]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/cpu/bugs.c
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34
35 #include "cpu.h"
36
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_PER_CPU_SYMBOL_GPL(x86_spec_ctrl_current);
60
61 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62 EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64 static DEFINE_MUTEX(spec_ctrl_mutex);
65
66 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
67
68 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
69 static void update_spec_ctrl(u64 val)
70 {
71 this_cpu_write(x86_spec_ctrl_current, val);
72 wrmsrl(MSR_IA32_SPEC_CTRL, val);
73 }
74
75 /*
76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78 */
79 void update_spec_ctrl_cond(u64 val)
80 {
81 if (this_cpu_read(x86_spec_ctrl_current) == val)
82 return;
83
84 this_cpu_write(x86_spec_ctrl_current, val);
85
86 /*
87 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 * forced the update can be delayed until that time.
89 */
90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 wrmsrl(MSR_IA32_SPEC_CTRL, val);
92 }
93
94 noinstr u64 spec_ctrl_current(void)
95 {
96 return this_cpu_read(x86_spec_ctrl_current);
97 }
98 EXPORT_SYMBOL_GPL(spec_ctrl_current);
99
100 /*
101 * AMD specific MSR info for Speculative Store Bypass control.
102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103 */
104 u64 __ro_after_init x86_amd_ls_cfg_base;
105 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106
107 /* Control conditional STIBP in switch_to() */
108 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109 /* Control conditional IBPB in switch_mm() */
110 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111 /* Control unconditional IBPB in switch_mm() */
112 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113
114 /* Control MDS CPU buffer clear before idling (halt, mwait) */
115 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
116 EXPORT_SYMBOL_GPL(mds_idle_clear);
117
118 /*
119 * Controls whether l1d flush based mitigations are enabled,
120 * based on hw features and admin setting via boot parameter
121 * defaults to false
122 */
123 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
124
125 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
126 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
127 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
128
129 void __init cpu_select_mitigations(void)
130 {
131 /*
132 * Read the SPEC_CTRL MSR to account for reserved bits which may
133 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
134 * init code as it is not enumerated and depends on the family.
135 */
136 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
137 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
138
139 /*
140 * Previously running kernel (kexec), may have some controls
141 * turned ON. Clear them and let the mitigations setup below
142 * rediscover them based on configuration.
143 */
144 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
145 }
146
147 /* Select the proper CPU mitigations before patching alternatives: */
148 spectre_v1_select_mitigation();
149 spectre_v2_select_mitigation();
150 /*
151 * retbleed_select_mitigation() relies on the state set by
152 * spectre_v2_select_mitigation(); specifically it wants to know about
153 * spectre_v2=ibrs.
154 */
155 retbleed_select_mitigation();
156 /*
157 * spectre_v2_user_select_mitigation() relies on the state set by
158 * retbleed_select_mitigation(); specifically the STIBP selection is
159 * forced for UNRET or IBPB.
160 */
161 spectre_v2_user_select_mitigation();
162 ssb_select_mitigation();
163 l1tf_select_mitigation();
164 md_clear_select_mitigation();
165 srbds_select_mitigation();
166 l1d_flush_select_mitigation();
167
168 /*
169 * srso_select_mitigation() depends and must run after
170 * retbleed_select_mitigation().
171 */
172 srso_select_mitigation();
173 gds_select_mitigation();
174 }
175
176 /*
177 * NOTE: This function is *only* called for SVM, since Intel uses
178 * MSR_IA32_SPEC_CTRL for SSBD.
179 */
180 void
181 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
182 {
183 u64 guestval, hostval;
184 struct thread_info *ti = current_thread_info();
185
186 /*
187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
189 */
190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
191 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
192 return;
193
194 /*
195 * If the host has SSBD mitigation enabled, force it in the host's
196 * virtual MSR value. If its not permanently enabled, evaluate
197 * current's TIF_SSBD thread flag.
198 */
199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
200 hostval = SPEC_CTRL_SSBD;
201 else
202 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
203
204 /* Sanitize the guest value */
205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
206
207 if (hostval != guestval) {
208 unsigned long tif;
209
210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
211 ssbd_spec_ctrl_to_tif(hostval);
212
213 speculation_ctrl_update(tif);
214 }
215 }
216 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
217
218 static void x86_amd_ssb_disable(void)
219 {
220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
221
222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
225 wrmsrl(MSR_AMD64_LS_CFG, msrval);
226 }
227
228 #undef pr_fmt
229 #define pr_fmt(fmt) "MDS: " fmt
230
231 /* Default mitigation for MDS-affected CPUs */
232 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
233 static bool mds_nosmt __ro_after_init = false;
234
235 static const char * const mds_strings[] = {
236 [MDS_MITIGATION_OFF] = "Vulnerable",
237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
239 };
240
241 static void __init mds_select_mitigation(void)
242 {
243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
244 mds_mitigation = MDS_MITIGATION_OFF;
245 return;
246 }
247
248 if (mds_mitigation == MDS_MITIGATION_FULL) {
249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
250 mds_mitigation = MDS_MITIGATION_VMWERV;
251
252 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
253
254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
255 (mds_nosmt || cpu_mitigations_auto_nosmt()))
256 cpu_smt_disable(false);
257 }
258 }
259
260 static int __init mds_cmdline(char *str)
261 {
262 if (!boot_cpu_has_bug(X86_BUG_MDS))
263 return 0;
264
265 if (!str)
266 return -EINVAL;
267
268 if (!strcmp(str, "off"))
269 mds_mitigation = MDS_MITIGATION_OFF;
270 else if (!strcmp(str, "full"))
271 mds_mitigation = MDS_MITIGATION_FULL;
272 else if (!strcmp(str, "full,nosmt")) {
273 mds_mitigation = MDS_MITIGATION_FULL;
274 mds_nosmt = true;
275 }
276
277 return 0;
278 }
279 early_param("mds", mds_cmdline);
280
281 #undef pr_fmt
282 #define pr_fmt(fmt) "TAA: " fmt
283
284 enum taa_mitigations {
285 TAA_MITIGATION_OFF,
286 TAA_MITIGATION_UCODE_NEEDED,
287 TAA_MITIGATION_VERW,
288 TAA_MITIGATION_TSX_DISABLED,
289 };
290
291 /* Default mitigation for TAA-affected CPUs */
292 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
293 static bool taa_nosmt __ro_after_init;
294
295 static const char * const taa_strings[] = {
296 [TAA_MITIGATION_OFF] = "Vulnerable",
297 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
298 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
299 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
300 };
301
302 static void __init taa_select_mitigation(void)
303 {
304 u64 ia32_cap;
305
306 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
307 taa_mitigation = TAA_MITIGATION_OFF;
308 return;
309 }
310
311 /* TSX previously disabled by tsx=off */
312 if (!boot_cpu_has(X86_FEATURE_RTM)) {
313 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
314 return;
315 }
316
317 if (cpu_mitigations_off()) {
318 taa_mitigation = TAA_MITIGATION_OFF;
319 return;
320 }
321
322 /*
323 * TAA mitigation via VERW is turned off if both
324 * tsx_async_abort=off and mds=off are specified.
325 */
326 if (taa_mitigation == TAA_MITIGATION_OFF &&
327 mds_mitigation == MDS_MITIGATION_OFF)
328 return;
329
330 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
331 taa_mitigation = TAA_MITIGATION_VERW;
332 else
333 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
334
335 /*
336 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
337 * A microcode update fixes this behavior to clear CPU buffers. It also
338 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
339 * ARCH_CAP_TSX_CTRL_MSR bit.
340 *
341 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
342 * update is required.
343 */
344 ia32_cap = x86_read_arch_cap_msr();
345 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
346 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
347 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
348
349 /*
350 * TSX is enabled, select alternate mitigation for TAA which is
351 * the same as MDS. Enable MDS static branch to clear CPU buffers.
352 *
353 * For guests that can't determine whether the correct microcode is
354 * present on host, enable the mitigation for UCODE_NEEDED as well.
355 */
356 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
357
358 if (taa_nosmt || cpu_mitigations_auto_nosmt())
359 cpu_smt_disable(false);
360 }
361
362 static int __init tsx_async_abort_parse_cmdline(char *str)
363 {
364 if (!boot_cpu_has_bug(X86_BUG_TAA))
365 return 0;
366
367 if (!str)
368 return -EINVAL;
369
370 if (!strcmp(str, "off")) {
371 taa_mitigation = TAA_MITIGATION_OFF;
372 } else if (!strcmp(str, "full")) {
373 taa_mitigation = TAA_MITIGATION_VERW;
374 } else if (!strcmp(str, "full,nosmt")) {
375 taa_mitigation = TAA_MITIGATION_VERW;
376 taa_nosmt = true;
377 }
378
379 return 0;
380 }
381 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
382
383 #undef pr_fmt
384 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
385
386 enum mmio_mitigations {
387 MMIO_MITIGATION_OFF,
388 MMIO_MITIGATION_UCODE_NEEDED,
389 MMIO_MITIGATION_VERW,
390 };
391
392 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
393 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
394 static bool mmio_nosmt __ro_after_init = false;
395
396 static const char * const mmio_strings[] = {
397 [MMIO_MITIGATION_OFF] = "Vulnerable",
398 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
399 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
400 };
401
402 static void __init mmio_select_mitigation(void)
403 {
404 u64 ia32_cap;
405
406 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
407 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
408 cpu_mitigations_off()) {
409 mmio_mitigation = MMIO_MITIGATION_OFF;
410 return;
411 }
412
413 if (mmio_mitigation == MMIO_MITIGATION_OFF)
414 return;
415
416 ia32_cap = x86_read_arch_cap_msr();
417
418 /*
419 * Enable CPU buffer clear mitigation for host and VMM, if also affected
420 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
421 */
422 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
423 boot_cpu_has(X86_FEATURE_RTM)))
424 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
425 else
426 static_branch_enable(&mmio_stale_data_clear);
427
428 /*
429 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
430 * be propagated to uncore buffers, clearing the Fill buffers on idle
431 * is required irrespective of SMT state.
