
1932 * enabled.
1933 */
1934 if (IS_ENABLED(CONFIG_SECCOMP))
1935 mode = SPEC_STORE_BYPASS_SECCOMP;
1936 else
1937 mode = SPEC_STORE_BYPASS_PRCTL;
1938 break;
1939 case SPEC_STORE_BYPASS_CMD_ON:
1940 mode = SPEC_STORE_BYPASS_DISABLE;
1941 break;
1942 case SPEC_STORE_BYPASS_CMD_AUTO:
1943 case SPEC_STORE_BYPASS_CMD_PRCTL:
1944 mode = SPEC_STORE_BYPASS_PRCTL;
1945 break;
1946 case SPEC_STORE_BYPASS_CMD_NONE:
1947 break;
1948 }
1949
1950 /*
1951 * We have three CPU feature flags that are in play here:
1952 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1953 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1954 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1955 */
1956 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1957 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1958 /*
1959 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1960 * use a completely different MSR and bit dependent on family.
1961 */
1962 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1963 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1964 x86_amd_ssb_disable();
1965 } else {
1966 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1967 update_spec_ctrl(x86_spec_ctrl_base);
1968 }
1969 }
1970
1971 return mode;
1972 }
1973
1974 static void ssb_select_mitigation(void)
1975 {
1976 ssb_mode = __ssb_select_mitigation();
1977
1978 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1979 pr_info("%s\n", ssb_strings[ssb_mode]);
1980 }
1981
1982 #undef pr_fmt
1983 #define pr_fmt(fmt) "Speculation prctl: " fmt
1984
1985 static void task_update_spec_tif(struct task_struct *tsk)
1986 {
1987 /* Force the update of the real TIF bits */
1988 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1989
1990 /*
1991 * Immediately update the speculation control MSRs for the current
1992 * task, but for a non-current task delay setting the CPU
1993 * mitigation until it is scheduled next.
1994 *
1995 * This can only happen for SECCOMP mitigation. For PRCTL it's
1996 * always the current task.
1997 */
1998 if (tsk == current)
1999 speculation_ctrl_update_current();
2000 }
2001
2002 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2003 {
2004
2005 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2006 return -EPERM;
2007
2008 switch (ctrl) {
2009 case PR_SPEC_ENABLE:
2010 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2011 return 0;
2012 case PR_SPEC_DISABLE:
2013 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2014 return 0;
2015 default:
2016 return -ERANGE;
2017 }
2018 }
2019
2020 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2021 {
2022 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2023 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2024 return -ENXIO;
2025
2026 switch (ctrl) {
2027 case PR_SPEC_ENABLE:
2028 /* If speculation is force disabled, enable is not allowed */
2029 if (task_spec_ssb_force_disable(task))
2030 return -EPERM;
2031 task_clear_spec_ssb_disable(task);
2032 task_clear_spec_ssb_noexec(task);
2033 task_update_spec_tif(task);
2034 break;
2035 case PR_SPEC_DISABLE:
2036 task_set_spec_ssb_disable(task);
2037 task_clear_spec_ssb_noexec(task);
2038 task_update_spec_tif(task);
2039 break;
2040 case PR_SPEC_FORCE_DISABLE:
2041 task_set_spec_ssb_disable(task);
2042 task_set_spec_ssb_force_disable(task);
2043 task_clear_spec_ssb_noexec(task);
2044 task_update_spec_tif(task);
2045 break;
2046 case PR_SPEC_DISABLE_NOEXEC:
2047 if (task_spec_ssb_force_disable(task))
2048 return -EPERM;
2049 task_set_spec_ssb_disable(task);
2050 task_set_spec_ssb_noexec(task);
2051 task_update_spec_tif(task);
2052 break;
2053 default:
2054 return -ERANGE;
2055 }
2056 return 0;
2057 }
2058
2059 static bool is_spec_ib_user_controlled(void)
2060 {
2061 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2062 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2063 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2064 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2065 }
2066
2067 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2068 {
2069 switch (ctrl) {
2070 case PR_SPEC_ENABLE:
2071 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2072 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2073 return 0;
2074
2075 /*
2076 * With strict mode for both IBPB and STIBP, the instruction
2077 * code paths avoid checking this task flag and instead,
2078 * unconditionally run the instruction. However, STIBP and IBPB
2079 * are independent and either can be set to conditionally
2080 * enabled regardless of the mode of the other.
2081 *
2082 * If either is set to conditional, allow the task flag to be
2083 * updated, unless it was force-disabled by a previous prctl
2084 * call. Currently, this is possible on an AMD CPU which has the
2085 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2086 * kernel is booted with 'spectre_v2_user=seccomp', then
2087 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2088 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2089 */
2090 if (!is_spec_ib_user_controlled() ||
2091 task_spec_ib_force_disable(task))
2092 return -EPERM;
2093
2094 task_clear_spec_ib_disable(task);
2095 task_update_spec_tif(task);
2096 break;
2097 case PR_SPEC_DISABLE:
2098 case PR_SPEC_FORCE_DISABLE:
2099 /*
2100 * Indirect branch speculation is always allowed when
2101 * mitigation is force disabled.
2102 */
2103 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2104 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2105 return -EPERM;
2106
2107 if (!is_spec_ib_user_controlled())
2108 return 0;
2109
2110 task_set_spec_ib_disable(task);
2111 if (ctrl == PR_SPEC_FORCE_DISABLE)
2112 task_set_spec_ib_force_disable(task);
2113 task_update_spec_tif(task);
2114 if (task == current)
2115 indirect_branch_prediction_barrier();
2116 break;
2117 default:
2118 return -ERANGE;
2119 }
2120 return 0;
2121 }
2122
2123 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2124 unsigned long ctrl)
2125 {
2126 switch (which) {
2127 case PR_SPEC_STORE_BYPASS:
2128 return ssb_prctl_set(task, ctrl);
2129 case PR_SPEC_INDIRECT_BRANCH:
2130 return ib_prctl_set(task, ctrl);
2131 case PR_SPEC_L1D_FLUSH:
2132 return l1d_flush_prctl_set(task, ctrl);
2133 default:
2134 return -ENODEV;
2135 }
2136 }
2137
2138 #ifdef CONFIG_SECCOMP
2139 void arch_seccomp_spec_mitigate(struct task_struct *task)
2140 {
2141 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2142 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2143 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2144 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2145 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2146 }
2147 #endif
2148
2149 static int l1d_flush_prctl_get(struct task_struct *task)
2150 {
2151 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2152 return PR_SPEC_FORCE_DISABLE;
2153
2154 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2155 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2156 else
2157 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2158 }
2159
2160 static int ssb_prctl_get(struct task_struct *task)
2161 {
2162 switch (ssb_mode) {
2163 case SPEC_STORE_BYPASS_DISABLE:
2164 return PR_SPEC_DISABLE;
2165 case SPEC_STORE_BYPASS_SECCOMP:
2166 case SPEC_STORE_BYPASS_PRCTL:
2167 if (task_spec_ssb_force_disable(task))
2168 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2169 if (task_spec_ssb_noexec(task))
2170 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2171 if (task_spec_ssb_disable(task))
2172 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2173 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2174 default:
2175 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2176 return PR_SPEC_ENABLE;
2177 return PR_SPEC_NOT_AFFECTED;
2178 }
2179 }
2180
2181 static int ib_prctl_get(struct task_struct *task)
2182 {
2183 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2184 return PR_SPEC_NOT_AFFECTED;
2185
2186 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2187 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2188 return PR_SPEC_ENABLE;
2189 else if (is_spec_ib_user_controlled()) {
2190 if (task_spec_ib_force_disable(task))
2191 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2192 if (task_spec_ib_disable(task))
2193 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2194 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2195 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2196 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2197 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2198 return PR_SPEC_DISABLE;
2199 else
2200 return PR_SPEC_NOT_AFFECTED;
2201 }
2202
2203 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2204 {
2205 switch (which) {
2206 case PR_SPEC_STORE_BYPASS:
2207 return ssb_prctl_get(task);
2208 case PR_SPEC_INDIRECT_BRANCH:
2209 return ib_prctl_get(task);
2210 case PR_SPEC_L1D_FLUSH:
2211 return l1d_flush_prctl_get(task);
2212 default:
2213 return -ENODEV;
2214 }
2215 }
2216
2217 void x86_spec_ctrl_setup_ap(void)
2218 {
2219 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2220 update_spec_ctrl(x86_spec_ctrl_base);
2221
2222 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2223 x86_amd_ssb_disable();
2224 }
2225
2226 bool itlb_multihit_kvm_mitigation;
2227 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2228
2229 #undef pr_fmt
2230 #define pr_fmt(fmt) "L1TF: " fmt
2231
2232 /* Default mitigation for L1TF-affected CPUs */
2233 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2234 #if IS_ENABLED(CONFIG_KVM_INTEL)
2235 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2236 #endif
2237 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2238 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2239
2240 /*
2241 * These CPUs all support 44bits physical address space internally in the
2242 * cache but CPUID can report a smaller number of physical address bits.