432 */
433 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
434 static_branch_enable(&mds_idle_clear);
435
436 /*
437 * Check if the system has the right microcode.
438 *
439 * CPU Fill buffer clear mitigation is enumerated by either an explicit
440 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
441 * affected systems.
442 */
443 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
444 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
445 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
446 !(ia32_cap & ARCH_CAP_MDS_NO)))
447 mmio_mitigation = MMIO_MITIGATION_VERW;
448 else
449 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
450
451 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
452 cpu_smt_disable(false);
453 }
454
455 static int __init mmio_stale_data_parse_cmdline(char *str)
456 {
457 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
458 return 0;
459
460 if (!str)
461 return -EINVAL;
462
463 if (!strcmp(str, "off")) {
464 mmio_mitigation = MMIO_MITIGATION_OFF;
465 } else if (!strcmp(str, "full")) {
466 mmio_mitigation = MMIO_MITIGATION_VERW;
467 } else if (!strcmp(str, "full,nosmt")) {
468 mmio_mitigation = MMIO_MITIGATION_VERW;
469 mmio_nosmt = true;
470 }
471
472 return 0;
473 }
474 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
475
476 #undef pr_fmt
477 #define pr_fmt(fmt) "" fmt
478
479 static void __init md_clear_update_mitigation(void)
480 {
481 if (cpu_mitigations_off())
482 return;
483
484 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
485 goto out;
486
487 /*
488 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
489 * Stale Data mitigation, if necessary.
490 */
491 if (mds_mitigation == MDS_MITIGATION_OFF &&
492 boot_cpu_has_bug(X86_BUG_MDS)) {
493 mds_mitigation = MDS_MITIGATION_FULL;
494 mds_select_mitigation();
495 }
496 if (taa_mitigation == TAA_MITIGATION_OFF &&
497 boot_cpu_has_bug(X86_BUG_TAA)) {
498 taa_mitigation = TAA_MITIGATION_VERW;
499 taa_select_mitigation();
500 }
501 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
502 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
503 mmio_mitigation = MMIO_MITIGATION_VERW;
504 mmio_select_mitigation();
505 }
506 out:
507 if (boot_cpu_has_bug(X86_BUG_MDS))
508 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
509 if (boot_cpu_has_bug(X86_BUG_TAA))
510 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
511 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
512 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
513 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
514 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
515 }
516
517 static void __init md_clear_select_mitigation(void)
518 {
519 mds_select_mitigation();
520 taa_select_mitigation();
521 mmio_select_mitigation();
522
523 /*
524 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
525 * and print their mitigation after MDS, TAA and MMIO Stale Data
526 * mitigation selection is done.
527 */
528 md_clear_update_mitigation();
529 }
530
531 #undef pr_fmt
532 #define pr_fmt(fmt) "SRBDS: " fmt
533
534 enum srbds_mitigations {
535 SRBDS_MITIGATION_OFF,
536 SRBDS_MITIGATION_UCODE_NEEDED,
537 SRBDS_MITIGATION_FULL,
538 SRBDS_MITIGATION_TSX_OFF,
539 SRBDS_MITIGATION_HYPERVISOR,
540 };
541
542 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
543
544 static const char * const srbds_strings[] = {
545 [SRBDS_MITIGATION_OFF] = "Vulnerable",
546 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
547 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
548 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
549 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
550 };
551
552 static bool srbds_off;
553
554 void update_srbds_msr(void)
555 {
556 u64 mcu_ctrl;
557
558 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
559 return;
560
561 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
562 return;
563
564 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
565 return;
566
567 /*
568 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
569 * being disabled and it hasn't received the SRBDS MSR microcode.
570 */
571 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
572 return;
573
574 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
575
576 switch (srbds_mitigation) {
577 case SRBDS_MITIGATION_OFF:
578 case SRBDS_MITIGATION_TSX_OFF:
579 mcu_ctrl |= RNGDS_MITG_DIS;
580 break;
581 case SRBDS_MITIGATION_FULL:
582 mcu_ctrl &= ~RNGDS_MITG_DIS;
583 break;
584 default:
585 break;
586 }
587
588 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
589 }
590
591 static void __init srbds_select_mitigation(void)
592 {
593 u64 ia32_cap;
594
595 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
596 return;
597
598 /*
599 * Check to see if this is one of the MDS_NO systems supporting TSX that
600 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
601 * by Processor MMIO Stale Data vulnerability.
602 */
603 ia32_cap = x86_read_arch_cap_msr();
604 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
605 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
606 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
607 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
608 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
609 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
610 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
611 else if (cpu_mitigations_off() || srbds_off)
612 srbds_mitigation = SRBDS_MITIGATION_OFF;
613
614 update_srbds_msr();
615 pr_info("%s\n", srbds_strings[srbds_mitigation]);
616 }
617
618 static int __init srbds_parse_cmdline(char *str)
619 {
620 if (!str)
621 return -EINVAL;
622
623 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
624 return 0;
625
626 srbds_off = !strcmp(str, "off");
627 return 0;
628 }
629 early_param("srbds", srbds_parse_cmdline);
630
631 #undef pr_fmt
632 #define pr_fmt(fmt) "L1D Flush : " fmt
633
634 enum l1d_flush_mitigations {
635 L1D_FLUSH_OFF = 0,
636 L1D_FLUSH_ON,
637 };
638
639 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
640
641 static void __init l1d_flush_select_mitigation(void)
642 {
643 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
644 return;
645
646 static_branch_enable(&switch_mm_cond_l1d_flush);
647 pr_info("Conditional flush on switch_mm() enabled\n");
648 }
649
650 static int __init l1d_flush_parse_cmdline(char *str)
651 {
652 if (!strcmp(str, "on"))
653 l1d_flush_mitigation = L1D_FLUSH_ON;
654
655 return 0;
656 }
657 early_param("l1d_flush", l1d_flush_parse_cmdline);
658
659 #undef pr_fmt
660 #define pr_fmt(fmt) "GDS: " fmt
661
662 enum gds_mitigations {
663 GDS_MITIGATION_OFF,
664 GDS_MITIGATION_UCODE_NEEDED,
665 GDS_MITIGATION_FORCE,
666 GDS_MITIGATION_FULL,
667 GDS_MITIGATION_FULL_LOCKED,
668 GDS_MITIGATION_HYPERVISOR,
669 };
670
671 #if IS_ENABLED(CONFIG_MITIGATION_GDS_FORCE)
672 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
673 #else
674 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
675 #endif
676
677 static const char * const gds_strings[] = {
678 [GDS_MITIGATION_OFF] = "Vulnerable",
679 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
680 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
681 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
682 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
683 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
684 };
685
686 bool gds_ucode_mitigated(void)
687 {
688 return (gds_mitigation == GDS_MITIGATION_FULL ||
689 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
690 }
691 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
692
693 void update_gds_msr(void)
694 {
695 u64 mcu_ctrl_after;
696 u64 mcu_ctrl;
697
698 switch (gds_mitigation) {
699 case GDS_MITIGATION_OFF:
700 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
701 mcu_ctrl |= GDS_MITG_DIS;
702 break;
703 case GDS_MITIGATION_FULL_LOCKED:
704 /*
705 * The LOCKED state comes from the boot CPU. APs might not have
706 * the same state. Make sure the mitigation is enabled on all
707 * CPUs.
708 */
709 case GDS_MITIGATION_FULL:
710 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
711 mcu_ctrl &= ~GDS_MITG_DIS;
712 break;
713 case GDS_MITIGATION_FORCE:
714 case GDS_MITIGATION_UCODE_NEEDED:
715 case GDS_MITIGATION_HYPERVISOR:
716 return;
717 }
718
719 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
720
721 /*
722 * Check to make sure that the WRMSR value was not ignored. Writes to
723 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
724 * processor was not.
725 */
726 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
727 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
728 }
729
730 static void __init gds_select_mitigation(void)
731 {
732 u64 mcu_ctrl;
733
734 if (!boot_cpu_has_bug(X86_BUG_GDS))
735 return;
736
737 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
738 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
739 goto out;
740 }
741
742 if (cpu_mitigations_off())
743 gds_mitigation = GDS_MITIGATION_OFF;
744 /* Will verify below that mitigation _can_ be disabled */
745
746 /* No microcode */
747 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
748 if (gds_mitigation == GDS_MITIGATION_FORCE) {
749 /*
750 * This only needs to be done on the boot CPU so do it
751 * here rather than in update_gds_msr()
752 */
753 setup_clear_cpu_cap(X86_FEATURE_AVX);
754 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
755 } else {
756 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
757 }
758 goto out;
759 }
760
761 /* Microcode has mitigation, use it */
762 if (gds_mitigation == GDS_MITIGATION_FORCE)
763 gds_mitigation = GDS_MITIGATION_FULL;
764
765 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
766 if (mcu_ctrl & GDS_MITG_LOCKED) {
767 if (gds_mitigation == GDS_MITIGATION_OFF)
768 pr_warn("Mitigation locked. Disable failed.\n");
769
770 /*
771 * The mitigation is selected from the boot CPU. All other CPUs
772 * _should_ have the same state. If the boot CPU isn't locked
773 * but others are then update_gds_msr() will WARN() of the state
774 * mismatch. If the boot CPU is locked update_gds_msr() will
775 * ensure the other CPUs have the mitigation enabled.
776 */
777 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
778 }
779
780 update_gds_msr();
781 out:
782 pr_info("%s\n", gds_strings[gds_mitigation]);
783 }
784
785 static int __init gds_parse_cmdline(char *str)
786 {
787 if (!str)
788 return -EINVAL;
789
790 if (!boot_cpu_has_bug(X86_BUG_GDS))
791 return 0;
792
793 if (!strcmp(str, "off"))
794 gds_mitigation = GDS_MITIGATION_OFF;
795 else if (!strcmp(str, "force"))
796 gds_mitigation = GDS_MITIGATION_FORCE;
797
798 return 0;
799 }
800 early_param("gather_data_sampling", gds_parse_cmdline);
801
802 #undef pr_fmt
803 #define pr_fmt(fmt) "Spectre V1 : " fmt
804
805 enum spectre_v1_mitigation {
806 SPECTRE_V1_MITIGATION_NONE,
807 SPECTRE_V1_MITIGATION_AUTO,
808 };
809
810 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
811 SPECTRE_V1_MITIGATION_AUTO;
812
813 static const char * const spectre_v1_strings[] = {
814 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
815 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
816 };
817
818 /*
819 * Does SMAP provide full mitigation against speculative kernel access to
820 * userspace?
821 */
822 static bool smap_works_speculatively(void)
823 {
824 if (!boot_cpu_has(X86_FEATURE_SMAP))
825 return false;
826
827 /*
828 * On CPUs which are vulnerable to Meltdown, SMAP does not
829 * prevent speculative access to user data in the L1 cache.
830 * Consider SMAP to be non-functional as a mitigation on these
831 * CPUs.
832 */
833 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
834 return false;
835
836 return true;
837 }
838
839 static void __init spectre_v1_select_mitigation(void)
840 {
841 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
842 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
843 return;
844 }
845
846 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
847 /*
848 * With Spectre v1, a user can speculatively control either
849 * path of a conditional swapgs with a user-controlled GS
850 * value. The mitigation is to add lfences to both code paths.
851 *
852 * If FSGSBASE is enabled, the user can put a kernel address in
853 * GS, in which case SMAP provides no protection.
854 *
855 * If FSGSBASE is disabled, the user can only put a user space
856 * address in GS. That makes an attack harder, but still
857 * possible if there's no SMAP protection.
858 */
859 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
860 !smap_works_speculatively()) {
861 /*
862 * Mitigation can be provided from SWAPGS itself or
863 * PTI as the CR3 write in the Meltdown mitigation
864 * is serializing.
865 *
866 * If neither is there, mitigate with an LFENCE to
867 * stop speculation through swapgs.
868 */
869 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
870 !boot_cpu_has(X86_FEATURE_PTI))
871 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
872
873 /*
874 * Enable lfences in the kernel entry (non-swapgs)
875 * paths, to prevent user entry from speculatively
876 * skipping swapgs.
877 */
878 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
879 }
880 }
881
882 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
883 }
884
885 static int __init nospectre_v1_cmdline(char *str)
886 {
887 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
888 return 0;
889 }
890 early_param("nospectre_v1", nospectre_v1_cmdline);
891
892 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
893
894 #undef pr_fmt
895 #define pr_fmt(fmt) "RETBleed: " fmt
896
897 enum retbleed_mitigation {
898 RETBLEED_MITIGATION_NONE,
899 RETBLEED_MITIGATION_UNRET,
900 RETBLEED_MITIGATION_IBPB,
901 RETBLEED_MITIGATION_IBRS,
902 RETBLEED_MITIGATION_EIBRS,
903 RETBLEED_MITIGATION_STUFF,
904 };
905
906 enum retbleed_mitigation_cmd {
907 RETBLEED_CMD_OFF,
908 RETBLEED_CMD_AUTO,
909 RETBLEED_CMD_UNRET,
910 RETBLEED_CMD_IBPB,
911 RETBLEED_CMD_STUFF,
912 };
913
914 static const char * const retbleed_strings[] = {
915 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
916 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
917 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
918 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
919 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
920 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
921 };
922
923 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
924 RETBLEED_MITIGATION_NONE;
925 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
926 RETBLEED_CMD_AUTO;
927
928 static int __ro_after_init retbleed_nosmt = false;
929
930 static int __init retbleed_parse_cmdline(char *str)
931 {
932 if (!str)
933 return -EINVAL;
934
935 while (str) {
936 char *next = strchr(str, ',');
937 if (next) {
938 *next = 0;
939 next++;
940 }
941
942 if (!strcmp(str, "off")) {
943 retbleed_cmd = RETBLEED_CMD_OFF;
944 } else if (!strcmp(str, "auto")) {
945 retbleed_cmd = RETBLEED_CMD_AUTO;
946 } else if (!strcmp(str, "unret")) {
947 retbleed_cmd = RETBLEED_CMD_UNRET;
948 } else if (!strcmp(str, "ibpb")) {
949 retbleed_cmd = RETBLEED_CMD_IBPB;
950 } else if (!strcmp(str, "stuff")) {
951 retbleed_cmd = RETBLEED_CMD_STUFF;
952 } else if (!strcmp(str, "nosmt")) {
953 retbleed_nosmt = true;
954 } else if (!strcmp(str, "force")) {
955 setup_force_cpu_bug(X86_BUG_RETBLEED);
956 } else {
957 pr_err("Ignoring unknown retbleed option (%s).", str);
958 }
959
960 str = next;
961 }
962
963 return 0;
964 }
965 early_param("retbleed", retbleed_parse_cmdline);
966
967 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
968 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
969
970 static void __init retbleed_select_mitigation(void)
971 {
972 bool mitigate_smt = false;
973
974 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
975 return;
976
977 switch (retbleed_cmd) {
978 case RETBLEED_CMD_OFF:
979 return;
980
981 case RETBLEED_CMD_UNRET:
982 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY)) {
983 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
984 } else {
985 pr_err("WARNING: kernel not compiled with MITIGATION_UNRET_ENTRY.\n");
986 goto do_cmd_auto;
987 }
988 break;
989
990 case RETBLEED_CMD_IBPB:
991 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
992 pr_err("WARNING: CPU does not support IBPB.\n");
993 goto do_cmd_auto;
994 } else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
995 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
996 } else {
997 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
998 goto do_cmd_auto;
999 }
1000 break;
1001
1002 case RETBLEED_CMD_STUFF:
1003 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING) &&
1004 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1005 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1006
1007 } else {
1008 if (IS_ENABLED(CONFIG_MITIGATION_CALL_DEPTH_TRACKING))
1009 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1010 else
1011 pr_err("WARNING: kernel not compiled with MITIGATION_CALL_DEPTH_TRACKING.\n");
1012
1013 goto do_cmd_auto;
1014 }
1015 break;
1016
1017 do_cmd_auto:
1018 case RETBLEED_CMD_AUTO:
1019 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1020 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1021 if (IS_ENABLED(CONFIG_MITIGATION_UNRET_ENTRY))
1022 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1023 else if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY) &&
1024 boot_cpu_has(X86_FEATURE_IBPB))
1025 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1026 }
1027
1028 /*
1029 * The Intel mitigation (IBRS or eIBRS) was already selected in
1030 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1031 * be set accordingly below.