2243 *
2244 * The L1TF mitigation uses the top most address bit for the inversion of
2245 * non present PTEs. When the installed memory reaches into the top most
2246 * address bit due to memory holes, which has been observed on machines
2247 * which report 36bits physical address bits and have 32G RAM installed,
2248 * then the mitigation range check in l1tf_select_mitigation() triggers.
2249 * This is a false positive because the mitigation is still possible due to
2250 * the fact that the cache uses 44bit internally. Use the cache bits
2251 * instead of the reported physical bits and adjust them on the affected
2252 * machines to 44bit if the reported bits are less than 44.
2253 */
2254 static void override_cache_bits(struct cpuinfo_x86 *c)
2255 {
2256 if (c->x86 != 6)
2257 return;
2258
2259 switch (c->x86_model) {
2260 case INTEL_FAM6_NEHALEM:
2261 case INTEL_FAM6_WESTMERE:
2262 case INTEL_FAM6_SANDYBRIDGE:
2263 case INTEL_FAM6_IVYBRIDGE:
2264 case INTEL_FAM6_HASWELL:
2265 case INTEL_FAM6_HASWELL_L:
2266 case INTEL_FAM6_HASWELL_G:
2267 case INTEL_FAM6_BROADWELL:
2268 case INTEL_FAM6_BROADWELL_G:
2269 case INTEL_FAM6_SKYLAKE_L:
2270 case INTEL_FAM6_SKYLAKE:
2271 case INTEL_FAM6_KABYLAKE_L:
2272 case INTEL_FAM6_KABYLAKE:
2273 if (c->x86_cache_bits < 44)
2274 c->x86_cache_bits = 44;
2275 break;
2276 }
2277 }
2278
2279 static void __init l1tf_select_mitigation(void)
2280 {
2281 u64 half_pa;
2282
2283 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2284 return;
2285
2286 if (cpu_mitigations_off())
2287 l1tf_mitigation = L1TF_MITIGATION_OFF;
2288 else if (cpu_mitigations_auto_nosmt())
2289 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2290
2291 override_cache_bits(&boot_cpu_data);
2292
2293 switch (l1tf_mitigation) {
2294 case L1TF_MITIGATION_OFF:
2295 case L1TF_MITIGATION_FLUSH_NOWARN:
2296 case L1TF_MITIGATION_FLUSH:
2297 break;
2298 case L1TF_MITIGATION_FLUSH_NOSMT:
2299 case L1TF_MITIGATION_FULL:
2300 cpu_smt_disable(false);
2301 break;
2302 case L1TF_MITIGATION_FULL_FORCE:
2303 cpu_smt_disable(true);
2304 break;
2305 }
2306
2307 #if CONFIG_PGTABLE_LEVELS == 2
2308 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2309 return;
2310 #endif
2311
2312 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2313 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2314 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2315 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2316 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2317 half_pa);
2318 pr_info("However, doing so will make a part of your RAM unusable.\n");
2319 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2320 return;
2321 }
2322
2323 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2324 }
2325
2326 static int __init l1tf_cmdline(char *str)
2327 {
2328 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2329 return 0;
2330
2331 if (!str)
2332 return -EINVAL;
2333
2334 if (!strcmp(str, "off"))
2335 l1tf_mitigation = L1TF_MITIGATION_OFF;
2336 else if (!strcmp(str, "flush,nowarn"))
2337 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2338 else if (!strcmp(str, "flush"))
2339 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2340 else if (!strcmp(str, "flush,nosmt"))