1032 */
1033
1034 break;
1035 }
1036
1037 switch (retbleed_mitigation) {
1038 case RETBLEED_MITIGATION_UNRET:
1039 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1040 setup_force_cpu_cap(X86_FEATURE_UNRET);
1041
1042 x86_return_thunk = retbleed_return_thunk;
1043
1044 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1045 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1046 pr_err(RETBLEED_UNTRAIN_MSG);
1047
1048 mitigate_smt = true;
1049 break;
1050
1051 case RETBLEED_MITIGATION_IBPB:
1052 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1053 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1054 mitigate_smt = true;
1055 break;
1056
1057 case RETBLEED_MITIGATION_STUFF:
1058 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1059 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1060
1061 x86_return_thunk = call_depth_return_thunk;
1062 break;
1063
1064 default:
1065 break;
1066 }
1067
1068 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1069 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1070 cpu_smt_disable(false);
1071
1072 /*
1073 * Let IBRS trump all on Intel without affecting the effects of the
1074 * retbleed= cmdline option except for call depth based stuffing
1075 */
1076 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1077 switch (spectre_v2_enabled) {
1078 case SPECTRE_V2_IBRS:
1079 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1080 break;
1081 case SPECTRE_V2_EIBRS:
1082 case SPECTRE_V2_EIBRS_RETPOLINE:
1083 case SPECTRE_V2_EIBRS_LFENCE:
1084 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1085 break;
1086 default:
1087 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1088 pr_err(RETBLEED_INTEL_MSG);
1089 }
1090 }
1091
1092 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1093 }
1094
1095 #undef pr_fmt
1096 #define pr_fmt(fmt) "Spectre V2 : " fmt
1097
1098 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1099 SPECTRE_V2_USER_NONE;
1100 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1101 SPECTRE_V2_USER_NONE;
1102
1103 #ifdef CONFIG_MITIGATION_RETPOLINE
1104 static bool spectre_v2_bad_module;
1105
1106 bool retpoline_module_ok(bool has_retpoline)
1107 {
1108 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1109 return true;
1110
1111 pr_err("System may be vulnerable to spectre v2\n");
1112 spectre_v2_bad_module = true;
1113 return false;
1114 }
1115
1116 static inline const char *spectre_v2_module_string(void)
1117 {
1118 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1119 }
1120 #else
1121 static inline const char *spectre_v2_module_string(void) { return ""; }
1122 #endif
1123
1124 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1125 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1126 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1127 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1128
1129 #ifdef CONFIG_BPF_SYSCALL
1130 void unpriv_ebpf_notify(int new_state)
1131 {
1132 if (new_state)
1133 return;
1134
1135 /* Unprivileged eBPF is enabled */
1136
1137 switch (spectre_v2_enabled) {
1138 case SPECTRE_V2_EIBRS:
1139 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1140 break;
1141 case SPECTRE_V2_EIBRS_LFENCE:
1142 if (sched_smt_active())
1143 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1144 break;
1145 default:
1146 break;
1147 }
1148 }
1149 #endif
1150
1151 static inline bool match_option(const char *arg, int arglen, const char *opt)
1152 {
1153 int len = strlen(opt);
1154
1155 return len == arglen && !strncmp(arg, opt, len);
1156 }
1157
1158 /* The kernel command line selection for spectre v2 */
1159 enum spectre_v2_mitigation_cmd {
1160 SPECTRE_V2_CMD_NONE,
1161 SPECTRE_V2_CMD_AUTO,
1162 SPECTRE_V2_CMD_FORCE,
1163 SPECTRE_V2_CMD_RETPOLINE,
1164 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1165 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1166 SPECTRE_V2_CMD_EIBRS,
1167 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1168 SPECTRE_V2_CMD_EIBRS_LFENCE,
1169 SPECTRE_V2_CMD_IBRS,
1170 };
1171
1172 enum spectre_v2_user_cmd {
1173 SPECTRE_V2_USER_CMD_NONE,
1174 SPECTRE_V2_USER_CMD_AUTO,
1175 SPECTRE_V2_USER_CMD_FORCE,
1176 SPECTRE_V2_USER_CMD_PRCTL,
1177 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1178 SPECTRE_V2_USER_CMD_SECCOMP,
1179 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1180 };
1181
1182 static const char * const spectre_v2_user_strings[] = {
1183 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1184 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1185 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1186 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1187 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1188 };
1189
1190 static const struct {
1191 const char *option;
1192 enum spectre_v2_user_cmd cmd;
1193 bool secure;
1194 } v2_user_options[] __initconst = {
1195 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1196 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1197 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1198 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1199 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1200 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1201 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1202 };
1203
1204 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1205 {
1206 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1207 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1208 }
1209
1210 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1211
1212 static enum spectre_v2_user_cmd __init
1213 spectre_v2_parse_user_cmdline(void)
1214 {
1215 char arg[20];
1216 int ret, i;
1217
1218 switch (spectre_v2_cmd) {
1219 case SPECTRE_V2_CMD_NONE:
1220 return SPECTRE_V2_USER_CMD_NONE;
1221 case SPECTRE_V2_CMD_FORCE:
1222 return SPECTRE_V2_USER_CMD_FORCE;
1223 default:
1224 break;
1225 }
1226
1227 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1228 arg, sizeof(arg));
1229 if (ret < 0)
1230 return SPECTRE_V2_USER_CMD_AUTO;
1231
1232 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1233 if (match_option(arg, ret, v2_user_options[i].option)) {
1234 spec_v2_user_print_cond(v2_user_options[i].option,
1235 v2_user_options[i].secure);
1236 return v2_user_options[i].cmd;
1237 }
1238 }
1239
1240 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1241 return SPECTRE_V2_USER_CMD_AUTO;
1242 }
1243
1244 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1245 {
1246 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1247 }
1248
1249 static void __init
1250 spectre_v2_user_select_mitigation(void)
1251 {
1252 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1253 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1254 enum spectre_v2_user_cmd cmd;
1255
1256 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1257 return;
1258
1259 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1260 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1261 smt_possible = false;
1262
1263 cmd = spectre_v2_parse_user_cmdline();
1264 switch (cmd) {
1265 case SPECTRE_V2_USER_CMD_NONE:
1266 goto set_mode;
1267 case SPECTRE_V2_USER_CMD_FORCE:
1268 mode = SPECTRE_V2_USER_STRICT;
1269 break;
1270 case SPECTRE_V2_USER_CMD_AUTO:
1271 case SPECTRE_V2_USER_CMD_PRCTL:
1272 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1273 mode = SPECTRE_V2_USER_PRCTL;
1274 break;
1275 case SPECTRE_V2_USER_CMD_SECCOMP:
1276 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1277 if (IS_ENABLED(CONFIG_SECCOMP))
1278 mode = SPECTRE_V2_USER_SECCOMP;
1279 else
1280 mode = SPECTRE_V2_USER_PRCTL;
1281 break;
1282 }
1283
1284 /* Initialize Indirect Branch Prediction Barrier */
1285 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1286 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1287
1288 spectre_v2_user_ibpb = mode;
1289 switch (cmd) {
1290 case SPECTRE_V2_USER_CMD_NONE:
1291 break;
1292 case SPECTRE_V2_USER_CMD_FORCE:
1293 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1294 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1295 static_branch_enable(&switch_mm_always_ibpb);
1296 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1297 break;
1298 case SPECTRE_V2_USER_CMD_PRCTL:
1299 case SPECTRE_V2_USER_CMD_AUTO:
1300 case SPECTRE_V2_USER_CMD_SECCOMP:
1301 static_branch_enable(&switch_mm_cond_ibpb);
1302 break;
1303 }
1304
1305 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1306 static_key_enabled(&switch_mm_always_ibpb) ?
1307 "always-on" : "conditional");
1308 }
1309
1310 /*
1311 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1312 * is not required.
1313 *
1314 * Intel's Enhanced IBRS also protects against cross-thread branch target
1315 * injection in user-mode as the IBRS bit remains always set which
1316 * implicitly enables cross-thread protections. However, in legacy IBRS
1317 * mode, the IBRS bit is set only on kernel entry and cleared on return
1318 * to userspace. AMD Automatic IBRS also does not protect userspace.
1319 * These modes therefore disable the implicit cross-thread protection,
1320 * so allow for STIBP to be selected in those cases.
1321 */
1322 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1323 !smt_possible ||
1324 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1325 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1326 return;
1327
1328 /*
1329 * At this point, an STIBP mode other than "off" has been set.
1330 * If STIBP support is not being forced, check if STIBP always-on
1331 * is preferred.
1332 */
1333 if (mode != SPECTRE_V2_USER_STRICT &&
1334 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1335 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1336
1337 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1338 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1339 if (mode != SPECTRE_V2_USER_STRICT &&
1340 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1341 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1342 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1343 }
1344
1345 spectre_v2_user_stibp = mode;
1346
1347 set_mode:
1348 pr_info("%s\n", spectre_v2_user_strings[mode]);
1349 }
1350
1351 static const char * const spectre_v2_strings[] = {
1352 [SPECTRE_V2_NONE] = "Vulnerable",
1353 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1354 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1355 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1356 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1357 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1358 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1359 };
1360
1361 static const struct {
1362 const char *option;
1363 enum spectre_v2_mitigation_cmd cmd;
1364 bool secure;
1365 } mitigation_options[] __initconst = {
1366 { "off", SPECTRE_V2_CMD_NONE, false },
1367 { "on", SPECTRE_V2_CMD_FORCE, true },
1368 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1369 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1370 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1371 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1372 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1373 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1374 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1375 { "auto", SPECTRE_V2_CMD_AUTO, false },
1376 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1377 };
1378
1379 static void __init spec_v2_print_cond(const char *reason, bool secure)
1380 {
1381 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1382 pr_info("%s selected on command line.\n", reason);
1383 }
1384
1385 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1386 {
1387 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1388 char arg[20];
1389 int ret, i;
1390
1391 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1392 cpu_mitigations_off())
1393 return SPECTRE_V2_CMD_NONE;
1394
1395 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1396 if (ret < 0)
1397 return SPECTRE_V2_CMD_AUTO;
1398
1399 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1400 if (!match_option(arg, ret, mitigation_options[i].option))
1401 continue;
1402 cmd = mitigation_options[i].cmd;
1403 break;
1404 }
1405
1406 if (i >= ARRAY_SIZE(mitigation_options)) {
1407 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1408 return SPECTRE_V2_CMD_AUTO;
1409 }
1410
1411 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1412 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1413 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1414 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1415 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1416 !IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1417 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1418 mitigation_options[i].option);
1419 return SPECTRE_V2_CMD_AUTO;
1420 }
1421
1422 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1423 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1424 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1425 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1426 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1427 mitigation_options[i].option);
1428 return SPECTRE_V2_CMD_AUTO;
1429 }
1430
1431 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1432 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1433 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1434 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1435 mitigation_options[i].option);
1436 return SPECTRE_V2_CMD_AUTO;
1437 }
1438
1439 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY)) {
1440 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1441 mitigation_options[i].option);
1442 return SPECTRE_V2_CMD_AUTO;
1443 }
1444
1445 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1446 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1447 mitigation_options[i].option);
1448 return SPECTRE_V2_CMD_AUTO;
1449 }
1450
1451 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1452 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1453 mitigation_options[i].option);
1454 return SPECTRE_V2_CMD_AUTO;
1455 }
1456
1457 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1458 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1459 mitigation_options[i].option);
1460 return SPECTRE_V2_CMD_AUTO;
1461 }
1462
1463 spec_v2_print_cond(mitigation_options[i].option,
1464 mitigation_options[i].secure);
1465 return cmd;
1466 }
1467
1468 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1469 {
1470 if (!IS_ENABLED(CONFIG_MITIGATION_RETPOLINE)) {
1471 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1472 return SPECTRE_V2_NONE;
1473 }
1474
1475 return SPECTRE_V2_RETPOLINE;
1476 }
1477
1478 /* Disable in-kernel use of non-RSB RET predictors */
1479 static void __init spec_ctrl_disable_kernel_rrsba(void)
1480 {
1481 u64 ia32_cap;
1482
1483 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1484 return;
1485
1486 ia32_cap = x86_read_arch_cap_msr();
1487
1488 if (ia32_cap & ARCH_CAP_RRSBA) {
1489 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1490 update_spec_ctrl(x86_spec_ctrl_base);
1491 }
1492 }
1493
1494 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1495 {
1496 /*
1497 * Similar to context switches, there are two types of RSB attacks
1498 * after VM exit:
1499 *
1500 * 1) RSB underflow
1501 *
1502 * 2) Poisoned RSB entry
1503 *
1504 * When retpoline is enabled, both are mitigated by filling/clearing
1505 * the RSB.
1506 *
1507 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1508 * prediction isolation protections, RSB still needs to be cleared
1509 * because of #2. Note that SMEP provides no protection here, unlike
1510 * user-space-poisoned RSB entries.
1511 *
1512 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1513 * bug is present then a LITE version of RSB protection is required,
1514 * just a single call needs to retire before a RET is executed.
1515 */
1516 switch (mode) {
1517 case SPECTRE_V2_NONE:
1518 return;
1519
1520 case SPECTRE_V2_EIBRS_LFENCE:
1521 case SPECTRE_V2_EIBRS:
1522 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1523 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1524 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1525 }
1526 return;
1527
1528 case SPECTRE_V2_EIBRS_RETPOLINE:
1529 case SPECTRE_V2_RETPOLINE:
1530 case SPECTRE_V2_LFENCE:
1531 case SPECTRE_V2_IBRS:
1532 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1533 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1534 return;
1535 }
1536
1537 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1538 dump_stack();
1539 }
1540
1541 static void __init spectre_v2_select_mitigation(void)
1542 {
1543 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1544 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1545
1546 /*
1547 * If the CPU is not affected and the command line mode is NONE or AUTO
1548 * then nothing to do.
1549 */
1550 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1551 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1552 return;
1553
1554 switch (cmd) {
1555 case SPECTRE_V2_CMD_NONE:
1556 return;
1557
1558 case SPECTRE_V2_CMD_FORCE:
1559 case SPECTRE_V2_CMD_AUTO:
1560 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1561 mode = SPECTRE_V2_EIBRS;
1562 break;
1563 }
1564
1565 if (IS_ENABLED(CONFIG_MITIGATION_IBRS_ENTRY) &&
1566 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1567 retbleed_cmd != RETBLEED_CMD_OFF &&
1568 retbleed_cmd != RETBLEED_CMD_STUFF &&
1569 boot_cpu_has(X86_FEATURE_IBRS) &&
1570 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1571 mode = SPECTRE_V2_IBRS;
1572 break;
1573 }
1574
1575 mode = spectre_v2_select_retpoline();
1576 break;
1577
1578 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1579 pr_err(SPECTRE_V2_LFENCE_MSG);
1580 mode = SPECTRE_V2_LFENCE;
1581 break;
1582
1583 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1584 mode = SPECTRE_V2_RETPOLINE;
1585 break;
1586
1587 case SPECTRE_V2_CMD_RETPOLINE:
1588 mode = spectre_v2_select_retpoline();
1589 break;
1590
1591 case SPECTRE_V2_CMD_IBRS:
1592 mode = SPECTRE_V2_IBRS;
1593 break;
1594
1595 case SPECTRE_V2_CMD_EIBRS:
1596 mode = SPECTRE_V2_EIBRS;
1597 break;
1598
1599 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1600 mode = SPECTRE_V2_EIBRS_LFENCE;
1601 break;
1602
1603 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1604 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1605 break;
1606 }
1607
1608 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1609 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1610
1611 if (spectre_v2_in_ibrs_mode(mode)) {
1612 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1613 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1614 } else {
1615 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1616 update_spec_ctrl(x86_spec_ctrl_base);
1617 }
1618 }
1619
1620 switch (mode) {
1621 case SPECTRE_V2_NONE:
1622 case SPECTRE_V2_EIBRS:
1623 break;
1624
1625 case SPECTRE_V2_IBRS:
1626 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1627 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1628 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1629 break;
1630
1631 case SPECTRE_V2_LFENCE:
1632 case SPECTRE_V2_EIBRS_LFENCE:
1633 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1634 fallthrough;
1635
1636 case SPECTRE_V2_RETPOLINE:
1637 case SPECTRE_V2_EIBRS_RETPOLINE:
1638 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1639 break;
1640 }
1641
1642 /*
1643 * Disable alternate RSB predictions in kernel when indirect CALLs and
1644 * JMPs gets protection against BHI and Intramode-BTI, but RET
1645 * prediction from a non-RSB predictor is still a risk.
1646 */
1647 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1648 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1649 mode == SPECTRE_V2_RETPOLINE)
1650 spec_ctrl_disable_kernel_rrsba();
1651
1652 spectre_v2_enabled = mode;
1653 pr_info("%s\n", spectre_v2_strings[mode]);
1654
1655 /*
1656 * If Spectre v2 protection has been enabled, fill the RSB during a
1657 * context switch. In general there are two types of RSB attacks
1658 * across context switches, for which the CALLs/RETs may be unbalanced.
1659 *
1660 * 1) RSB underflow
1661 *
1662 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1663 * speculated return targets may come from the branch predictor,
1664 * which could have a user-poisoned BTB or BHB entry.
1665 *
1666 * AMD has it even worse: *all* returns are speculated from the BTB,
1667 * regardless of the state of the RSB.
1668 *
1669 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1670 * scenario is mitigated by the IBRS branch prediction isolation
1671 * properties, so the RSB buffer filling wouldn't be necessary to
1672 * protect against this type of attack.
1673 *
1674 * The "user -> user" attack scenario is mitigated by RSB filling.
1675 *
1676 * 2) Poisoned RSB entry
1677 *
1678 * If the 'next' in-kernel return stack is shorter than 'prev',
1679 * 'next' could be tricked into speculating with a user-poisoned RSB
1680 * entry.
1681 *
1682 * The "user -> kernel" attack scenario is mitigated by SMEP and
1683 * eIBRS.
1684 *
1685 * The "user -> user" scenario, also known as SpectreBHB, requires
1686 * RSB clearing.
1687 *
1688 * So to mitigate all cases, unconditionally fill RSB on context
1689 * switches.
1690 *
1691 * FIXME: Is this pointless for retbleed-affected AMD?
1692 */
1693 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1694 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1695
1696 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1697
1698 /*
1699 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1700 * and Enhanced IBRS protect firmware too, so enable IBRS around
1701 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1702 * otherwise enabled.
1703 *
1704 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1705 * the user might select retpoline on the kernel command line and if
1706 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1707 * enable IBRS around firmware calls.
1708 */
1709 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1710 boot_cpu_has(X86_FEATURE_IBPB) &&
1711 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1712 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1713
1714 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1715 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1716 pr_info("Enabling Speculation Barrier for firmware calls\n");
1717 }
1718
1719 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1720 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1721 pr_info("Enabling Restricted Speculation for firmware calls\n");
1722 }
1723
1724 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1725 spectre_v2_cmd = cmd;
1726 }
1727
1728 static void update_stibp_msr(void * __unused)
1729 {
1730 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1731 update_spec_ctrl(val);
1732 }
1733
1734 /* Update x86_spec_ctrl_base in case SMT state changed. */
1735 static void update_stibp_strict(void)
1736 {
1737 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1738
1739 if (sched_smt_active())
1740 mask |= SPEC_CTRL_STIBP;
1741
1742 if (mask == x86_spec_ctrl_base)
1743 return;
1744
1745 pr_info("Update user space SMT mitigation: STIBP %s\n",
1746 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1747 x86_spec_ctrl_base = mask;
1748 on_each_cpu(update_stibp_msr, NULL, 1);
1749 }
1750
1751 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1752 static void update_indir_branch_cond(void)
1753 {
1754 if (sched_smt_active())
1755 static_branch_enable(&switch_to_cond_stibp);
1756 else
1757 static_branch_disable(&switch_to_cond_stibp);
1758 }
1759
1760 #undef pr_fmt
1761 #define pr_fmt(fmt) fmt
1762
1763 /* Update the static key controlling the MDS CPU buffer clear in idle */
1764 static void update_mds_branch_idle(void)
1765 {
1766 u64 ia32_cap = x86_read_arch_cap_msr();
1767
1768 /*
1769 * Enable the idle clearing if SMT is active on CPUs which are
1770 * affected only by MSBDS and not any other MDS variant.
1771 *
1772 * The other variants cannot be mitigated when SMT is enabled, so
1773 * clearing the buffers on idle just to prevent the Store Buffer
1774 * repartitioning leak would be a window dressing exercise.