2341 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2342 else if (!strcmp(str, "full"))
2343 l1tf_mitigation = L1TF_MITIGATION_FULL;
2344 else if (!strcmp(str, "full,force"))
2345 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2346
2347 return 0;
2348 }
2349 early_param("l1tf", l1tf_cmdline);
2350
2351 #undef pr_fmt
2352 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2353
2354 enum srso_mitigation {
2355 SRSO_MITIGATION_NONE,
2356 SRSO_MITIGATION_MICROCODE,
2357 SRSO_MITIGATION_SAFE_RET,
2358 SRSO_MITIGATION_IBPB,
2359 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2360 };
2361
2362 enum srso_mitigation_cmd {
2363 SRSO_CMD_OFF,
2364 SRSO_CMD_MICROCODE,
2365 SRSO_CMD_SAFE_RET,
2366 SRSO_CMD_IBPB,
2367 SRSO_CMD_IBPB_ON_VMEXIT,
2368 };
2369
2370 static const char * const srso_strings[] = {
2371 [SRSO_MITIGATION_NONE] = "Vulnerable",
2372 [SRSO_MITIGATION_MICROCODE] = "Mitigation: microcode",
2373 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: safe RET",
2374 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2375 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2376 };
2377
2378 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2379 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2380
2381 static int __init srso_parse_cmdline(char *str)
2382 {
2383 if (!str)
2384 return -EINVAL;
2385
2386 if (!strcmp(str, "off"))
2387 srso_cmd = SRSO_CMD_OFF;
2388 else if (!strcmp(str, "microcode"))
2389 srso_cmd = SRSO_CMD_MICROCODE;
2390 else if (!strcmp(str, "safe-ret"))
2391 srso_cmd = SRSO_CMD_SAFE_RET;
2392 else if (!strcmp(str, "ibpb"))
2393 srso_cmd = SRSO_CMD_IBPB;
2394 else if (!strcmp(str, "ibpb-vmexit"))
2395 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2396 else
2397 pr_err("Ignoring unknown SRSO option (%s).", str);
2398
2399 return 0;
2400 }
2401 early_param("spec_rstack_overflow", srso_parse_cmdline);
2402
2403 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2404
2405 static void __init srso_select_mitigation(void)
2406 {
2407 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2408
2409 if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2410 goto pred_cmd;
2411
2412 if (!has_microcode) {
2413 pr_warn("IBPB-extending microcode not applied!\n");
2414 pr_warn(SRSO_NOTICE);
2415 } else {
2416 /*
2417 * Zen1/2 with SMT off aren't vulnerable after the right
2418 * IBPB microcode has been applied.
2419 */
2420 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2421 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2422 return;
2423 }
2424 }
2425
2426 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2427 if (has_microcode) {
2428 pr_err("Retbleed IBPB mitigation enabled, using same for SRSO\n");
2429 srso_mitigation = SRSO_MITIGATION_IBPB;
2430 goto pred_cmd;
2431 }
2432 }
2433
2434 switch (srso_cmd) {
2435 case SRSO_CMD_OFF:
2436 goto pred_cmd;
2437
2438 case SRSO_CMD_MICROCODE:
2439 if (has_microcode) {
2440 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2441 pr_warn(SRSO_NOTICE);
2442 }
2443 break;
2444
2445 case SRSO_CMD_SAFE_RET:
2446 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2447 /*
2448 * Enable the return thunk for generated code
2449 * like ftrace, static_call, etc.