1775 */
1776 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1777 return;
1778
1779 if (sched_smt_active()) {
1780 static_branch_enable(&mds_idle_clear);
1781 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1782 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1783 static_branch_disable(&mds_idle_clear);
1784 }
1785 }
1786
1787 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1788 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1789 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1790
1791 void cpu_bugs_smt_update(void)
1792 {
1793 mutex_lock(&spec_ctrl_mutex);
1794
1795 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1796 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1797 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1798
1799 switch (spectre_v2_user_stibp) {
1800 case SPECTRE_V2_USER_NONE:
1801 break;
1802 case SPECTRE_V2_USER_STRICT:
1803 case SPECTRE_V2_USER_STRICT_PREFERRED:
1804 update_stibp_strict();
1805 break;
1806 case SPECTRE_V2_USER_PRCTL:
1807 case SPECTRE_V2_USER_SECCOMP:
1808 update_indir_branch_cond();
1809 break;
1810 }
1811
1812 switch (mds_mitigation) {
1813 case MDS_MITIGATION_FULL:
1814 case MDS_MITIGATION_VMWERV:
1815 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1816 pr_warn_once(MDS_MSG_SMT);
1817 update_mds_branch_idle();
1818 break;
1819 case MDS_MITIGATION_OFF:
1820 break;
1821 }
1822
1823 switch (taa_mitigation) {
1824 case TAA_MITIGATION_VERW:
1825 case TAA_MITIGATION_UCODE_NEEDED:
1826 if (sched_smt_active())
1827 pr_warn_once(TAA_MSG_SMT);
1828 break;
1829 case TAA_MITIGATION_TSX_DISABLED:
1830 case TAA_MITIGATION_OFF:
1831 break;
1832 }
1833
1834 switch (mmio_mitigation) {
1835 case MMIO_MITIGATION_VERW:
1836 case MMIO_MITIGATION_UCODE_NEEDED:
1837 if (sched_smt_active())
1838 pr_warn_once(MMIO_MSG_SMT);
1839 break;
1840 case MMIO_MITIGATION_OFF:
1841 break;
1842 }
1843
1844 mutex_unlock(&spec_ctrl_mutex);
1845 }
1846
1847 #undef pr_fmt
1848 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1849
1850 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1851
1852 /* The kernel command line selection */
1853 enum ssb_mitigation_cmd {
1854 SPEC_STORE_BYPASS_CMD_NONE,
1855 SPEC_STORE_BYPASS_CMD_AUTO,
1856 SPEC_STORE_BYPASS_CMD_ON,
1857 SPEC_STORE_BYPASS_CMD_PRCTL,
1858 SPEC_STORE_BYPASS_CMD_SECCOMP,
1859 };
1860
1861 static const char * const ssb_strings[] = {
1862 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1863 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1864 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1865 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1866 };
1867
1868 static const struct {
1869 const char *option;
1870 enum ssb_mitigation_cmd cmd;
1871 } ssb_mitigation_options[] __initconst = {
1872 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1873 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1874 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1875 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1876 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1877 };
1878
1879 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1880 {
1881 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1882 char arg[20];
1883 int ret, i;
1884
1885 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1886 cpu_mitigations_off()) {
1887 return SPEC_STORE_BYPASS_CMD_NONE;
1888 } else {
1889 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1890 arg, sizeof(arg));
1891 if (ret < 0)
1892 return SPEC_STORE_BYPASS_CMD_AUTO;
1893
1894 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1895 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1896 continue;
1897
1898 cmd = ssb_mitigation_options[i].cmd;
1899 break;
1900 }
1901
1902 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1903 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1904 return SPEC_STORE_BYPASS_CMD_AUTO;
1905 }
1906 }
1907
1908 return cmd;
1909 }
1910
1911 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1912 {
1913 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1914 enum ssb_mitigation_cmd cmd;
1915
1916 if (!boot_cpu_has(X86_FEATURE_SSBD))
1917 return mode;
1918
1919 cmd = ssb_parse_cmdline();
1920 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1921 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1922 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1923 return mode;
1924
1925 switch (cmd) {
1926 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1927 /*
1928 * Choose prctl+seccomp as the default mode if seccomp is
1929 * enabled.
1930 */
1931 if (IS_ENABLED(CONFIG_SECCOMP))
1932 mode = SPEC_STORE_BYPASS_SECCOMP;
1933 else
1934 mode = SPEC_STORE_BYPASS_PRCTL;
1935 break;
1936 case SPEC_STORE_BYPASS_CMD_ON:
1937 mode = SPEC_STORE_BYPASS_DISABLE;
1938 break;
1939 case SPEC_STORE_BYPASS_CMD_AUTO:
1940 case SPEC_STORE_BYPASS_CMD_PRCTL:
1941 mode = SPEC_STORE_BYPASS_PRCTL;
1942 break;
1943 case SPEC_STORE_BYPASS_CMD_NONE:
1944 break;
1945 }
1946
1947 /*
1948 * We have three CPU feature flags that are in play here:
1949 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1950 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1951 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1952 */
1953 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1954 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1955 /*
1956 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1957 * use a completely different MSR and bit dependent on family.
1958 */
1959 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1960 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1961 x86_amd_ssb_disable();
1962 } else {
1963 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1964 update_spec_ctrl(x86_spec_ctrl_base);
1965 }
1966 }
1967
1968 return mode;
1969 }
1970
1971 static void ssb_select_mitigation(void)
1972 {
1973 ssb_mode = __ssb_select_mitigation();
1974
1975 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1976 pr_info("%s\n", ssb_strings[ssb_mode]);
1977 }
1978
1979 #undef pr_fmt
1980 #define pr_fmt(fmt) "Speculation prctl: " fmt
1981
1982 static void task_update_spec_tif(struct task_struct *tsk)
1983 {
1984 /* Force the update of the real TIF bits */
1985 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1986
1987 /*
1988 * Immediately update the speculation control MSRs for the current
1989 * task, but for a non-current task delay setting the CPU
1990 * mitigation until it is scheduled next.
1991 *
1992 * This can only happen for SECCOMP mitigation. For PRCTL it's
1993 * always the current task.
1994 */
1995 if (tsk == current)
1996 speculation_ctrl_update_current();
1997 }
1998
1999 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2000 {
2001
2002 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2003 return -EPERM;
2004
2005 switch (ctrl) {
2006 case PR_SPEC_ENABLE:
2007 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2008 return 0;
2009 case PR_SPEC_DISABLE:
2010 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2011 return 0;
2012 default:
2013 return -ERANGE;
2014 }
2015 }
2016
2017 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2018 {
2019 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2020 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2021 return -ENXIO;
2022
2023 switch (ctrl) {
2024 case PR_SPEC_ENABLE:
2025 /* If speculation is force disabled, enable is not allowed */
2026 if (task_spec_ssb_force_disable(task))
2027 return -EPERM;
2028 task_clear_spec_ssb_disable(task);
2029 task_clear_spec_ssb_noexec(task);
2030 task_update_spec_tif(task);
2031 break;
2032 case PR_SPEC_DISABLE:
2033 task_set_spec_ssb_disable(task);
2034 task_clear_spec_ssb_noexec(task);
2035 task_update_spec_tif(task);
2036 break;
2037 case PR_SPEC_FORCE_DISABLE:
2038 task_set_spec_ssb_disable(task);
2039 task_set_spec_ssb_force_disable(task);
2040 task_clear_spec_ssb_noexec(task);
2041 task_update_spec_tif(task);
2042 break;
2043 case PR_SPEC_DISABLE_NOEXEC:
2044 if (task_spec_ssb_force_disable(task))
2045 return -EPERM;
2046 task_set_spec_ssb_disable(task);
2047 task_set_spec_ssb_noexec(task);
2048 task_update_spec_tif(task);
2049 break;
2050 default:
2051 return -ERANGE;
2052 }
2053 return 0;
2054 }
2055
2056 static bool is_spec_ib_user_controlled(void)
2057 {
2058 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2059 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2060 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2061 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2062 }
2063
2064 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2065 {
2066 switch (ctrl) {
2067 case PR_SPEC_ENABLE:
2068 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2069 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2070 return 0;
2071
2072 /*
2073 * With strict mode for both IBPB and STIBP, the instruction
2074 * code paths avoid checking this task flag and instead,
2075 * unconditionally run the instruction. However, STIBP and IBPB
2076 * are independent and either can be set to conditionally
2077 * enabled regardless of the mode of the other.
2078 *
2079 * If either is set to conditional, allow the task flag to be
2080 * updated, unless it was force-disabled by a previous prctl
2081 * call. Currently, this is possible on an AMD CPU which has the
2082 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2083 * kernel is booted with 'spectre_v2_user=seccomp', then
2084 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2085 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2086 */
2087 if (!is_spec_ib_user_controlled() ||
2088 task_spec_ib_force_disable(task))
2089 return -EPERM;
2090
2091 task_clear_spec_ib_disable(task);
2092 task_update_spec_tif(task);
2093 break;
2094 case PR_SPEC_DISABLE:
2095 case PR_SPEC_FORCE_DISABLE:
2096 /*
2097 * Indirect branch speculation is always allowed when
2098 * mitigation is force disabled.