2450 */
2451 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2452 setup_force_cpu_cap(X86_FEATURE_UNRET);
2453
2454 if (boot_cpu_data.x86 == 0x19) {
2455 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2456 x86_return_thunk = srso_alias_return_thunk;
2457 } else {
2458 setup_force_cpu_cap(X86_FEATURE_SRSO);
2459 x86_return_thunk = srso_return_thunk;
2460 }
2461 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2462 } else {
2463 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2464 goto pred_cmd;
2465 }
2466 break;
2467
2468 case SRSO_CMD_IBPB:
2469 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2470 if (has_microcode) {
2471 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2472 srso_mitigation = SRSO_MITIGATION_IBPB;
2473 }
2474 } else {
2475 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2476 goto pred_cmd;
2477 }
2478 break;
2479
2480 case SRSO_CMD_IBPB_ON_VMEXIT:
2481 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2482 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2483 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2484 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2485 }
2486 } else {
2487 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2488 goto pred_cmd;
2489 }
2490 break;
2491
2492 default:
2493 break;
2494 }
2495
2496 pr_info("%s%s\n", srso_strings[srso_mitigation], (has_microcode ? "" : ", no microcode"));
2497
2498 pred_cmd:
2499 if ((boot_cpu_has(X86_FEATURE_SRSO_NO) || srso_cmd == SRSO_CMD_OFF) &&
2500 boot_cpu_has(X86_FEATURE_SBPB))
2501 x86_pred_cmd = PRED_CMD_SBPB;
2502 }
2503
2504 #undef pr_fmt
2505 #define pr_fmt(fmt) fmt
2506
2507 #ifdef CONFIG_SYSFS
2508
2509 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2510
2511 #if IS_ENABLED(CONFIG_KVM_INTEL)
2512 static const char * const l1tf_vmx_states[] = {
2513 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2514 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2515 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2516 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2517 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2518 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2519 };
2520
2521 static ssize_t l1tf_show_state(char *buf)
2522 {
2523 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2524 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2525
2526 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2527 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2528 sched_smt_active())) {
2529 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2530 l1tf_vmx_states[l1tf_vmx_mitigation]);
2531 }
2532
2533 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2534 l1tf_vmx_states[l1tf_vmx_mitigation],
2535 sched_smt_active() ? "vulnerable" : "disabled");
2536 }
2537
2538 static ssize_t itlb_multihit_show_state(char *buf)
2539 {
2540 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2541 !boot_cpu_has(X86_FEATURE_VMX))
2542 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2543 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2544 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2545 else if (itlb_multihit_kvm_mitigation)
2546 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2547 else
2548 return sysfs_emit(buf, "KVM: Vulnerable\n");
2549 }
2550 #else
2551 static ssize_t l1tf_show_state(char *buf)
2552 {
2553 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2554 }
2555
2556 static ssize_t itlb_multihit_show_state(char *buf)
2557 {
2558 return sysfs_emit(buf, "Processor vulnerable\n");
2559 }
2560 #endif
2561
2562 static ssize_t mds_show_state(char *buf)
2563 {
2564 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2565 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2566 mds_strings[mds_mitigation]);
2567 }
2568
2569 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2570 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2571 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2572 sched_smt_active() ? "mitigated" : "disabled"));
2573 }
2574
2575 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2576 sched_smt_active() ? "vulnerable" : "disabled");
2577 }
2578
2579 static ssize_t tsx_async_abort_show_state(char *buf)
2580 {
2581 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2582 (taa_mitigation == TAA_MITIGATION_OFF))
2583 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2584
2585 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2586 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2587 taa_strings[taa_mitigation]);
2588 }
2589
2590 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2591 sched_smt_active() ? "vulnerable" : "disabled");
2592 }
2593
2594 static ssize_t mmio_stale_data_show_state(char *buf)
2595 {
2596 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2597 return sysfs_emit(buf, "Unknown: No mitigations\n");
2598
2599 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2600 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2601
2602 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2603 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2604 mmio_strings[mmio_mitigation]);
2605 }
2606
2607 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2608 sched_smt_active() ? "vulnerable" : "disabled");
2609 }
2610
2611 static char *stibp_state(void)
2612 {
2613 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2614 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2615 return "";
2616
2617 switch (spectre_v2_user_stibp) {
2618 case SPECTRE_V2_USER_NONE:
2619 return ", STIBP: disabled";
2620 case SPECTRE_V2_USER_STRICT:
2621 return ", STIBP: forced";
2622 case SPECTRE_V2_USER_STRICT_PREFERRED:
2623 return ", STIBP: always-on";
2624 case SPECTRE_V2_USER_PRCTL:
2625 case SPECTRE_V2_USER_SECCOMP:
2626 if (static_key_enabled(&switch_to_cond_stibp))
2627 return ", STIBP: conditional";
2628 }
2629 return "";
2630 }
2631
2632 static char *ibpb_state(void)
2633 {
2634 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2635 if (static_key_enabled(&switch_mm_always_ibpb))
2636 return ", IBPB: always-on";