2099 */
2100 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2101 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2102 return -EPERM;
2103
2104 if (!is_spec_ib_user_controlled())
2105 return 0;
2106
2107 task_set_spec_ib_disable(task);
2108 if (ctrl == PR_SPEC_FORCE_DISABLE)
2109 task_set_spec_ib_force_disable(task);
2110 task_update_spec_tif(task);
2111 if (task == current)
2112 indirect_branch_prediction_barrier();
2113 break;
2114 default:
2115 return -ERANGE;
2116 }
2117 return 0;
2118 }
2119
2120 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2121 unsigned long ctrl)
2122 {
2123 switch (which) {
2124 case PR_SPEC_STORE_BYPASS:
2125 return ssb_prctl_set(task, ctrl);
2126 case PR_SPEC_INDIRECT_BRANCH:
2127 return ib_prctl_set(task, ctrl);
2128 case PR_SPEC_L1D_FLUSH:
2129 return l1d_flush_prctl_set(task, ctrl);
2130 default:
2131 return -ENODEV;
2132 }
2133 }
2134
2135 #ifdef CONFIG_SECCOMP
2136 void arch_seccomp_spec_mitigate(struct task_struct *task)
2137 {
2138 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2139 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2140 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2141 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2142 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2143 }
2144 #endif
2145
2146 static int l1d_flush_prctl_get(struct task_struct *task)
2147 {
2148 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2149 return PR_SPEC_FORCE_DISABLE;
2150
2151 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2152 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2153 else
2154 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2155 }
2156
2157 static int ssb_prctl_get(struct task_struct *task)
2158 {
2159 switch (ssb_mode) {
2160 case SPEC_STORE_BYPASS_NONE:
2161 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2162 return PR_SPEC_ENABLE;
2163 return PR_SPEC_NOT_AFFECTED;
2164 case SPEC_STORE_BYPASS_DISABLE:
2165 return PR_SPEC_DISABLE;
2166 case SPEC_STORE_BYPASS_SECCOMP:
2167 case SPEC_STORE_BYPASS_PRCTL:
2168 if (task_spec_ssb_force_disable(task))
2169 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2170 if (task_spec_ssb_noexec(task))
2171 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2172 if (task_spec_ssb_disable(task))
2173 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2174 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2175 }
2176 BUG();
2177 }
2178
2179 static int ib_prctl_get(struct task_struct *task)
2180 {
2181 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2182 return PR_SPEC_NOT_AFFECTED;
2183
2184 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2185 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2186 return PR_SPEC_ENABLE;
2187 else if (is_spec_ib_user_controlled()) {
2188 if (task_spec_ib_force_disable(task))
2189 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2190 if (task_spec_ib_disable(task))
2191 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2192 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2193 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2194 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2195 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2196 return PR_SPEC_DISABLE;
2197 else
2198 return PR_SPEC_NOT_AFFECTED;
2199 }
2200
2201 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2202 {
2203 switch (which) {
2204 case PR_SPEC_STORE_BYPASS:
2205 return ssb_prctl_get(task);
2206 case PR_SPEC_INDIRECT_BRANCH:
2207 return ib_prctl_get(task);
2208 case PR_SPEC_L1D_FLUSH:
2209 return l1d_flush_prctl_get(task);
2210 default:
2211 return -ENODEV;
2212 }
2213 }
2214
2215 void x86_spec_ctrl_setup_ap(void)
2216 {
2217 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2218 update_spec_ctrl(x86_spec_ctrl_base);
2219
2220 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2221 x86_amd_ssb_disable();
2222 }
2223
2224 bool itlb_multihit_kvm_mitigation;
2225 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2226
2227 #undef pr_fmt
2228 #define pr_fmt(fmt) "L1TF: " fmt
2229
2230 /* Default mitigation for L1TF-affected CPUs */
2231 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2232 #if IS_ENABLED(CONFIG_KVM_INTEL)
2233 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2234 #endif
2235 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2236 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2237
2238 /*
2239 * These CPUs all support 44bits physical address space internally in the
2240 * cache but CPUID can report a smaller number of physical address bits.
2241 *
2242 * The L1TF mitigation uses the top most address bit for the inversion of
2243 * non present PTEs. When the installed memory reaches into the top most
2244 * address bit due to memory holes, which has been observed on machines
2245 * which report 36bits physical address bits and have 32G RAM installed,
2246 * then the mitigation range check in l1tf_select_mitigation() triggers.
2247 * This is a false positive because the mitigation is still possible due to
2248 * the fact that the cache uses 44bit internally. Use the cache bits
2249 * instead of the reported physical bits and adjust them on the affected
2250 * machines to 44bit if the reported bits are less than 44.
2251 */
2252 static void override_cache_bits(struct cpuinfo_x86 *c)
2253 {
2254 if (c->x86 != 6)
2255 return;
2256
2257 switch (c->x86_model) {
2258 case INTEL_FAM6_NEHALEM:
2259 case INTEL_FAM6_WESTMERE:
2260 case INTEL_FAM6_SANDYBRIDGE:
2261 case INTEL_FAM6_IVYBRIDGE:
2262 case INTEL_FAM6_HASWELL:
2263 case INTEL_FAM6_HASWELL_L:
2264 case INTEL_FAM6_HASWELL_G:
2265 case INTEL_FAM6_BROADWELL:
2266 case INTEL_FAM6_BROADWELL_G:
2267 case INTEL_FAM6_SKYLAKE_L:
2268 case INTEL_FAM6_SKYLAKE:
2269 case INTEL_FAM6_KABYLAKE_L:
2270 case INTEL_FAM6_KABYLAKE:
2271 if (c->x86_cache_bits < 44)
2272 c->x86_cache_bits = 44;
2273 break;
2274 }
2275 }
2276
2277 static void __init l1tf_select_mitigation(void)
2278 {
2279 u64 half_pa;
2280
2281 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2282 return;
2283
2284 if (cpu_mitigations_off())
2285 l1tf_mitigation = L1TF_MITIGATION_OFF;
2286 else if (cpu_mitigations_auto_nosmt())
2287 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2288
2289 override_cache_bits(&boot_cpu_data);
2290
2291 switch (l1tf_mitigation) {
2292 case L1TF_MITIGATION_OFF:
2293 case L1TF_MITIGATION_FLUSH_NOWARN:
2294 case L1TF_MITIGATION_FLUSH:
2295 break;
2296 case L1TF_MITIGATION_FLUSH_NOSMT:
2297 case L1TF_MITIGATION_FULL:
2298 cpu_smt_disable(false);
2299 break;
2300 case L1TF_MITIGATION_FULL_FORCE:
2301 cpu_smt_disable(true);
2302 break;
2303 }
2304
2305 #if CONFIG_PGTABLE_LEVELS == 2
2306 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2307 return;
2308 #endif
2309
2310 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2311 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2312 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2313 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2314 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2315 half_pa);
2316 pr_info("However, doing so will make a part of your RAM unusable.\n");
2317 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2318 return;
2319 }
2320
2321 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2322 }
2323
2324 static int __init l1tf_cmdline(char *str)
2325 {
2326 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2327 return 0;
2328
2329 if (!str)
2330 return -EINVAL;
2331
2332 if (!strcmp(str, "off"))
2333 l1tf_mitigation = L1TF_MITIGATION_OFF;
2334 else if (!strcmp(str, "flush,nowarn"))
2335 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2336 else if (!strcmp(str, "flush"))
2337 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2338 else if (!strcmp(str, "flush,nosmt"))
2339 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2340 else if (!strcmp(str, "full"))
2341 l1tf_mitigation = L1TF_MITIGATION_FULL;
2342 else if (!strcmp(str, "full,force"))
2343 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2344
2345 return 0;
2346 }
2347 early_param("l1tf", l1tf_cmdline);
2348
2349 #undef pr_fmt
2350 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2351
2352 enum srso_mitigation {
2353 SRSO_MITIGATION_NONE,
2354 SRSO_MITIGATION_UCODE_NEEDED,
2355 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2356 SRSO_MITIGATION_MICROCODE,
2357 SRSO_MITIGATION_SAFE_RET,
2358 SRSO_MITIGATION_IBPB,
2359 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2360 };
2361
2362 enum srso_mitigation_cmd {
2363 SRSO_CMD_OFF,
2364 SRSO_CMD_MICROCODE,
2365 SRSO_CMD_SAFE_RET,
2366 SRSO_CMD_IBPB,
2367 SRSO_CMD_IBPB_ON_VMEXIT,
2368 };
2369
2370 static const char * const srso_strings[] = {
2371 [SRSO_MITIGATION_NONE] = "Vulnerable",
2372 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2373 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2374 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2375 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2376 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2377 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2378 };
2379
2380 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2381 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2382
2383 static int __init srso_parse_cmdline(char *str)
2384 {
2385 if (!str)
2386 return -EINVAL;
2387
2388 if (!strcmp(str, "off"))
2389 srso_cmd = SRSO_CMD_OFF;
2390 else if (!strcmp(str, "microcode"))
2391 srso_cmd = SRSO_CMD_MICROCODE;
2392 else if (!strcmp(str, "safe-ret"))
2393 srso_cmd = SRSO_CMD_SAFE_RET;
2394 else if (!strcmp(str, "ibpb"))
2395 srso_cmd = SRSO_CMD_IBPB;
2396 else if (!strcmp(str, "ibpb-vmexit"))
2397 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2398 else
2399 pr_err("Ignoring unknown SRSO option (%s).", str);
2400
2401 return 0;
2402 }
2403 early_param("spec_rstack_overflow", srso_parse_cmdline);
2404
2405 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2406
2407 static void __init srso_select_mitigation(void)
2408 {
2409 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2410
2411 if (cpu_mitigations_off())
2412 return;
2413
2414 if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2415 if (boot_cpu_has(X86_FEATURE_SBPB))
2416 x86_pred_cmd = PRED_CMD_SBPB;
2417 return;
2418 }
2419
2420 if (has_microcode) {
2421 /*
2422 * Zen1/2 with SMT off aren't vulnerable after the right
2423 * IBPB microcode has been applied.
2424 *
2425 * Zen1/2 don't have SBPB, no need to try to enable it here.
2426 */
2427 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2428 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2429 return;
2430 }
2431
2432 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2433 srso_mitigation = SRSO_MITIGATION_IBPB;
2434 goto out;
2435 }
2436 } else {
2437 pr_warn("IBPB-extending microcode not applied!\n");
2438 pr_warn(SRSO_NOTICE);
2439
2440 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2441 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2442 }
2443
2444 switch (srso_cmd) {
2445 case SRSO_CMD_OFF:
2446 if (boot_cpu_has(X86_FEATURE_SBPB))
2447 x86_pred_cmd = PRED_CMD_SBPB;
2448 return;
2449
2450 case SRSO_CMD_MICROCODE:
2451 if (has_microcode) {
2452 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2453 pr_warn(SRSO_NOTICE);
2454 }
2455 break;
2456
2457 case SRSO_CMD_SAFE_RET:
2458 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2459 /*
2460 * Enable the return thunk for generated code
2461 * like ftrace, static_call, etc.
2462 */
2463 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2464 setup_force_cpu_cap(X86_FEATURE_UNRET);
2465
2466 if (boot_cpu_data.x86 == 0x19) {
2467 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2468 x86_return_thunk = srso_alias_return_thunk;
2469 } else {
2470 setup_force_cpu_cap(X86_FEATURE_SRSO);
2471 x86_return_thunk = srso_return_thunk;
2472 }
2473 if (has_microcode)
2474 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2475 else
2476 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2477 } else {
2478 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2479 }
2480 break;
2481
2482 case SRSO_CMD_IBPB:
2483 if (IS_ENABLED(CONFIG_MITIGATION_IBPB_ENTRY)) {
2484 if (has_microcode) {
2485 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2486 srso_mitigation = SRSO_MITIGATION_IBPB;
2487 }
2488 } else {
2489 pr_err("WARNING: kernel not compiled with MITIGATION_IBPB_ENTRY.\n");
2490 }
2491 break;
2492
2493 case SRSO_CMD_IBPB_ON_VMEXIT:
2494 if (IS_ENABLED(CONFIG_MITIGATION_SRSO)) {
2495 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2496 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2497 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2498 }
2499 } else {
2500 pr_err("WARNING: kernel not compiled with MITIGATION_SRSO.\n");
2501 }
2502 break;
2503 }
2504
2505 out:
2506 pr_info("%s\n", srso_strings[srso_mitigation]);
2507 }
2508
2509 #undef pr_fmt
2510 #define pr_fmt(fmt) fmt
2511
2512 #ifdef CONFIG_SYSFS
2513
2514 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2515
2516 #if IS_ENABLED(CONFIG_KVM_INTEL)
2517 static const char * const l1tf_vmx_states[] = {
2518 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2519 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2520 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2521 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2522 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2523 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2524 };
2525
2526 static ssize_t l1tf_show_state(char *buf)
2527 {
2528 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2529 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2530
2531 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2532 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2533 sched_smt_active())) {
2534 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2535 l1tf_vmx_states[l1tf_vmx_mitigation]);
2536 }
2537
2538 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2539 l1tf_vmx_states[l1tf_vmx_mitigation],
2540 sched_smt_active() ? "vulnerable" : "disabled");
2541 }
2542
2543 static ssize_t itlb_multihit_show_state(char *buf)
2544 {
2545 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2546 !boot_cpu_has(X86_FEATURE_VMX))
2547 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2548 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2549 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2550 else if (itlb_multihit_kvm_mitigation)
2551 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2552 else
2553 return sysfs_emit(buf, "KVM: Vulnerable\n");
2554 }
2555 #else
2556 static ssize_t l1tf_show_state(char *buf)
2557 {
2558 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2559 }
2560
2561 static ssize_t itlb_multihit_show_state(char *buf)
2562 {
2563 return sysfs_emit(buf, "Processor vulnerable\n");
2564 }
2565 #endif
2566
2567 static ssize_t mds_show_state(char *buf)
2568 {
2569 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2570 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2571 mds_strings[mds_mitigation]);
2572 }
2573
2574 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2575 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2576 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2577 sched_smt_active() ? "mitigated" : "disabled"));
2578 }
2579
2580 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2581 sched_smt_active() ? "vulnerable" : "disabled");
2582 }
2583
2584 static ssize_t tsx_async_abort_show_state(char *buf)
2585 {
2586 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2587 (taa_mitigation == TAA_MITIGATION_OFF))
2588 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2589
2590 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2591 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2592 taa_strings[taa_mitigation]);
2593 }
2594
2595 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2596 sched_smt_active() ? "vulnerable" : "disabled");
2597 }
2598
2599 static ssize_t mmio_stale_data_show_state(char *buf)
2600 {
2601 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2602 return sysfs_emit(buf, "Unknown: No mitigations\n");
2603
2604 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2605 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2606
2607 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2608 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2609 mmio_strings[mmio_mitigation]);
2610 }
2611
2612 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2613 sched_smt_active() ? "vulnerable" : "disabled");
2614 }
2615
2616 static char *stibp_state(void)
2617 {
2618 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2619 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2620 return "";
2621
2622 switch (spectre_v2_user_stibp) {
2623 case SPECTRE_V2_USER_NONE:
2624 return ", STIBP: disabled";
2625 case SPECTRE_V2_USER_STRICT:
2626 return ", STIBP: forced";
2627 case SPECTRE_V2_USER_STRICT_PREFERRED:
2628 return ", STIBP: always-on";
2629 case SPECTRE_V2_USER_PRCTL:
2630 case SPECTRE_V2_USER_SECCOMP:
2631 if (static_key_enabled(&switch_to_cond_stibp))
2632 return ", STIBP: conditional";
2633 }
2634 return "";
2635 }
2636
2637 static char *ibpb_state(void)
2638 {
2639 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2640 if (static_key_enabled(&switch_mm_always_ibpb))
2641 return ", IBPB: always-on";
2642 if (static_key_enabled(&switch_mm_cond_ibpb))
2643 return ", IBPB: conditional";
2644 return ", IBPB: disabled";
2645 }
2646 return "";
2647 }
2648
2649 static char *pbrsb_eibrs_state(void)
2650 {
2651 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2652 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2653 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2654 return ", PBRSB-eIBRS: SW sequence";
2655 else
2656 return ", PBRSB-eIBRS: Vulnerable";
2657 } else {
2658 return ", PBRSB-eIBRS: Not affected";
2659 }
2660 }
2661
2662 static ssize_t spectre_v2_show_state(char *buf)
2663 {
2664 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2665 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2666
2667 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2668 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2669
2670 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2671 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2672 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2673
2674 return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2675 spectre_v2_strings[spectre_v2_enabled],
2676 ibpb_state(),
2677 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2678 stibp_state(),
2679 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2680 pbrsb_eibrs_state(),
2681 spectre_v2_module_string());
2682 }
2683
2684 static ssize_t srbds_show_state(char *buf)
2685 {
2686 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2687 }
2688
2689 static ssize_t retbleed_show_state(char *buf)
2690 {
2691 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2692 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2693 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2694 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2695 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2696
2697 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2698 !sched_smt_active() ? "disabled" :
2699 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2700 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2701 "enabled with STIBP protection" : "vulnerable");
2702 }
2703
2704 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2705 }
2706
2707 static ssize_t srso_show_state(char *buf)
2708 {
2709 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2710 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2711
2712 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
2713 }
2714
2715 static ssize_t gds_show_state(char *buf)
2716 {
2717 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2718 }
2719
2720 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2721 char *buf, unsigned int bug)
2722 {
2723 if (!boot_cpu_has_bug(bug))
2724 return sysfs_emit(buf, "Not affected\n");
2725
2726 switch (bug) {
2727 case X86_BUG_CPU_MELTDOWN:
2728 if (boot_cpu_has(X86_FEATURE_PTI))
2729 return sysfs_emit(buf, "Mitigation: PTI\n");
2730
2731 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2732 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2733
2734 break;
2735
2736 case X86_BUG_SPECTRE_V1:
2737 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2738
2739 case X86_BUG_SPECTRE_V2:
2740 return spectre_v2_show_state(buf);
2741
2742 case X86_BUG_SPEC_STORE_BYPASS:
2743 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2744
2745 case X86_BUG_L1TF:
2746 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2747 return l1tf_show_state(buf);
2748 break;
2749
2750 case X86_BUG_MDS:
2751 return mds_show_state(buf);
2752
2753 case X86_BUG_TAA:
2754 return tsx_async_abort_show_state(buf);
2755
2756 case X86_BUG_ITLB_MULTIHIT:
2757 return itlb_multihit_show_state(buf);
2758
2759 case X86_BUG_SRBDS:
2760 return srbds_show_state(buf);
2761
2762 case X86_BUG_MMIO_STALE_DATA:
2763 case X86_BUG_MMIO_UNKNOWN:
2764 return mmio_stale_data_show_state(buf);
2765
2766 case X86_BUG_RETBLEED:
2767 return retbleed_show_state(buf);
2768
2769 case X86_BUG_SRSO:
2770 return srso_show_state(buf);
2771
2772 case X86_BUG_GDS:
2773 return gds_show_state(buf);
2774
2775 default:
2776 break;
2777 }
2778
2779 return sysfs_emit(buf, "Vulnerable\n");
2780 }
2781
2782 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2783 {
2784 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2785 }
2786
2787 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2788 {
2789 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2790 }
2791
2792 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2793 {
2794 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2795 }
2796
2797 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2798 {
2799 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2800 }
2801
2802 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2803 {
2804 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2805 }
2806
2807 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2808 {
2809 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2810 }
2811
2812 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2813 {
2814 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2815 }
2816
2817 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2818 {
2819 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2820 }
2821
2822 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2823 {
2824 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2825 }
2826
2827 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2828 {
2829 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2830 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2831 else
2832 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2833 }
2834
2835 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2836 {
2837 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2838 }
2839
2840 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2841 {
2842 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2843 }
2844
2845 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2846 {
2847 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2848 }
2849 #endif
2850
2851 void __warn_thunk(void)
2852 {
2853 WARN_ONCE(1, "Unpatched return thunk in use. This should not happen!\n");
2854 }