2637 if (static_key_enabled(&switch_mm_cond_ibpb))
2638 return ", IBPB: conditional";
2639 return ", IBPB: disabled";
2640 }
2641 return "";
2642 }
2643
2644 static char *pbrsb_eibrs_state(void)
2645 {
2646 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2647 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2648 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2649 return ", PBRSB-eIBRS: SW sequence";
2650 else
2651 return ", PBRSB-eIBRS: Vulnerable";
2652 } else {
2653 return ", PBRSB-eIBRS: Not affected";
2654 }
2655 }
2656
2657 static ssize_t spectre_v2_show_state(char *buf)
2658 {
2659 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2660 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2661
2662 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2663 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2664
2665 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2666 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2667 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2668
2669 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2670 spectre_v2_strings[spectre_v2_enabled],
2671 ibpb_state(),
2672 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2673 stibp_state(),
2674 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2675 pbrsb_eibrs_state(),
2676 spectre_v2_module_string());
2677 }
2678
2679 static ssize_t srbds_show_state(char *buf)
2680 {
2681 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2682 }
2683
2684 static ssize_t retbleed_show_state(char *buf)
2685 {
2686 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2687 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2688 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2689 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2690 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2691
2692 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2693 !sched_smt_active() ? "disabled" :
2694 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2695 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2696 "enabled with STIBP protection" : "vulnerable");
2697 }
2698
2699 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2700 }
2701
2702 static ssize_t srso_show_state(char *buf)
2703 {
2704 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2705 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2706
2707 return sysfs_emit(buf, "%s%s\n",
2708 srso_strings[srso_mitigation],
2709 boot_cpu_has(X86_FEATURE_IBPB_BRTYPE) ? "" : ", no microcode");
2710 }
2711
2712 static ssize_t gds_show_state(char *buf)
2713 {
2714 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2715 }
2716
2717 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2718 char *buf, unsigned int bug)
2719 {
2720 if (!boot_cpu_has_bug(bug))
2721 return sysfs_emit(buf, "Not affected\n");
2722
2723 switch (bug) {
2724 case X86_BUG_CPU_MELTDOWN:
2725 if (boot_cpu_has(X86_FEATURE_PTI))
2726 return sysfs_emit(buf, "Mitigation: PTI\n");
2727
2728 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2729 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2730
2731 break;
2732
2733 case X86_BUG_SPECTRE_V1:
2734 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2735
2736 case X86_BUG_SPECTRE_V2:
2737 return spectre_v2_show_state(buf);
2738
2739 case X86_BUG_SPEC_STORE_BYPASS:
2740 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2741
2742 case X86_BUG_L1TF:
2743 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2744 return l1tf_show_state(buf);
2745 break;
2746
2747 case X86_BUG_MDS:
2748 return mds_show_state(buf);
2749
2750 case X86_BUG_TAA:
2751 return tsx_async_abort_show_state(buf);
2752
2753 case X86_BUG_ITLB_MULTIHIT:
2754 return itlb_multihit_show_state(buf);
2755
2756 case X86_BUG_SRBDS:
2757 return srbds_show_state(buf);
2758
2759 case X86_BUG_MMIO_STALE_DATA:
2760 case X86_BUG_MMIO_UNKNOWN:
2761 return mmio_stale_data_show_state(buf);
2762
2763 case X86_BUG_RETBLEED:
2764 return retbleed_show_state(buf);
2765
2766 case X86_BUG_SRSO:
2767 return srso_show_state(buf);
2768
2769 case X86_BUG_GDS:
2770 return gds_show_state(buf);
2771
2772 default:
2773 break;
2774 }
2775
2776 return sysfs_emit(buf, "Vulnerable\n");
2777 }
2778
2779 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2780 {
2781 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2782 }
2783
2784 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2785 {
2786 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2787 }
2788
2789 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2790 {
2791 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2792 }
2793
2794 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2795 {
2796 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2797 }
2798
2799 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2800 {
2801 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2802 }
2803
2804 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2805 {
2806 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2807 }
2808
2809 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2810 {
2811 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2812 }
2813
2814 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2815 {
2816 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2817 }
2818
2819 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2820 {
2821 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2822 }
2823
2824 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2825 {
2826 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2827 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2828 else
2829 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2830 }
2831
2832 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2833 {
2834 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2835 }
2836
2837 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2838 {
2839 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2840 }
2841
2842 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2843 {
2844 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2845 }
2846 #endif